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Abstract—Simple stochastic logic gates can compute complex
functions using stochastic computing. A stochastic number is
encoded by a unary bit stream where each bit is 0 or 1. The
value of the number is represented by the percent of 1’s in
the number, and is interpreted as a probability. Each bit of
the stochastic number can be modeled as a Bernoulli random
variable, and each stochastic number can be represented by a
binomial random variable. The variance of a stochastic number
is given by p(1 − p)/N where N represents the number of bits
in the sequence, and p represents the mean value of the number.
For long word-lengths, a binomial random variable behaves as a
Gaussian random variable. The mean and variance of a two-input
stochastic logic gate are dependent on the bit-level correlation
of the two inputs. This paper derives closed-form expressions
for mean and variance of two-input stochastic logic gates with
correlated inputs. An approach to synthesize correlated stochastic
bit streams with specified correlation from uncorrelated bit
streams is also presented. Using the proposed synthesis method,
stochastic logic gates are simulated with correlated inputs. The
simulated values of means and variances are shown to be the
same as the theoretical values; thus, the closed-form expressions
are validated.

I. INTRODUCTION

Stochastic Computing (SC) was proposed in 1967 by

Gaines [1] [2]. SC was proposed as an alternative approach

to binary computing. SC uses a unary system as opposed to

a weighted system. A number is represented by a string of

1’s and 0’s where the percent of 1’s in the number represents

the value of the number as a probability. Computing using

stochastic logic requires significantly less hardware compared

to traditional binary arithmetic. However, these circuits suffer

from a significant increase in latency. This is because the

number of bits used to represent a number is typically very

large. For example, a 10-bit binary number can represent

1024 levels. To achieve the same resolution, a stochastic

number should be represented using 1024 bits. The stochastic

computing systems are ideal for low-speed applications such

as neural networks [3], for decoding error-control codes such

as low-density parity check codes and polar codes [4]–[6],

for digital filters [7]–[9], cyber-physical systems operating at

very low rates, and biomedical applications. Stochastic logic

gates compute an approximate value of the result, as opposed

to the exact value. In many applications, such as machine

learning, where a decision is made based on a thresholding

operation, the decisions may not be affected by approximate

computing. A main advantage of stochastic computing is its

inherent tolerance to faults in CMOS circuits.

The stochastic bit stream is represented using a string of

1’s and 0’s where each bit is assumed to be independent

of the other bits, i.e., the bits are assumed to be random.

This randomness corresponds to temporal independence, i.e.,

the bits at different positions (or times) are uncorrelated.

Closed-form expressions for stochastic logic outputs have been

derived for uncorrelated inputs in [10]. Synthesis of logic

gates to compute specified probabilities from uncorrelated bit

streams has been proposed in [11] [12]. However, the bit-level

correlation between the two inputs to a stochastic logic gate

affects the expected value of the output. Recently, the notion

of stochastic correlation has been introduced in [13] and has

been used to generate correlated bit streams using probabilistic

transfer matrices. In contrast, the proposed work presents

a method to generate correlated bit streams using Pearson

correlation. Although the Pearson correlation coefficient, ρ,

lies between -1 and 1, the ρ of two stochastic bit streams is

restricted to a narrower range; this range is dependent on the

expected values of the stochastic inputs.

This paper makes two key contributions. First, closed-form

expressions are derived for mean and variance of outputs

of two-input stochastic logic gates as functions of the input

probabilities and the spatial correlation between the inputs. To

prove the theoretical expressions by simulations, it is necessary

to generate correlated bit streams for a specified correlation.

However, generation of correlated stochastic bit streams has

not been addressed in prior work. The second contribution

of this paper is a novel approach to generate correlated bit

streams. Finally the validity of the theoretical expressions is

demonstrated through simulations of stochastic logic gates

using correlated bit streams.

This paper is organized as follows. In Section II closed-form

expressions for outputs of stochastic logic gates with corre-

lated inputs are derived. Section III presents an approach to

synthesize correlated stochastic bit streams from uncorrelated

bit streams. Section IV compares stochastic outputs computed

theoretically and from simulations.

II. ANALYSIS OF STOCHASTIC LOGIC WITH CORRELATED

INPUTS

Each input bit of a stochastic bit stream is assumed to be

an independent identically distributed (IID) Bernoulli random

variable with the probability of one equal to p. Thus, the

stochastic number is represented by a Binomial random vari-

able with variance, σ2 = p(1− p)/N where N represents the
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