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Abstract

The science of Biology is evolving from a science of words and pictures to a science of hard
numbers and equations. Biological systems are modeled mathematically, and computers are
used to compute how systems will evolve using either differential equations or stochastic
techniques. These techniques help scientists to understand the complex systems of interac-
tion that Biology encompasses. The problem of designing such systems, however, is often
relegated to simply finding similar behavior in a system and grafting that element into a
new system.

We, however, propose a method for designing biochemical pathways in organisms ac-
cording to arbitrary design. Specifically, we examine the problem of designing a system
that makes a stochastic response to some input stimuli. The method allows the designer to
implement a wide variety of responses to various environments.

We verify our designs, modeling the cell stochastically, using Gillespie simulations. We
assume that the environment can be inferred by the chemistry within a cell and that the
time-scales we operate on are short enough that the effect of diffusion across the membrane
is negligible. Our designs consist of theoretical sets of reactions that if given suitable initial
conditions will perform calculation within the system as well as make stochastic choices
according to probabilities defined by the environment and the design.

Our method employs a modular design methodology that allows us to create functional
modules working at the reaction level and create larger systems by composing those modules
together. We create modules and methods for choosing between multiple outcomes as
well as performing addition, subtraction, multiplication, logarithm, and exponentiation.
This design system could be the first step to creating biochemical systems for carrying out
arbitrary designs.
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1 INTRODUCTION 1

1 Introduction

Increasingly, biology is becoming a computational science as modeling and simulation are ap-
plied alongside experimental work in the lab [3]. Furthermore, with the advent of techniques
for synthesizing and manipulating genetic material, it is striving to become an engineering
discipline. In the nascent field of synthetic biology, researchers aim to create entirely new
biological functions by modifying and integrating biological components in a systematic
way [4]. The potential impacts are far-reaching. Recent feats of synthetic biology include
cellulosic ethanol [5], anti-malarial drugs [6], and tumor detection [7].

By custom-designing the genetic material of organisms, such as yeast and E. coli, it
is possible to directly synthesize biochemistry for applications. In principle, the approach
could produce biochemical reactions of nearly any form. However, designing a set of re-
actions to implement a desired functionality – efficiently and robustly – is a challenging
problem.

Biochemical systems are typically characterized through computationally intensive Monte
Carlo simulations [8, 9]. More recently, some have studied biochemical reactions from a the-
oretical perspective, for instance proving universality [10], while others have discussed the
implementation of signal processing functions [11].

Here we propose a framework for designing biochemical reactions at a theoretical level.
That is, we discuss chemical species in terms of abstract types (labeled a, b, etc.), rather than
actual biochemical types. The process of mapping these reactions to such actual chemical
species is work we leave to others. We propose ways to create biochemical pathways that
behave in both well defined deterministic fashions in addition to well defined stochastic
fashions. We also show an alternative construction that allows us to trade off reaction
rate requirements with the required reaction number while preserving the accuracy of the
computations. These three quantities can be traded off in various ways allowing for the
designer to decide which to preserve and which to sacrifice.

1.1 Reaction Syntax

In this paper, we will represent a reaction as follows:

a+ 2b k→ c+ 3d. (1)

The two chemical types on the left (a and b) are called reactants and are used up in the
reaction (the coefficient 2 shows that two molecules of type b are used). The types to
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the right(c and d) are called products because they are created by the reaction. The rate
k denotes the relative rate of the reaction; when more than one reaction is considered,
reactions with a higher rate will occur more rapidly. We will often use relative terms like
“fast” and “slow” in place of actual numbers in this paper. These relative speeds: slowest,
slower, slow, medium, fast, faster and fastest, are ranked in order of increasing value of k.

1.2 Stochastic Modeling

We will use Gillespie’s method[8] for analyzing biochemical systems. In this model, we
consider the state of the system to consist of non-negative integer quantities of all modeled
chemical types. A single reaction is then picked out of the set of all considered reactions.
The reaction updates the state, and we then pick another reaction at random. Reactions
are picked until the state enters some region of the state space that we consider an end
condition. These regions include states where no reaction is possible or regions where the
system is known to behave in a certain way from that point onward.

The process of picking a reaction from any given state requires calculating the propen-
sities of all reactions. Given the current quantities of the various chemical types (|a|, |b|,
etc.) for that state. The propensity of any given reaction is the product of the reaction’s
rate and the number of combinations there are for choosing its reactants. That is to say:

Pi = ki

(
|a|
ca

)(
|b|
cb

)
· · · (2)

where Pi is the propensity of the reaction, ki is the reaction’s rate, ca and cb are the
coefficient of a and b (respective) on the reactant side of the reaction, and

(
n
r

)
denotes the

number of ways that we can choose r samples out of a population of size n.
The probability (pi) of each reaction is then simply its propensity normalized by the

sum of all propensities.

pi =
Pi∑
j Pj

(3)

1.3 Example Case: Multiplication

In this section, we provide a simple example of a synthesized reaction set where the number
of molecules of two chemical types within a closed system are multiplied to yield a quantity
of a third:

|z| = |x| · |y|.
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The following set of reactions accomplishes this [1]:

x
slowest−→ a

a+ y
fastest−→ a+ y′ + z

a
fast−→ ∅

y′
slow−→ y.

(4)

Since the rates are relative, the fastest reaction that can fire is assumed to do so – repeat-
edly, until it runs out of reactants – before a slower reaction ever fires. Depending on the
quantities involved and the accuracy that is called for, an order of magnitude difference
between two rate categories might suffice; typically however, it would be several orders of
magnitude. Here a and y′ are intermediate types; it is assumed that no molecules of these
types are present initially. The symbol ∅ as a product indicates “nothing”, meaning that
the chemical types produced are no longer tracked, either because they are not used by sub-
sequent reactions, or they are so common that the effects of the reaction on their quantity
can be ignored.

To see that these reactions implement multiplication, first note that no reaction can
fire before the first reaction produces a molecule of type a. When it does, it initiates an
iteration of a loop: the quantity of z increases as the second reaction, being the fastest
reaction, fires repeatedly until there is no more y remaining. Once this process terminates,
the third and then fourth reactions fire, ending the iteration and restoring y to its initial
value. In each iteration, the quantity of x is decremented by one and the quantity of z is
incremented by y. The final result is a quantity of z equal to the initial quantity of x times
the initial quantity of y.

2 Modular Synthesis Scheme

Our synthesis scheme is designed to be modular : using relatively small modules each with
a very specific purpose. These modules can then be chained together — with the products
of one set of reactions feeding the next — to perform operations of arbitrary complexity.
The goals of this design are two-fold. First, simplicity: the user need not understand why a
module works, just the input/output behavior of each. Second, extensibility: new modules
can be created relatively easily, and existing modules can be replaced with better performing
ones.
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2.1 Deterministic Module: quantities to quantities

The deterministic module allows for computation to take place. It will take, as inputs,
quantities of certain chemical types and will yield, as outputs, quantities of different types.
The quantities of the output types will be well defined functions of the input quantities.

By combining these functional sub-modules, we can create biochemical calculators with
output chemical quantities being any arbitrary function of an input chemical quantity.

Example 1 Simple Deterministic System
Suppose that we wanted output quantities of y and z to be dependent on the input

quantity of x. Specifically, we wanted these quantities to fit:

|y| = 10 + 2|x| (5)

|z| = 50− |x|. (6)

The constant term of the equations simply requires the relevant quantities to be set at these
amounts at the start, however the variable term requires x to modify these initial quantities.

To accomplish this, we need each molecule of x to affect both y and z. This can be done
by creating a ‘custom’ reaction or reaction set, such as

z + x→ 2y, (7)

or by combining a few pre-made reaction sets that accomplish a known objective: in this
case, fan-out, linear scaling and subtraction respectively.

x → x1 + x2 (8)

x1 → 2y (9)

x2 + z → ∅ (10)

The advantage of the first method is that it can create very efficient and concise systems
(in our example, a single reaction), however, it requires an intimate knowledge of the way the
system behaves and is difficult to scale. The advantage of the second method is that people
with without any such intimate knowledge can employ a basic knowledge of the relevant
modules and arrive at the correct solution (additionally, the second solution computes |y|
correctly even if there is insufficient z). This is analogous to between programming directly
in assembly versus using a programming language with a compiler, or designing circuits
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with amplifiers instead of transistors. �

2.1.1 Functional Modules

Here, we define a set of functional modules that, when fitted together, can produce most
desired functional dependencies1.

In describing the functions that the modules implement, we add subscripts to the quan-
tities of molecular types to denote when these quantities exist: zero indicates that this is
the initial quantity, whereas infinity indicates that it is the quantity after the module has
finished.

We also use the notation ∅ to denote types whose quantity we wont track. As a product
this is any type that is not used as a reactant later. As a reactant, it can be any type
whose quantity is not affected by the reaction (e.g. DNA is not used up when transcribing
proteins). In either case, it could be a type whose quantity is sufficiently large that the
affect of adding or removing some of it is negligible.

We have designed Subtraction, Fan-out, Linear, Multiplication, Exponentiation, Log-
arithmic, Power and Isolation modules. Addition is not listed as a module because it is
trivial to have two modules produce the same output to achieve an additive effect.

Subtraction:

|y|∞ = |y|0 − |x|0

Despite addition not meriting its own module, subtraction does because we are working
with non-negative quantities. Therefore, subtraction cannot be done by simply adding a
negative quantity. By destroying a molecule of our “output” type for each available input,
we accomplish the same effect:

y + x→ ∅. (11)

Fan-out:

|y1|∞ = |x|0, |y2|∞ = |x|0, . . . , |yn|∞ = |x|0
1Some functions, such as trigonometric functions, do not have any modules: the cyclic relationships

become too complex to model simply, and it is unlikely that any such module can exist. For cases where the
desired dependence is not listed, we would suggest that approximating it with a Taylor polynomial of some
finite degree could suffice.
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This module replicates the input quantity so that it can be used as input to multiple (n)
subsequent modules.

x→ y1 + y2 + . . .+ yn. (12)

Linear:

α|y|∞ = β|x|0

This module produces a quantity of an output type that is proportional to the quantity of
an input type. For integer coefficients α and β, the module contains a single reaction:

αx→ βy. (13)

Multiplication:

|y|∞ = |x|0 × |z|0

This module will take two quantities and multiply them together. Initially there should be
no y or a molecules present. The following bit of pseudo-code explains the method used to
multiply the two quantities:

ForEach z:

Y += X;

The reactions are:

z
slow−→ a (14)

a+ x
faster−→ a+ x′ + y (15)

a
fast−→ ∅ (16)

x′
medium−→ x. (17)

This module will destroy all of type z, but conserve the quantity x. Note also, that z need
not be present in full quantity at the beginning of calculation, while x must.

Exponentiation:

|y|∞ = 2|x|0



2 MODULAR SYNTHESIS SCHEME 7

This module consumes molecules of an input type one at a time, doubling the quantity of
an output type for each. Its behavior is described by the following pseudo code:

ForEach x:

Y = 2 * Y;

The reactions are:

x
slow−→ a (18)

a+ y
faster−→ a+ 2y′ (19)

a
fast−→ ∅ (20)

y′
medium−→ y. (21)

Initially, |y| must be one and all other quantities (except |x|) are zero.
Figure 1 shows how internal rate separation plays a large role in keeping the system

working smoothly. If the input is allowed to achieve very large values, the amount of rate
separation required can become quite large.
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Figure 1: The Exponentiation module - Monte Carlo simulations were performed on an
exponentiation module feeding an incorporation module that fed a stochastic module, the
result of which was a sweep of the output from 0 to 100%. The exact mathematical form
of this equation is shown for comparison.

Logarithm:

|y|∞ = log2(|x|0)
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This module is similar to the exponentiation module, except that instead of doubling the
output, the input is forced to halve itself; each time it does so, the output is incremented
by one. Its behavior is described by the following pseudo-code:

While Not(X==1):

X = ceiling(X/2);

Y = Y+1;

The reactions are:

b
slow−→ a+ b (22)

a+ 2x faster−→ c+ x′ + a (23)

2c faster−→ c (24)

a
fast−→ ∅ (25)

x′
medium−→ x (26)

c
medium−→ y. (27)

Initially, |b| is a small but non-zero quantity and all other quantities (except |x|) are zero.
Figure 2 shows how this module compares to the function it attempts to emulate. Due to
the integer precision of each “halving” (and the fact that the algorithm always rounds up)
the result is actually the ceiling function of the desired logarithm.
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Figure 2: The Logarithm module - Monte Carlo simulations were performed on a logarithm
module feeding an incorporation module. The exact mathematical form of this equation is
shown for comparison.

Raising to a Power:
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|y|∞ = |x||p|00

This module implements the raising of an input to a power based on the computations
XP =

∏
P (X). So we must loop over multiplying X by a running product (α): αX =∑

X(α). Since multiplication is already a loop, this implies a double loop:

ForEach p:

ForEach x:

D = D + Y;

Y = D;

D = 0;

The reactions are:

p
slowest−→ a (28)

a+ x
medium−→ b+ a+ x′ (29)

b+ y
fastest−→ y′ + d+ b (30)

b
faster−→ ∅ (31)

y′
fast−→ y (32)

a
slow−→ e (33)

e+ x′
faster−→ e+ x (34)

e+ y
faster−→ e (35)

e
fast−→ ∅ (36)

d
slower−→ y. (37)

Initially, Y is one and all other quantities (excluding X and P ) are zero. Reaction 28 starts
the outer loop, Reaction 29 through Reaction 32 are simply the multiplication module with
the first reaction gated by the outer loop molecule (a). Reaction 33 removes the loop
molecule (a) and replaces it with a reset molecule (e). Reaction 34 resets |x| for the next
iteration of the loop. Reaction 35 sets |y| to zero, so Reaction 37 can set it to the current
running product after Reaction 36 has removed the reset molecule (e).

Isolation:

|y|∞ = 1
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This module is used to enforce an initial state consisting of a single molecule of some type.
It is needed as a precursor for exponentiation and raising to a power. The reactions are:

c+ 2y fast−→ c+ y (38)

c
slow−→ ∅. (39)

The module requires only that the quantities of types y and c be non-zero at the outset.
Upon completion, there is exactly one molecule of type y and none of type c. Note that the
molecules of c are all consumed, so the molecules of y can serve as inputs to other modules,
provided that Reaction 39 completes in time.

2.1.2 Combining Modules

Note that in our definitions above, the molecular types are specific to each module (e.g.,
each x appearing in a different module should be considered a distinct type when combining
these). Also, the rates — “fast” vs. “slow” — are relative within the modules. When
combining modules, one might have to choose reactions with appropriate separations in
their rates. (In some cases, the slowest reaction in one module might be faster than the
fastest reaction in the next.)

Also note that with the linear, fan-out, subtraction, and multiplication modules, our
scheme can be used to implement arbitrary polynomial functions; thus, in principle, it
could be used to approximate complex functions through Taylor series expansions.

Example 2 Cubic Polynomial
Suppose that one desires output quantities that are equal to the quantity, its square,

and its cube, of an input quantity (|y1| = |x|, |y2| = |x|2, |y3| = |x|3). The simplest way to
accomplish this would be to string together a pair of multiplication modules, and feed them
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with the output of a fan-out module:

x
fastest−→ x1 + x2 + y1 (40)

x1
medium−→ a (41)

a+ y1
fastest−→ a+ y′1 + y2 (42)

a
faster−→ ∅ (43)

y′1
fast−→ y1 (44)

x2
slower−→ b (45)

b+ y2
faster−→ b+ y′2 + y3 (46)

b
fast−→ ∅ (47)

y′2
medium−→ y2. (48)

The first reaction quickly produces quantities x1, x2 and the output y1 all equal to the input
quantity. The next four reactions multiply two of these, x1 and y1 in such a way that y1 is
not consumed. The result of this is the quantity of y2 produced is equal to the square of
the input quantity. The final four reactions again multiply this squared quantity with the
input, producing a quantity of y3 that is the cube of the input quantity.

From here it is a trivial matter to create any integer cubic polynomial by applying linear
scaling to each of these quantities to create a final output. By having the output of these
modules be of the same type, we achieve addition, if we need subtraction the outputs can
be a common ’negative’ type(yn) which will then be combined with the output type in a
subtraction module:

α1y1
slowest−→ β1y (49)

α2y2
slowest−→ β2yn (50)

α3y3
slowest−→ β3y (51)

y + yn
fast−→ ∅. (52)

�

2.2 Module Locking

We discuss schemes for locking the looping mechanisms in modules as well as locking suc-
cessive modules that are chained together[2].
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2.2.1 Inter-Module Locking

To implement more complex biochemical computation, the simple modules outlined in Sec-
tion 2.1 can be nested, with one module performing an arithmetic operation on an input
and passing it to the next module. This generally requires the first module to complete
execution prior to the second starting. This can be accomplished by creating modules with
varying speeds as in Example 2. However, because a “faster” module needs to be a few
orders of magnitude faster than the “slower” one, it only requires chaining a few together
before we end up with rates that vary from nanoseconds to days, which is not ideal. The
alternative is for the first module to prevent subsequent modules from firing until it is
finished, we call this process “locking.”

The first thing to do when locking a module is to modify the primary reaction of the
module (the reaction that must occur first) to require an extra reactant. This locks the
module until the new reactant, which we call a “key” is present. Next, we must identify
a set of “indicator” molecules, those molecules whose presence indicates that the module
being locked should remain so, i.e. the key should not be produced in the presence of an
indicator. Then, we add the following reactions:

∅ slow−→ keysmith, keysmith slow−→ key. (53)

The keysmith molecule is simply a new chemical type that allows for the creation of a key.
This creates a two step process to allow the key for a module to be created. Finally, to
prevent the key being created in the presence of an indicator, we add the reaction

indicator + keysmith fast−→ indicator (54)

for each indicator molecule. This prevents the creation of a key by destroying the keysmith
before it can create a key when any indicator molecule is present. We illustrate this with
an example.

Example 3 Locked Linear Module
Consider the simple case of a “linear” module,

|y| = |x|.

Suppose that the output of this module is the input to a stochastic module (as discussed
in ) that produces an outcome A with probability p1 = y/100 and an outcome B with
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probability p2 = (100− y)/100. Without locking, the reactions are:

x
fast−→ y

y + e2
fast−→ e1

e1
slow−→ d1

e2
slow−→ d2

e1 + d1
fast−→ 2d1

e2 + d2
fast−→ 2d2

d1 + d2
fastest−→ ∅

d1+ slow−→ d1 +A

d2+ slow−→ d2 +B.

(55)

Here e1 and e2 are initialized to 0 and 100, respectively. Modifying the reactions such that
the stochastic module is locked until the linear module completes, the reactions are:

x
slow−→ y

y + e2
slow−→ e1

key + e1
slow−→ key + d1

key + e2
slow−→ key + d2

e1 + d1
fast−→ 2d1

e2 + d2
fast−→ 2d2

d1 + d2
fastest−→ ∅

d1+ slow−→ d1 +A

d2+ slow−→ d2 +B

∅ slow−→ keysmith

keysmith slow−→ key

x+ keysmith fast−→ x

y + keysmith fast−→ y.

(56)

Here we have added four reactions, two for the key generation and one for each of the
indicator molecules, x and y.

Figure 3 compares the locked version to the original version. Curves of the probabilistic
response for outcome A are plotted for different rates. We see how effective locking is, even
if “fast” is only twice as fast as “slow.” �
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Similar examples are shown for both logarithm and exponentiation in Figure 4 and
Figure 5, respectively. While the low quantities involved in the logarithm example do not
play to the strength of this scheme, the exponentiation example shows how even with no rate
separation, a better approximation to the true value is reached than with a rate separation
of 1000 in the unlocked case.
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Figure 4: Inter-module Locking (Logarithm) – an example with a logarithm module feeding
a stochastic module; the correct value of the probability is the ceiling of the base two
logarithm in percent (shown as ideal).

2.2.2 Intra-Module Locking

Most of the functional modules in Section 2.1 (those with more than one or two reactions)
operate with a looping construct that iteratively works toward the correct answer. In all
such modules, it is important that the reactions fire in the correct order. In addition to
unlocking the reactions when it is time for them to execute, we must also have the ability
to “re-lock” them when it is time for them to stop executing.
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Our scheme involves adding a key requirement to most of the reactions in the loops
of modules. Keysmiths are produced occasionally; if other keys are present, they quickly
disappear – before they can produce their key. Only if no other keys are present will they
produce their key. This ensures that at most one type of key is present (thus allowing only
one part of the loop to fire at a time); also it ensures that only one key of that type is
present (thus allowing for re-locking).

The set of reactions for this functionality is:

∀i : ∅ slow−→ keysmithi

∀i : keysmithi
slow−→ keyi

∀i : keyi
slow−→ ∅

∀i, j : keyi + keysmithj
fast−→ keyi.

(57)

Example 4 Locked Multiplication Module
Reaction set 58 gives a locked version of the multiplication module from Section 1.3.

The lines separate the reactions into three sets: the original reactions, the generic module-
locking reactions, and some locking reactions specific to multiplication.
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key1 + x
slow−→ a

a+ y
slow−→ a+ y′ + z

key2 + a
slow−→ ∅

key3 + y′
slow−→ key3 + y

∅ slow−→ keysmith1

∅ slow−→ keysmith2

∅ slow−→ keysmith3

keysmith1
slow−→ key1

keysmith2
slow−→ key2

keysmith3
slow−→ key3

key1
slow−→ ∅

key2
slow−→ ∅

key3
slow−→ ∅

key1 + keysmith1
fast−→ key1

key1 + keysmith2
fast−→ key1

key1 + keysmith3
fast−→ key1

key2 + keysmith1
fast−→ key2

key2 + keysmith2
fast−→ key2

key2 + keysmith3
fast−→ key2

key3 + keysmith1
fast−→ key3

key3 + keysmith2
fast−→ key3

key3 + keysmith3
fast−→ key3

keysmith1 + y′
fast−→ y′

keysmith1 + a
fast−→ a

keysmith2 + y
fast−→ y

keysmith3 + a
fast−→ a.

(58)

1. In the first set, notice that we do not add a lock to the second reaction; this is because
the reaction is already locked by the “looping” type a. Notice, also, that the first and
third reactions destroy the keys that they require. This prevents them from firing
more than once. The fourth reaction does not destroy its key, since it fires repeatedly.

2. In the second set, the first three reactions produce the appropriate keysmiths; the
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next three allow those keysmiths to create keys; the next three cause keys that are no
longer needed to disappear; the next nine ensure that there are no keysmiths left to
create keys when there is already one in the system.

3. The third set of reactions ensure that the wrong key will not be produced. The
requirement is that the keysmith of a locked reaction should not be allowed to be
created when any of the other (related) locked reactions could be firing. We accomplish
this by destroying the keysmith associated with any key that should not be created.

�

In general, most modules employing looping constructs will have four parts to the loop:
a loop initiator, loop actions, a loop closer, and a loop reset. The loop actions are all
reactions that require, but do not destroy, the looping type (a in the example above); no
changes need to be made to lock these reactions. The loop initiator creates the looping
type, while the loop closer destroys it. Both of these parts require a key that is destroyed
by the reactions because they should only occur once per loop. The loop-reset reactions do
not involve the loop type in any way; each will require a third, shared key, but they need
not destroy it.

Both generic module locking reactions (i.e., those in Module 57) as well as some reactions
specific to the module must be added. These include reactions for:

• destroying the keysmith for the loop initiator if the looping molecule is present,

• destroying the keysmith for the loop initiator if any loop reset reactions can fire,

• destroying the keysmith for the loop closer if any loop actions can take place, and

• destroying the keysmith for the loop reset reactions if the looping molecule is present.

With these modifications, the only requirement on the rate of the reactions is that all
reactions that destroy a keysmith be “fast” and the others “slow.”

Tables 1, 2, and 3 compare the accuracy of the locked vs. unlocked versions of various
functional modules using different separations in the rate constants. For the unlocked
version, we used the rates 1, λ, λ2, and λ3 as the values for “slowest,” “slow,” “fast,” and
“fastest.” For the locked modules, we used 1 and λ for “slow” and “fast.” Note that
the total range of rates in the unlocked case is λ3. For a fair comparison, we defined the
“accuracy gain” for the scheme to be the error of the unlocked method at λ = 10 divided by
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Table 1: A Comparison of the Accuracy of the Locked and Unlocked Versions of Multipli-
cation Module.

Calculation: 10× 10
%error

λ unlocked locked
1 77.75% 48.46%
10 27.07% 24.67%
100 4.20% 3.09%
1000 0.45% 0.33%
10000 0.05% 0.02%

# of reactions 4 26
Accuracy gain: 82.03×

Table 2: A Comparison of the Accuracy of the Locked and Unlocked Versions of Exponen-
tiation Module.

Calculation: 25

%error
λ unlocked locked
1 75.02% N/A
10 18.027% N/A
100 2.37% 33.72%
1000 0.25% 2.58%
10000 0.02% 0.26%

# of reactions 4 26
Accuracy gain: 6.99×

Table 3: A Comparison of the Accuracy of the Locked and Unlocked Versions of Logarithm
Module.

Calculation: log2(64)
%error

λ unlocked locked
1 267.03% 169.99%
10 41.36% 69.89%
100 5.24% 11.57%
1000 0.53% 1.27%
10000 0.05% 0.14%

# of reactions 6 30
Accuracy gain: 32.56×
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the error of the locked scheme at λ = 1000, since both sets of reactions would then require
that the fastest reaction be 1000 times faster than the slowest.

It is interesting to note that the unlocked versions of multiplication and exponentiation
tend to under-compute the result, whereas our locked versions tend to over-compute it.
This is because, in the unlocked case, the error that occurs is removing the loop molecule
prematurely; in the locked case, the error comes from allowing the loop to reset while active.

2.3 Stochastic Module: Quantities to Probabilities

The stochastic module allows for a choice between multiple outcomes. This choice is picked
randomly according to probabilities that are set by the user. It takes, as inputs, quantities
of various chemical species; from these quantities, it derives probabilities for progressing to
any one of the given ending states. It then will pick one of these ending states based on the
probabilities that it finds. Once an ending state is picked, the system will advance toward
this ending state.

The method that it uses is based on one simple premise: calculating the probabilities
for a single reaction is easy, while calculating the probabilities of ending at some state after
even a small number of reactions is hard. Using this knowledge, we will confine the choice
to a single reaction event. We confine the number of possible reactions to a small number
(equal to the number of ending states), and we will set the input quantities to force the
probabilities of picking any given reaction out of that set equal to the desired probability
of ending in a given state. The final step is to ensure (to within a small chance of error)
that this single reaction event dictates the course of the system and pushes it toward the
desired outcome.

Example 5 Stochastic Module with Three Outcomes
Suppose that we have a system with molecular types d1, d2, and d3. We wish to program

the production of these types with the probability distribution

p1 = 0.3, p2 = 0.4, p3 = 0.3,

respectively. To do so, we set up initializing reactions:

e1
1−→ d1, e2

1−→ d2, e3
1−→ d3.
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We initialize the system with quantities of e1, e2, and e3 in the desired ratio of 3 : 4 : 3,

|e1| = 30, |e2| = 40, |e3| = 30.

Should we want a different probability distribution, we simply change the ratio of these
initial quantities. Given these ratios, the reaction producing d1 fires first with probability
0.3, the one producing d2 fires first with probability 0.4, and the one producing d3 fires first
with probability 0.3. Since these are the same probabilities we desire at the conclusion, we
want to cement this initial choice. Accordingly, we set up reinforcing reactions:

e1 + d1
103

−→ 2d1, e2 + d2
103

−→ 2d2, e3 + d3
103

−→ 2d3.

In addition, we set up stabilizing reactions:

d1 + e2
103

−→ d1, d1 + e3
103

−→ d1, d2 + e1
103

−→ d2,

d2 + e3
103

−→ d2, d3 + e1
103

−→ d3, d3 + e2
103

−→ d3.

Note that the reinforcing and stabilizing reactions have much higher rates than the ini-
tializing reactions, thus they will fire more rapidly (if able) than a reaction having similar
reactant types. Finally, we set up purifying reactions:

d1 + d2
106

−→ ∅, d1 + d3
106

−→ ∅, d2 + d3
106

−→ ∅.

Note that the purifying reactions have yet higher rates.
The reinforcing, stabilizing, and purifying reactions ensure that as soon as an initializing

reaction fires, producing a molecule of di, this choice quickly wins out: the production of
more molecules of di is encouraged, while the production of the other types dj , j 6= i, is
strongly inhibited. As such, the firing probabilities for the initializing reactions at the outset
dictate the probability distribution of the final outcome. �

2.3.1 The Set of Reactions

The stochastic module consists of five categories of reactions: Initializing, Reinforcing,
Stabilizing, Purifying, and Working. The rates are assumed to be similar for all the reactions
in each category; however, the rates between categories must be different: some categories
are slow and other are comparatively fast, as is explained in Section 2.3.3.

Since controlling the probability of an arbitrary path through the system is difficult, we
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aim to require control over only a single reaction. The remaining reactions work to cement
the decision made in this one reaction and to perform the function dictated by it.

For all of the categories, the subscripts i and j run over the number of desired outcomes.
For each outcome, we have an input type e, a catalyst type d, output types o, and food types
f which limit the output, once one is decided.

Initializing Reactions

∀ i : ei
ki→ di (59)

These reactions initiate the response with the production of a catalyst type. They are the
slowest reactions in the system. The first one to fire generally determines the outcome. (As
is discussed in Section 2.3.3, the likelihood of a different outcome is vanishingly small.)

Reinforcing Reactions

∀ i : di + ei
k′

i→ 2di (60)

These reactions amplify the choice made by the initializing reactions, increasing the quantity
of the catalyst type. (The quantity of catalyst that is produced here is limited by amount of
the input type that is supplied. It could be limited some other way, but this is convenient.)

Stabilizing Reactions

∀ j 6= i : di + ej
k′′

ij→ di (61)

These reactions consume all input types other than the one that was selected. So they
inhibit competing outcomes.

Purifying Reactions

∀ j 6= i : di + dj

k′′′
ij→ ∅ (62)

These reactions quickly suppress any competing catalyst types. They are the fastest reac-
tions in the system. If ever there are multiple catalyst types present, those in the minority
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are quickly eliminated, whereas those in the majority are only slightly weakened in number.

Working Reactions

∀i, `i : di + f`i

k′′′′
i→ di + o`i

(63)

These reactions take the decision made by the initializing reactions and turn it into action:
they produce output types in the desired quantity. Several output types in differing propor-
tions can be created for each catalyst type. This can be accomplished with different working
reactions operating on the same catalyst type. Alternatively, a single working reaction can
be set up with multiple output types in the desired proportions.

2.3.2 Initial Quantities

The probability of the i-th initializing reaction firing first is proportional to its rate, ki,
and to the quantity (|ei|) of its input type ei. Accordingly, we can program the firing
probabilities by setting the ratio of the initial quantities:

∀ i : pi =
ki|ei|∑
∀j kj |ej |

. (64)

Thus, the initial quantities of the input types directly determine the probability distribution
of the outcomes. At the outset, there are no catalyst types or output types. The initial
quantities of the food types are set to the maximum quantity desired for the corresponding
output types.

2.3.3 Reaction Rates

The rates should be selected so that the initializing and working reactions are the slow-
est, the reinforcing and stabilizing reactions comparatively much faster, and the purifying
reactions fastest of all:

ki ≈ k′′′′i � k′i ≈ k′′ij � k′′′ij .

In order to quantify the effect of this separation in the rates, let us choose a multiplicative
factor, γ, and set the rates as follows:

γki = k′i = k′′ij = k′′′ij/γ = γk′′′′i . (65)
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If we define an error to be the case where the first initializing reaction to fire does not
determine the final outcome; instead, a different catalyst type wins out. We characterize this
error as a function of γ. More specifically, we set up the reactions described in Section 2.3.1
for i = 1, 2, 3, with each ki = 1 and each k′i, k

′′
ij , k

′′′
ij , and k′′′′i set according to Equation 65.

We set the initial quantity of each input type to 100. We assume that a working reaction
needs to fire 10 times for us to declare an outcome. We performed Monte Carlo simulations
and obtained the results shown in Figure 6. The graph shows that the error can be made
vanishingly small by increasing the separation in the rates.
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Figure 6: Error Analysis for the Stochastic Module. Monte Carlo simulations with 100,000
trials were performed for different values of γ. The graph gives the percentage of trials that
resulted in error.

2.3.4 Locking the Stochastic module

The above method, while workable, may require rather high rate separations to accomplish
a specified error rate. Here we propose an alternative approach, based on locking. All
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initialization reactions share one key; as such, the choice between the reactions is made
independently of the types and quantities of keys present. Thus, the probability distribution
is still a function of the input types.

Our stochastic module becomes:

∅ slow−→ keysmith

keysmith slow−→ key

∀i : key + ei
slow−→ di

∀i : di + ei
fast−→ 2di

∀i 6= j : di + ej
fast−→ di

∀i : di + keysmith fast−→ di

∀i : di
slow−→ di +Oi.

(66)

The lock on each initiating reaction ensures that only a single random choice can be
made. Once made, this choice inhibits all other choices both by consuming competing
molecules and by destroying subsequent keysmiths. It is interesting to note that this version
actually requires fewer reactions than our previous version for cases with five or more
outcomes.

Figure 7 shows that the error at any given rate separation is more than an order of
magnitude lower with locking than without; this is before taking into account that the
unlocked version actually requires three levels, thus needing two such separations, while the
locked version needs only one. Both the locked and unlocked versions were of a stochastic
module with three outcomes; 100,000 random trajectories were run for each data point.
With fewer requirements on reaction rates, much less error for a given separation in the
rates and fewer required reactions in cases with large numbers of outcomes, the locked
version is clearly superior.

3 Automation

In this section, we discuss how using linear and integer programming (LP and IP) techniques,
the process of picking reactions to fit a desired stochastic response, can be automated.
Linear and integer programming allows us to find an “optimal” solution to a problem with
infinite solutions. These techniques require a set of constraints on a set of variables and an
expression that must be either minimized or maximized within the constraints.

Here, we assume that we are attempting to create a system that produces a stochastic
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Figure 7: Accuracy of the Locked vs. Unlocked Stochastic Modules – The percent of
trajectories whose initial choice is not reflected in the final state is shown as a function of
the separation between “fast” and “slow” rates.
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response that is some function of a set of input quantities ( ~X). Recall from Section 2.3 that
the probability of picking each outcome is given by

∀ i : pi =
Ei( ~X)ki∑
∀j Ej( ~X)kj

, (67)

where En( ~X) is the value |en| that is produced for an input set ~X. To obtain any desired
set of probabilities for any given input ~X, we need to set the ratio of the various e types.
Obviously then, any multiple of a solution is itself a solution for any given input. Addi-
tionally, this equation can be solved independently for any value of ~X. We will use this
fact to find a set of reactions that fit a desired probability distribution with respect to ~X

in two parts: first, solving individual points for a single set of quantities ~E( ~X) that yields
the desired output probabilities, and second, fitting those together with scaling to find the
coefficients of a function that will fit them.

The set of points ( ~Xs) to be solved and then fit are part of the specification. There is
a trade-off to be made between calculation time and accuracy of fit, which both increase as
the number of points increases.

3.1 Solving at a Single Point

For any given input ~X, the desired output probabilities are known. Thus, we can solve for
a set of quantities ~E that yields it. Since there is an infinite number of solutions (remember
that all multiples of a solution are solutions), we will try to find the minimal solution. Since
this will tend toward ~0 (which gives us no information), we set a requirement that the sum
of the quantities (

∑
i |ei|) be greater than one.

Equation 67 can be rewritten as

~p( ~E( ~X) · ~k) = ~E( ~X) ∗ ~k (68)

where we define the operations ~a ·~b and ~a ∗~b to be the dot product (a0b0 + a1b1 . . .) and
“element-wise” product (< a0b0, a1b1 . . . >) of ~a and ~b respectively. Moving everything to
one side we get

~0 = ~p( ~E( ~X) · ~k)− ~E( ~X) ∗ ~k = ~F ( ~X). (69)

Using this constraint directly can lead to rounding errors where a linear or integer pro-
gramming solver will fail to find a solution. By allowing some error, we can avoid this
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problem:

∆Fi ≥ Fi( ~X) (70)

−∆Fi ≤ −Fi( ~X). (71)

The error terms (∆Fi) are to be minimized as part of our specification. This is the same
as requiring the magnitude of ~F ( ~X) to be small, which taken to the limit would be zero as
required. Our constraints then become:

∆Fi ≥ Eiki − pi(
∑

j

Ejkj) (72)

−∆Fi ≤ −Eiki − pi(
∑

j

Ejkj) (73)

for each i (pi and ki are known).
We add the additional constraint

1 ≤
∑

i

Ei, (74)

to prevent a solution of ~E = ~0, and solve for ~E by minimizing∑
i

Ei + w∆F

∑
j

∆Fj (75)

where w∆F is a weighting factor that can be adjusted (ideally, it would be infinite, ensuring
that all ∆F s where zero).

3.2 Fitting the Points

Once we have solutions ( ~E( ~X)) for many input points ( ~X1, ... ~X`), we need to find a curve
that fits them. The first step is to choose a function with which to fit the data; this function
is allowed to be anything that can be created using the deterministic module (Section 2.1).
For illustration, we show a cubic function of one variable quantity

~G(x) = ~c0 + ~c1|x|+ ~c2|x|2 + ~c3|x|3. (76)
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We then map this function to the solutions found for each ~X, remembering that each point
can be scaled independently

~G( ~Xj) = m( ~Xj) ~E( ~Xj). (77)

As wtih Equation 69, Equation 77 is a constraint with an equality which can lead to
rounding errors in practice, so we again try to minimize error:

∆Gi( ~Xj) ≥ Gi( ~Xj)−m( ~Xj)Ei( ~Xj) (78)

−∆Gi( ~Xj) ≤ m( ~Xj)Ei( ~Xj)−Gi( ~Xj). (79)

These constraints are for every term in ~G and for every solved point ~Xj .
As before, the solution will collapse toward ~0 so we require some non-zero term:

1 ≤
∑

j

m( ~Xj) (80)

Finally, the term we must minimize is:

w∆G

∑
ij

∆Gi( ~Xj) + wm

∑
j

m( ~Xj) +
∑
~c∈C

‖~c‖, (81)

where C is the set of all coefficients in the function ~G, and w∆G and wm are weighting factors
for deltas (again infinite is ideal) and the scaling factors respectively. With a properly tuned
weighting factor wm, a good fit can be made for the data points where Equation 67 becomes

∀ i : pi =
kiGi( ~X)∑
j kjGj( ~X)

. (82)

3.3 Integer Programming, Linear Programming and Time

Because we need to bring these numbers into the realm of reactions and quantities which
each require integer quantities, we should be using integer programming for each of these
steps, however, integer programming is NP-hard and thus slow. To speed things up we
can substitute linear programming, but we loose the property that the solutions will be
integers. This is perhaps not as bad as it sounds as we still obtain a solution, and we can
scale solutions after the fact to create valid solutions with much more speed.

The following methods are listed in increasing calculation speed, and presumably de-
creased accuracy.
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1. Use integer programming for the entire process.

2. Use linear programming to solve each point (the result will be scaled anyway) but in
the second step require integer coefficients to the function G( ~X).

3. Use linear programming for both steps adding a third step where the coefficients of
G( ~X) are scaled to integer quantities using the constraints

∆Ḡi( ~Xj) ≥ Ḡi( ~Xj)−mGi( ~Xj) (83)

−∆Ḡi( ~Xj) ≤ mGi( ~Xj)− Ḡi( ~Xj) (84)

where Ḡi( ~Xj) is a version of Gi( ~Xj) with integer coefficients. We then minimize the
expression

w∆Ḡ

∑
ij

∆Ḡi( ~Xj) + wmm+
∑
c̄∈C̄

c̄, (85)

where C̄ is the set of integer coefficients to Ḡi( ~Xj), w∆Ḡ is the weight for error and
wm is the weight for scaling.

4. Use linear programming for both steps, then scale the parameters by some constant
and round to an integer.

3.4 Return to Reactions

Once the coefficients are found and converted into integers, we can convert them back into
the reaction space. The first step is to create a stochastic module with the correct number
of outcomes. The next step only requires knowledge of the function you used to fit the
system and can be created before any calculation has been done. This step simply creates
the quantities of your function that will be scaled by the unknown coefficients. The final
step uses the information obtained through the integer programming technique to connect
the two.
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Example 6 Scaled Cubic polynomial
To implement Equation 76, we can simply chain two multiplication modules together:

x
faster−→ y1 + x1 + x2

x1
slow−→ a1

a1 + y1
faster−→ a1 + y′1 + y2

a1
fast−→ ∅

y′1
medium−→ y1

x2
slower−→ a2

a2 + y1
fast−→ a2 + y′2 + y3

a2
medium−→ ∅

y′2
slow−→ y2

which will produce y1, y2 and y3 in quantities x, x2 and x3 respectively.
Next, the coefficients of the fitting equation are taken into account:

y1
slowest−→ c11e1 + c21e2 + ...

y2
slowest−→ c12e1 + c22e2 + ...

y3
slowest−→ c13e1 + c23e2 + ...

This set of reactions is the only one that needs to be modified depending on the results
of our computations. If a coefficient is negative, we instead produce that quantity of a
“negative” type ēi. We then set up reactions for the appropriate subtraction

ei + ēi
fast−→ ∅ (86)

Finally, we set up a stochastic module that takes the ‘e’s as reactants to the initializing
reactions and has the rate ratio assumed from the start.�

4 Theory to Practice

In this paper, we have discussed a method for creating sets of reactions that fit a desired
behavior. However, real world dynamics do not allow us to simply create chemical species
and dictate how they will interact. The interactions that exist between species is set by
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the chemical properties of the species involved, thus we are limited to finding chemical
species that will interact in the way we design. This is not a trivial exercise. Even if the
interactions between all possible chemical types were known and tabulated (an impossible
task), finding a subset within that master set of reactions that behaved as we designed and
involved chemical species and that would not react in ways outside our definition would be
computationally taxing, if it even existed.

It is our opinion that the only method to efficiently make this mapping from abstract
types to real chemical species is to find a way to remap these reactions into DNA. By using
predefined segments of DNA[15], it may be possible to create interactions that are, in fact,
self contained and that perform according to the design. By finding ways to map the various
modules of our scheme to actions, like inhibiting or triggering the transcription of a protein
or set of proteins, that themselves may inhibit or trigger various other pathways, it may be
possible to design real systems in a way that is practical and efficient.

5 Conclusion

Our methodology allows for a great amount of flexibility when creating a theoretical bio-
chemical system. It allows for stochastic systems, deterministic systems and combinations
of the two. The system produced is robust to the inherent randomness associated with
such systems. The error produced by the random behavior is related to the rate separation
between reactions of the various “levels” of speed. By employing locking mechanisms, it is
possible to improve the error rate of systems with poor rate separation. This is done by
including additional reactions, thus allowing for a trade off between error rate, reaction rate
separation and reaction count. We also have shown how such systems could be designed in
an automated fashion. We propose that, to bring this methodology out of the theoretical
realm and into reality, the next step is to map these modules to DNA sequences.
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