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INTRODUCTION

As current CMOS-based technology is ap-
proaching its anticipated limits, research is 
shifting to novel forms of nanoscale technolo-
gies including molecular-scale self-assembled 
systems (Whitesides & Grzybowski, 2002; Yan, 
Park, Finkelstein, Reif, & LaBean, 2003). Un-

like conventional CMOS that can be patterned in 
complex ways with lithography, self-assembled 
systems generally consist of regular structures 
such as crossbar arrays (Ziegler & Stan, 2003; 
Eshaghian-Wilner, Flood, Khitun, Stoddart, & 
Wang, 2006). In particular, with self-assembly, 
nanoscale technologies are often characterized 
by high defect rates. A variety of techniques have 
been proposed for mitigating against defects 
(Huang, Tahoori, & Lombardi, 2004; Kuekes, 
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ABSTRACT
This paper proposes a probabilistic framework for digital computation with lattices of nanoscale switches 
based on the mathematical phenomenon of percolation. With random connectivity, percolation gives rise to 
a sharp non-linearity in the probability of global connectivity as a function of the probability of local con-
nectivity. This phenomenon is exploited to compute Boolean functions robustly in the presence of defects. It 
is shown that the margins, defined in terms of the steepness of the non-linearity, translate into the degree of 
defect tolerance. Achieving good margins entails a mapping problem. Given a target Boolean function, the 
problem is how to assign literals to regions of the lattice such that no diagonal paths of 1’s exist in any as-
signment that evaluates to 0. Assignments with such paths result in poor error margins due to stray, random 
connections that can form across the diagonal. A necessary and sufficient condition is formulated for a map-
ping strategy that preserves good margins: the top-to-bottom and left-to-right connectivity functions across 
the lattice must be dual functions. Based on lattice duality, an efficient algorithm to perform the mapping is 
proposed. The algorithm optimizes the lattice area while meeting prescribed worst-case margins. Its effective-
ness is demonstrated on benchmark circuits.
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Robinett, Seroussi, & Williams, 2005; Sun & 
Zhang, 2006; Hogg & Snider, 2007; Snider & 
Williams, 2007).

In prior work, we discussed strategies for 
implementing Boolean functions with lattices of 
four-terminal switches (Altun & Riedel, 2010, 
in press). We addressed the synthesis problem 
of how best to assign literals to switches in a 
lattice in order to implement a given target 
Boolean function, with the goal of minimiz-
ing the lattice size, measured in terms of the 
number of switches. We presented an efficient 
synthesis algorithm for this task. The algorithm 
has polynomial time complexity (significantly, 
it does not exhaustively enumerate paths). It 
produces lattices with a size that grows lin-
early with the number of products of the target 
Boolean function.

In this paper, we address the problem of 
implementing Boolean functions with lattices 
of four-terminal switches in the presence of 
defects. We assume that such defects occur 
probabilistically. Although not tied to any 
particular technology, our model could be 
applicable for emerging technologies such as 
nanowire crossbar arrays (Cui & Lieber, 2001) 
and magnetic switch-based structures (Khitun, 
Bao, & Wang, 2008).

Our approach is predicated on the math-
ematical phenomenon of percolation. With 
random connectivity, percolation gives rise to a 
sharp non-linearity in the probability of global 
connectivity as a function of the probability of 

local connectivity. We exploit this phenomenon 
to compute Boolean functions robustly, within 
prescribed error margins.

The paper is organized as follows. In the 
next section, we present our circuit model, 
followed by our defect model. We then discuss 
the mathematics of percolation and how this 
phenomenon can be exploited for tolerating 
defects. We examine potential technologies 
that fit our model. We then present our main 
technical result: a method for assigning Boolean 
literals to sites in a switching lattice that opti-
mizes the lattice area while meeting prescribed 
defect tolerances. We evaluate our method on 
benchmark circuits.

Circuit Model

Our circuit model consists of regular two-
dimensional arrays of four-terminal switches. 
A four-terminal switch is shown in the top part 
of Figure 1. It has two states, ON and OFF, that 
are controlled by a Boolean literal. If the literal 
takes the value 1 then the four ends of the switch 
are mutually connected – the switch is ON. If the 
literal takes the value 0 then the four ends of the 
switch are mutually disconnected – the switch 
is OFF. A network of four-terminal switches is 
shown in Figure 1(b). The Boolean function for 
the network evaluates to 1 iff there is a closed 
path between the top and bottom plates of the 
lattice. It can be computed by taking the sum 
(OR) of the product (AND) of literals along each 

Figure 1. (a) Four-terminal switch with its ON and OFF states, and (b) Four-terminal switching 
network implementing the Boolean function x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6
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path. These paths are x1 − x2 − x3, x1 − x2 − x5 − 
x6, x4 − x5 − x2 − x3, and x4 − x5 − x6.

Defects and Defect Tolerance

We assume that defects cause switches to fail 
in one of two ways: they are ON when they are 
supposed to be OFF, i.e., the controlling literal 
is 0; or they are OFF when they are supposed 
to be ON, i.e., the controlling literal is 1. We 
assume that switches can fail in one of these 
two ways, or both. As we discuss in the next 
section, we allow for different defect rates in 
both directions, ON-to-OFF and OFF-to-ON. 
Crucially, we assume that all switches fail with 
independent probability.

Defective switches can ruin the Boolean 
computation performed by a network. Consider 
the networks shown in Figure 2. The network 
in Figure 2(a) consists of a single switch. The 
networks in Figure 2(b) and Figure 2(c) consist 
of a pair of switches in series and in parallel, 
respectively. All switches are controlled by the 
literal x1. Obviously, in each of these networks, 
the top and bottom plates are connected when 
x1 = 1 and disconnected when x1 = 0. Therefore 
they implement the function f = x1.

Note that the three networks are not iden-
tical in their defect-tolerance capability. Sup-
pose that exactly one switch in each network 
is defective when x1 = 1 and exactly one is 
defective when x1 =0. When x1 =1, the networks 
in Figure 2(a) and Figure 2(b) compute the 
wrong value of f =0; however, the network in 
Figure 2(c) computes the correct value f =1. 
Similarly, when x1 = 0, the networks in Figure 
2(a) and Figure 2(c) compute the wrong value 
of f =1. However, the network in Figure 2(b) 

computes the correct value of f =0. So the series 
and parallel networks in Figures 2(b) and 2(c) 
each tolerate up to one defective switch, but 
they tolerate different defect types. None of 
these networks tolerates defects for both cases 
x1 =1 and x1 =0.

Now consider the network in Figure 3. 
Compared to the networks in Figure 2, it has 
more switches. We expect that it will be superior 
in terms of its defect tolerance, for both the 
cases x1 =1 and x1 =0. But what is the relation-
ship between the amount of redundancy and the 
defect tolerance that is achieved? As we discuss 
previously, the relationship is non-linear. The 
explanation hinges on percolation.

Throughout the rest of the paper, we will 
use a lattice representation. White and black 
sites represent OFF and ON switches, respec-
tively. If x1 =1, each four-terminal switch is 
ideally ON and represented by a black site. If 
x1 =0, each four-terminal switch is ideally OFF 
and represented by a white site. Due to defects, 
not all switches will behave in this way. Defec-
tive switches are represented by white and black 
sites while the switch is supposed to be ON and 
OFF, respectively. This is illustrated in Figure 
3. Note that in spite of defects, the network in 
Figure 3 computes correctly for both the cases 
x1 = 0 and x1 = 1.

Percolation

Percolation theory is a rich mathematical topic 
that forms the basis of explanations of physical 
phenomena such as diffusion and phase changes 
in materials. It tells us that in media with random 
local connectivity, there is a critical threshold 
for global connectivity: below the threshold, 

Figure 2. Switching networks
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the probability of global connectivity quickly 
drops to zero; above it, the probability quickly 
rises to one.

Broadbent and Hammersley described per-
colation with the following metaphorical model 
(Broadbent & Hammersley, 1957). Suppose that 
water is poured on top of a large porous rock. 
Will the water find its way through holes in the 
rock to reach the bottom? We can model the rock 
as a collection of small regions each of which 
is either a hole or not a hole. Suppose that each 
region is a hole with independent probability 
p1 and not a hole with probability 1 − p1. The 
theory tells us that if p1 is above a critical value 
pc, the water will always reach the bottom; if p1 
is below pc, the water will never reach the bot-
tom. The transition in the probability of water 
reaching bottom as a function of increasing p1 
is extremely abrupt. For an infinite size rock, it 
is a step function from 0 to 1 at pc.

In two dimensions, percolation theory can 
be studied with a lattice, as shown in Figure 
4(a). Here each site is black with probability 
p1 and white with probability 1 − p1. Let p2 be 
the probability that a connected path of black 
sites exists between the top and bottom plates. 
Figure 4(b) shows the relationship between p1 
and p2 for different square lattice sizes. Percola-
tion theory tells us that with increasing lattice 

size, the steepness of the curve increases. (In 
the limit, an infinite lattice produces a perfect 
step function.) Below the critical probability 
pc, p2 is approximately 0 and above it p2 is ap-
proximately 1.

Suppose that each site of a percolation 
lattice is a four-terminal switch controlled by 
the same literal x1. Also suppose that each switch 
is independently defective with the same prob-
ability. Defective switches are represented by 
white and black sites while the switch is sup-
posed to be ON and OFF, respectively. Let’s 
analyze the cases x1 = 0 and x1 = 1. If x1 = 0 
then each site is black with the defect probabil-
ity, and the defective black sites might cause 
an error by forming a path between the top and 
bottom plates. In this case, p1 and p2 described 
in the percolation model correspond to the 
defect probability and the probability of an 
error in top-to-bottom connectivity, respec-
tively. If x1 =1 then each site is white with the 
defect probability and the defective white sites 
might cause an error by destroying the connec-
tion between the top and bottom plates. In this 
case, p1 and p2 in the percolation model cor-
respond to 1−(defect probability) and 1−(prob-
ability of an error in top-to-bottom connectiv-
ity), respectively. The relationship between p1 
and p2 is shown in Figure 5.

Figure 3. Switching network with defects
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Definitions

Throughout the paper, we use the concept of 
defect probability and defect rate interchange-
ably. We assume that the lattice is large enough 
for this to hold true.

Definition 1. We define the one margin and zero 
margin to be the ranges of p1 for which 
we interpret p2 as unequivocally 1 and 0, 
respectively.

The percolation curve shown in Figure 5 
tells us that unless the defect probability exceeds 
a zero margin (one margin), we achieve robust 
connectivity: the top and bottom plates remain 
disconnected (connected) with high probability. 
Therefore the one margin and zero margin are 
the indicators of defect tolerance while the lat-
tice’s top and bottom plates are connected and 
disconnected, respectively. In other words, the 
margins are the maximum defect probabilities 
(rates) that can be tolerated. For example, 

Figure 5. Non-linearity through percolation in random media

Figure 4. (a) Percolation lattice with random connections; there is a path of black sites between 
the top and bottom plates, and (b) p2 versus p1 for 1 × 1, 2 × 2, 6 × 6, 24 × 24, 120 × 120, and 
infinite-size lattices
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suppose that a network has 5% zero and one 
margins. This means that the network will 
successfully tolerate defects unless the defect 
probability (rate) exceed 5%.

What follows are some standard definitions 
from the field of logic synthesis. We will use 
these terms in the next sections.

Definition 2. Consider k independent Boolean 
variables, x1,x2,...,xk. Boolean literals are 
Boolean variables and their complements, 
i.e., x x x x x xk k1 1 2 2, , , , ..., , .

Definition 3. A product (P) is an AND of liter-
als, e.g., P x x x= 1 3 4.  A sum-of-products 
(SOP) expression corresponds to an OR 
of products.

Definition 4. A prime implicant (PI) of a Bool-
ean function f is a product that implies f 
such that removing any literal from the 
product results in a new product that does 
not imply f.

Definition 5. An irredundant sum-of-products 
(ISOP) expression is an SOP expression, 
where each product is a PI, and no PI can 
be deleted without changing the Boolean 
function f represented by the expression. 
Among the SOPs for f, one with the mini-
mum number of products is a minimum 
sum-of-products (MSOP) expression.

Definition 6. f and g are dual Boolean functions if

f x x x g x x xk k( ) ( ).1 2 1 2, , ..., , , ...,= 	

A dual of a function also can be  
obtained by interchanging AND and OR op-
erations as well as the constants 0 and 1. For 
e x a m p l e ,  i f  f x x x x= +1 2 1 3  t h e n 
f x x x xD = + + +( ) ( ).1 2 1 3  Another trivial 
example is that for f =1 the dual is fD =0.

APPLICABLE TECHNOLOGIES

The main contributions of this paper are 
conceptual. Our circuit and defect models are 
simple and broadly applicable to different types 
of emerging technologies. A schematic for the 
realization of our circuit model is shown in Fig-

ure 6. Each site of the lattice is a four-terminal 
switch, controlled by an input voltage. When 
a high (logic 1) or low (logic 0) voltage is ap-
plied, the switch is ON or OFF, respectively. 
The output of the circuit depends upon the top-
to-bottom connectivity across the lattice. If the 
top and bottom plates are connected, then the 
lattice allows signals to flow; accordingly, the 
output is logic 1. Otherwise the output is logic 
0. One can sense the output with a resistor con-
nected to the bottom plate while a high voltage 
applied to the top plate. Below, we discuss two 
potential technologies that fit this circuit model.

In their seminal work, Yi Cui and Charles 
Lieber investigated crossbar structures for dif-
ferent types of nanowires including n-type and 
p-type nanowires (Cui & Lieber, 2001). They 
achieved the different types of junctions by 
crossing different types of nanowires.

By crossing an n-type nanowire and a 
p-type nanowire, they achieved a diode-like 
junction. By crossing two n-types or two p-types, 
they achieved a resistor-like junction (with a 
very low resistance value). They showed that 
the connectivity of nanowires can be controlled 
by an insulated input voltage V -in. A high V -in 
makes the p-type nanowires conductive and the 
n-type nanowires resistive; a low V -in makes 
the p-type nanowires resistive and the n-type 
nanowires conductive. So they showed that, 
based on a controlling voltage, nanowires can 
behave either like short circuits or like open 
circuits.

Cui and Lieber implemented a four-termi-
nal device with crossed n-and p-type nanowires, 
illustrated in Figure 7(a). The device works as 
follows. When a high V -in is applied, a p-type 
nanowire (green) behaves like a short circuit, 
so the N and S terminals are connected, and 
an n-type nanowire (red) behaves like an open 
circuit, so the W and E terminals are discon-
nected. When a low V -in is applied, a p-type 
nanowire behaves like an open circuit, so the N 
and S terminals are disconnected, and an n-type 
nanowire behaves like a short circuit, so the W 
and E terminals are connected.

One could easily implement a four-termi-
nal switch with similar techniques, as illus-
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trated in Figure 7(b). Here the switch has crossed 
p-type nanowires. When a high V -in is applied, 
the nanowires behave like short circuits. Also 
a resistor-like junction is formed between them, 
meaning that the nanowires are connected 
through a low-valued resistor. Thus, all the 
four-terminals are connected; the switch is ON. 
When a low V -in is applied, the nanowires 
behave like open circuits. Thus, all the four-
terminals are disconnected; the switch is OFF. 
The result is a four-terminal switch that cor-
responds to our model.

Nanowire switches, of course, would be 
assembled in large arrays. Indeed, the impetus 
for nanowire-based technology is the poten-
tial density, scalability and manufacturability 
(Huang et al., 2001; Luo et al., 2002; DeHon, 
2005). Consider a p-type nanowire array, where 
each crosspoint is controlled by an input voltage. 
From the discussion above, we know that each 
such crosspoint behaves like a four-terminal 
switch. Accordingly, the nanowire crossbar ar-
ray can be modelled as a lattice of four-terminal 
switches as illustrated in Figure 8. Here the 

black and white sites represent crosspoints that 
are ON and OFF, respectively.

Many other novel and emerging technolo-
gies fit the general model of four-terminal 
switches. For instance, researchers are investi-
gating spin waves (Eshaghian-Wilner, Khitun, 
Navab, & Wang, 2006). Unlike conventional 
circuitry such as CMOS that transmits signals 
electrically, spin-wave technology transmits 
signals as propagating disturbances in the order-
ing of magnetic materials. Potentially, spin-
wave based logic circuits could compute with 
significantly less power than conventional 
CMOS circuitry.

Spin wave switches are four-terminal 
devices, as illustrated in Figure 9. They have 
two states ON and OFF, controlled by an input 
voltage V-in. In the ON state, the switch trans-
mits all spin waves; all the four-terminals are 
connected. In the OFF state the switch reflects 
any incoming spin waves; all the four-terminals 
are disconnected. Spin-wave switches, like 
nanowire switches, are also configured in 
crossbar networks (Khitun et al., 2008).

Figure 6. 3D realization of our circuit model with the inputs and the output

Figure 7. Nanowire four-terminal devices
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LOGIC SYNTHESIS THROUGH 
PERCOLATION

We implement Boolean functions with a single 
lattice of four-terminal switches, as illustrated 
in Figure 10 (Altun, Riedel, & Neuhauser, 2009). 
There are R × C regions r11,...,rRC in the lattice. 
Each region has N × M four-terminal switches. 
We assign Boolean literals x x x x x xk k1 1 2 2, , , , ..., ,  
to regions as controlling inputs. If an input 
literal is logic 1 then all switches in the corre-
sponding region are ideally ON; if the literal is 
logic 0 then all switches in the corresponding 
region are ideally OFF. This is illustrated in 
Figure 11.

In our synthesis method, a Boolean function 
is implemented by a lattice according to the 
connectivity between the top and bottom plates. 
For the purpose of elucidating our method, we 
will also discuss connectivity between the left 
and right plates. Call the Boolean functions 

corresponding to the top-to-bottom and left-to-
right plate connectivities fL and gL, respec-
tively. (However, note that our design method 
does not aim to implement separate top-to-
bottom and left-to-right functions. As we explain 
below, fL and gL are related.)

As shown in Figure 11, each Boolean 
function evaluates to 1 if there exists a path 
between corresponding plates and evaluates 
to 0 otherwise. Thus, the Boolean functions fL 
and gL can be computed as the OR of all top-
to-bottom and left-to-right paths, respectively. 
Since each path corresponds to the AND of 
inputs, the paths taken together correspond to 
the OR of these AND terms, so implement a 
sum-of-products expression.

Note that the values of N and M do not 
affect the Boolean functionality between plates; 
they determine the defect tolerance capability 
of the lattice. Therefore, for simplicity, let’s set 
N = 1 and M = 1 while computing the Boolean 

Figure 8. Nanowire crossbar array with random connections and its lattice representation

Figure 9. Spin-wave switch
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functions fL and gL. In this way, there are fewer 
paths to count between the corresponding plates. 
Consider the lattice shown in Figure 12(a): here 
there are 6 regions each of which is controlled 
by a Boolean literal. With N = and M = 1, there 
are 3 top-to-bottom paths and 4 left-to-right 
paths, as shown in Figure 12(b). Here fL is the 

OR of the 3 products x x x x x x1 3 1 2 3 4, ,  and gL is 
t h e  O R  o f  t h e  4  p r o d u c t s 
x x x x x x x x x x x x x x1 2 3 1 1 2 4 1 2 3 3 1 3 4, , , .  As a result, 
fL = x x x x x x1 3 1 2 3 4+ +  and gL = x x x x x1 3 4 2 3+ .

In the following section, we study the ro-
bustness of the lattice computation. We inves-

Figure 10. Boolean computation in a lattice, i.e., each region has N × M four-terminal switches. 
Each region can be realized by an N × M nanowire crossbar array with a controlling voltage V-in

Figure 11. Relation between Boolean functionality and paths; fL =1 and gL =0. (a) Each of the 
16 regions is assigned logic 0 or 1; R = 4 and C = 4, and (b) Each region has 9 switches; N = 
3 and M =3
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tigate the computation, implemented in terms 
of connectivity across the lattice, in the presence 
of defects.

Robustness

An important consideration in synthesis is the 
quality of the margins, defined in Definition 1. 
Suppose that the one and zero margins are the 
ranges of values for p1 for which p2 is always 
above (1 − ∈) and below ∈, respectively, where 
∈ is a very small number. For what follows, 
we will use a value ∈ =0.001. The margins 
correlate with the degree of defect tolerance. 
For instance a 10% one margin means that a 
defect rate of up to 10% can be tolerated while 
the corresponding Boolean function evaluates 
to 1. In other words, although each switch is 
defective with probability 0.1, the circuit still 
evaluates to 1 with high probability (p2 > 0.999). 
The higher the margins, the higher the defect 
tolerance that we achieve.

Different assignments of input variables 
to the regions of the lattice affect the margins. 
Consider a 4-input 2 × 2 lattice shown in Figure 
13(a). Suppose that N = 8 and M = 8 for this 
lattice. Figure 13(b) shows Boolean function-
alities and margins for different input assign-
ments. Since the lattice has 4 input variables 
x1,x2,x3,x4 there should be 16 different input 
assignments. However, there are only 7 rows 
in the table. Some input assignments produce 
the same result due to symmetries in the lattice: 
flipping the lattice vertically or horizontally 

gives us two different input assignments that 
are identical in terms of margins as well as the 
Boolean functionality. Note that each margin 
value in the table corresponds to either a one 
margin (if the corresponding Boolean function 
is 1) or a zero margin (if the corresponding 
Boolean function is 0). We define the worst-
case one and zero margins to be the minimum 
one and zero margins of all input assignments. 
For example, the table shown in Figure 13(b) 
states that fL has a 14% worst-case one margin 
and a 0% worst-case zero margin.

The row highlighted in grey has very low 
margins – indeed, these are nearly zero – so the 
circuit is likely to produce erroneous values for 
this input combination. Let’s examine why. 
Assignments that evaluate to 0 but have diago-
nally adjacent assignments of blocks of 1’s 
could be problematic because there is a chance 
that a weak connection will form through stray, 
random connections across the diagonal. This 
is illustrated in Figure 14. In this example, fL 
and gL both evaluate to 0; however the top-to-
bottom and left-to-right connectivities evaluate 
to 1 if a defect occurs around the diagonal 1’s. 
In effect, such defective switches are “shorting” 
the connection. So in this case fL and gL both 
evaluate to 1, incorrectly.

Note that diagonal paths are only problem-
atic when the corresponding Boolean function 
evaluates to 0 because the diagonal paths can 
only cause 0 → 1 errors. If the Boolean function 
evaluates to 1, these diagonal paths do not cause 

Figure 12. (a) A lattice with assigned inputs to 6 regions, and (b) Switch-based representation 
of the lattice; N =1 and M =1



22   International Journal of Nanotechnology and Molecular Computation, 3(2), 12-30, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

such an error; at best they strengthen the con-
nection between plates. This is illustrated in 
Figure 15. In the figure, there are both top-to-
bottom and left-to-right diagonal paths shown 
with red lines. However, only the top-to-bottom 
diagonal path is destructive because only fL 
evaluates to 0 (gL = 1).

Definition of Robustness: We call a lattice 
robust if there is no input assignment for which 
the top-to-bottom function evaluates to 0 that 
contains diagonally adjacent 1’s.

The following theorem tells us the neces-
sary and sufficient condition for robustness.

Theorem 1. A lattice is robust if the top-to-
bottom and left-to-right functions fL and gL 

are dual functions: fL(x1,x2,...,xk) = 
g x x xL k( )1 2, , ..., .

(See Definition 6 for the meaning of dual.)

Proof. In the proof, we consider two cases, 
namely fL =1 and fL =0.

Case 1. If fL(x1,x2,...,xk) =1, there must be a path 
of 1’s between top and bottom. If we 
complement all the inputs (1 → 0, 0 → 1), 
these connected 1’s become 0’s and  
vertically separate the lattice into two  
parts. Therefore no path of 1’s exists  
between the left and right plates,  
i.e., gL g x x xL k( )1 2, , ..., . As a result, 
g x x xL k( )1 2, , ...,  = fL(x1,x2,...,xk) = 1

Figure 13. (a) A lattice with assigned inputs; R = 2 and C = 2, and (b) Possible 0/1 assignments 
to the inputs (up to symmetries) and corresponding margins for the lattice (N = 8,M =8)

Figure 14. An input assignment with a low zero margin
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Case 2. If fL(x1,x2,...,xk) = 0 and there are no 
diagonally connected top-to-bottom paths, 
there must be a path of 0’s between left 
and right. If we complement all the inputs, 
these connected 0’s become 1’s, i.e., 
gL ( ) = 1x x xk1 2, , ..., .  As  a  resu l t , 
g x x xL k( )1 2, , ...,  = fL(x1,x2,...,xk) = 0

Figure 16 illustrates the two cases. Taken 
together the two cases prove that for robust 
computation, fL and gL must be dual functions. 
For both cases it is trivial that we can do the 
same reasoning in an inverse way: if fL and gL 
are dual functions then every input assignment 
is robust.

Example 1. Consider the lattices shown in 
Figure 17. For both lattices, R =2 and C 
=2. Let’s analyze the robustness of these 
two lattices using Theorem 1.

Example (a): The Boolean functions imple-
mented by the lattice are fL = x1x3 + 
x2x4 and gL = x1x2 + x3x4. Since fL

D

=(x1 + x3)(x2 + x4)= x1x2 + x1x4 + x2x3 
+ x3x4= gL, so fL and gL are not dual 
functions. Theorem 1 tells us that if fL 
and gL are not dual then there exists 
an non-robust input assignment. We 
can easily identify it: x1 =1,x2 =0,x3 
=0,x4 =1.

E x a m p l e  ( b ) :  T h e  B o o l e a n  
functions implemented by the  
lattice are f x x x xL = +1 3 1 2  and 
g x x x xL = +1 2 1 3.

Since f x x x xL
D = + + +( ) ( )1 3 1 2  = 

x x x x1 2 1 3+ =  gL, so fL and gL are dual 
L functions. Theorem 1 tells us that if 
fL and gL are dual then every assign-
ment is robust. One can easily see that 
none of the input assignments cause 

Figure 15. An input assignment with top-to-bottom and left-to-right diagonal paths

Figure 16. Illustration of Theorem 1
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diagonal 1’s while the corresponding 
function evaluates to 0.

We conclude that, in order to achieve 
robust computation, we must design lattices 
that have dual top-to-bottom and left-to-right 
Boolean functions.

Logic Optimization Problem

This gives rise to an interesting problem in 
logic optimization: given a target function fT 
in SOP form, how should we assign the input 
literals such that fL = fT and gL = fT

D ? In other 
words, how should we assign literals so that 
the lattice implements the target function be-
tween the top and bottom plates, and implements 
the dual of the function between the left and 
right plates? As described in the previous sec-
tion, having dual functions ensures robustness.

While maximizing the margins, we also 
need to consider the area of the lattice; this can 
be measured by the total number of switches R × 
C × N × M in the lattice. Here R × C and N × M 
represent the number of regions and the number 
of switches for each region, respectively.

We suggest a four-step algorithm for opti-
mizing the lattice area while meeting prescribed 
worst-case margins for a given target function 
fT. Algorithm:

1. 	 Begin with the target function fT and its 
dual fT

D  both in MSOP form.
2. 	 Find a lattice with the smallest number of 

regions that satisfies the conditions: fL = fT 
and gL = fT

D . This determines R × C.

3. 	 Dependent on the defect rates of the tech-
nology, determine the required worst-case 
one and zero margin values.

4. 	 Determine the number of switches required 
in each region in order to meet the pre-
scribed margins. This determines N × M.

The first step is straightforward. The dual of 
the target function can be computed from Defini-
tion 6. Exact methods such as Quine-McCluskey 
or heuristic methods such as Espresso can be 
used to obtain functions in MSOP form (Mc-
Cluskey, 1986; Brayton, McMullen, Hachtel, 
& Sangiovanni-Vincentelli, 1984).

For the second step of the algorithm, we 
point the reader to our prior work. In Altun and 
Riedel (2010, in press), we addressed the prob-
lem of assigning literals to switches in a lattice 
in order to implement a given target Boolean 
function. The goal was to minimize the number 
of regions. We presented an efficient algorithm 
that produces lattices with a size that grows 
linearly with the number of products of the 
target Boolean function. Suppose that fT and 
fT
D  in MSOP form have A and B product terms, 

respectively. Our algorithm produces lattices 
with B × A regions (R = B and C = A) for which 
fL = fT and gL = fT

D  (Altun & Riedel, in press).
For the third step, we assume that the de-

fect rates of the switches are known or can be 
estimated. Recall that we consider two types 
of defects: those that result in switches being 
OFF while they are supposed to be ON (call 
these “ON-to-OFF” defects), and defects that 
result in switches being ON while they are 

Figure 17. (a) An example of non-robust computation and (b) An example of robust computation
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supposed to be OFF (call these “OFF-to-ON” 
defects). We allow for different rates for both 
types of defects. Based upon the ON-to-OFF 
and OFF-to-ON defect rates, we establish the 
worst-case one and zero margins, respectively.

For the fourth step, we need to determine 
N and M such that the lattice meets the pre-
scribed margins. Figure 18 shows the general 
relationship between margins and N and M. 
It suggests how we should select values of N 
and M. For instance, suppose that we require a 
20% one margin and a 5% zero margin. Figure 
18 tells us that we need to select a larger value 
of M than that of N. Also, from the figure, we 
observe that regardless of whether we increase N 
or M, the sum of the margins always increases. 
This is due to the percolation phenomenon: the 
larger the lattice, the steeper the non-linearity 
curve. Based upon these considerations, we use 
a simple greedy technique to set the required 
values of N and M. The method tries worst-case 
margins for different values of N and M until 
the prescribed margins are met.

We elucidate our algorithm with the fol-
lowing examples. For all of the examples, we 
use 10% worst-case one and zero margins.

Example 2. Suppose that we are given the fol-
lowing target function fT in MSOP form:

fT = x1x2.	

First, we compute its dual fT
D  in MSOP 

form:

fT
D = x1 + x2.	

The number of products in fT and fT
D fD are 

1 and 2, respectively, i.e., A =1 and =2.

Then, we construct a lattice such that fL = 
fT = x1x2 and gL = fT

D  = x1 + x2. The lattice is 
illustrated in Figure 19. Note that R = B =2 and 
C = A =1. Finally, we find that N =4 and M =6 
in order to satisfy 10% worst-case one and zero 
margins. As a result, the lattice area = R × C × 
N × M =2 × 1 × 4 × 6 = 48.

Example 3. Suppose that we are given the fol-
lowing target function fT in MSOP form:

f x x x xT = +1 2 1 2. 	

First, we compute its dual fT
D  in MSOP 

form:

f x x x xT
D = +1 2 1 2. 	

We have that A =2 and B =2. Then, we 
construct a lattice such that fL = fT and gL = 
fT
D . The lattice is illustrated in Figure 20. Note 

that R = B =2 and C = A =2. Finally, we find 
that N =4 and M =6 in order to satisfy 10% 
worst-case one and zero margins. As a result, 
the lattice area = R × C × N × M =2 × 2 × 4 × 
6 = 96.

Example 4. Suppose that we are given the fol-
lowing target function fT in MSOP form:

f x x x x x x x x

x x x x x
T = + +

+ +
1 2 3 1 4 2 2 4

2 4 5 3 5.
	

First, we compute its dual fT
D  in MSOP 

form:

f x x x x x x x x x

x x x x x x
T
D = + +

+ +
1 2 5 1 3 4 2 3 4

2 3 4 2 4 5.
	

Figure 18. Relationship between margins, and N and M
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Figure 19. A lattice that implements fL = x1x2 and gL = x1 + x2

Figure 20. A lattice that implements fL = x x x x1 2 1 2+ and gL = x x x x1 2 1 2+ .  

Figure 21. A lattice that implements fL = x x x1 2 3  + x x1 4  + x x x2 2 4  + x x x2 4 5  + x x3 5  and gL = 
x x x1 2 5  + x x x1 3 4  + x x x2 3 4  + x x x2 4 5.  
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We have that A =5 and B =4. Then, we 
construct a lattice such that fL = fT and gL = 
fT
D . The lattice is illustrated in Figure 21. Note 

that R = B =4 and C = A =5. Finally, we find 
that N =4 and M =5 in order to satisfy 10% 
worst-case one and zero margins. As a result, 
the lattice area = R × C × N × M =4 × 5 × 4 × 
5 = 400.

We implement the target functions with 
specified margins. Note that because of the 
lattice duality, the one and zero margins of 
target functions become the zero and one mar-
gins of their duals, respectively.

EXPERIMENTAL RESULTS

We report synthesis results for some common 
benchmark circuits (McElvain, 1993). We 
consider each output of a benchmark circuit 
as a separate target Boolean function. Figure 
22 lists the required lattice areas for the target 
functions meeting 10% worst-case one and zero 
margins. Recall that the lattice area is defined 
as the number of switches in the lattice. It can 
be calculated as R × C × N × M where R × C 
and N × M represent the number of regions 
and the number of switches for each region, 
respectively.

In order to obtain the lattice areas, we fol-
low the steps of the proposed algorithm in the 
above section. We first obtain values for A and 
B, the number of products in the target functions 
and their duals, respectively. Our algorithm sets 
R = A and C = B, so produces lattices with B × 
A regions. We calculate values of N and M that 
satisfy the prescribed 10% worst-case margins.

Figure 22 reports the lattice areas, calcu-
lated as A × B × N × M. Examining the numbers in 
the table, we see that number of switches needed 
per region, N × M, is negatively correlated with 
the number of regions, A × B. That is to say, 
Boolean functions with more products (larger 
A × Bvalues) need smaller regions (smaller N 
× M values) to meet prescribed margins. This 
indicates a positive scaling trend: the lattice 

size grows more slowly than the function size. 
This key behavior is due to the percolation 
phenomena.

DISCUSSION

The two-terminal switch model is fundamental 
and ubiquitous in electrical engineering (Bryant, 
1987). Either implicitly or explicitly, nearly all 
logic synthesis methods target circuits built 
from two-terminal switches, i.e., transistors. 
And yet, with the advent of novel nanoscale 
technologies, synthesis methods targeting lat-
tices of multi-terminal switches are apropos. 
Our model consists of a regular lattice of 
multi-terminal switches, each controlled by 
a Boolean literal. This model is conceptually 
general and applicable to a range of emerging 
technologies, including nanowire crossbar 
arrays (Cui & Lieber, 2001) and magnetic 
switch-based structures (Khitun et al., 2008). 
We are investigating its applicability to DNA 
nanofabrics (Pistol, Lebeck, & Dwyer, 2006; 
Rothemund, 2006). In this paper, we focused 
on four-terminal switches. In future work, we 
will the extend the results paper to lattices of 
eight-terminal switches, and then to 2k-terminal 
switches, for arbitrary k.

Particularly with self-assembly, nanoscale 
lattices are often characterized by high defect 
rates. Significantly, unlike many other strate-
gies for defect tolerance, our method does 
not require defect identification followed by 
reconfiguration. Our method provides a priori 
tolerance to defects of any kind, both permanent 
and transient, provided that such defects occur 
probabilistically and independently. Indeed, 
percolation depends on a random distribution 
of defects. If the defect probabilities are cor-
related across regions, then the steepness of 
the percolation curve decreases; as a result, 
the defect tolerance diminishes. In future work, 
we will study this tradeoff mathematically and 
develop synthesis strategies to cope with cor-
related probabilities in defects.
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Figure 22. Lattice areas for the output functions of benchmark circuits in order to meet 10% 
worst-case one and zero margins
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