
12 International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Boolean Functions, Defect Tolerance, Duality, Logic Synthesis, Percolation

INTRODUCTION

As current CMOS-based technology is ap-
proaching its anticipated limits, research is
shifting to novel forms of nanoscale technolo-
gies including molecular-scale self-assembled
systems (Whitesides & Grzybowski, 2002; Yan,
Park, Finkelstein, Reif, & LaBean, 2003). Un-

like conventional CMOS that can be patterned in
complex ways with lithography, self-assembled
systems generally consist of regular structures
such as crossbar arrays (Ziegler & Stan, 2003;
Eshaghian-Wilner, Flood, Khitun, Stoddart, &
Wang, 2006). In particular, with self-assembly,
nanoscale technologies are often characterized
by high defect rates. A variety of techniques have
been proposed for mitigating against defects
(Huang, Tahoori, & Lombardi, 2004; Kuekes,

Robust Computation
through Percolation:

Synthesizing Logic with Percolation
in Nanoscale Lattices
Mustafa Altun, University of Minnesota, USA

Marc D. Riedel, University of Minnesota, USA

ABSTRACT
This paper proposes a probabilistic framework for digital computation with lattices of nanoscale switches
based on the mathematical phenomenon of percolation. With random connectivity, percolation gives rise to
a sharp non-linearity in the probability of global connectivity as a function of the probability of local con-
nectivity. This phenomenon is exploited to compute Boolean functions robustly in the presence of defects. It
is shown that the margins, defined in terms of the steepness of the non-linearity, translate into the degree of
defect tolerance. Achieving good margins entails a mapping problem. Given a target Boolean function, the
problem is how to assign literals to regions of the lattice such that no diagonal paths of 1’s exist in any as-
signment that evaluates to 0. Assignments with such paths result in poor error margins due to stray, random
connections that can form across the diagonal. A necessary and sufficient condition is formulated for a map-
ping strategy that preserves good margins: the top-to-bottom and left-to-right connectivity functions across
the lattice must be dual functions. Based on lattice duality, an efficient algorithm to perform the mapping is
proposed. The algorithm optimizes the lattice area while meeting prescribed worst-case margins. Its effective-
ness is demonstrated on benchmark circuits.

DOI: 10.4018/jnmc.2011040102

International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011 13

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Robinett, Seroussi, & Williams, 2005; Sun &
Zhang, 2006; Hogg & Snider, 2007; Snider &
Williams, 2007).

In prior work, we discussed strategies for
implementing Boolean functions with lattices of
four-terminal switches (Altun & Riedel, 2010,
in press). We addressed the synthesis problem
of how best to assign literals to switches in a
lattice in order to implement a given target
Boolean function, with the goal of minimiz-
ing the lattice size, measured in terms of the
number of switches. We presented an efficient
synthesis algorithm for this task. The algorithm
has polynomial time complexity (significantly,
it does not exhaustively enumerate paths). It
produces lattices with a size that grows lin-
early with the number of products of the target
Boolean function.

In this paper, we address the problem of
implementing Boolean functions with lattices
of four-terminal switches in the presence of
defects. We assume that such defects occur
probabilistically. Although not tied to any
particular technology, our model could be
applicable for emerging technologies such as
nanowire crossbar arrays (Cui & Lieber, 2001)
and magnetic switch-based structures (Khitun,
Bao, & Wang, 2008).

Our approach is predicated on the math-
ematical phenomenon of percolation. With
random connectivity, percolation gives rise to a
sharp non-linearity in the probability of global
connectivity as a function of the probability of

local connectivity. We exploit this phenomenon
to compute Boolean functions robustly, within
prescribed error margins.

The paper is organized as follows. In the
next section, we present our circuit model,
followed by our defect model. We then discuss
the mathematics of percolation and how this
phenomenon can be exploited for tolerating
defects. We examine potential technologies
that fit our model. We then present our main
technical result: a method for assigning Boolean
literals to sites in a switching lattice that opti-
mizes the lattice area while meeting prescribed
defect tolerances. We evaluate our method on
benchmark circuits.

Circuit Model

Our circuit model consists of regular two-
dimensional arrays of four-terminal switches.
A four-terminal switch is shown in the top part
of Figure 1. It has two states, ON and OFF, that
are controlled by a Boolean literal. If the literal
takes the value 1 then the four ends of the switch
are mutually connected – the switch is ON. If the
literal takes the value 0 then the four ends of the
switch are mutually disconnected – the switch
is OFF. A network of four-terminal switches is
shown in Figure 1(b). The Boolean function for
the network evaluates to 1 iff there is a closed
path between the top and bottom plates of the
lattice. It can be computed by taking the sum
(OR) of the product (AND) of literals along each

Figure 1. (a) Four-terminal switch with its ON and OFF states, and (b) Four-terminal switching
network implementing the Boolean function x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6

14 International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

path. These paths are x1 − x2 − x3, x1 − x2 − x5 −
x6, x4 − x5 − x2 − x3, and x4 − x5 − x6.

Defects and Defect Tolerance

We assume that defects cause switches to fail
in one of two ways: they are ON when they are
supposed to be OFF, i.e., the controlling literal
is 0; or they are OFF when they are supposed
to be ON, i.e., the controlling literal is 1. We
assume that switches can fail in one of these
two ways, or both. As we discuss in the next
section, we allow for different defect rates in
both directions, ON-to-OFF and OFF-to-ON.
Crucially, we assume that all switches fail with
independent probability.

Defective switches can ruin the Boolean
computation performed by a network. Consider
the networks shown in Figure 2. The network
in Figure 2(a) consists of a single switch. The
networks in Figure 2(b) and Figure 2(c) consist
of a pair of switches in series and in parallel,
respectively. All switches are controlled by the
literal x1. Obviously, in each of these networks,
the top and bottom plates are connected when
x1 = 1 and disconnected when x1 = 0. Therefore
they implement the function f = x1.

Note that the three networks are not iden-
tical in their defect-tolerance capability. Sup-
pose that exactly one switch in each network
is defective when x1 = 1 and exactly one is
defective when x1 =0. When x1 =1, the networks
in Figure 2(a) and Figure 2(b) compute the
wrong value of f =0; however, the network in
Figure 2(c) computes the correct value f =1.
Similarly, when x1 = 0, the networks in Figure
2(a) and Figure 2(c) compute the wrong value
of f =1. However, the network in Figure 2(b)

computes the correct value of f =0. So the series
and parallel networks in Figures 2(b) and 2(c)
each tolerate up to one defective switch, but
they tolerate different defect types. None of
these networks tolerates defects for both cases
x1 =1 and x1 =0.

Now consider the network in Figure 3.
Compared to the networks in Figure 2, it has
more switches. We expect that it will be superior
in terms of its defect tolerance, for both the
cases x1 =1 and x1 =0. But what is the relation-
ship between the amount of redundancy and the
defect tolerance that is achieved? As we discuss
previously, the relationship is non-linear. The
explanation hinges on percolation.

Throughout the rest of the paper, we will
use a lattice representation. White and black
sites represent OFF and ON switches, respec-
tively. If x1 =1, each four-terminal switch is
ideally ON and represented by a black site. If
x1 =0, each four-terminal switch is ideally OFF
and represented by a white site. Due to defects,
not all switches will behave in this way. Defec-
tive switches are represented by white and black
sites while the switch is supposed to be ON and
OFF, respectively. This is illustrated in Figure
3. Note that in spite of defects, the network in
Figure 3 computes correctly for both the cases
x1 = 0 and x1 = 1.

Percolation

Percolation theory is a rich mathematical topic
that forms the basis of explanations of physical
phenomena such as diffusion and phase changes
in materials. It tells us that in media with random
local connectivity, there is a critical threshold
for global connectivity: below the threshold,

Figure 2. Switching networks

International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011 15

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

the probability of global connectivity quickly
drops to zero; above it, the probability quickly
rises to one.

Broadbent and Hammersley described per-
colation with the following metaphorical model
(Broadbent & Hammersley, 1957). Suppose that
water is poured on top of a large porous rock.
Will the water find its way through holes in the
rock to reach the bottom? We can model the rock
as a collection of small regions each of which
is either a hole or not a hole. Suppose that each
region is a hole with independent probability
p1 and not a hole with probability 1 − p1. The
theory tells us that if p1 is above a critical value
pc, the water will always reach the bottom; if p1
is below pc, the water will never reach the bot-
tom. The transition in the probability of water
reaching bottom as a function of increasing p1
is extremely abrupt. For an infinite size rock, it
is a step function from 0 to 1 at pc.

In two dimensions, percolation theory can
be studied with a lattice, as shown in Figure
4(a). Here each site is black with probability
p1 and white with probability 1 − p1. Let p2 be
the probability that a connected path of black
sites exists between the top and bottom plates.
Figure 4(b) shows the relationship between p1
and p2 for different square lattice sizes. Percola-
tion theory tells us that with increasing lattice

size, the steepness of the curve increases. (In
the limit, an infinite lattice produces a perfect
step function.) Below the critical probability
pc, p2 is approximately 0 and above it p2 is ap-
proximately 1.

Suppose that each site of a percolation
lattice is a four-terminal switch controlled by
the same literal x1. Also suppose that each switch
is independently defective with the same prob-
ability. Defective switches are represented by
white and black sites while the switch is sup-
posed to be ON and OFF, respectively. Let’s
analyze the cases x1 = 0 and x1 = 1. If x1 = 0
then each site is black with the defect probabil-
ity, and the defective black sites might cause
an error by forming a path between the top and
bottom plates. In this case, p1 and p2 described
in the percolation model correspond to the
defect probability and the probability of an
error in top-to-bottom connectivity, respec-
tively. If x1 =1 then each site is white with the
defect probability and the defective white sites
might cause an error by destroying the connec-
tion between the top and bottom plates. In this
case, p1 and p2 in the percolation model cor-
respond to 1−(defect probability) and 1−(prob-
ability of an error in top-to-bottom connectiv-
ity), respectively. The relationship between p1
and p2 is shown in Figure 5.

Figure 3. Switching network with defects

16 International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Definitions

Throughout the paper, we use the concept of
defect probability and defect rate interchange-
ably. We assume that the lattice is large enough
for this to hold true.

Definition 1. We define the one margin and zero
margin to be the ranges of p1 for which
we interpret p2 as unequivocally 1 and 0,
respectively.

The percolation curve shown in Figure 5
tells us that unless the defect probability exceeds
a zero margin (one margin), we achieve robust
connectivity: the top and bottom plates remain
disconnected (connected) with high probability.
Therefore the one margin and zero margin are
the indicators of defect tolerance while the lat-
tice’s top and bottom plates are connected and
disconnected, respectively. In other words, the
margins are the maximum defect probabilities
(rates) that can be tolerated. For example,

Figure 5. Non-linearity through percolation in random media

Figure 4. (a) Percolation lattice with random connections; there is a path of black sites between
the top and bottom plates, and (b) p2 versus p1 for 1 × 1, 2 × 2, 6 × 6, 24 × 24, 120 × 120, and
infinite-size lattices

International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011 17

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

suppose that a network has 5% zero and one
margins. This means that the network will
successfully tolerate defects unless the defect
probability (rate) exceed 5%.

What follows are some standard definitions
from the field of logic synthesis. We will use
these terms in the next sections.

Definition 2. Consider k independent Boolean
variables, x1,x2,...,xk. Boolean literals are
Boolean variables and their complements,
i.e., x x x x x xk k1 1 2 2, , , , ..., , .

Definition 3. A product (P) is an AND of liter-
als, e.g., P x x x= 1 3 4. A sum-of-products
(SOP) expression corresponds to an OR
of products.

Definition 4. A prime implicant (PI) of a Bool-
ean function f is a product that implies f
such that removing any literal from the
product results in a new product that does
not imply f.

Definition 5. An irredundant sum-of-products
(ISOP) expression is an SOP expression,
where each product is a PI, and no PI can
be deleted without changing the Boolean
function f represented by the expression.
Among the SOPs for f, one with the mini-
mum number of products is a minimum
sum-of-products (MSOP) expression.

Definition 6. f and g are dual Boolean functions if

f x x x g x x xk k() ().1 2 1 2, , ..., , , ...,= 	

A dual of a function also can be
obtained by interchanging AND and OR op-
erations as well as the constants 0 and 1. For
e x a m p l e , i f f x x x x= +1 2 1 3 t h e n
f x x x xD = + + +() ().1 2 1 3 Another trivial
example is that for f =1 the dual is fD =0.

APPLICABLE TECHNOLOGIES

The main contributions of this paper are
conceptual. Our circuit and defect models are
simple and broadly applicable to different types
of emerging technologies. A schematic for the
realization of our circuit model is shown in Fig-

ure 6. Each site of the lattice is a four-terminal
switch, controlled by an input voltage. When
a high (logic 1) or low (logic 0) voltage is ap-
plied, the switch is ON or OFF, respectively.
The output of the circuit depends upon the top-
to-bottom connectivity across the lattice. If the
top and bottom plates are connected, then the
lattice allows signals to flow; accordingly, the
output is logic 1. Otherwise the output is logic
0. One can sense the output with a resistor con-
nected to the bottom plate while a high voltage
applied to the top plate. Below, we discuss two
potential technologies that fit this circuit model.

In their seminal work, Yi Cui and Charles
Lieber investigated crossbar structures for dif-
ferent types of nanowires including n-type and
p-type nanowires (Cui & Lieber, 2001). They
achieved the different types of junctions by
crossing different types of nanowires.

By crossing an n-type nanowire and a
p-type nanowire, they achieved a diode-like
junction. By crossing two n-types or two p-types,
they achieved a resistor-like junction (with a
very low resistance value). They showed that
the connectivity of nanowires can be controlled
by an insulated input voltage V -in. A high V -in
makes the p-type nanowires conductive and the
n-type nanowires resistive; a low V -in makes
the p-type nanowires resistive and the n-type
nanowires conductive. So they showed that,
based on a controlling voltage, nanowires can
behave either like short circuits or like open
circuits.

Cui and Lieber implemented a four-termi-
nal device with crossed n-and p-type nanowires,
illustrated in Figure 7(a). The device works as
follows. When a high V -in is applied, a p-type
nanowire (green) behaves like a short circuit,
so the N and S terminals are connected, and
an n-type nanowire (red) behaves like an open
circuit, so the W and E terminals are discon-
nected. When a low V -in is applied, a p-type
nanowire behaves like an open circuit, so the N
and S terminals are disconnected, and an n-type
nanowire behaves like a short circuit, so the W
and E terminals are connected.

One could easily implement a four-termi-
nal switch with similar techniques, as illus-

18 International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

trated in Figure 7(b). Here the switch has crossed
p-type nanowires. When a high V -in is applied,
the nanowires behave like short circuits. Also
a resistor-like junction is formed between them,
meaning that the nanowires are connected
through a low-valued resistor. Thus, all the
four-terminals are connected; the switch is ON.
When a low V -in is applied, the nanowires
behave like open circuits. Thus, all the four-
terminals are disconnected; the switch is OFF.
The result is a four-terminal switch that cor-
responds to our model.

Nanowire switches, of course, would be
assembled in large arrays. Indeed, the impetus
for nanowire-based technology is the poten-
tial density, scalability and manufacturability
(Huang et al., 2001; Luo et al., 2002; DeHon,
2005). Consider a p-type nanowire array, where
each crosspoint is controlled by an input voltage.
From the discussion above, we know that each
such crosspoint behaves like a four-terminal
switch. Accordingly, the nanowire crossbar ar-
ray can be modelled as a lattice of four-terminal
switches as illustrated in Figure 8. Here the

black and white sites represent crosspoints that
are ON and OFF, respectively.

Many other novel and emerging technolo-
gies fit the general model of four-terminal
switches. For instance, researchers are investi-
gating spin waves (Eshaghian-Wilner, Khitun,
Navab, & Wang, 2006). Unlike conventional
circuitry such as CMOS that transmits signals
electrically, spin-wave technology transmits
signals as propagating disturbances in the order-
ing of magnetic materials. Potentially, spin-
wave based logic circuits could compute with
significantly less power than conventional
CMOS circuitry.

Spin wave switches are four-terminal
devices, as illustrated in Figure 9. They have
two states ON and OFF, controlled by an input
voltage V-in. In the ON state, the switch trans-
mits all spin waves; all the four-terminals are
connected. In the OFF state the switch reflects
any incoming spin waves; all the four-terminals
are disconnected. Spin-wave switches, like
nanowire switches, are also configured in
crossbar networks (Khitun et al., 2008).

Figure 6. 3D realization of our circuit model with the inputs and the output

Figure 7. Nanowire four-terminal devices

International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011 19

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

LOGIC SYNTHESIS THROUGH
PERCOLATION

We implement Boolean functions with a single
lattice of four-terminal switches, as illustrated
in Figure 10 (Altun, Riedel, & Neuhauser, 2009).
There are R × C regions r11,...,rRC in the lattice.
Each region has N × M four-terminal switches.
We assign Boolean literals x x x x x xk k1 1 2 2, , , , ..., ,
to regions as controlling inputs. If an input
literal is logic 1 then all switches in the corre-
sponding region are ideally ON; if the literal is
logic 0 then all switches in the corresponding
region are ideally OFF. This is illustrated in
Figure 11.

In our synthesis method, a Boolean function
is implemented by a lattice according to the
connectivity between the top and bottom plates.
For the purpose of elucidating our method, we
will also discuss connectivity between the left
and right plates. Call the Boolean functions

corresponding to the top-to-bottom and left-to-
right plate connectivities fL and gL, respec-
tively. (However, note that our design method
does not aim to implement separate top-to-
bottom and left-to-right functions. As we explain
below, fL and gL are related.)

As shown in Figure 11, each Boolean
function evaluates to 1 if there exists a path
between corresponding plates and evaluates
to 0 otherwise. Thus, the Boolean functions fL
and gL can be computed as the OR of all top-
to-bottom and left-to-right paths, respectively.
Since each path corresponds to the AND of
inputs, the paths taken together correspond to
the OR of these AND terms, so implement a
sum-of-products expression.

Note that the values of N and M do not
affect the Boolean functionality between plates;
they determine the defect tolerance capability
of the lattice. Therefore, for simplicity, let’s set
N = 1 and M = 1 while computing the Boolean

Figure 8. Nanowire crossbar array with random connections and its lattice representation

Figure 9. Spin-wave switch

20 International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

functions fL and gL. In this way, there are fewer
paths to count between the corresponding plates.
Consider the lattice shown in Figure 12(a): here
there are 6 regions each of which is controlled
by a Boolean literal. With N = and M = 1, there
are 3 top-to-bottom paths and 4 left-to-right
paths, as shown in Figure 12(b). Here fL is the

OR of the 3 products x x x x x x1 3 1 2 3 4, , and gL is
t h e O R o f t h e 4 p r o d u c t s
x x x x x x x x x x x x x x1 2 3 1 1 2 4 1 2 3 3 1 3 4, , , . As a result,
fL = x x x x x x1 3 1 2 3 4+ + and gL = x x x x x1 3 4 2 3+ .

In the following section, we study the ro-
bustness of the lattice computation. We inves-

Figure 10. Boolean computation in a lattice, i.e., each region has N × M four-terminal switches.
Each region can be realized by an N × M nanowire crossbar array with a controlling voltage V-in

Figure 11. Relation between Boolean functionality and paths; fL =1 and gL =0. (a) Each of the
16 regions is assigned logic 0 or 1; R = 4 and C = 4, and (b) Each region has 9 switches; N =
3 and M =3

International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011 21

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

tigate the computation, implemented in terms
of connectivity across the lattice, in the presence
of defects.

Robustness

An important consideration in synthesis is the
quality of the margins, defined in Definition 1.
Suppose that the one and zero margins are the
ranges of values for p1 for which p2 is always
above (1 − ∈) and below ∈, respectively, where
∈ is a very small number. For what follows,
we will use a value ∈ =0.001. The margins
correlate with the degree of defect tolerance.
For instance a 10% one margin means that a
defect rate of up to 10% can be tolerated while
the corresponding Boolean function evaluates
to 1. In other words, although each switch is
defective with probability 0.1, the circuit still
evaluates to 1 with high probability (p2 > 0.999).
The higher the margins, the higher the defect
tolerance that we achieve.

Different assignments of input variables
to the regions of the lattice affect the margins.
Consider a 4-input 2 × 2 lattice shown in Figure
13(a). Suppose that N = 8 and M = 8 for this
lattice. Figure 13(b) shows Boolean function-
alities and margins for different input assign-
ments. Since the lattice has 4 input variables
x1,x2,x3,x4 there should be 16 different input
assignments. However, there are only 7 rows
in the table. Some input assignments produce
the same result due to symmetries in the lattice:
flipping the lattice vertically or horizontally

gives us two different input assignments that
are identical in terms of margins as well as the
Boolean functionality. Note that each margin
value in the table corresponds to either a one
margin (if the corresponding Boolean function
is 1) or a zero margin (if the corresponding
Boolean function is 0). We define the worst-
case one and zero margins to be the minimum
one and zero margins of all input assignments.
For example, the table shown in Figure 13(b)
states that fL has a 14% worst-case one margin
and a 0% worst-case zero margin.

The row highlighted in grey has very low
margins – indeed, these are nearly zero – so the
circuit is likely to produce erroneous values for
this input combination. Let’s examine why.
Assignments that evaluate to 0 but have diago-
nally adjacent assignments of blocks of 1’s
could be problematic because there is a chance
that a weak connection will form through stray,
random connections across the diagonal. This
is illustrated in Figure 14. In this example, fL
and gL both evaluate to 0; however the top-to-
bottom and left-to-right connectivities evaluate
to 1 if a defect occurs around the diagonal 1’s.
In effect, such defective switches are “shorting”
the connection. So in this case fL and gL both
evaluate to 1, incorrectly.

Note that diagonal paths are only problem-
atic when the corresponding Boolean function
evaluates to 0 because the diagonal paths can
only cause 0 → 1 errors. If the Boolean function
evaluates to 1, these diagonal paths do not cause

Figure 12. (a) A lattice with assigned inputs to 6 regions, and (b) Switch-based representation
of the lattice; N =1 and M =1

22 International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

such an error; at best they strengthen the con-
nection between plates. This is illustrated in
Figure 15. In the figure, there are both top-to-
bottom and left-to-right diagonal paths shown
with red lines. However, only the top-to-bottom
diagonal path is destructive because only fL
evaluates to 0 (gL = 1).

Definition of Robustness: We call a lattice
robust if there is no input assignment for which
the top-to-bottom function evaluates to 0 that
contains diagonally adjacent 1’s.

The following theorem tells us the neces-
sary and sufficient condition for robustness.

Theorem 1. A lattice is robust if the top-to-
bottom and left-to-right functions fL and gL

are dual functions: fL(x1,x2,...,xk) =
g x x xL k()1 2, , ..., .

(See Definition 6 for the meaning of dual.)

Proof. In the proof, we consider two cases,
namely fL =1 and fL =0.

Case 1. If fL(x1,x2,...,xk) =1, there must be a path
of 1’s between top and bottom. If we
complement all the inputs (1 → 0, 0 → 1),
these connected 1’s become 0’s and
vertically separate the lattice into two
parts. Therefore no path of 1’s exists
between the left and right plates,
i.e., gL g x x xL k()1 2, , ..., . As a result,
g x x xL k()1 2, , ..., = fL(x1,x2,...,xk) = 1

Figure 13. (a) A lattice with assigned inputs; R = 2 and C = 2, and (b) Possible 0/1 assignments
to the inputs (up to symmetries) and corresponding margins for the lattice (N = 8,M =8)

Figure 14. An input assignment with a low zero margin

International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011 23

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Case 2. If fL(x1,x2,...,xk) = 0 and there are no
diagonally connected top-to-bottom paths,
there must be a path of 0’s between left
and right. If we complement all the inputs,
these connected 0’s become 1’s, i.e.,
gL () = 1x x xk1 2, , ..., . As a resu l t ,
g x x xL k()1 2, , ..., = fL(x1,x2,...,xk) = 0

Figure 16 illustrates the two cases. Taken
together the two cases prove that for robust
computation, fL and gL must be dual functions.
For both cases it is trivial that we can do the
same reasoning in an inverse way: if fL and gL
are dual functions then every input assignment
is robust.

Example 1. Consider the lattices shown in
Figure 17. For both lattices, R =2 and C
=2. Let’s analyze the robustness of these
two lattices using Theorem 1.

Example (a): The Boolean functions imple-
mented by the lattice are fL = x1x3 +
x2x4 and gL = x1x2 + x3x4. Since fL

D

=(x1 + x3)(x2 + x4)= x1x2 + x1x4 + x2x3
+ x3x4= gL, so fL and gL are not dual
functions. Theorem 1 tells us that if fL
and gL are not dual then there exists
an non-robust input assignment. We
can easily identify it: x1 =1,x2 =0,x3
=0,x4 =1.

E x a m p l e (b) : T h e B o o l e a n
functions implemented by the
lattice are f x x x xL = +1 3 1 2 and
g x x x xL = +1 2 1 3.

Since f x x x xL
D = + + +() ()1 3 1 2 =

x x x x1 2 1 3+ = gL, so fL and gL are dual
L functions. Theorem 1 tells us that if
fL and gL are dual then every assign-
ment is robust. One can easily see that
none of the input assignments cause

Figure 15. An input assignment with top-to-bottom and left-to-right diagonal paths

Figure 16. Illustration of Theorem 1

24 International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

diagonal 1’s while the corresponding
function evaluates to 0.

We conclude that, in order to achieve
robust computation, we must design lattices
that have dual top-to-bottom and left-to-right
Boolean functions.

Logic Optimization Problem

This gives rise to an interesting problem in
logic optimization: given a target function fT
in SOP form, how should we assign the input
literals such that fL = fT and gL = fT

D ? In other
words, how should we assign literals so that
the lattice implements the target function be-
tween the top and bottom plates, and implements
the dual of the function between the left and
right plates? As described in the previous sec-
tion, having dual functions ensures robustness.

While maximizing the margins, we also
need to consider the area of the lattice; this can
be measured by the total number of switches R ×
C × N × M in the lattice. Here R × C and N × M
represent the number of regions and the number
of switches for each region, respectively.

We suggest a four-step algorithm for opti-
mizing the lattice area while meeting prescribed
worst-case margins for a given target function
fT. Algorithm:

1. 	 Begin with the target function fT and its
dual fT

D both in MSOP form.
2. 	 Find a lattice with the smallest number of

regions that satisfies the conditions: fL = fT
and gL = fT

D . This determines R × C.

3. 	 Dependent on the defect rates of the tech-
nology, determine the required worst-case
one and zero margin values.

4. 	 Determine the number of switches required
in each region in order to meet the pre-
scribed margins. This determines N × M.

The first step is straightforward. The dual of
the target function can be computed from Defini-
tion 6. Exact methods such as Quine-McCluskey
or heuristic methods such as Espresso can be
used to obtain functions in MSOP form (Mc-
Cluskey, 1986; Brayton, McMullen, Hachtel,
& Sangiovanni-Vincentelli, 1984).

For the second step of the algorithm, we
point the reader to our prior work. In Altun and
Riedel (2010, in press), we addressed the prob-
lem of assigning literals to switches in a lattice
in order to implement a given target Boolean
function. The goal was to minimize the number
of regions. We presented an efficient algorithm
that produces lattices with a size that grows
linearly with the number of products of the
target Boolean function. Suppose that fT and
fT
D in MSOP form have A and B product terms,

respectively. Our algorithm produces lattices
with B × A regions (R = B and C = A) for which
fL = fT and gL = fT

D (Altun & Riedel, in press).
For the third step, we assume that the de-

fect rates of the switches are known or can be
estimated. Recall that we consider two types
of defects: those that result in switches being
OFF while they are supposed to be ON (call
these “ON-to-OFF” defects), and defects that
result in switches being ON while they are

Figure 17. (a) An example of non-robust computation and (b) An example of robust computation

International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011 25

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

supposed to be OFF (call these “OFF-to-ON”
defects). We allow for different rates for both
types of defects. Based upon the ON-to-OFF
and OFF-to-ON defect rates, we establish the
worst-case one and zero margins, respectively.

For the fourth step, we need to determine
N and M such that the lattice meets the pre-
scribed margins. Figure 18 shows the general
relationship between margins and N and M.
It suggests how we should select values of N
and M. For instance, suppose that we require a
20% one margin and a 5% zero margin. Figure
18 tells us that we need to select a larger value
of M than that of N. Also, from the figure, we
observe that regardless of whether we increase N
or M, the sum of the margins always increases.
This is due to the percolation phenomenon: the
larger the lattice, the steeper the non-linearity
curve. Based upon these considerations, we use
a simple greedy technique to set the required
values of N and M. The method tries worst-case
margins for different values of N and M until
the prescribed margins are met.

We elucidate our algorithm with the fol-
lowing examples. For all of the examples, we
use 10% worst-case one and zero margins.

Example 2. Suppose that we are given the fol-
lowing target function fT in MSOP form:

fT = x1x2.	

First, we compute its dual fT
D in MSOP

form:

fT
D = x1 + x2.	

The number of products in fT and fT
D fD are

1 and 2, respectively, i.e., A =1 and =2.

Then, we construct a lattice such that fL =
fT = x1x2 and gL = fT

D = x1 + x2. The lattice is
illustrated in Figure 19. Note that R = B =2 and
C = A =1. Finally, we find that N =4 and M =6
in order to satisfy 10% worst-case one and zero
margins. As a result, the lattice area = R × C ×
N × M =2 × 1 × 4 × 6 = 48.

Example 3. Suppose that we are given the fol-
lowing target function fT in MSOP form:

f x x x xT = +1 2 1 2. 	

First, we compute its dual fT
D in MSOP

form:

f x x x xT
D = +1 2 1 2. 	

We have that A =2 and B =2. Then, we
construct a lattice such that fL = fT and gL =
fT
D . The lattice is illustrated in Figure 20. Note

that R = B =2 and C = A =2. Finally, we find
that N =4 and M =6 in order to satisfy 10%
worst-case one and zero margins. As a result,
the lattice area = R × C × N × M =2 × 2 × 4 ×
6 = 96.

Example 4. Suppose that we are given the fol-
lowing target function fT in MSOP form:

f x x x x x x x x

x x x x x
T = + +

+ +
1 2 3 1 4 2 2 4

2 4 5 3 5.
	

First, we compute its dual fT
D in MSOP

form:

f x x x x x x x x x

x x x x x x
T
D = + +

+ +
1 2 5 1 3 4 2 3 4

2 3 4 2 4 5.
	

Figure 18. Relationship between margins, and N and M

26 International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 19. A lattice that implements fL = x1x2 and gL = x1 + x2

Figure 20. A lattice that implements fL = x x x x1 2 1 2+ and gL = x x x x1 2 1 2+ .

Figure 21. A lattice that implements fL = x x x1 2 3 + x x1 4 + x x x2 2 4 + x x x2 4 5 + x x3 5 and gL =
x x x1 2 5 + x x x1 3 4 + x x x2 3 4 + x x x2 4 5.

International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011 27

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

We have that A =5 and B =4. Then, we
construct a lattice such that fL = fT and gL =
fT
D . The lattice is illustrated in Figure 21. Note

that R = B =4 and C = A =5. Finally, we find
that N =4 and M =5 in order to satisfy 10%
worst-case one and zero margins. As a result,
the lattice area = R × C × N × M =4 × 5 × 4 ×
5 = 400.

We implement the target functions with
specified margins. Note that because of the
lattice duality, the one and zero margins of
target functions become the zero and one mar-
gins of their duals, respectively.

EXPERIMENTAL RESULTS

We report synthesis results for some common
benchmark circuits (McElvain, 1993). We
consider each output of a benchmark circuit
as a separate target Boolean function. Figure
22 lists the required lattice areas for the target
functions meeting 10% worst-case one and zero
margins. Recall that the lattice area is defined
as the number of switches in the lattice. It can
be calculated as R × C × N × M where R × C
and N × M represent the number of regions
and the number of switches for each region,
respectively.

In order to obtain the lattice areas, we fol-
low the steps of the proposed algorithm in the
above section. We first obtain values for A and
B, the number of products in the target functions
and their duals, respectively. Our algorithm sets
R = A and C = B, so produces lattices with B ×
A regions. We calculate values of N and M that
satisfy the prescribed 10% worst-case margins.

Figure 22 reports the lattice areas, calcu-
lated as A × B × N × M. Examining the numbers in
the table, we see that number of switches needed
per region, N × M, is negatively correlated with
the number of regions, A × B. That is to say,
Boolean functions with more products (larger
A × Bvalues) need smaller regions (smaller N
× M values) to meet prescribed margins. This
indicates a positive scaling trend: the lattice

size grows more slowly than the function size.
This key behavior is due to the percolation
phenomena.

DISCUSSION

The two-terminal switch model is fundamental
and ubiquitous in electrical engineering (Bryant,
1987). Either implicitly or explicitly, nearly all
logic synthesis methods target circuits built
from two-terminal switches, i.e., transistors.
And yet, with the advent of novel nanoscale
technologies, synthesis methods targeting lat-
tices of multi-terminal switches are apropos.
Our model consists of a regular lattice of
multi-terminal switches, each controlled by
a Boolean literal. This model is conceptually
general and applicable to a range of emerging
technologies, including nanowire crossbar
arrays (Cui & Lieber, 2001) and magnetic
switch-based structures (Khitun et al., 2008).
We are investigating its applicability to DNA
nanofabrics (Pistol, Lebeck, & Dwyer, 2006;
Rothemund, 2006). In this paper, we focused
on four-terminal switches. In future work, we
will the extend the results paper to lattices of
eight-terminal switches, and then to 2k-terminal
switches, for arbitrary k.

Particularly with self-assembly, nanoscale
lattices are often characterized by high defect
rates. Significantly, unlike many other strate-
gies for defect tolerance, our method does
not require defect identification followed by
reconfiguration. Our method provides a priori
tolerance to defects of any kind, both permanent
and transient, provided that such defects occur
probabilistically and independently. Indeed,
percolation depends on a random distribution
of defects. If the defect probabilities are cor-
related across regions, then the steepness of
the percolation curve decreases; as a result,
the defect tolerance diminishes. In future work,
we will study this tradeoff mathematically and
develop synthesis strategies to cope with cor-
related probabilities in defects.

28 International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 22. Lattice areas for the output functions of benchmark circuits in order to meet 10%
worst-case one and zero margins

International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011 29

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

REFERENCES

Altun, M., Riedel, M. D. (2010). Lattice-based com-
putation of Boolean functions. In Proceedings of the
47th Design Automation Conference (pp. 609-612).

Altun, M., Riedel, M. D. (in press). Logic synthesis for
switching lattices. IEEE Transactions on Computers.

Altun, M., Riedel, M. D., Neuhauser, C. (2009).
Nanoscale digital computation through percola-
tion. In Proceedings of the 46th Design Automation
Conference (pp. 615-616).

Brayton, R. K., McMullen, C., Hachtel, G. D.,
Sangiovanni-Vincentelli, A. (1984). Logic minimi-
zation algorithms for VLSI synthesis. Boston, MA:
Kluwer Academic.

Broadbent, S. R., Hammersley, J. M. (1957). Percola-
tion processes I. crystals and mazes. Mathematical
Proceedings of the Cambridge Philosophical Society,
53, 629–641. doi:10.1017/S0305004100032680

Bryant, R. E. (1987). Boolean analysis of MOS cir-
cuits. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 6(4), 634–649.
doi:10.1109/TCAD.1987.1270310

Cui, Y., Lieber, C. M. (2001). Functional nanoscale
electronic devices assembled using silicon nanow-
ire building blocks. Science, 291(5505), 851–853.
doi:10.1126/science.291.5505.851

DeHon, A. (2005). Nanowire-based programmable
architectures. ACM Journal on Emerging Tech-
nologies in Computing Systems, 1(2), 109–162.
doi:10.1145/1084748.1084750

Eshaghian-Wilner, M., Flood, A., Khitun, A., Stod-
dart, J., Wang, K. (2006). Molecular and nanoscale
computing and technology. In Zomaya, A. Y. (Ed.),
Handbook of nature-inspired and innovative com-
puting (pp. 478–520). New York, NY: Springer.
doi:10.1007/0-387-27705-6_14

Eshaghian-Wilner, M. M., Khitun, A., Navab, S.,
Wang, K. (2006).. nano-scale reconfigurable mesh
with spin waves. In Proceedings of the International
Conference on Computing Frontiers (pp. 5-9).

Hogg, T., Snider, G. (2007). Defect-tolerant logic
with nanoscale crossbar circuits. Journal of Elec-
tronic Testing, 23, 117–129. doi:10.1007/s10836-
006-0547-7

Huang, J., Tahoori, M., Lombardi, F. (2004). On
the defect tolerance of nano-scale two-dimensional
crossbars. In Proceedings of the International Sym-
posium on Defect and Fault Tolerance of Very Large
Scale Integration Systems (pp. 96-104).

Huang, Y., Duan, X., Cui, Y., Lauhon, L. J., Kim,
K., Lieber, C. M. (2001). Logic gates and compu-
tation from assembled nanowire building blocks.
Science, 294(5545), 1313–1317. doi:10.1126/sci-
ence.1066192

Khitun, A., Bao, M., Wang, K. L. (2008). Spin
wave magnetic nanofabric:. new approach to
spin-based logic circuitry. IEEE Transactions
on Magnetics, 44(9), 2141–2152. doi:10.1109/
TMAG.2008.2000812

Kuekes, P., Robinett, W., Seroussi, G., Williams, R.
(2005). Defect-tolerant interconnect to nanoelec-
tronic circuits: Internally redundant demultiplexers
based on error-correcting codes. Nanotechnology,
16(6), 869–882. doi:10.1088/0957-4484/16/6/043

Luo, Y., Collier, C. P., Jeppesen, J. O., Nielsen, K. A., De-
lonna, E., Ho, G. (2002). Two-dimensional molecular
electronics circuits. ChemPhysChem, 3(6), 519–525.
doi:10.1002/1439-7641(20020617)3:6<519::AID-
CPHC519>3.0.CO;2-2

McCluskey, E. J. (1986). Logic design principles
with emphasis on testable semicustom circuits. Upper
Saddle River, NJ: Prentice Hall.

McElvain, K. (1993). IWLS93 benchmark set: Version
4.0, distributed as part of the IWLS93 benchmark
distribution. Retrieved from http://www.cbl.ncsu.
edu:16080/benchmarks/lgsynth93/

Pistol, C., Lebeck, A. R., Dwyer, C. (2006). Design
automation for DNA self-assembled nanostructures.
In Proceedings of the 43rd Design Automation Con-
ference (pp. 919-924).

Rothemund, P. W. K. (2006). Folding DNA to create
nanoscale shapes and patterns. Nature, 440(7082),
297–302. doi:10.1038/nature04586

Snider, G., Williams, R. (2007). Nano/CMOS
architectures using. field-programmable nanow-
ire interconnect. Nanotechnology, 18, 1–11.
doi:10.1088/0957-4484/18/3/035204

Sun, F., Zhang, T. (2006). Two fault tolerance
design approaches for hybrid CMOS/nanodevice
digital memories. In Proceedings of the International
Workshop on Defect and Fault Tolerant Nanoscale
Architectures.

30 International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Whitesides, G. M., Grzybowski, B. (2002). Self-as-
sembly at all scales. Science, 295(5564), 2418–2421.
doi:10.1126/science.1070821

Yan, H., Park, S. H., Finkelstein, G., Reif, J. H.,
LaBean, T. H. (2003). DNA-templated self-assembly
of protein arrays and highly conductive nanowires.
Science, 301(5641), 1882–1884. doi:10.1126/sci-
ence.1089389

Ziegler, M. M., Stan, M. R. (2003). CMOS/nano
co-design for crossbar-based molecular electronic
systems. IEEE Transactions on Nanotechnology,
2(4), 217–230. doi:10.1109/TNANO.2003.820804

