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Abstract—Stochastic computing using simple logic circuits
requires significantly less area and consumes less power compared
to traditional computing systems. These circuits are also inher-
ently fault-tolerant. The main drawbacks of these systems include
long latency and inexactness in computing. The deviation from
exact values increases as the correlation among inputs increases.
In many applications, outputs from different sensors may be cor-
related. Thus, testing correctness of stochastic computing circuits
requires generation of correlated stochastic bit streams. While
uncorrelated bit streams can be generated using linear feedback
shift registers (LFSRs), generation of correlated stochastic bit
streams has not yet been fully investigated. This paper presents a
general approach to synthesize correlated stochastic bit streams
for specified probabilities and specified correlation coefficients.
Generation of N correlated stochastic bit streams requires N
probabilities and 2N − N − 1 correlation coefficients. Using N
LFSRs, N uncorrelated stochastic bit streams are first generated.
The N correlated bit streams are then generated one at a time
using conditional marginal probabilities. The method is illustrated
for generating two and three correlated bit streams. The area
and power overheads for two correlated bit streams are 9.09%
and 2.12%, respectively, and for three correlated bit streams are
21.03% and 4.80%, respectively. The generated sequences are
applied to simple stochastic logic gates and the probability density
functions (pdfs) of the outputs are derived. It is shown that these
match with the theoretical pdfs of the outputs.

Keywords—Stochastic computing, stochastic combinational log-
ic, bit-level correlation, correlated stochastic sequences, error esti-
mation, synthesis.

I. INTRODUCTION

Stochastic Computing (SC) was proposed in 1967 by
Gaines [1] [2]. SC was proposed as an alternative approach to
binary computing. Gaines proposed stochastic representation in
two formats, unipolar and bipolar. The unipolar format is used
for unsigned numbers within the range of [0, 1], whereas signed
numbers correspond to the range of [−1, 1] in the bipolar
format. In the unipolar format, a real number x is represented
by a stochastic stream of bits X , where

x = P (X = 1) = P (X).

For example, in a stochastic sequence with 256 bits, if 25
bits are 1, then the real number described by the sequence is
25/256. In the bipolar format,

x = 2P (X = 1)− 1 = 2P (X)− 1.

This research was supported by the National Science Foundation under grant
numbers CCF-1319107 and CCF-1408123.

In this paper, we first present synthesis of correlated stochastic
sequences for the unipolar representation of stochastic comput-
ing and then extend our work to bipolar format.

Computing using stochastic logic requires significantly less
hardware compared to traditional binary arithmetic. However,
these circuits suffer from significant increase in latency. This
is because the number of bits used to represent a number
is typically very large. For example, a 10-bit binary number
can represent 1024 levels. To achieve the same resolution,
a stochastic number should be represented using 1024 bits.
The stochastic computing systems are ideal for low-speed
applications such as neural networks [3], cyber-physical sys-
tems operating at very low rates, and biomedical applications.
Stochastic logic gates compute an approximate value of the
result, as opposed to the exact value. In many applications,
such as machine learning, where a decision is made based on
a thresholding operation, the decisions may not be affected
by approximate computing. Stochastic computing is also ex-
ploited for decoding of error-correcting codes (ECC) [4] [5].
Another main advantage of stochastic computing is its inherent
tolerance to faults in CMOS circuits [6].

The stochastic bit stream is represented using a string
of 1s and 0s where each bit is assumed to be independent
of the other bits. Parker and McCluskey derived closed-form
expressions for stochastic logic outputs for uncorrelated inputs
[7]. Qian et al. have proposed synthesis of logic gates to
compute specified probabilities from uncorrelated bit streams
[8] [9]. However, the bit-level correlation between the two
inputs to a stochastic logic gate affects the expected value of
the output. Recently, Alaghi and Hayes have introduced the
notion of stochastic correlation and have proposed a method
to generate correlated bit streams using probabilistic transfer
matrices [10]. In contrast, the proposed work presents a method
to generate correlated bit streams using the traditional Pearson
correlation. Although the Pearson correlation coefficient, ρ,
lies between -1 and 1, the ρ of two stochastic bit streams
is restricted to a narrower range; this range is dependent on
the expected values of the stochastic inputs. It was described
in [11] that two correlated bit streams can be generated for
specified probabilities and correlation coefficients and this
paper expands the results of [11].

This paper makes two key contributions. First, closed-form
expressions are derived for mean and variance of a stochastic
output as functions of the input probabilities and the spatial
correlation between the inputs. To prove the theoretical expres-
sions by simulations, it is necessary to generate correlated bit
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streams for a specified correlation. The second contribution of
this paper is a novel approach to generate correlated stochastic
bit streams given specified probabilities and correlation co-
efficients. Finally the validity of the theoretical expressions
is demonstrated through simulations of stochastic logic gates
using correlated bit streams.

This paper is organized as follows. In Section II closed-
form expressions for outputs of stochastic logic gates with
correlated inputs are derived. Sections III and IV, respectively,
present approaches to synthesize two and three correlated
stochastic bit streams from uncorrelated bit streams. Section
V extends our work from stochastic unipolar format to bipolar
format. Section VI tests the synthesis circuit to generate
correlated stochastic bit streams and stochastic logic gates
with correlated inputs. The hardware complexity and power
consumption of synthesized circuits are also presented in this
section. Finally, some conclusions are given in Section VII.

II. ANALYSIS OF STOCHASTIC LOGIC WITH CORRELATED
INPUTS

In the implementation of functionalities using stochastic
computing, independent or uncorrelated input signals are al-
ways required to guarantee the accuracy. We first analyze the
output error of stochastic combinational logic under the as-
sumption of uncorrelated inputs. Consider the output bit stream
Y of an arbitrary stochastic combinational logic in unipolar
format. Each bit Yi can be represented as an independent
identically distributed (i.i.d.) Bernoulli random variable with
probability of one equal to pY . Assume that P (Y ) is the
number represented by the stochastic bit stream Y . The value
of P (Y ) is given by:

P (Y ) =

∑N
i=1 Yi

N
, (1)

where N is the number of bits in the stochastic sequence. Since
P (Y ) is the sum of N Bernoulli random variables, it can be
describes as a binomial random variable with the variance:

σ2 =
pY (1− pY )

N
. (2)

The variance is maximum at pY = 0.5 and minimum at pY =
0 or pY = 1. The variance of stochastic logic output actually
reflects the computational error. Therefore, when pY = 0.5, the
computational error is maximum while the minimum error is
given at pY = 0 or pY = 1. The equation (2) also explains the
fact that the computational error is reduced with the increase
in the number of bits N .

A. Stochastic combinational logic with two correlated input
sequences

Correlation in input bit streams alters the expected output
of a stochastic logic circuit. The first example is a multiplica-
tion of two unipolar stochastic numbers using an AND gate as
shown in Fig. 1. Let X1 and X2 denote the bits of two input
stochastic sequences. The probabilities of the two bit streams,
denoted as p1 and p2, are 1/2 and 1/3. The stochastic bit stream
consists of 6 bits. Let Y represent the output. If X1 and X2

are uncorrelated, the output probability is given by

E(Y ) = E(X1X2) = p1p2. (3)

p1: 1/2

1,0,0,1,1,0

p2: 1/3

pY: 1/6

0,0,0,0,1,0

0,1,0,0,1,0

X1 Y0
X2

Fig. 1: The unsigned stochastic multiplication implemented
using an AND gate.

In this example the output value is 1/6. If two inputs are
correlated at the bit-level, the expected value of the output
will change. Consider the Pearson correlation coefficient of
two binary variables X1 and X2:

ρ12 =
cov(X1, X2)

σ1σ2
=

E(X1X2)− EX1EX2

σ1σ2

=
E(Y )− p1p2

σ1σ2
,

(4)

where the expected value of the stochastic input variable is
given by EXi = pi and the bit-level standard deviation is given
by σi =

√
pi(1− pi). Then the expected output of stochastic

multiplication (AND operation) with two correlated input bit
streams is derived as follows:

E(Y ) = p1p2 + ρ12σ1σ2

= p1p2 + ρ12
√
p1p2(1− p1)(1− p2).

(5)

The computational error can be described in terms of ρ12, p1
and p2:

err(Y ) = E(Y )− p1p2

= ρ12
√
p1p2(1− p1)(1− p2).

(6)

Consider another example of the two-input OR gate. If
the input signals X1 and X2 are uncorrelated, the expected
value of the output Y is p1 + p2 − p1p2, where p1 and p2 are
probabilities of ones in X1 and X2. Assume that X1 and X2

are correlated with correlation coefficient ρ, from equation (4),
we obtain the expected value of the output as follows:

E(Y ) = E(X1 +X2 −X1X2)

= p1 + p2 − p1p2 − ρσ1σ2.
(7)

The expected output of any stochastic combinational logic
with correlated input signals can be derived in a similar
manner. Table I compares the expected values of the outputs of
various two-input stochastic logic gates with uncorrelated and
correlated inputs. Notice that the expected output of a MUX
is unaffected by input correlation since we only consider the
correlation of operands. The scaled addition is implemented
using a MUX in stochastic computing. Let X1 and X2 denote
the input signals, and X3 represent the select signal. The
expected value of output is given by:

E(Y ) = E(X1 −X1X3 +X2X3)

= p1 − p1p3 + p2p3.
(8)

where E(Xi) = pi. Although the mean output is unaffected by
correlation between X1 and X2, it is affected by the correlation
between the select signal, X3, and either or both input signals,
X1 or X2.

���



TABLE I: The expect values of output for various two-input stochastic logic gates with uncorrelated and correlated inputs.

Gate Type uncorrelated inputs correlated inputs (with correlation ρ)
AND p1p2 p1p2 + ρσ1σ2

NAND 1− p1p2 1− p1p2 − ρσ1σ2

OR p1 + p2 − p1p2 p1 + p2 − p1p2 − ρσ1σ2

NOR (1− p1)(1− p2) 1− p1 − p2 + p1p2 + ρσ1σ2

XOR p1 + p2 − 2p1p2 p1 + p2 − 2p1p2 − 2ρσ1σ2

XNOR 1− p1 − p2 + 2p1p2 1− p1 − p2 + 2p1p2 + 2ρσ1σ2

MUX (X3 select signal) p1 − p1p3 + p2p3 p1 − p1p3 + p2p3

B. Stochastic combinational logic with three correlated input
sequences

When the number of inputs for a stochastic combinational
logic is greater than two, the influence of correlation on
expected output becomes more complex. Consider the unipolar
stochastic multiplication of three inputs X1, X2 and X3. The
probabilities of ones in these sequences are given as following:

E(X1) = p1
E(X2) = p2
E(X3) = p3.

In this situation, the correlations of three inputs are required
to be described using three pairwise correlations:

ρ12 =
cov(X1, X2)

σ1σ2
=

E(X1X2)− p1p2
σ1σ2

ρ23 =
cov(X2, X3)

σ2σ3
=

E(X2X3)− p2p3
σ2σ3

ρ13 =
cov(X1, X3)

σ1σ3
=

E(X1X3)− p1p3
σ1σ3

,

and one cubic correlation, that is analogous to the correlation
coefficient for three random variables:

ρ123 =
cov3(X1, X2, X3)

σ1σ2σ3

=
E[(X1 − EX1)(X2 − EX2)(X3 − EX3)]

σ1σ2σ3

=
E(X1X2X3)− p1p2p3 − α

σ1σ2σ3
,

where α = ρ12σ1σ2p3 + ρ23σ2σ3p1 + ρ13σ1σ3p2 and σi =√
pi(1− pi). The definition of Pearson correlation coefficient

is extended from two variables to three variables by ρ123. Then
the expected value of the output Y of stochastic multiplication
(AND operation) with three correlated input bit streams is
derived as follows:

E(Y ) = E(X1X2X3) = p1p2p3 + ρ123σ1σ2σ3 + α. (9)

Therefore, the computational error can be derived as:

err(Y ) = E(Y )− p1p2p3 = ρ123σ1σ2σ3 + α. (10)

The expected output and accuracy of stochastic combinational
logic with multiple correlated inputs can be estimated using
given probabilities and correlations in a similar manner.

III. SYNTHESIS OF TWO CORRELATED STOCHASTIC BIT
STREAMS

It is necessary to synthesize two correlated bit streams with
specified probabilities and correlation coefficient for simula-
tions. In this section, we propose an approach to synthesize
two stochastic bit streams with specified probabilities and
correlation in unipolar representation.

Let p1, p2 and ρ, respectively, represent the given prob-
abilities of ones in the stochastic sequences X1, X2, and
their correlation coefficient. Our objective is to synthesize
two stochastic sequences given parameters p1, p2 and ρ.
The joint probability mass function (pmf) of X1 and X2 is
described in Table II. The parameter a denotes the probability
that X1 = 1 and X2 = 1, and can be derived from the
correlation coefficient ρ. Since all values in Table II represent

TABLE II: The joint probability mass function of X1 and X2.

Input Variable Probability
X1 = 0, X2 = 0 1− p1 − p2 + a
X1 = 0, X2 = 1 p2 − a
X1 = 1, X2 = 0 p1 − a
X1 = 1, X2 = 1 a

probabilities, they must be non-negative. This is guaranteed by
the constraints: ⎧

⎪⎨

⎪⎩

a ≥ 0
a ≤ p1
a ≤ p2
a ≥ p1 + p2 − 1

From the definition of the bit-level correlation coefficient:

ρ =
a− p1p2
σ1σ2

. (11)

Then the parameter a can be obtained as:

a = p1p2 + ρσ1σ2.

= p1p2 + ρ
√

p1p2(1− p1)(1− p2)
(12)

Note that although the correlation coefficient, ρ, lies between
-1 and 1, the above constraints limit the allowable range of
ρ. Since we already know a ≥ max(0, p1 + p2 − 1) and a ≤
min(p1, p2), the feasible range of ρ is derived as:
⎧
⎨

⎩

ρ ≥ max( −p1p2√
p1p2(1−p1)(1−p2)

, −p1p2+p1+p2−1√
p1p2(1−p1)(1−p2)

)

ρ ≤ min( p1−p1p2√
p1p2(1−p1)(1−p2)

, p2−p1p2√
p1p2(1−p1)(1−p2)

)
(13)

For example, if p1 = 0.3, and p2 = 0.8, the range of a is
constrained to the range [0.1, 0.3]. This limits the range of
ρ to [−0.7638, 0.3273]. Fig. 2 shows the range of feasible
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(a)

(b)

Fig. 2: (a) The minimum correlation coefficient (ρ) and (b) the
maximum correlation coefficient (ρ) for all possible combina-
tions of p1 and p2.

correlation coefficient ρ for all possible combinations of p1
and p2. Notice that p1 and p2 are in the range of [0, 1].

The two correlated stochastic bit streams, X1 and X2, can
be synthesized from two uncorrelated bit streams, denoted as
R1 and R2, where each bit of R1 and R2 is a uniform random
variable between 0 and 1. The proposed approach makes use
of marginal probability and conditional marginal probability.
First R1 is used to generate X1 using marginal probability of
X1. Then, X2 is generated from R2 using conditional marginal
probability of X2 conditioned to selection of X1. The approach
to generating X1 follows the principle of stochastic number
generator (SNG). If the probability of the first uncorrelated bit
stream, R1, is greater then p1, then X1 = 0, otherwise X1 = 1.
X2 is synthesized by using the conditional probability of X2

given X1, which is:

P (X2|X1) =
P (X1, X2)

P (X1)
. (14)

Assume that X1 = 1 is given. we obtain P (X2 = 1|X1 =
1) = a/p1. If R2 > a/p1, then X2 = 0. Otherwise, X2 = 1.
Given that X1 = 0 is generated, the conditional probability
will be P (X2 = 1|X1 = 0) = (p2−a)/(1−p1). Then X2 = 0
if R2 > (p2 − a)/(1 − p1). Otherwise X2 = 1. Fig. 3 shows
the decision tree to synthesize two correlated stochastic bit
steams with specified p1, p2 and ρ. Every bit of two stochastic
sequences is generated using this decision tree.

Fig. 4 illustrates the circuit diagram to generate two s-
tochastic bit steams with specified probabilities and correlation
coefficient. The circuit to generate two correlated stochastic
signals is designed using two levels of stochastic number
generator (SNG). The SNG consists of a comparator and

R1

R2

≤p1

X1=1

R2

>p1

X1=0

X2=0 X2=1 X2=0 X2=1

>a/p1
≤a/p1p2-a

1-p1≤
p2-a
1-p1

>

Fig. 3: The decision tree to synthesize two correlated stochastic
bit steams with specified p1, p2 and ρ.

Fig. 4: The circuit diagram to generate two stochastic bit
steams with specified probabilities and correlation coefficient.

a linear-feedback-shift-register (LFSR) which is a pseudo
random source [12]. The first SNG is used to produce a
stochastic sequence with the probability of one equal to p1.
The binary probability number input to the second SNG is
selected by using a multiplexer, where X1 is the select signal.
The second SNG is used to produce the stochastic sequence
bit X2. The pre-computed 10-bit probabilities p1, a/p1 and
(p2 − a)/(1− p1) are inputs of the proposed architecture. X1

and X2 are outputs of the synthesized circuit.

IV. SYNTHESIS OF THREE CORRELATED STOCHASTIC
SEQUENCES

In order to synthesize three correlated stochastic bit stream-
s, we need to know seven parameters listed below:

{
p1 = E(X1)
p2 = E(X2)
p3 = E(X3)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ12 = cov(X1,X2)
σ1σ2

ρ23 = cov(X2,X3)
σ2σ3

ρ13 = cov(X1,X3)
σ1σ3

ρ123 = cov3(X1,X2,X3)
σ1σ2σ3

where p1, p2 and p3 stand for the given probabilities of each
bit in the stochastic sequences X1, X2 and X3. ρ12, ρ23 and
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ρ13 represent the pairwise correlations of stochastic bit streams
and ρ123 denotes their cubic correlation. The joint probability
mass function (pmf) of X1 and X2 and X3 is described in
Table III. The parameter a denotes the probability that X1 = 1
and X2 = 1, b represents the probability that X2 = 1 and
X3 = 1, c denotes the probability that X1 = 1 and X3 = 1, d
represents the probability that X1 = 1, X2 = 1 and X3 = 1.
These can be derived from p1, p2, p3 and given correlations.
Since all values in Table II represent probabilities, they must

TABLE III: The joint probability mass function of X1, X2 and
X3.

X1X2 X3 = 0 X3 = 1

00 1− p1 − p2 − p3 + a + b + c− d p3 − b− c + d
01 p2 − a− b + d b− d
10 p1 − a− c + d c− d
11 a− d d

be non-negative. This is guaranteed by the constraints:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d ≥ 0
d ≤ min(a, b, c)
p3 + d− b− c ≥ 0
p2 + d− a− b ≥ 0
p1 + d− a− c ≥ 0
1− p1 − p2 − p3 + a+ b+ c− d ≥ 0

From the definition of the bit-level correlation coefficient, the
parameter a, b, c and d can be obtained as:

⎧
⎪⎨

⎪⎩

a = p1p2 + ρ12σ1σ2

b = p2p3 + ρ23σ2σ3

c = p1p3 + ρ13σ1σ3

d = p1p2p3 + ρ123σ1σ2σ3 + α

where α = ρ12σ1σ2p3 + ρ23σ2σ3p1 + ρ13σ1σ3p2 and σi =√
pi(1− pi).

The three correlated stochastic bit streams, X1, X2 and
X3, can be synthesized from three uncorrelated bit streams,
denoted as R1, R2 and R3, where each bit of R1, R2 and R3

is a uniform random variable between 0 and 1. X1 and X2

are first generated by using the approach to synthesizing two
correlated stochastic bit streams. In this step, parameters p1, p2
and a are used. In the next step, X3 is synthesized depending
on the conditional probability of X3 given X1 and X2:

P (X3|X1, X2) =
P (X1, X2, X3)

P (X1, X2)
. (15)

P (X1, X2, X3) can be found in Table III and P (X1, X2) is
presented in Table II. Given various values of X1 and X2 from
the first step, four cases are considered:

(i) X1 = 0 and X2 = 0:

P (X3 = 1|X1 = 0, X2 = 0) =
p3 − b− c+ d

1− p1 − p2 + a
.

If R3 ≤ (p3− b− c+d)/(1−p1−p2+a), then X3 = 1.
Otherwise, X3 = 0.

(ii) X1 = 0 and X2 = 1:

P (X3 = 1|X1 = 0, X2 = 1) =
b− d

p2 − a
.

If R3 ≤ (b − d)/(p2 − a), then X3 = 1. Otherwise,
X3 = 0.

(iii) X1 = 1 and X2 = 0:

P (X3 = 1|X1 = 1, X2 = 0) =
c− d

p1 − a
.

If R3 ≤ (c − d)/(p1 − a), then X3 = 1. Otherwise,
X3 = 0.

(iv) X1 = 1 and X2 = 1:

P (X3 = 1|X1 = 1, X2 = 1) =
d

a
.

If R3 ≤ d/a, then X3 = 1. Otherwise, X3 = 0.

Fig. 5 illustrates the decision tree to synthesize three
correlated stochastic bit steams with specified p1, p2, p3 and
correlation coefficients. Every bit of three stochastic sequences
is generated using this decision tree. Compared to that shown
in Fig 3, this decision tree has one more level to produce X3

given the values of X1 and X2.

R1

R2

≤p1
X1=1

R2

>p1
X1=0

R3 R3 R3

>a/p1
≤a/p1p2-a

1-p1≤
p2-a
1-p1

>
X2=0 X2=1 X2=0

X2=1

X3=1 X3=0 X3=1 X3=0X3=0 X3=1

R3

X3=0 X3=1

p3-b-c-d
1-p1-p2+a≤

p3-b-c-d
1-p1-p2+a

> b-d
p2-a>

b-d
p2-a≤ c-d

p1-a≤c-d
p1-a

>
≤d/a>d/a

Fig. 5: The decision tree to synthesize three correlated s-
tochastic bit steams with specified p1, p2, p3 and correlation
coefficients.

Fig. 6 illustrates the circuit diagram to generate three s-
tochastic bit steams with specified probabilities and correlation
coefficients. The circuit diagram to generate three correlated
stochastic bit steams is similar to that shown in Fig. 4. The
difference is that one more SNG is required to produce X3.
The probability number input to the third SNG is determined
by a multiplexer, where X1 and X2 are select signals. The
pre-computed probabilities on the left side are inputs to the
architecture. X1, X2 and X3 are outputs of the architecture.

V. EXTENSION FOR STOCHASTIC BIPOLAR
REPRESENTATION

The analysis of stochastic logic with correlated inputs and
proposed synthesis circuits from Section II to Section IV are
dependent on the unipolar representation. They can also be
applied to bipolar representation after simple linear scaling of
values represented by input sequences. For both correlation
analysis of a stochastic combinational logic and the synthesis
of correlated stochastic bit streams with specified parameters,
we need to know the probabilities of 1s in stochastic sequences
and their bit-level correlation coefficients. Consider an AND
gate with the inputs of two stochastic bit streams. Given that
the values represented by two sequences are n1 and n2. In the
context of unipolar format, we have:

p1 = n1 and p2 = n2,
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Fig. 6: The circuit diagram to generate three stochastic bit
steams with specified probabilities and correlation coefficient.

where p1 and p2 are probabilities of 1s in two sequences
respectively. However, for stochastic bipolar format:

p1 =
n1 + 1

2

p2 =
n2 + 1

2
.

Therefore, the above linear scaling is required to derive pi from
ni before the correlation analysis or synthesis of correlated
stochastic sequences for bipolar representation. Since the bit-
level correlation is defined in the context of stochastic bit
streams themselves rather than the values represented by bit
streams, there is no difference of the correlation coefficients
between unipolar and bipolar format. In bipolar representation,
besides the definition in equation (4), the correlation coeffi-
cients can also be expressed in terms of ni as following:

ρ =
E(X1X2)− p1p2√
p1(1− p1)p2(1− p2)

=
nY +1

2 − n1+1
2

n2+1
2√

n1+1
2 (1− n1+1

2 )n2+1
2 (1− n2+1

2 )

=
2(nY + 1)− (n1 + 1)(n2 + 1)√
(n1 + 1)(1− n1)(n2 + 1)(1− n2)

where nY denotes the bipolar value represented by the output
stochastic sequence of the AND gate; n1 and n2 are the values
represented by two input bipolar stochastic sequences.

Thus, in stochastic bipolar format, we first convert ni to
pi using linear scaling described above. Then the proposed

analysis of stochastic logic with correlated inputs and the
synthesis circuits to generate correlated stochastic bit streams
with specified parameters can be applied as the unipolar
format.

VI. EXPERIMENTAL RESULTS

In this section, we present the test results of synthesis
circuit to generate correlated bit streams. The simulation
results of stochastic combinational logic with two correlated
inputs are presented. We also present the synthesis results of
the circuits to generate two and three stochastic bit streams
with specified probabilities and correlation coefficients.

A. Test for circuit to generate correlated stochastic bit streams

1) Synthesis circuit to generate two correlated stochastic
bit streams: The simulations were performed to test the circuit
to generate two correlated stochastic bit streams with specified
probabilities and correlation coefficient in unipolar format.
Table IV shows the simulation results given distinct values
of p1, p2 and ρ, which are probabilities of 1s in two stochastic
sequences and the correlation coefficient between them. For
each combination of p1, p2 and ρ, we performed 1000 Monte
Carlo runs using the architecture shown in Fig. 4. The length
of stochastic bit streams is 1024. The 12-bit LFSR is used as
the pseudo random source with the uniform distribution, where
the feedback polynomial is given as following:

x12 + x11 + x10 + x4 + 1. (16)

The mean values of p1, p2 and ρ of generated stochastic
sequences are presented as p1mean, p2mean and ρmean. Their
standard deviations of 1000 runs are described as σp1 , σp2 and
σρ in Table IV.

We also performed simulations to test the circuit to gener-
ate two correlated stochastic bit streams with specified proba-
bilities and correlation coefficient in bipolar format. Table V
shows the simulation results given distinct values of n1, n2

and ρ, which are bipolar values represented by two stochastic
sequences and the correlation coefficient between them. All
other experimental parameters are same as the simulations in
unipolar format.

2) Synthesis circuit to generate three correlated stochastic
bit streams: The simulation was performed to test the circuit
to generate three correlated stochastic bit streams with specific
probabilities and correlation coefficient in unipolar format.
Given that the probabilities of 1s in three stochastic sequence
are p1 = 0.6, p2 = 0.6 and p3 = 0.4. The correlation
coefficients are ρ12 = −0.25, ρ23 = 0.25, ρ13 = 0.25 and
ρ123 = 0.068. We performed 1000 Monte Carlo runs using
the architecture shown in Fig. 6. The length of stochastic
bit streams is 1024. Three 12-bit LFSRs are used as pseu-
do random sources with the uniform distribution, where the
feedback polynomial is the same as that in (16). We present
partial results of synthesis circuit to generate three correlated
stochastic bit streams in histograms. The distribution of p1,
p2, p3 and ρ123 of generated stochastic sequences are shown
in Fig. 7, Fig. 8, Fig. 9 and Fig. 10, respectively.
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TABLE IV: The simulation results of synthesis circuit to generate two correlated stochastic bit streams given distinct values of
p1, p2 and ρ in unipolar format.

Given conditions Simulation results from synthesis circuit
p1 p2 ρ p1mean p2mean ρmean σp1 σp2 σρ

0.2 0.4 0.05 0.2003 0.3998 0.0480 0.0111 0.0136 0.0314
0.2 0.4 0.15 0.1996 0.3990 0.1504 0.0106 0.0135 0.0317
0.3 0.5 0.15 0.2998 0.4993 0.1511 0.0120 0.0140 0.0306
0.3 0.5 0.25 0.2993 0.4997 0.2504 0.0127 0.0140 0.0279
0.4 0.6 0.25 0.3999 0.6003 0.2506 0.0126 0.0133 0.0288
0.4 0.6 0.35 0.3994 0.5996 0.3499 0.0132 0.0142 0.0264
0.5 0.7 0.35 0.5007 0.7002 0.3495 0.0133 0.0125 0.0259
0.5 0.7 0.45 0.4997 0.6999 0.4499 0.0134 0.0134 0.0247
0.6 0.8 0.45 0.6005 0.7999 0.4489 0.0128 0.0113 0.0252
0.6 0.8 0.55 0.5992 0.7997 0.5488 0.0134 0.0117 0.0219

TABLE V: The simulation results of synthesis circuit to generate two correlated stochastic bit streams given distinct values of
n1, n2 and ρ in bipolar format.

Given conditions Simulation results from synthesis circuit
n1 n2 ρ n1mean n2mean ρmean σn1 σn2 σρ

−0.6 −0.2 0.05 −0.5995 −0.2021 0.0518 0.0213 0.0254 0.0317
−0.6 −0.2 0.15 −0.6002 −0.1998 0.1487 0.0213 0.0274 0.0322
−0.4 0 0.15 −0.3995 −0.0013 0.1499 0.0250 0.0277 0.0310
−0.4 0 0.25 −0.3997 −0.0007 0.2503 0.0251 0.0289 0.0294
−0.2 0.2 0.25 −0.2009 0.1999 0.2504 0.0270 0.0269 0.0282
−0.2 0.2 0.35 −0.2000 0.1999 0.3499 0.0269 0.0278 0.0272
0 0.4 0.35 0.0001 0.4005 0.3513 0.0278 0.0252 0.0274
0 0.4 0.45 0.0009 0.3997 0.4500 0.0273 0.0259 0.0242
0.2 0.6 0.45 0.2011 0.6009 0.4488 0.0263 0.0230 0.0248
0.2 0.6 0.55 0.1994 0.5998 0.5485 0.0253 0.0222 0.0214
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Fig. 7: The histogram of the mean value (p1) of the first
stochastic bit stream generated from the synthesis circuit where
the expected p1 = 0.6.
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Fig. 8: The histogram of the mean value (p2) of the second
stochastic bit stream generated from the synthesis circuit where
the expected p2 = 0.6.

0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45
0

50

100

150

200

250

300

p3 from simulations

# 
of

 o
cc

ur
en

ce
s

Fig. 9: The histogram of the mean value (p3) of the third
stochastic bit stream generated from synthesis circuit where
the expected p3 = 0.4.
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Fig. 10: The histogram of the correlation coefficient (ρ123)
of the stochastic bit streams generated from synthesis circuit
where the expected ρ123 = 0.068.
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B. Simulation results of stochastic logic with correlated inputs

In our simulations, the results of output for two-input
logic gates with correlated stochastic inputs are obtained using
Monte Carlo experiments for different values of p1 and p2,
which are probabilities of 1s in two correlated stochastic
inputs. 1000 Monte Carlo runs were performed for each com-
bination of p1, p2 and ρ. The length of stochastic bit streams is
1024. The correlated input stochastic bit streams are generated
by proposed synthesis circuits. Table VI presents the output
mean values and standard deviations of different combinational
logic gates given specified p1, p2 and ρ of input stochastic
sequences. The output and standard deviation results from

TABLE VI: The output mean values and standard deviations
of different combinational logic gates given specified p1, p2
and ρ of input stochastic sequences.

Gate Input Output
Type p1 p2 ρ pout ppred σout σpred

AND 0.4 0.5 0.2 0.2490 0.2489 0.0133 0.0135
0.6 0.8 0.5 0.5778 0.5780 0.0156 0.0154

OR 0.4 0.5 0.2 0.6512 0.6510 0.0144 0.0149
0.6 0.8 0.5 0.8217 0.8220 0.0118 0.0120

XNOR 0.4 0.5 0.2 0.5978 0.5980 0.0159 0.0153
0.6 0.8 0.5 0.7560 0.7560 0.0131 0.0134

simulations are represented by pout and σout. ppred and σpred

indicate our predicted mean values and standard deviations of
the output. ppred is calculated by using expressions shown in
Table I. The predicted standard deviations are calculated using√
pY (1− pY )/N where N = 1024. N represents the length

of stochastic sequence. The simulation results in Table VI are
in agreement with the predicted values.

We also performed simulations for a 3-input AND gate
with correlated stochastic inputs. Given p1 = 0.6, p2 = 0.6,
p3 = 0.4, ρ12 = −0.25, ρ23 = 0.25, ρ13 = 0.25 and
ρ123 = 0.068, three correlated stochastic sequences are gen-
erated using proposed synthesis circuit shown in Fig. 6. 1000
Monte Carlo runs were performed to test the output values and
standard deviations. From simulations, we obtain:

{
pout = 0.1993
σout = 0.0126

The predicted output mean value, ppred = 0.2, is calculated
by using equation (9). The predicted standard deviation is
computeds using

√
pY (1− pY )/N , where σpred = 0.0125.

C. Synthesis results

The hardware complexity and power consumption of pro-
posed architectures for synthesizing correlated stochastic bit
streams (Fig. 4 and Fig. 6) are evaluated using 65nm tech-
nology. After successful FPGA verification, the architectures
are implemented using 65nm libraries and synthesized using
Synopsys Design Compiler. In our implementation, the length
of the stochastic sequence is 1024, thus the LFSR requires at
least 10 bits. Table VII presents the hardware complexity in
terms of equivalent 2-NAND gates and power consumption of
circuits to generate two stochastic bit streams (corr2) and three
stochastic bit streams (corr3) with specified probabilities and
correlation coefficients.

TABLE VII: The hardware complexity in terms of equivalent
2-NAND gates and power consumption of circuits to generate
two and three stochastic bit streams with specified probabilities
and correlation coefficients.

Circuit SNG* corr2 corr3
Type Simulated Simulated Overhead Simulated Overhead
Area 188.76 411.84 9.09% 685.36 21.03%

Power 1.18µW 2.41µW 2.12% 3.71µW 4.80%
* The synthesis results of SNG is presented as a reference.

The area and power overheads for two correlated bit
streams are 9.09% and 2.12%, respectively, and for three
correlated bit streams are 21.03% and 4.80%, respectively.

VII. CONCLUSION

This paper has presented the analysis of stochastic logic
gates with correlated inputs. Approaches to generating two
and three correlated bit streams have been proposed. A major
weakness of the proposed approach is that the correlation
coefficient of the two bit streams does not span the entire range
from -1 to 1. Future work will be directed towards generation
of correlated bit streams where the correlation coefficient can
range from -1 to 1.
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