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Abstract

This paper shows that monotone self-dual Boolean functions in irredundant disjuntive normal form
(IDNF) do not have more variables than disjuncts. Monotone self-dual Boolean functions in IDNF with
the same number of variables and disjuncts are examined. An algorithm is proposed to test whether a
monotone Boolean function in IDNF with n variables and n disjuncts is self-dual. The runtime of the
algorithm is O(n4).

1. Introduction

The problem of testing whether a monotone Boolean function in irredundant disjuntive normal
form (IDNF) is self-dual is one of few problems in circuit complexity whose precise tractability status
is unknown. This famous problem is called the monotone self-duality problem (Eiter et al., 2008).
It impinges upon many areas of computer science, such as artificial intelligence, distributed systems,
database theory, and hypergraph theory (Makino, 2003; Eiter and Gottlob, 2002).

Consider a monotone Boolean function f in IDNF. Suppose that f has k variables and n disjuncts:

f (x1, x2, . . . , xk) = D1 _ D2 _ · · · _ Dn

where each disjunct Di is a prime implicant of f , i = 1, . . . n. The relationship between k and n is
a key aspect of the monotone self-duality problem. Prior work has shown that if f is self-dual then
k  n

2 (Fredman and Khachiyan, 1996; Gaur and Krishnamurti, 2008). We improve on this result. In
Section 2, by Corollary 1, we show that if f is self-dual then k  n. In Section 3, we consider the
monotone self-duality problem for Boolean functions with the same number of variables and disjuncts
(i.e., n = k). For such functions, we propose an algorithm that runs in O(n4) time.

1.1. Definitions

Definition 1 Consider k independent Boolean variables, x1, x2, . . . , xk. Boolean literals are Boolean

variables and their complements, i.e., x1, x̄1, x2, x̄2, . . . , xk, x̄k.

Definition 2 A disjunct (D) of a Boolean function f is an AND of literals, e.g., D = x1 x̄3x4, that

implies f . A disjunct set (SD) is a set containing all the disjunct’s literals, e.g., if D = x1 x̄3x4 then

S D = {x1, x̄3, x4}. A disjunctive normal form (DNF) is an OR of disjuncts.

Definition 3 A prime implicant (PI) of a Boolean function f is a disjunct that implies f such that

removing any literal from the disjunct results in a new disjunct that does not imply f .

Definition 4 An irredundant disjunctive normal form (IDNF) is a DNF where each disjunct is a PI

of a Boolean function f and no PI can be deleted without changing f .
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Definition 5 Boolean functions f and g are dual pairs i↵ f (x1, x2, . . . , xk) = g
D = ḡ(x̄1, x̄2, . . . , x̄k). A

Boolean function f is self-dual i↵ f (x1, x2, . . . , xk) = f
D = f̄ (x̄1, x̄2, . . . , x̄k).

Given an expression for a Boolean function in terms of AND, OR, NOT, 0, and 1, its dual can also be

obtained by interchanging the AND and OR operations as well as interchanging the constants 0 and 1.

For example, if f (x1, x2, x3) = x1x2 _ x̄1x3 then f
D(x1, x2, x3) = (x1 _ x2)(x̄1 _ x3). A trivial example is

that for f = 1, the dual is f
D = 0.

Definition 6 A Boolean function f is monotone if it can be constructed using only the AND and OR

operations (specifically, if it can constructed without the NOT operation).

Definition 7 The Fano plane is the smallest finite projective plane with seven points and seven lines

such that and every pair of its lines intersect in one point. A Boolean function that represents the

Fano plane is a monotone self-dual Boolean function with seven variables and seven disjuncts such

that every pair of its disjuncts intersect in one variable. An example is f = x1x2x3 _ x1x4x5 _ x1x6x7 _

x2x4x6 _ x2x5x7 _ x3x4x7 _ x3x5x6.

2. Number of disjuncts versus number of variables

Our main contribution in this section is Theorem 1. It defines a necessary condition for monotone
self-dual Boolean functions. For such functions, there exists a matching between its variables and
disjuncts, i.e., every variable can be paired to a distinct disjunct that contains the variable. From this
theorem we derive our two main results, presented as Corollary 1 and Corollary 2.

2.1. Preliminaries

We define the intersection property as follows. A Boolean function f satisfies the intersection

property if every pair of its disjuncts has a non-empty intersection.

Lemma 1 (Fredman and Khachiyan, 1996) Consider a monotone Boolean function f in IDNF. If f is

self-dual then f satisfies the intersection property.

Proof of Lemma 1: The proof is by contradiction. Consider a disjunct D of f . We assign 1’s to
the all variables of D and 0’s to the other variables of f . This makes f = 1. If f does not satisfy the
intersection property then there must be a disjunct of f having all assigned 0’s. This makes f

D = 0, so
f , f

D. This is a contradiction. 2

Lemma 2 Consider a monotone Boolean function f in IDNF satisfying the intersection property. Sup-

pose that we obtain a new Boolean function g by removing one or more disjuncts from f . There is an

assignment of 0’s and 1’s to the variables of g such that every disjunct of g has both a 0 and a 1.

Proof of Lemma 2: Consider one of the disjuncts that was removed from f . We focus on the variables
of this disjunct that are also variables of g. Suppose that we assign 1’s to all of these variables of g and
0’s to all of the other variables of g. Since f is in IDNF, the assigned 1’s do not make g = 1. Therefore
g = 0; every disjunct of g has at least one assigned 0. Since f satisfies the intersection property, every
disjunct of g has at least one assigned 1. As a result, every disjunct of g has both a 0 and a 1. 2

We define a matching between a variable x and a disjunct D as follows. There is a matching
between x and D i↵ x is a variable of D. For example, if D = x1x2 then there is a matching between x1
and D as well as x2 and D.
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Lemma 3 Consider a monotone Boolean function f in IDNF satisfying the intersection property. Sup-

pose that f has k variables and n disjuncts. If each of the b variables of f can be matched with a

distinct disjunct of f where b < k and b < n, and all other unmatched disjuncts of f do not have any of

the matched variables, then f is not self-dual.

Proof of Lemma 3: Lemma 3 is illustrated in Table 1. Note that a variable xi is matched with a
disjunct Di for every i = 1, . . . , b. To prove that f is not self-dual, we assign 0’s and 1’s to the variables
of f such that every disjunct of f has both 0 and 1. This results in f = 0 and f

D = 1; f , f
D. We first

assign 0’s and 1’s to the variables of Db+1_ . . ._Dn to make each disjunct of Db+1_ . . ._Dn have both
a 0 and a 1. Lemma 2 allows us to do so. Note that none of the variables x1, . . . , xb has an assignment
yet. Since f satisfies the intersection property, each disjunct of D1 _ . . . _ Db should have at least one
previously assigned 0 or 1. If a disjunct of D1 _ . . . _ Db has a previously assigned 1 then we assign
0 to its matched (circled) variable; if a disjunct of D1 _ . . . _ Db has a previously assigned 0 then we
assign 1 to its matched (circled) variable. As a result, every disjunct of f has both a 0 and a 1; therefore
f is not self-dual.

D1 D2 . . . . . . . . . Db�1 Db Db+1. . . . . . . . . . . . . . . Dn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x1 x2 . . . . . . . . . xb�1 xb . . . . . . . . . . . . . . . . . .

no x1, . . . . . . , xb

Table 1: An illustration of Lemma 3.
2

Lemma 4 (Fredman and Khachiyan, 1996) Boolean functions f and g are dual pairs i↵ a Boolean

function a f _ bg _ ab is self-dual where a and b are Boolean variables.

Proof of Lemma 4: From the definition of duality, if a f _ bg _ ab is self-dual then (a f _ bg _

ab)a=1, b=0 = f and (a f _ bg _ ab)a=0, b=1 = g are dual pairs. From the definition of duality, if f and g

are dual pairs then (a f _bg_ab)D = (aD
_ f

D)(bD
_g

D)(aD
_b

D) = (a_g)(b_ f )(a_b) = (a f _bg_ab).
2

2.2. The Theorem

Theorem 1 Consider a monotone Boolean function f in IDNF. If f is self-dual then each variable of f

can be matched with a distinct disjunct.

Before proving the theorem we elucidate it with examples.

Example 1 Consider a monotone self-dual Boolean function in IDNF

f = x1x2 _ x1x3 _ x2x3.

The function has three variables x1, x2, and x3, and three disjuncts D1 = x1x2, D2 = x1x3, and

D3 = x2x3. As shown in Table 2, every variable is matched with a distinct disjunct; the circled x1, x2,

and x3 are matched with D1, D3, and D2, respectively. We see that the theorem holds for this example.

Note that the required matching – each variable to a distinct disjunct – might not be unique. For this

example, another possibility is having x1, x2, and x3 matched with D2, D1, and D3, respectively.
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D1 D3 D2
x2 x3 x1
x1 x2 x3

Table 2: An example to illustrate Theorem 1.

Example 2 Consider a monotone self-dual Boolean function in IDNF

f = x1x2x3 _ x1x3x4 _ x1x5x6 _ x2x3x6 _ x2x4x5 _ x3x4x6 _ x3x5.

The function has six variables x1, x2, x3, x4, x5, and x6, and seven disjuncts D1 = x1x2x3, D2 = x1x3x4,

D3 = x1x5x6, D4 = x2x3x6, D5 = x2x4x5, D6 = x3x4x6, and D7 = x3x5. As shown in Table 3, every

variable is matched with a distinct disjunct; the circled x1, x2, x3, x4, x5, and x6 are matched with D1,

D4, D2, D5, D3, and D6, respectively. We see that the theorem holds for this example.

D1 D4 D2 D5 D3 D6 D7
x2 x3 x1 x2 x1 x3
x3 x6 x4 x5 x6 x4 x3
x1 x2 x3 x4 x5 x6 x5

Table 3: An example to illustrate Theorem 1.

Proof of Theorem 1: The proof is by contradiction. We suppose that at most a variables of f can be
matched with distinct disjuncts, where a < k. We consider two cases, n = a and n > a where n is the
number of disjuncts of f . For both cases, we find an assignment of 0’s and 1’s to the variables of f such
that every disjunct of f has both a 0 and a 1. This results in a contradiction since such an assignment
makes f = 0 and f

D = 1; f , f
D.

Case 1: n = a.
This case is illustrated in Table 4. To make every disjunct of f have both a 0 and a 1, we first assign

0 to x1 and 1 to xa+1. Then we assign a 0 or a 1 to each of the variables x2, . . . , xa step by step. In
each step, if a disjunct has a previously assigned 1 then we assign 0 to its matched (circled) variable;
if a disjunct has a previously assigned 0 then we assign 1 to its matched (circled) variable. After these
steps, if every disjunct of f has both a 0 and a 1 then we have proved that f is not self-dual. If there
remain disjuncts, these disjuncts should not have any previously assigned variables. Lemma 3 identifies
this condition and it tells us that f is not self-dual. This is a contradiction.

D1 D2 . . . . . . . . . Dn�1 Dn

. . . . . . . . . . . . .
xa+1 . . . . . . . . . . . .
x1 x2 . . . . . . . . . xa�1 xa

Table 4: An illustration of Case 1.

Case 2: n > a

This case is illustrated in Table 5. We show that f always satisfies the condition in Lemma 3;
accordingly f is not self-dual.

As shown in Table 5, the expression Da+1 _ . . . _ Dn does not have the variable x1 or the variable
xa+1. If it had then at least a + 1 variables would be matched; this would go against our assumption.
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For example, if Da+1 _ . . . _ Dn has x1 then x1 would be matched with a disjunct from Da+1 _ . . . _ Dn

and xa+1 would be matched with D1. So a + 1 variables would be matched with distinct disjuncts.

D1 D2 . . . . . . . . . Da�1 Da Da+1. . . . . . . . . . . . . . . . Dn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xa+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x1 x2 . . . . . . . . . xa�1 xa . . . . . . . . . . . . . . . . . . .

no x1 no xa+1

Table 5: An illustration of Case 2.

If Da+1 _ . . . _ Dn does not have any of the variables x2, . . . , xa then f satisfies the condition in
Lemma 3; f is not self-dual. If it does then the number of disjuncts not having x1 or xa+1 increases.
This is illustrated in Table 6. Suppose that Da+1 _ . . . _ Dn has variables x j, . . . , xa�1 where j � 2. As
shown in the table, D j _ . . . _ Dn does not have x1 or xa+1. If it had then at least a + 1 variables would
be matched; this would go against our assumption. For example, if D j had xa+1 then xa+1 would be
matched with D j and x j would be matched with a disjunct from Da+1 _ . . . _ Dn. So a + 1 variables
would be matched with distinct disjuncts.

D1 D2 . . . . . . D j�1 D j . . . . . . Da�1 Da Da+1 . . . . . . . . . . . . Dn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xa+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x1 x2 . . . . . . x j�1 x j . . . . . . xa�1 xa . . . . . . . . . . . . . . . . . .

no x1 no xa+1

Table 6: An illustration of Case 2.

If D j _ . . . _ Dn does not have any of the variables x2, . . . , x j�1 then f satisfies Lemma 3; f is not
self-dual. If it does have any of these variables then the number of disjuncts not having x1 or xa+1
increases.

As a result the number of disjuncts not having x1 or xa+1 increases unless the condition in Lemma 3
is satisfied. Since there must be disjuncts having x1 or xa+1, this increase should eventually stop. When
it stops, the condition in Lemma 3 will be satisfied. As a result, f is not self-dual. This is a contradiction.

2

Corollary 1 Consider a monotone Boolean function f in IDNF. Suppose that f has k variables and n

disjuncts. If f is self-dual then k  n.

Proof of Corollary 1: We know that if f is self-dual then f should satisfy the matching defined in
Theorem 1. This matching requires that f does not have more variables than disjuncts, so k  n. 2

Corollary 2 Consider monotone Boolean functions f and g in IDNF. Suppose that f has k variables

and n disjuncts and g has k variables and m disjuncts. If f and g are dual pairs then k  n + m � 1.

Proof of Corollary 2:

From Lemma 4 we know that the Boolean functions f and g are dual pairs i↵ a Boolean function
a f _ bg _ ab is self-dual where a and b are Boolean variables. If neither a nor b is a variable of f (or
of g) then a f _ bg _ ab has n + m + 1 disjuncts and k + 2 variables. From Corollary 1, we know that
k + 2  n + m + 1, so k  n + m � 1. 2
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3. The self-duality problem

In this section we propose an algorithm to test whether a monotone Boolean function in IDNF with
n variables and n disjuncts is self-dual. The runtime of the algorithm is O(n4).

3.1. Preliminaries

Theorem 2 (Altun and Riedel, 2010, 2011) Consider a disjunct Di of a monotone self-dual Boolean

function f in IDNF. For any variable x of Di there exists at least one disjunct D j of f such that S Di \

S D j = {x}.

Before proving the theorem we elucidate it with an example.

Example 3 Consider a monotone self-dual Boolean function function in IDNF

f = x1x2x3 _ x1x3x4 _ x1x5x6 _ x2x3x6 _ x2x4x5 _ x3x4x6 _ x3x5.

The function has seven disjuncts D1 = x1x2x3, D2 = x1x3x4, D3 = x1x5x6, D4 = x2x3x6, D5 =

x2x4x5, D6 = x3x4x6, and D7 = x3x5. Consider the disjunct D1 = x1x2x3. Since S D1 \ S D3 = {x1},

S D1 \ S D5 = {x2}, and S D1 \ S D6 = {x3}, the theorem holds for any variable of D1. Consider the

disjunct D2 = x1x3x4. Since S D2\S D3 = {x1}, S D2\S D4 = {x3}, and S D2\S D5 = {x4}, the theorem

holds for any variable of D2.

Proof of Theorem 2: The proof is by contradiction. Suppose that there is no disjunct D j of f such that
S Di\S D j = {x}. From Lemma 1, we know that Di has a non-empty intersection with every disjunct of
f . If we extract x from Di then a new disjunct D

0

i
should also have a non-empty intersection with every

disjunct of f . This means that if we assign 1’s to the all variables of D
0

i
then these assigned 1’s make

f = f
D = (1 + . . .)(1 + . . .) . . . (1 + . . .) = 1. So D

0

i
implies f ; D

0

i
is a disjunct of f . This disjunct covers

Di. However, in IDNF, all disjuncts including Di are irredundant, not covered by another disjunct of f .
So we have a contradiction 2

Lemma 5 Consider a disjunct D of a monotone self-dual Boolean function f in IDNF. Consider all

disjuncts D1, . . . ,Dy of f such that S D \ S Di = {x} for every i = 1, . . . , y. A Boolean function g =

(Dx=1)((D1 _ . . . _ Dy)x=1)D
implies (i.e., is covered by) f .

Before proving the lemma we elucidate it with an example.

Example 4 Consider a monotone self-dual Boolean function function in IDNF

f = x1x2x3 _ x1x3x4 _ x1x5x6 _ x2x3x6 _ x2x4x5 _ x3x4x6 _ x3x5.

The function has seven disjuncts D1 = x1x2x3, D2 = x1x3x4, D3 = x1x5x6, D4 = x2x3x6, D5 = x2x4x5,

D6 = x3x4x6, and D7 = x3x5. Consider the disjunct D1 = x1x2x3. The disjunct D3 = x1x5x6 is the

only disjunct that intersects D1 in x1. Since g =
�
(D1)x1=1

� �
(D3)x1=1

�D = x2x3x5 _ x2x3x6 implies f ,

the lemma holds for this case. The disjuncts D6 = x3x4x6 and D7 = x3x5 are the only disjuncts that

intersect D1 in x3. Since g =
�
(D1)x3=1

� �
(D6 _ D7)x1=1

�D = x1x2x4x5 _ x1x2x5x6 implies f , the lemma

holds for this case.
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Proof of Lemma 5: To prove the statement we check if g = 1 always makes f = f
D = 1 (by assigning

1’s to the variables of g). Suppose that f has n disjuncts D1, . . . ,Dy,D,Dy+2, . . . ,Dn. If g = 1 then both
(Dx=1) = 1 and ((D1 _ . . . _ Dy)x=1)D = 1. From Lemma 1, we know that if (Dx=1) = 1 then every
disjunct of Dy+2, . . ._,Dn has at least one assigned 1. From the definition of duality, we know that if
((D1 _ . . . _ Dy)x=1)D = 1 then every disjunct of D1, . . . ,Dy has at least one assigned 1. As a result,
every disjunct of f has at least one assigned 1 making f = f

D = (1 + . . .) . . . (1 + . . .) = 1. 2

Lemma 6 Consider a monotone self-dual Boolean function f in IDNF with k variables. A set of b

variables of f has a non-empty intersection with at least b + 1 disjunct sets of f where b < k.

Before proving the lemma we elucidate it with an example.

Example 5 Consider a monotone self-dual Boolean function function in IDNF

f = x1x2x3x4 _ x1x5 _ x1x6 _ x2x5x6 _ x3x5x6 _ x4x5x6.

The function has six disjuncts D1 = x1x2x3x4, D2 = x1x5, D3 = x1x6, D4 = x2x5x6, D5 = x3x5x6, and

D6 = x4x5x6. Consider a set of two variables {x2, x3}; b = 2. Since it has a non-empty intersection with

three disjunct sets S D1, S D4, and S D5, the lemma holds for this case. Consider a set of one variable

{x1}; b = 1. Since has a non-empty intersection with three disjunct sets S D1, S D2, and S D3, the lemma

holds for this case.

Proof of Lemma 6: The proof is by contradiction. From Theorem 1, we know that each of the k

variables should be matched with a distinct disjunct, so a set of b variables of f should have a non-
empty intersection with at least b disjunct sets of f . Suppose that a set of b variables of f has a
non-empty intersection with exactly b disjunct sets of f . Lemma 3 identifies this condition and it tells
us that f is not self-dual. This is a contradiction. 2

Theorem 3 Consider a monotone self-dual Boolean function f in IDNF with k variables. If every

variable of f occurs at least three times then a set of b variables of f has a non-empty intersection with

at least b + 2 disjunct sets of f where b < k � 1.

Proof of Theorem 3: The proof is by induction on b.
The base case: b = 1.

Since a variable of f occurs three times, a set of one variable should have a non-empty intersection
with at least three disjunct sets of f .
The inductive step: Assume that the theorem holds for b  m where m � 2. We show that it also holds
for b = m + 1.

Consider a set of m+1 variables S = {x1, . . . , xm+1}. Consider a disjunct D of f such that S D\S =

{x1, . . . , xc}. From Theorem 2, we know that there is at least one disjunct that intersects D in xi for
every i = 1, . . . , c. We consider two cases.

For the cases we suppose that f does not have a disjunct set intersecting S in one variable; if it does
then the theorem holds for S (by using the inductive assumption). Also we suppose that f does not
have a disjunct set that is a subset of S ; if it does then it is obvious that the theorem holds for S .

Case 1: There is only one disjunct that intersects D in xi for every i = 1, . . . , c.
Suppose that Di is the only disjunct that intersects D in xi for every i = 1, . . . , c. Consider a variable

set S Dx1�xc
of ((D1)x1=1 _ . . . _ (Dc)xc=1); S Dx1�xc

includes all variables of ((D1)x1=1 _ . . . _ (Dc)xc=1).
From Lemma 5, we know that

�
(D)xi=1

� �
(Di)xi=1

�D implies f for every i = 1, . . . , c. This means that
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f should have at least |S Dx1�xc
\ S | disjuncts such that each of them has one distinct variable from

S Dx1�xc
\ S = {xc+1, xc+2, . . . , xm+1} and none of them is covered by (D _ D1 _ . . . _ Dc).

If S Dx1�xc
\ S = {xc+1, xc+2, . . . , xm+1} then f has at least |S Dx1�xc

\ S | = m � c + 1 disjunct
sets such that each of them intersects {xc+1, xc+2, . . . , xm+1} in one variable. Therefore, including S D,
S D1, S D2, . . ., and S Dc, f has at least m + 2 disjunct sets such that each of them has a non-empty
intersection with S . If f has exactly m + 2 disjunct sets then each disjunct of f has a non-empty in-
tersection with (xc+1xc+2 . . . xm+1)(Dx1=1,...,xc=1). This means that f should have a disjunct that covers
(xc+1xc+2 . . . xm+1)(Dx1=1,...,xc=1). Since none of the m+2 disjuncts covers (xc+1xc+2 . . . xm+1)(Dx1=1,...,xc=1),
f needs one more disjunct to cover (xc+1xc+2 . . . xm+1)(Dx1=1,...,xc=1) that has a non-empty intersection
with S . This is a contradiction. As a result, f has at least m+ 3 disjunct sets such that each of them has
a non-empty intersection with S ; the theorem holds for S .

If S Dx1�xc
\ S = {xc+1, xc+2, . . . , xn} where n < m+ 1 then from our inductive assumption we know

that the variable set {xn+1, xn+2, . . . , xm+1} intersects at least m� n+ 3 disjunct sets. As a result, f has at
least (c + 1) + |S Dx1�xc

\ S | = (n � c) + (m � n + 3) = m + 4 disjunct sets such that each of them has a
non-empty intersection with S . So the theorem holds for S .

Case 2: For at least one of the variables of x1, . . . , xc, say xc, there are at least two disjuncts such
that each of them intersects D in xc.

The proof has c steps. In each step, we consider all disjuncts of f such that each of them intersects
D in xi where 1  i  c. We first consider disjuncts D1, . . . ,Dy such that each of them intersects D in x1.
Consider a variable set S Dx1 of (D1 _ . . . _ Dy)x1=1; S Dx1 includes all variables of (D1 _ . . . _ Dy)x1=1.
From Lemma 5, we know that (Dx1=1)((D1_. . ._Dy)x1=1)D implies f . Therefore along with D1_. . ._Dy,
f should have disjuncts that cover (Dx1=1)((D1_ . . ._Dy)x1=1)D. This means that f includes a dual-pair
of (D1_ . . ._Dy)x1=1 and ((D1_ . . ._Dy)x1=1)D. From Lemma 4 and Lemma 6, we know that S Dx1 \S

requires at least |S Dx1 \ S | + 1 disjunct sets of f such that each of them has a non-empty intersection
with S .

We apply the same method for x2, x3, and xc�1, respectively. Consider a variable set S Dxi
for every

i = 2, . . . , c � 1; S Dxi
is obtained in the same way as S Dx1 was obtained in the first step. In each step

if S Dxi
\ S has new variables that are the variables not included in (S Dx1 [ . . . [ S Dxi�1 ) \ S , then

these new variables result in new disjuncts. From Lemma 4 and Lemma 6, we know that the number of
new disjuncts is at least one more than the number of the new variables. Therefore before the last step,
including S D, f has at least |(S Dx1 [ . . . [ S Dxc�1 ) \ S | + (c � 1) + 1 disjunct sets (+1 is for S D) such
that each of them has a non-empty intersection with S .

The last step corresponds to xc. If |(S Dx1 [ . . . [ S Dxc�1 ) \ S | = ((m + 1) � c) then S Dxc
does not

have any new variables. Since there are at least two disjuncts such that each of them intersects D in
xc, f has at least (m + 1 � c) + (c) + (2) = m + 3 disjunct sets such that each of them has a non-empty
intersection with S . So the theorem holds for S . If |(S Dx1 [ . . .[S Dxc�1 )\S | = n where n < (m+1)�c

then S has (m � n � c + 1) variables that are not included in ((S Dx1 [ . . . [ S Dxc�1 ) [ S D). From our
inductive assumption, we know that these (m� n� c+ 1) variables results in at least (m� n� c+ 1+ 2)
new disjunct sets. As a result, f has at least (m + 1 � c) + (c) + (2) = m + 3 disjunct sets such that each
of them has a non-empty intersection with S . So the theorem holds for S . 2

Lemma 7 Consider a monotone self-dual Boolean function f in IDNF with the same number of vari-

ables and disjuncts. If f has a variable occurring two times then f has at least two disjuncts of size

two.

Proof of Lemma 7: If a variable of f , say x1, occurs two times then from Theorem 2, we know that two
disjuncts that have x1 should intersect in x1. Consider the disjuncts x1xa1 . . . xan and x1xb1 . . . xbm of f .
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From Lemma 5, we know that both g = (xa1 . . . xan)(xb1_ . . ._ xbm) and h = (xb1 . . . xbm)(xa1_ . . ._ xan)
should be covered by f . Note that g and h have total of n + m disjuncts. These n + m disjuncts should
be covered by at most n + m � 2 disjuncts of f ; otherwise Lemma 6 is violated. For example, if
n + m disjuncts are covered by n + m � 1 disjuncts of f then along with the disjuncts x1xa1 . . . xan and
x1xb1 . . . xbm there are n + m + 1 disjuncts having n + m + 1 variables. This means that a set of the
remaining variables, say b variables, has a non-empty intersection with at most b disjuncts of f , so
Lemma 6 is violated.

Any disjunct of f with more than two variables can only cover one of the m + n disjuncts of g _ h.
Therefore to cover m+n disjuncts of g_h with m+n�2 disjuncts, f needs disjuncts of size two. Since
a disjunct of size two can cover at most two of the m + n disjuncts of g _ h, f should have at least two
disjuncts of size two. 2

Lemma 8 Consider a monotone self-dual Boolean function f in IDNF with the same number of vari-

ables and disjuncts. If each variable of f occurs at least three times then f is a unique Boolean function

that represents the Fano plane.

Proof of Lemma 8: We consider two cases.
Case 1: A pair of disjuncts of f intersect in multiple variables.

We show that if a pair of disjuncts of f intersect in multiple variables then f is not self-dual.
Consider two disjuncts D1 and D2 of f such that they intersect in multiple variables. Suppose that both
D1 and D2 have variables x1 and x2. This case is illustrated in Table 7. Note that x3, x4, . . ., xk are
matched with D3, D4, . . ., Dk, respectively. This is called perfect matching. Hall’s theorem describes
a necessary and su�cient condition for this matching: a subset of b variables of {x3, . . . , xk} has a non-
empty intersection with at least b disjunct sets from S D3, . . . , S Dk. From Theorem 3, we know that a
set of b variables of f has a non-empty intersection with at least b + 2 disjunct sets of f . This satisfies
the necessary and su�cient condition for the perfect matching between x3, . . . , xk and D3, . . . ,Dk.

We find an assignment of 0’s and 1’s to the variables of f such that every disjunct of f has both a
0 and a 1. To make every disjunct of f have both 0 and 1, we first assign 0 to x1 and 1 to x2. Then
we assign a 0 or a 1 to each of the variables x3, . . . , xk step by step. In each step, if a disjunct has a
previously assigned 1 then we assign 0 to its matched (circled) variable; if a disjunct has a previously
assigned 0 then we assign 1 to its matched (circled) variable. After these steps, if every disjunct of f has
both a 0 and a 1 then we have proved that f is not self-dual. If there remain disjuncts, these disjuncts
should not have any previously assigned variables. Lemma 3 identifies this condition and it tells us that
f is not self-dual.

D1 D2 D3 . . . . . . . . . Dn�1 Dk

. . . . . . . . . . . . . .
x2 x1 . . . . . . . . . . . .
x1 x2 x3 . . . . . . . . . xk�1 xk

Table 7: An illustration of Case 1.

Case 2: Every pair of disjuncts of f intersect in one variable.
Suppose that a variable of f , say x1, occurs three times. Consider disjuncts D1 = x1xa1 . . . xan,

D2 = x1xb1 . . . xbm, and D3 = x1xc1 . . . xcl of f where n  m  l. From Lemma 5, we know that f

should cover (xa1 . . . xan)(xb1 _ . . . _ xbm)(xc1 _ . . . _ xcl) where n  m  l. This means that f should
cover m·l disjuncts. These disjuncts are covered by at least m·l disjuncts of f ; otherwise the intersection
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property does not hold for f . Along with D1, D2, and D3, f has m · l + 3 disjuncts having m + n + l + 1
variables. From Lemma 1, we know that m · l+ 3  m+ n+ l+ 1. The only solution of this inequality is
that n = 2, m = 2, and l = 2. This results in a self-dual Boolean function representing the Fano plane,
e.g., f = x1x2x3 _ x1x4x5 _ x1x6x7 _ x2x4x6 _ x2x5x7 _ x3x4x7 _ x3x5x6.

If a variable of f occurs more than three times then the value on left hand side of the inequality
m · l + 3  m + n + l increases more than that on the right hand side does, so there is no solution. 2

Lemma 9 A Boolean function f is self-dual i↵ fxa=xb
, fxa=xc

, and fxb=xc
are all self-dual Boolean func-

tions where xa, xb, and xc are any three variables of f .

Proof of Lemma 9: From the definition of duality, f is self-dual i↵ each assignment of 0’s and 1’s to
the variables of f , corresponding to a row of the truth table, satisfies f (x1, x2, . . . , xk) = f̄ (x̄1, x̄2, . . . , x̄k).
Any dependency between variables of f only eliminates some rows of f ’s truth table. Therefore, if f is
self-dual then fxa=xb

, fxa=xc
, and fxb=xc

are all self-dual. For each row of f ’s truth table either xa = xb

or xa = xc, or xb = xc. Therefore, if fxa=xb
, fxa=xc

, and fxb=xc
are all self-dual then f is self-dual. 2

3.2. The Algorithm

We present a four-step algorithm:
Input: A monotone Boolean function f in IDNF with n variables n disjuncts.
Output: “YES” if f is self-dual; “NO” otherwise.

1. Check if f is a single variable Boolean function. If it is then return “YES”.
2. Check if f represents the Fano plane. If it does then return “YES”.
3. Check if the intersection property holds for f . If it does not then return “NO”.
4. Check if f has two disjuncts of size two, xaxb and xaxc where xa, xb, and xc are variables of f .

If it does not then return “NO”; otherwise obtain a new function f = fxb=xc
in IDNF. Repeat this

step until f consists of a single variable; in this case, return “YES”.

If f is self-dual then f should be in one of the following three categories: (1) f is a single variable
Boolean function; (2) at least one variable of f occurs two times; (3) each variable of f occurs at least
three times. From Theorem 2, we know that if f is self-dual and not in (1) then every variable of f

should occur at least two times, so f should be in either (2) or (3). Therefore these three categories
cover all possible self-dual Boolean functions.

The first step of our algorithm checks if f is self-dual and in (1). The second step of our algorithm
checks if f is self-dual and in (3). From Lemma 8, we know that if f is self-dual and in (3) then f is
a unique Boolean function that represents the Fano plane. The third and fourth steps of our algorithm
check if f is self-dual and in (2). From Lemma 1, we know that if f is self-dual then f should satisfy
the intersection property. From Lemma 7, we know that if f is self-dual and in (2) then f should have
at least two disjuncts of size two, xaxb and xaxc. From Lemma 9, we know that f is self-dual i↵ fxa=xb

,
fxa=xc

, and fxb=xc
are all self-dual. Since f satisfies the intersection property, both fxa=xb

= xa and
fxa=xc

= xa are self-dual. This means that f is self-dual i↵ fxb=xc
is self-dual. Note that fxb=xc

in IDNF
has n � 1 variables and n � 1 disjuncts. Since fxb=xc

satisfies the intersection property and does not
represent the Fano plane, we just need to repeat step four to check if the function is self-dual. Note that
to check if f is self-dual and in (2), we need to repeat step four at most n times.

The steps three and four of the algorithm run in O(n4) and O(n3) time, respectively. Therefore the
run time of the algorithm is that of the step three O(n4).
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