
Cyclic Combinational Circuits

Dissertation by

Marc D. Riedel

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Awarded the Charles H. Wilts Prize
for the Best Doctoral Dissertation in Electrical Engineering.

PSfrag replacements

f1
f2
f3
f4

California Institute of Technology
Pasadena, California

June 11, 2004

ii

c© 2004

Marc D. Riedel

All Rights Reserved

iii

Acknowledgements

It has been said that the better people are at understanding mathematics the worse

they are at understanding human behavior. If so, then perhaps it was a compliment

when I declared that my father – Prof. Ivo Rosenberg, a mathematician – would make

the worst psychologist in the universe. This characterization aside, my father is the

most erudite and principled person that I have known. To him I owe my education,

my values, and my passion for research.

To my advisor, Prof. Jehoshua Bruck, I owe my entire research career. Through-

out these memorable and rewarding years at Caltech, he has provided unwavering

guidance, support and inspiration.

My research was supported in part by a grant from the National Human Genome

Research Institute (Grant no. P50 HG02370), and by the Lee Center for Advanced

Networking at Caltech.

iv

Contents

Acknowledgements iii

Abstract vii

1 Introduction 1

1.1 A New Idea . 1

1.2 Prior Work . 7

1.2.1 The Early Era . 7

1.2.2 The Later Era . 10

1.3 Overview . 12

1.3.1 Theory . 12

1.3.2 Practice . 13

2 Framework 16

2.1 Circuit Model . 16

2.1.1 Functional Behavior . 18

2.1.2 Temporal Behavior . 19

2.2 Analysis Framework . 19

2.2.1 Ternary Extension . 20

2.2.2 Fixed Point . 22

2.2.3 Explicit Analysis . 25

2.2.4 Complexity . 30

3 Theory 32

v

3.1 Criteria for Optimality . 33

3.2 Fan-in Lower Bound . 34

3.3 Improvement Factor . 37

3.4 Examples . 37

3.4.1 Optimality . 40

3.4.2 Acyclic Lower Bound . 40

3.4.3 A Generalization . 42

3.4.4 Variants . 43

3.5 A Minimal Cyclic Circuit with Two Gates 45

3.6 Circuits with Multiple Cycles . 46

3.6.1 A Cyclic Circuit with Two Cycles 46

3.6.2 Analysis in Arbitrary Terms 47

3.6.3 A Circuit Three-Fifths the Size 50

3.6.4 A Circuit One-Half the Size 53

3.7 Summary . 54

4 Analysis 55

4.1 Decision Diagrams . 58

4.2 Controlling Values . 59

4.3 Analysis . 62

4.3.1 Symbolic Analysis Algorithm 62

4.3.2 Examples . 66

5 Synthesis 72

5.1 Logic Minimization . 74

5.2 Multi-Level Logic . 76

5.3 Substitutional Orderings . 78

5.4 Branch-and-Bound Algorithms . 81

5.4.1 The “Break-Down” Approach 82

5.4.2 The “Build-Up” Approach . 85

5.5 Example: 7-Segment Decoder . 87

vi

6 Discussion 93

6.1 High-Level Design . 95

6.2 Data Structures . 96

Appendix A: XNF Representation 99

Appendix B: Synthesis Results 102

B-1 Optimization of Area at the Network Level 102

B-2 Optimization of Area at the Gate Level 103

B-3 Joint Optimization of Area and Delay at the Gate Level 105

Bibliography 108

vii

Abstract

A collection of logic gates forms a combinational circuit if the outputs can be described

as Boolean functions of the current input values only. Optimizing combinational

circuitry, for instance, by reducing the number of gates (the area) or by reducing the

length of the signal paths (the delay), is an overriding concern in the design of digital

integrated circuits.

The accepted wisdom is that combinational circuits must have acyclic (i.e., loop-

free or feed-forward) topologies. In fact, the idea that “combinational” and “acyclic”

are synonymous terms is so thoroughly ingrained that many textbooks provide the

latter as a definition of the former. And yet simple examples suggest that this is

incorrect. In this dissertation, we advocate the design of cyclic combinational circuits

(i.e., circuits with loops or feedback paths). We demonstrate that circuits can be

optimized effectively for area and for delay by introducing cycles.

On the theoretical front, we discuss lower bounds and we show that certain cyclic

circuits are one-half the size of the best possible equivalent acyclic implementations.

On the practical front, we describe an efficient approach for analyzing cyclic circuits,

and we provide a general framework for synthesizing such circuits. On trials with

industry-accepted benchmark circuits, we obtained significant improvements in area

and delay in nearly all cases. Based on these results, we suggest that it is time to

re-write the definition: combinational might well mean cyclic.

1

Chapter 1

Introduction

New ideas pass through three periods:

1. “It can’t be done.”

2. “It probably can be done, but it’s not worth doing.”

3. “I knew it was a good idea all along!”

–Arthur C. Clarke (1917–)

1.1 A New Idea

The field of digital circuit design encompasses a broad range of topics, from semi-

conductor physics to system-level architecture. At the logic level, a circuit is viewed

as a network of gates and wires that processes time-varying, discrete-valued signals –

most commonly two-valued signals, designated as “0” and “1”. Open any textbook

on logic design, and you will find digital circuits classified into two types:

• A combinational circuit has output values that depend only on the current

values applied to the inputs.

• A sequential circuit has output values that depend on the entire sequence of

values, past and current, applied to the inputs.

Thus, a sequential circuit can store information, whereas a combinational circuit

cannot. Given these behavioral definitions, the textbooks describe a structural imple-

mentation of these types:

2

• A combinational circuit consists of an acyclic configuration of logic gates, i.e.,

it contains only feed-forward paths.

• A sequential circuit consists of a cyclic configuration of logic gates and memory

elements, i.e., it contains loops or feedback paths.

This conforms to intuition. Logic gates are, by definition, feed-forward devices, as

illustrated in Figure 1.1. In a feed-forward circuit, such as that shown in Figure 1.2,

PSfrag replacements

f1

f2

f3

f4

Figure 1.1: A logic gate is a feed-forward device.

the input values propagate forward and determine the values of the outputs. The out-

come can be asserted regardless of the prior values of the wires, and so independently

of the past sequence of inputs. The circuit is clearly combinational.

�

�

�

�

�

�

�

�

���	�

���
�

��

� ���

� ���

�
�

�
�

�
�

�
�

�
�

PSfrag replacements

f1

f2

f3

f4

x y z c s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Figure 1.2: A feed-forward circuit behaves combinationally.

In a circuit with feedback, the behavior is less transparent. A common approach

is to characterize the output values and the next state in terms of the input values and

the current state. The current state, in turn, depends on the prior sequence of inputs

(starting from some known initial state). As an example, the cyclic circuit shown

3

in Figure 1.3 implements a one-bit memory element, called a latch. This circuit is

clearly sequential.

�

�

�

���

���

PSfrag replacements

f1

f2

f3

f4

s(t) r(t) q(t) q(t + 1)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 ⊥
1 1 1 ⊥

Figure 1.3: A circuit with feedback. With inputs s(t) and r(t), and current state q(t),
the next state is q(t + 1). Here ⊥ indicates an indeterminate value.

Although counter-intuitive, could a combinational circuit be designed with feed-

back paths?

“It can’t be done.”

One might argue that with feedback, we cannot determine the output values

without knowing the current state, and so the circuit must be sequential. This view

is illustrated in Figure 1.4.

�

� � �

� � �

� � �

� � �

�

PSfrag replacements

f1

f2

f3

f4

Figure 1.4: A circuit with feedback. How can we determine the output f without
knowing the value of y in a feedback path?

This specious argument can easily be put to rest with the circuit in Figure 1.5. It

consists of an AND gate and an OR gate connected in a cycle, both with input x.

4

� �

�
��� � �

PSfrag replacements

f1

f2

f3

f4

Figure 1.5: A (useless) cyclic combinational circuit.

Recall that the output of an AND gate is 0 iff either input is 0; the output of an OR

gate is 1 iff either input is 1. Consider the two possible values of x. On the one hand,

if x = 0 then the output of the AND gate is fixed at 0; the input from the OR gate

has no influence, as shown in Figure 1.6 (a). On the other hand, if x = 1 then the

output of the OR gate is fixed at 1; the input from the AND gate has no influence,

as shown in Figure 1.6 (b). Although useless, this circuit is cyclic and combinational.

The value of the output f is determined by the current input value x (actually f = x)

regardless of the prior state and independently of all timing assumptions.

��� � �

PSfrag replacements
f1

f2

f3

f4

��� � �

PSfrag replacements
f1

f2

f3

f4

(a) (b)

Figure 1.6: The circuit of Figure 1.5 with (a) x = 0, and (b) x = 1.

“It probably can be done, but it’s not worth doing.”

Although conceptually possible, one might argue that there is no point in designing

combinational circuits with feedback. Why should one incorporate a feedback path

in the computation of the output values? By definition the values fed back depend

upon the prior state of the circuit, which we want to ignore in a combinational design.

A convincing example suggesting otherwise is shown in Figure 1.7. It consists of

six alternating AND and OR gates, with inputs x1, x2, x3 repeated. To show that

the circuit is combinational, we label the feedback path with an unknown value y, as

5

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

PSfrag replacements

f1

f2

f3

f4

Figure 1.7: A cyclic combinational circuit due to Rivest [35].

shown in Figure 1.8. We compute

f1 = x1y

f2 = x2 + f1 = x2 + x1y

f3 = x3f2 = x3(x2 + x1y)

f4 = x1 + f3 = x1 + x3(x2 + x1y) = x1 + x2x3

f5 = x2f4 = x2(x1 + x2x3) = x2(x1 + x3)

f6 = x3 + f5 = x3 + x2(x1 + x3) = x3 + x1x2.

(Here addition represents OR and multiplication represents AND.) We see that f4,

and consequently f5 and f6, do not depend upon the unknown value. Thus, we

compute

f1 = x1f6 = x1(x3 + x1x2) = x1(x2 + x3)

f2 = x2 + f1 = x2 + x1(x2 + x3) = x2 + x1x3

f3 = x3f2 = x3(x2 + x1x3) = x3(x1 + x2).

Each output depends on the current input values, not on the prior values, and so the

circuit is combinational.

�� �� �� �� �� ��

�� �� �� �� �� ��

� �� 	 �
 � �� � � �
PSfrag replacements

f1

f2

f3

f4

Figure 1.8: Analyzing the circuit of Figure 1.7.

6

�
�

�
�

�
�

)(321 xxx +���� �

PSfrag replacements

f1

f2

f3

f4

Figure 1.9: With fan-in two gates, two gates are needed to compute x1(x2 + x3).

Unlike the circuit in Figure 1.5, this one computes something useful. The six

output functions are distinct, and each depends on all three input variables. Moreover,

we can show that this cyclic circuit has fewer gates than any equivalent acyclic circuit.

To see this, note that any acyclic configuration contains at least one gate producing

an output function that does not depend on the output of any other gate producing

an output function. (If this were not the case, then every output gate would depend

upon another and so the circuit would be cyclic.) With fan-in two gates, it takes

two gates to compute any one of the six functions by itself. This is illustrated in

Figure 1.9. We conclude that an acyclic implementation of the six functions requires

seven gates, compared to the six in the cyclic circuit.

“I knew it was a good idea all along!”

The circuit in Figure 1.7 was presented by Rivest in 1977, in a paper less than a

page long [35]. His work on the topic, as well as that of a few others in the 1960s,

seems to have gone largely unnoticed by theoreticians and practitioners alike. And

yet his example hints at a fundamental misconception in the field, namely that “com-

binational” and “acyclic” are synonymous terms. In this dissertation, we demonstrate

not only that it is feasible to design combinational circuits with cyclic topologies, but

it is generally advantageous to do so.

7

1.2 Prior Work

1.2.1 The Early Era

Gates are a convenient abstraction, introduced for digital electronic circuits. In an

earlier era, people studied switching circuits, built from electro-mechanical relays. A

relay is device that conducts current if it is set to “on” (corresponding to a logical

input of 1), and does not conduct current if it is set to “off” (corresponding to a logical

input of 0). The device does not have an intrinsic direction; it will conduct current in

either direction. The symbol for a relay is shown in Figure 1.10 A switching circuit

evaluates to logical 1 if there is a conducting path between a designated “source”

point and a designated “drain” point.

�

PSfrag replacements

f1

f2

f3

f4

Figure 1.10: A contact relay.

Switching circuits were the subject of seminal papers by Claude Shannon: the

analysis of such circuits in 1938 [39] and the synthesis of such circuits in 1949 [40]. The

circuits of Shannon’s day often had cyclic topologies. Since relays are directionless,

cycles do not pose any problem. Consider the bridge circuit shown in Figure 1.11.

The logical function implemented between points S and D is

f(x1, x2, x3, x4, x5) = x1x4 + x1x3x5 + x2x5 + x2x3x4.

It may be shown this circuit has fewer switches than is possible with an acyclic

topology.

It was accepted that cycles were an important feature in the design of switching

circuits. In 1953, Shannon described a cyclic switching circuit with 18 contacts that

computes all 16 Boolean functions of two inputs, and he proved that this circuit is

optimal [41].

In his Ph.D. dissertation in 1960, Short applied an abstract graphical model to

the study of switching circuits [45]. Implicitly, his model imposes a direction on the

8

�
�

�
�

�
�

�
�

�
�

� �

PSfrag replacements

f1

f2

f3

f4

Figure 1.11: A switching circuit with a cyclic topology.

switching elements. It is equivalent to a form of binary decision diagram now known

as a zero-suppressed decision diagram [30]. In this context, Short argued that cyclic

designs are necessary for the minimal forms.

In recent years, binary decision diagrams have come to the fore as perhaps the

most successful data structure for representing Boolean functions [7]. Short’s work

suggests that feedback might be useful in optimizing binary decision diagrams, a topic

of future research that we return to in Chapter 6.

In the 1960’s, as the research community was shifting its focus to the now-familiar

model of of directed logic gates (AND, OR, NOT, etc.), researchers naturally pon-

dered the implication of cyclic designs. In 1963, McCaw presented a thesis for his

Engineer’s Degree titled “Loops in Directed Combinational Switching Networks” [26].

He begins with an example, the cyclic circuit shown in Figure 1.12 consisting of two

AND gates and two OR gates, with five inputs and two outputs. His argument for

combinationality is in the same vein as that given above for Rivest’s circuit:

f1 = a + b + x(c + d + x̄f1) = a + b + x(c + d)

f2 = c + d + x̄(a + b + xf2) = c + d + x̄(a + b).

As with Rivest’s circuit, McCaw argues that his circuit has fewer AND/OR gates

than is possible with an acyclic circuit implementing the same functions. In his thesis,

he grapples with the different implications of cyclic topologies for circuits with logic

gates vs. undirected switching elements. As an example, he transforms a switching

circuit in Short’s dissertation, consisting of 7 switching elements, into a cyclic logic

circuit consisting of 16 AND/OR gates.

9

�

�
�

�
�

�� � ��

����� � � � � �

PSfrag replacements

f1

f2

f3

f4

Figure 1.12: A cyclic combinational circuit due to McCaw.

In 1970, Kautz (Short’s Ph.D. advisor at Stanford) presented a short paper on

the topic of feedback in circuits with logic gates [17]. He described a cyclic circuit

consisting of 6 fan-in two NOR gates with three inputs and three outputs. Although

plausible, his circuit is not combinational according to the rigorous model that we

propose. (It assumes that all wires have definite Boolean values at the outset.)

In 1971, Huffman discussed feedback in linear threshold networks. He claimed that

an arbitrarily large number of input variables can be complemented in a network con-

taining a single NOT element, provided that feedback is used [15]. This improved

upon an earlier result by Markov, demonstrating that k NOT elements suffice to

generate the complements of 2k − 1 variables [25]. As with Kautz’s example, Huff-

man’s is not combinational in the sense that we understand it. Still, in an insightful

commentary on his and Kautz’s work, he hinted at the possible implications,

“ At this time, these [cyclic] examples are isolated ones. They do, however,

provide tantalizing glimpses into an imaginable area of future research.”

In 1977, Rivest presented a general version of the circuit in Figure 1.7, as well as

the argument for its optimality given above [35]. For any odd integer n greater than

1, the general circuit consists of n fan-in two AND gates alternating with n fan-in

two OR gates, with input variables x1, . . . , xn arranged as in Figure 1.7. It produces

2n distinct output functions, each of which depends on all n input variables. He

proved that any acyclic circuit implementing the same 2n output functions requires

at least 3n − 2 fan-in two gates. Thus, asymptotically, his cyclic implementation is

at most two-thirds the size of the best possible acyclic implementation. In Section 3,

10

we analyze Rivest’s construction, present variants and extensions, and generalize the

argument of optimality

1.2.2 The Later Era

More recently, practitioners observed that cycles sometimes occur in combinational

circuits synthesized from high-level descriptions. In such examples, feedback either

is inadvertent or else is carefully contrived. For instance, occasionally it is intro-

duced during resource-sharing optimizations at the level of functional units [47]. In

these circuits, there is explicit “control” circuitry governing the interaction between

“functional” units.

Consider the example in Figure 1.13. Here we have an input word X (that is, a

bundle of wires carrying several bits of information) and a control input c. There are

two functional units, F and G, each of which performs a word-wise operation. If c is

1, then the circuit computes

G(F (X)),

while if it is 0, it computes

F (G(X)).

Suppose that X = (x1, . . . , xn) is an n-bit word, representing the integer

x1 + 2 x2 + · · ·+ 2n−1 xn.

Here F (X) might be an exponentiation

F (X) = 2X mod 2n,

and G(X) might be a left-shift (division by 2),

G(X) =

⌊

X

2

⌋

.

The circuit either performs a left-shift followed by an exponentiation, or an exponen-

11

tiation followed by a left-shift.

� � � ���

��

� �

))(())((XGFcXFGc ⋅+⋅

PSfrag replacements

f1

f2

f3

f4

Figure 1.13: Functional units connected in a cyclic topology.

Although clearly promising, the idea of cyclic designs at the level of functional

units has not been pursued, due to a lack of support in integrated circuit design

packages. Indeed, nearly all logic synthesis and verification tools balk when given

designs with cycles. Methods were proposed for analyzing such designs [12], [24], [42].

Nevertheless, the accepted strategy is simply to disallow cycles among functional units

in the high-level phases.

12

1.3 Overview

In the realm of digital circuits, researchers seems to fall into two camps. On the one

hand, there are the theoreticians, working in the field of circuit complexity. They

are preoccupied with classifying and characterizing problems in general terms. They

discuss the relationships among complexity classes, and prove bounds on the size

of circuits. On the other hand, there are the practitioners, working in the field of

electronic design automation. They strive to obtain the best circuits that they can,

given the computational resources at their disposal. However, they rarely speak of

optimal designs. The true optimum according to any criteria – be it area, delay, power

– is generally unknowable to them.

1.3.1 Theory

In the first half of this dissertation, we wear the theoretician’s mantle. In Chapter 2

we describe our circuit model, and present a framework for analysis. In Chapter 3, we

present theoretical justification for the claim that the optimal form of some circuits

requires cyclic topologies. We exhibit families of cyclic circuits that are optimal in the

number of gates, and we prove lower bounds on the size of equivalent acyclic circuits.

For instance, the cyclic circuit in Figure 1.14 consists of three “complex” gates,

each with fan-in 6. We show that this circuit implements three distinct functions, f1,

f2 and f3, each depending on all 12 variables a, . . . , l. We then argue that an acyclic

circuit implementing the same functions requires at least five fan-in 6 gates.

Our lower bound is based on a simple fan-in argument: in order to compute a

function that depends on a certain number of variables using gates with a certain

fan-in, we require a tree of at least a certain size. This is perhaps the weakest lower

bound than one can conceive of on a circuit’s size. This suggests that feedback may

be more powerful than we can show.

Our most notable construction is a family of cyclic circuits that have asymptoti-

cally at most one-half as many gates as equivalent acyclic circuits. We show that this

is largest gap that we can prove using the the fan-in lower bound technique.

13

31)(faigecaf ⊕=

���������

� �� �	 �
 ��

��� �� � 21213 ffbafbfaklf ⊕⊕⊕=

32)(fbjhfdbf ⊕=

1g

2g

3g

PSfrag replacements

f1

f2

f3

f4

Figure 1.14: Cyclic circuit with inputs a, . . . , l and outputs f1, f2, f3. (⊕ represents
XOR.)

1.3.2 Practice

In the second half of the dissertation, we wear the practitioner’s mantle. In Chapter 5

we describe a general methodology for synthesizing cyclic combinational circuits, and

compare our results to those produced by state-of-the art logic synthesis tools.

Consider the example shown in Figure 1.15, ubiquitous in introductory logic de-

sign courses: a 7-segment display decoder. The inputs are four bits, x0, x1, x2, x3,

specifying a number from 0 to 9. The outputs are 7 bits, a, b, c, d, e, f , g, specifying

which segments to light up in a display – such as that of a digital alarm clock – to

form the image of this number.

With our synthesis methodology, we arrive at the network shown in Figure 1.16,

with the ordering illustrated. This network translates into a cyclic circuit with 27

fan-in two gates. In contrast, standard synthesis techniques produce an acyclic circuit

with 32 fan-in two gates.

Note that the network in Figure 1.16 contains cyclic dependencies; in fact, all the

functions except d form a strongly connected component. How can we establish that

this network computes what it is supposed to, namely the output functions for the 7-

segment decoder? We refer to this task as functional analysis. Given an upper bound

on the time that it takes each gate to compute a value – the gate delay – how can

we establish an upper bound on the time that it takes for the circuit to compute the

14

inputs outputs
x3 x2 x1 x0 Digit a b c d e f g
0 0 0 0 0 1 1 1 0 1 1 1
0 0 0 1 1 0 0 0 0 0 1 1
0 0 1 0 2 0 1 1 1 1 1 0
0 0 1 1 3 0 0 1 1 1 1 1
0 1 0 0 4 1 0 0 1 0 1 1
0 1 0 1 5 1 0 1 1 1 0 1
0 1 1 0 6 1 1 0 1 1 0 1
0 1 1 1 7 0 0 1 0 0 1 1
1 0 0 0 8 1 1 1 1 1 1 1
1 0 0 1 9 1 0 1 1 0 1 1

�

�

�

�

�

�

�

PSfrag replacements

f1

f2

f3

f4

Figure 1.15: 7-Segment Display Decoder.

values of the functions – the circuit delay? We refer to this task as timing analysis.

Khrapchenko was the first to recognize that depth and delay in a circuit are not

equivalent concepts [18]. There may exist false paths, that is to say, topological paths

that are never sensitized. So-called “exact” algorithms for timing analysis consider

the presence of false paths; these provide the requisite tool for the analysis of cyclic

circuits. For a cyclic circuit, we can say that it is combinational if all cycles are false;

the sensitized paths in the circuit never bite their own tail to form true cycles.

Our synthesis program can routinely tackle designs with, say 50 inputs and 30

outputs. For circuits of this size, a exhaustive approach to analysis – that is to say,

checking every input assignment – is not feasible: with n variables there would be 2n

input combinations. In Chapter 4 we describe efficient algorithms for analysis based

on symbolic techniques, using flexible data structures called binary decision diagrams.

Our analysis considers topological aspects of the design, for instance sub-dividing the

problem into strongly connected components.

Our synthesis strategy is to introduce feedback in the re-restructuring and min-

imization phases. A branch-and-bound search is performed, with analysis used to

validated and rank potential solutions. Although general, our methodology is of im-

mediate practical interest. For instance, we optimized the area of the ALU Decoder

of a 8051 microprocessor design by 20%. In trials with benchmark circuits, nearly all

15

a = x̄3x̄0 c̄ + x̄1 c

b = x̄0e

c = x̄3x2x0 + x̄2(x3x̄1 + e)

d = (x3 + x2) a + x1 e

e = x̄2(x1 + x̄0) f + x̄3 f̄

f = (x̄2 + x̄1x̄0) g + x̄3 ā

g = x̄3b̄ + a

a

g

df

b c

e
PSfrag replacements

f1

f2

f3

f4

Figure 1.16: A cyclic network for the example in Figure 1.15.

were optimized significantly, with improvements of up to 30% in the area and up to

25% in the delay.

Theoreticians may dismiss optimizations of this sort as inconsequential:

“Saving a few gates in the design of a 7-segment decoder doesn’t prove

anything”.

Practitioners may dismiss the theoretical results as contrived:

“Asymptotic bounds don’t help me one bit in designing real circuits.”.

However, taken together our results should convince both camps. It is time to re-write

the definition: in both theory and practice, combinational might well mean cyclic.

16

Chapter 2

Framework

Make everything as simple as possible without making anything too simple.

– Albert Einstein (1879–1955)

The concepts discussed in this dissertation are not tied to any particular physical

model or computing substrate. For the core ideas in Chapter 4 and Chapter 5, the

exposition is at a symbolic level, that is to say, in terms of Boolean expressions.

However, we first postulate an underlying structural model, consisting of gates and

wires, and discuss analysis in an explicit sense – in terms of signal values.

2.1 Circuit Model

We work with digital abstraction of 0’s and 1’s. Nevertheless, our model recognizes

that the underlying signals are, in fact, analog: each signal is a continuous real-

valued function of time s(t), corresponding to a voltage level. For analysis, we adopt

a ternary framework, extending the set of Boolean values � = {0, 1} to the set of

ternary values � = {0, 1,⊥}. The logical value of an analog signal is obtained by the

mapping

logical[s(t)] =

0 if s(t) < Vlow

1 if s(t) > Vhigh

⊥ otherwise,

17

where Vlow and Vhigh are real values demarcating the range corresponding to Boolean

0 and Boolean 1, respectively. Clearly, Vhigh must be strictly greater than Vlow. The

third value, ⊥, indicates that the signal is ambiguous. For the purposes of analysis,

⊥ is used in a broader sense: it denotes a signal value that is unknown. This signal

may be Boolean 0, Boolean 1, or some ambiguous value – we simply do not know.

The idea of three-valued logic for circuit analysis is well established. It was orig-

inally proposed for the analysis of hazards in combinational logic [13], [50]. Bryant

popularized its use for verification [8], and it has been widely adopted for the analysis

of asynchronous circuits [9]. For a theoretical treatment, see [29].

A circuit consists of gates connected by wires. Each gate has one or more inputs

and a single output. The symbols for common gates are shown in Figure 2.1. A bubble

is used to indicate that an input or output is negated, as illustrated in Figure 2.2.
PSfrag replacements

f1

f2

f3

f4

Figure 2.1: Symbols for different types of gates.

�

�

�

PSfrag replacements

f1

f2

f3

f4

Figure 2.2: Bubbles on the inputs or the output of a gate indicate negation. Here
z = NOT(OR(NOT(x), y)).

An example of a circuit is shown in Figure 2.3. Even though a wire may split in

our diagrams, as is the case with wire w8 in Figure 2.3, conceptually there is a single

instance of it.

• The circuit accepts signals x1, . . . , xm, ranging over {0, 1}, called the primary

inputs. Each primary input is fed into one or more gate inputs. Even though

the symbol for a primary input may appear in several places, as is the case with

x1, x2 and x3 in Figure 2.3, conceptually there is a single instance of it.

18

• The gates in the circuit produce internal signals, w1, . . . , wn ranging over

{0, 1,⊥}.

• A subset of the set of internal signals is designated as the set of primary

outputs.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�
�

�
�

�
�

�
�

�
	

�
�

�
�

PSfrag replacements
f1

f2

f3

f4

input signals: x1, x2, x3

internal signals: w1, . . . , w9

output signals: w1, w4, w8

gates: g1, . . . , g9

Figure 2.3: An example of a circuit, consisting of gates and wires.

2.1.1 Functional Behavior

In the digital realm, a gate implements a Boolean function, i.e., a mapping from

Boolean inputs to a Boolean output value,

g : {0, 1}k → {0, 1}.

19

The set of inputs to a gate are called its fan-in set. When we say a “fan-in k” gate,

we mean a gate with fan-in set of cardinality k. The set of gates that are attached to

a gate output are called its fan-out set. The truth tables for fan-in two AND, OR

and XOR gates, as well as a fan-in one NOT gate, are shown Figure 2.4.

x y AND(x, y) OR(x, y) XOR(x, y)
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

x NOT(x)
0 1
1 0

Figure 2.4: Truth table for common gates.

2.1.2 Temporal Behavior

We characterize the temporal behavior of a gate by a single parameter, a bound on

its delay td.

For a gate characterized by a mapping g, if the inputs assume the values

y1(t), . . . , yk(t) at time t, and subsequently do not change, then the output

assumes the value g [y1(t), . . . , yk(t)] at time no later than t+ td, and does

not change.

Further, we assume that the wires have zero propagation delay. More realistic models

for timing analysis can readily be incorporated within our framework; we neglect such

details here in order to focus on the conceptual aspects.

2.2 Analysis Framework

Our analysis characterizes the functional behavior of circuits according to the so-

called “floating-mode” assumption [9], [49]: at the outset of each interval, all wires in

a circuit are assumed to have unknown or possibly undefined values (⊥). We apply

definite values to the inputs, and track the propagation of signal values.

20

Analysis of an acyclic circuit is transparent. We first evaluate the gates connected

only to primary inputs, and then gates connected to these and primary inputs, and

so on, until we have evaluated all gates. For instance, in the circuit of Figure 1.2 in

the Introduction, we first evaluate g1 and g2, then g3, then g4 and g5. At each step,

we only evaluate a gate when all of its input signals are known. The previous values

of the internal signals do not enter into play.

In a cyclic circuit, there are one or more strongly connected components. Recall

that in a directed graph G, a strongly connected component is an induced subgraph

S ⊆ G such that

• there exists a directed path between every pair of nodes in S;

• for every node s in S and every node n outside of S, if there exists a path from s

to n (from n to s) then there is no path from n to s (from s to n, respectively).

We analyze each strongly connected component separately.

At the outset, with only the primary inputs fixed at definite values, each gate

in a strongly connected component has some unknown/undefined inputs (valued ⊥).

Nevertheless, for each such gate we can ask: is there sufficient information to conclude

that the gate output is 0 or 1, in spite of the ⊥ values? If yes, we assign this value

as the output; otherwise, the value ⊥ persists. For instance, with an AND gate,

if the inputs include a 0, then the output is 0, regardless of other ⊥ inputs. If the

inputs consist of 1 and ⊥ values, then the output is ⊥. Only if all the inputs are 1 is

the output 1. This is illustrated in Figure 2.5. Input values that determine the gate

output are called controlling.

2.2.1 Ternary Extension

For the set {0, 1,⊥}, we define a partial ordering

⊥v 0 and ⊥v 1,

21

⊥
���

⊥
⊥

���

���

PSfrag replacements

f1

f2

f3

f4

Figure 2.5: An AND gate with 0, 1, and ⊥ inputs.

with 0 and 1 not comparable. For vectors Y = (y1, . . . , yn) and Z = (z1, . . . , zn), we

define the ordering coordinate-wise:

Y v Z if yi v zi for all i = 1, . . . , n.

For instance, if Y = (⊥, 1,⊥, 0), and Z = (1, 1, 1, 0) then Y v Z. However, if

Y = (⊥, 1,⊥, 0) and Z = (1, 1, 1,⊥) then Y and Z are not comparable.

We define the partial join V = (v1, . . . , vn) = Y t Z as:

vi =

a if yi = zi = a for some a ∈ {0, 1},

b if {yi, zi} = {b,⊥} for some b ∈ {0, 1},

⊥ else.

for all i = 1, . . . , n. For instance, if Y = (⊥, 1,⊥, 0), and Z = (1, 1, 1,⊥) then

Y t Z = (1, 1, 1, 0).

Within the ternary framework, a gate performs a mapping from ternary values to

ternary values,

g′ : {0, 1,⊥}k → {0, 1,⊥}.

We call this mapping the ternary extension of g. Given a Boolean mapping g, the

ternary extension g′ is defined as follows. For a vector of ternary values Y ∈

22

{0, 1,⊥}k,

g′(Y) =

0 if g(Z) = 0 for each Z ∈ {0, 1}k, where Y v Z,

1 if g(Z) = 1 for each Z ∈ {0, 1}k, where Y v Z,

⊥ else.

A similar definition of the ternary extension is found in [9]. The truth-tables for the

ternary extensions of fan-in two AND, OR and XOR gates, as well as a fan-in one

NOT gate, are shown in Figure 2.6.

x y AND(x, y) OR(x, y) XOR(x, y)
0 0 0 0 0
0 1 0 1 1
0 ⊥ 0 ⊥ ⊥
1 0 0 1 1
1 1 1 1 0
1 ⊥ ⊥ 1 ⊥
⊥ 0 0 ⊥ ⊥
⊥ 1 ⊥ 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

x NOT(x)
0 1
1 0
⊥ ⊥

Figure 2.6: Ternary extensions for common gates.

2.2.2 Fixed Point

The goal of functional analysis is to determine what output values a circuit produces

in response to Boolean input values. Of course, if the circuit is cyclic, we cannot be

sure that it settles to a stable state. Consider the inverter ring shown in Figure 2.7.

With x = 1, the ring will probably oscillate, with the output z alternating between 0

and 1, as shown in Figure 2.8. Within the ternary framework, all instability is hidden

beneath the ⊥ values. This is illustrated with the inverter chain in Figure 2.9.

The following theorem shows that once a definite value is assigned to an internal

wire, this value persists for the duration of the interval (so long as the input values

are held constant). Furthermore, the order of gate evaluations is irrelevant; the final

23
�

� �����������������������	�����
�
�

PSfrag replacements

f1

f2

f3

f4

Figure 2.7: An inverter ring.

outcome – which internal wires are assigned definite values, and what these values

are – is the same regardless. The analysis terminates at a fixed point: in this state,

every gate evaluation agrees with the value on its output wire, so there are no further

changes. Of course, the term “fixed point” is somewhat paradoxical: with ⊥ values,

the state includes signals that are potentially unstable.

�

� � �� � � �� � � � � �

PSfrag replacements

f1

f2

f3

f4

Figure 2.8: In the Boolean framework, the inverter ring oscillates.

�

⊥ ⊥ ⊥
⊥

PSfrag replacements

f1

f2

f3

f4

Figure 2.9: In the ternary framework, the values are unknown/undefined.

Theorem 2.1 With all the internal signals assigned an initial value ⊥, for a given

set of Boolean values applied to the inputs and held constant, the analysis terminates

at a unique fixed point.

Proof: Call the values assumed by the internal variables W = (w1, . . . , wn) the

state. Beginning from the initial state W0 = (⊥, . . . ,⊥), the circuit evolves through

a sequence,

W0, W1, W2, . . .

Since each gate update consists of a change ⊥→ {0, 1}, the sequence of states is

24

ordered,

W0 v W1 v W2 v . . .

Since the number of states is finite, clearly the computation terminates at some fixed

point. This is illustrated in Figure 2.10.

It remains to show that this fixed point is unique. To do so, we argue that the

order of updates is irrelevant. Indeed, from a given state W , if we have a choice

of immediate successor states Wi and Wj, then the partial join Wk = Wi t Wj

exists and is an immediate successor state to both Wi and Wj. This is illustrated in

Figure 2.11. With the initial state (⊥, . . . ,⊥) as the base case, a simple inductive

argument suffices to show that all states have a common successor. This common

successor must be a fixed point. 2

��������������

�������������� �������������� ��������������

�������������� �������������� ��������������

��������������

� � �

� � � � � �

� � �

��������������

�������������� �������������� ��������������

�������������� �������������� ��������������

��������������

�� �� ��

�� �� �� �� �� ��

�� �� ��

PSfrag replacements

f1

f2

f3

f4

Figure 2.10: The computation terminates at a fixed point.

�

���

������
PSfrag replacements

f1

f2

f3

f4

Figure 2.11: The order of updates is irrelevant.

25

2.2.3 Explicit Analysis

The analysis strategy for specific Boolean input values might be termed simulation:

we apply inputs and follow the evolution of the circuit. The goal of functional

analysis is to determine what values appear; the goal of timing analysis is to

determine when these values appear.

For functional analysis, Theorem 2.1 tells us that the gates may be evaluated in

any order. We simply apply the inputs and follow the signals as they propagate; gates

are evaluated when new signals arrive. Once a gate evaluates to a definite Boolean

value, it is not evaluated again. Once the analysis terminates, if there are ⊥ values

on the outputs, we conclude that the circuit does not behave combinationally.

For timing analysis, we establish an upper bound on the arrival times of definite

Boolean values for internal signals. We always evaluate gates in the order that signals

arrive, ensuring that we know the earliest time that a signal value becomes known.

When evaluating a gate, we use only present and past input values, not future values.

We illustrate analysis with a collection of examples: first two (acyclic) circuit

fragments; then a non-combinational cyclic circuit; and finally a combinational cyclic

circuit. We assume that all gates have unit delay, and that the primary inputs arrive

at time 0.

Example 2.1

Consider the circuit fragment shown in Figure 2.12. It consists of four gates: an

AND gate g1, an OR gate g2, an AND gate g3, and an OR gate g4:

g1(x1, y1) = x1 y1,

g2(x2, y2) = x2 + y2,

g3(x3, y3) = x3 y3,

g4(x1, y4) = x1 + y4.

This circuit illustrates the concept of false paths. From a topological perspective,

26

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � �

� � �

� � �
PSfrag replacements

f1

f2

f3

f4

Figure 2.12: A circuit fragment.

there exists a path from point A to point B in this circuit. However, from a functional

standpoint, this path is never sensitized. To see this, consider specific input values:

• With x1 = 0, the path is blocked at gate g1.

• With x2 = 1, the path is blocked at gate g2.

• With x3 = 0, the path is blocked at gate g3.

• With x1 = 1, the path is blocked at gate g4.

For any combination of input values, we know what value appears at point B, and how

long it takes for this value to appear, regardless of the signal at point A. Assuming

that the gates g1, g2, g3 and g4 have uniform delay bounds of t1, t2, t3, and t4,

respectively, we can assert:

• With x1 = 1, a value of 1 appears after t4 time units.

• With x1 = 0, and x3 = 0, a value of 0 appears after t3 + t4 time units.

• With x1 = 0, x3 = 1, and x2 = 1, a value of 1 appears after t2 + t3 + t4 time

units.

• With x1 = 0, x3 = 1, and x2 = 0, a value of 0 appears after t1 + t2 + t3 + t4

time units.

Further assuming a unit delay model (i.e., t1 = t2 = t3 = t4 = 1), we obtain the

analysis results in Table 2.1. Subscripts on the values indicate the arrival times.

27

x1 x2 x3 f

0 0 0 02

0 0 1 04

0 1 0 02

0 1 1 13

1 0 0 11

1 0 1 11

1 1 0 11

1 1 1 11

Table 2.1: Analysis of the circuit fragment in Figure 2.12.

Example 2.2

Consider the circuit shown in Figure 2.13, consisting of an AND gate g1, an OR

gate g2, and an AND gate g3, in a cycle. By inspection, note that if x1 = 0 then f1

assumes value 0 after one time unit; if x2 = 1 then f2 assumes value 1 after one time

unit; and if x3 = 0 then f3 assumes value 0 after one time unit. But what happens

if x1 = 1, x2 = 0 and x3 = 1? In this case, all the outputs equal ⊥, as illustrated in

Figure 2.14. The outcome for all eight cases is shown in Table 2.2.

�� �� ��

�� �� ��

�
	�
� �
�

��� � � � � �

PSfrag replacements

f1

f2

f3

f4

Figure 2.13: A non-combinational cyclic circuit.

�
�
�

��� � � � � �

⊥ ⊥ ⊥

PSfrag replacements

f1

f2

f3

f4

Figure 2.14: The circuit of Figure 2.13 with x1 = 1, x2 = 0 and x3 = 1.

28

x1 x2 x3 f1 f2 f3

0 0 0 01 02 01

0 0 1 01 02 03

0 1 0 01 11 01

0 1 1 01 11 12

1 0 0 02 03 01

1 0 1 ⊥ ⊥ ⊥
1 1 0 02 11 01

1 1 1 13 11 12

Table 2.2: Analysis of circuit in Figure 2.13.

In general, we would reject this circuit, since its outputs are not defined for the

input assignment x1 = 1, x2 = 0 and x3 = 1. However, if this particular assignment

is in the “don’t care” set, then the design would be valid.

Example 2.3

Consider the circuit in Figure 2.15 (a).

• Of the three gates, we see that initially only g1 evaluates to a definite value,

w1 = g1(x1, x2) = OR(1, 0) = 1.

We set the arrival time of w1 to be

t1 = 1.

• With w1 defined, we see that g2 evaluates to a definite value,

w2 = g2(w1, x2) = AND(NOT(1), 1) = 0.

We set arrival time of w2 to be

t2 = 1 + t1 = 2.

• At this point in the execution of the algorithm, w1 and w2 have been assigned

definite values. However, w1 has an earlier arrival time. Evaluating g3 at time 1,

29

w3 = g3(w1, w2) = OR(1,NOT(⊥)) = 1.

We set the arrival time of w3 to be

t3 = 1 + t1 = 2.

The final values of w1, w2, w3 are shown in Figure 2.15 (b). Subscripts indicate the

arrival times.

� �

��

� �⊥=1w

⊥=2w

⊥=3w
11 =x

13 =x

02=x

PSfrag replacements

f1

f2

f3

f4

(a) Initial state.

� �

��

� �
11 1=w

22 0=w

23 1=w

11 =x

13 =x

02=x

PSfrag replacements

f1

f2

f3

f4

(b) Final state.

Figure 2.15: Example 2.3 Subscripts on the values of the internal variables indicate
the arrival times.

The salient point of this example is that the algorithm tracks the arrival times of

signals, and establishes the earliest possible set of controlling signals. If gate g3 had

been evaluated after both w1 and w2 had been determined, we might have concluded

that its arrival time was 3 time units instead of 2.

Example 2.4

Consider the circuit in Figure 2.16. Suppose that we apply inputs x1 = 1, x2 =

0, x3 = 1, as shown in Part (a). Gates g1, g3, g5 and g7 produce outputs of 1, 0, 0,

and 1, respectively, after one time unit. Gate g2 produces an output of 1 after two

time units. Gate g8 produces an output of 0 after three time units. Gate g9 produces

30

an output of 0 after four time units. Gate g6 produces an output of 0 after five time

units. Finally, gate g4 produces an output of 0 after six time units. The circuit after

six time units is shown in Figure 2.16 (b).

The analysis for all eight input combinations is summarized in Table 2.3. We see

that the maximum delay of the circuit is six time units.

x1 x2 x3 g1 g2 g3 g4 g5 g6 g7 g8 g9

0 0 0 02 01 12 11 01 12 04 03 11

0 0 1 11 01 14 13 01 12 06 05 11

0 1 0 06 01 12 11 05 01 04 03 11

0 1 1 11 01 03 02 16 01 15 14 11

1 0 0 02 03 01 11 01 16 11 14 15

1 0 1 11 12 01 06 01 05 11 03 04

1 1 0 13 14 01 11 12 01 11 05 06

1 1 1 11 12 01 02 12 01 11 03 04

Table 2.3: Analysis summary for the circuit of Figure 2.3. Subscripts on the output
values indicate arrival times.

2.2.4 Complexity

In the analysis, we evaluate a gate whenever a new Boolean signal arrives on one of

its inputs. In the worst case, we could evaluate a gate with fan-in d as many as d

times. Given a circuit with m primary inputs and n gates, each with fan-in d, there

are O(d n) gate evaluations. In addition, for timing analysis, we must maintain a

sorted list of arrival times. This contributes a complexity factor of O(n log2 n).

We could perform the analysis explicitly for every assignment of input values.

However, such an exhaustive approach is simply not tractable for most real circuits:

with n variables there would be 2n input combinations to analyze separately. In

Chapter 4 we describe an efficient analysis algorithm based on symbolic techniques.

31

���

���

���

���

���

���

��	

��

���

⊥

⊥

⊥

⊥ ⊥
⊥

⊥
⊥

⊥

PSfrag replacements

f1

f2

f3

f4

(a) time t = 0

��

�

�

�

���

� �

���

���

���

���

���

� �

�

�

�

�

�

�

PSfrag replacements

f1

f2

f3

f4

(b) time t = 6

Figure 2.16: The circuit of Figure 2.3 with inputs x1 = 1, x2 = 0, x3 = 1. Subscripts
on the output values indicate arrival times.

32

Chapter 3

Theory

In theory there is no difference between theory and practice, but in practice

there is. – Yogi Berra (1925–)

Theoreticians are preoccupied with classifying and characterizing problems in

general terms. They discuss the relationships among complexity classes, and prove

bounds on the size of circuits. However, somewhat to their embarrassment, they offer

very little help in proving or disproving the optimality of specific circuits. There have

been a handful of papers, dating back to the 1960’s, describing approaches for finding

optimal multi-level circuit designs [10], [11], [20], but these have limited applicability:

the largest circuits that these methods can hope to tackle have 4 (or perhaps 5) input

variables.

Lower bounds on circuit size are notoriously difficult to establish. In fact, such

proofs are related to fundamental questions in computer science, such as the separa-

tion of the P and NP complexity classes. (To prove that P 6= NP it would suffice

to find a class of problems in NP that cannot be computed by a polynomially sized

circuit.) Much of the recent work in circuit complexity has been spurred by these

open problems [1].

All existing lower bounds on circuit size are linear in the number of variables [1].

In 1949, Shannon showed by a straight forward counting argument that nearly all

functions require circuits with an exponential number of gates [40]. Yet there is no

known explicit example [48].

33

Given these limitations, how can we hope to justify our general claim that feedback

can be used to optimize circuits? In this section, we assume the theoretician’s mantle

and prove that some cyclic designs are smaller than equivalent acyclic ones, based on

the best lower-bound techniques that we know.

3.1 Criteria for Optimality

Any assertion of optimality rests on a restricted circuit model. Indeed, with gates of

arbitrary size and complexity, any function can be implemented with a single “gate.”

We restrict the scope of gates in two ways. The first way is to bound the fan-in, as

shown in Figure 3.1 (a). Each gate can have at most d inputs, for some finite d. The

second way is to restrict the type of gate. For instance, we can limit ourselves to

so-called AON gates: AND gates with the inputs and output possibly negated. An

example of such a gate is shown in Figure 3.1 (b). The general form of the Boolean

function realized by an AON gate is

g(x1, x2, . . . , xd) = (x1 ⊕ c1) · (x2 ⊕ c2) · · · (xd ⊕ cd) ⊕ cd+1,

where c1, . . . , cd+1 are arbitrary choices of 0 and 1. (Multiplication represents AND,

addition represents OR, and ⊕ represents XOR.) The fan-in d may or may not be

limited.

��� ��� ���PSfrag replacements
f1

f2

f3

f4

��� ��	 ��

PSfrag replacements
f1

f2

f3

f4

(a) (b)

Figure 3.1: Restricting the scope of gates. (a) Bound the fan-in. (b) Use AND gates
(with the inputs and output possibly negated).

In this chapter, we often represent functions in XNF, a canonical form consisting

of XOR and AND operations. This form has advantages: since it is canonical,

34

we need not concern ourselves with simplifying the expressions. Furthermore, the

dependence of a function on its variables is explicit. See Appendix A for a discussion

of this representation.

Our general strategy in the following constructions is to present a cyclic circuit

that is optimal in the number of gates, and then prove a lower bound on the size of

any acyclic circuit implementing the same functions. The argument for the optimality

of the cyclic circuit rests on two properties:

Property 3.1 Each of the output functions depends on all its variables.

Property 3.2 The output functions are distinct.

The cyclic circuit is shown to be optimal according to the following trivial claim (true

regardless of the gate model):

Claim 3.1 A circuit implementing m distinct functions consists of at least m gates.

3.2 Fan-in Lower Bound

Our lower bound on the size of an acyclic circuit is formulated as a fan-in argument.

The essence of the argument was presented by Rivest [35], although we present it in

a more general form.

A circuit can only compute a function of a given set of input variables if it “sees”

all of them. For example, in Figure 3.2, gate g2 can compute a function of x1, x2 and

x3; g1 cannot compute a function of x3 since it does not see x3. In an acyclic circuit,

there is a partial ordering among the gates: if a gate gi depends on a gate gj, directly

or indirectly, then gj cannot depend on gi, directly or indirectly. With a partial

ordering on the output functions, there must be at least one output function at the

top which depends upon no other. If this function depends on v input variables, the

gate producing it must be the root of a tree that sees all these v variables as leaves.

The lower bound is based on a calculation of the minimum number of gates in this

tree.

35

�
�

�
�

�
�

�
�

�
�

�
�

PSfrag replacements

f1

f2

f3

f4

Figure 3.2: A gate can only compute functions of variables that it “sees”.

Claim 3.2 An acyclic circuit implementing m distinct output functions, each de-

pending on v input variables, consisting of gates with fan-in at most d has at least

⌈

v − 1

d − 1

⌉

+ m − 1

gates.

Proof: Consider a connected directed acyclic graph (DAG). Call nodes with no

in-coming edges leaves, and all other nodes internal nodes. We show, by a simple

inductive argument, that a connected DAG with k internal nodes, each with in-

degree at most d, has at most k(d − 1) + 1 leaves. Obviously, a graph consisting

of a single such internal node has at most d leaves. Suppose an internal node with

in-degree at most d is added to a connected DAG. If the resulting graph is to be a

connected DAG, the new node can replace an existing leaf or it can be attached to

an existing internal node. The former case is illustrated with node g1 in Figure 3.3,

and the latter with node g2. In both cases there is a net gain of at most d− 1 leaves.

We conclude that connected DAG with k internal nodes has at most

d + (k − 1)(d − 1)

= k(d − 1) + 1

leaves, as expected. Suppose that a connected DAG has v leaves. Since

36

�
�

�
�

�
� � �

�
�

�
�

�
�

PSfrag replacements

f1

f2

f3

f4

Figure 3.3: Adding a node with in-degree d to a connected DAG results in net gain
of at most d − 1 leaves.

v ≤ k(d − 1) + 1,

the number of internal nodes k is bounded by

k ≥

⌈

v − 1

d − 1

⌉

.

Now, in an acyclic circuit implementing m output functions, at least one of the output

functions depends on no other. By the argument above, this output function requires

at least
⌈

v − 1

d − 1

⌉

gates. With distinct output functions, each output function must emanate from a

different gate, so at least m− 1 gates are required to implement the remaining m− 1

functions. 2

37

3.3 Improvement Factor

Suppose that we have a cyclic circuit with m gates, each with fan-in at most d, that

implements m distinct functions, each of which depends on all v input variables. Call

the improvement factor the ratio of size of the cyclic circuit to the lower bound on

the size of the acyclic circuit:

size of cyclic

size of acyclic
=

m
⌈

v−1
d−1

⌉

+ m − 1
.

With an improvement factor of C, we can say that our cyclic circuit is C times the

size of any equivalent acyclic circuit.

Claim 3.3 The improvement factor is bounded below by
1

2
.

Proof: For a given d, the improvement factor is minimized if the term

v − 1

d − 1

in the denominator is maximized. Now, the number of variables v in a cyclic circuit

is at most m(d − 1), and this is achieved if all the gates have fan-in d. For such a

circuit,
m

⌈

m − 1
d−1

⌉

+ m − 1
=

m

2m − 1
≥

1

2
.

2

3.4 Examples

Consider the example shown in Figure 3.4, due to Rivest [35]. We first verify that

this circuit is combinational. For gate g1, an AND gate, x1 = 0 is a controlling value.

38

�� �� �� �� �� ��

�� �� �� �� �� ��

� �� 	 �
 � �� � �

PSfrag replacements

f1

f2

f3

f4

Figure 3.4: A cyclic combinational circuit with 3 inputs, due to Rivest [35].

Setting x1 = 0 we have

f1 | x̄1
= 0,

f2 | x̄1
= f1 + x2 = x2,

f3 | x̄1
= f2 x3 = x2x3,

f4 | x̄1
= f3 + 0 = x2x3,

f5 | x̄1
= f4 x2 = x2x3,

f6 | x̄1
= f5 + x3 = x3.

All outputs assume definite Boolean values. For gate g4, an OR gate, x1 = 1 is a

controlling value. Setting x1 = 1, we have

f4 | x1
= 1,

f5 | x1
= f4 x2 = x2,

f6 | x1
= f5 + x3 = x2 + x3,

f1 | x1
= f6 1 = x2 + x3,

f2 | x1
= f1 + x2 = x2 + x3,

f3 | x1
= f2 x3 = x3.

Again, all outputs assume definite Boolean values. Since x1 must either have value 0

or value 1, we conclude that the network is combinational. We assemble the output

39

functions from these two cases:

f1 = x̄1 · f1 |x̄1
+ x1 · f1 |x1

= x̄1 · 0 + x1 · (x2 + x3) = x1(x2 + x3)

f2 = x̄1 · f2 |x̄1
+ x1 · f2 |x1

= x̄1 · x2 + x1 · (x2 + x3) = x2 + x1x3

f3 = x̄1 · f3 |x̄1
+ x1 · f3 |x1

= x̄1 · x2x3 + x1 · x3 = x3(x1 + x2)

f4 = x̄1 · f4 |x̄1
+ x1 · f4 |x1

= x̄1 · x2x3 + x1 · 1 = x1 + x2x3

f5 = x̄1 · f5 |x̄1
+ x1 · f5 |x1

= x̄1 · x2x3 + x1 · x2 = x2(x1 + x3)

f6 = x̄1 · f6 |x̄1
+ x1 · f6 |x1

= x̄1 · x3 + x1 · (x2 + x3) = x3 + x1x2.

Rivest presented a more general version of this circuit. For any odd integer n greater

than 1, the general circuit consists of n two-input AND gates alternating with n

two-input OR gates in a single cycle, with inputs x1, . . . , xn repeated, as shown in

Figure 3.5. Analyzing the general circuit in the same manner as above, we find that

�
�

�
� ��

�
�

�
�

�
� �

�
�

�
�

�
� � �

�
� � �

�
� �

�
�

�
�

�
� � �

�
� � �

PSfrag replacements

f1

f2

f3

f4

Figure 3.5: A cyclic combinational circuit with n inputs (for any odd n ≥ 3) due to
Rivest.

it implements the functions

f1 = x1(xn + xn−1(· · · (x3 + x2) · · ·))

f2 = x2 + x1(xn + · · · (x4x3) · · ·)

...

f2n = xn + xn−1(xn−2 + · · · (x2x1) · · ·).

Note that the functions are symmetrical with respect to a cyclic permutation of the

variables.

40

3.4.1 Optimality

To show that circuit is optimal, we must show that it satisfies Properties 3.1 and 3.2.

1. To show that each function depends on all n input variables, we note that in

the parenthesized expression, each variable appears exactly once. Without loss

of generality, consider the i-th function fi in the list, for an odd i, and consider

the j-th variable appearing in its expression, from the left-hand side. To show

the dependence on this variable, set each variable preceding a product to 1, and

each variable preceding a sum to zero, beginning on the left-hand side, until we

arrive at xj. Set the variable following xj to 1 and all variables following that

to 0. The result is

fi = 1(0 + 1(0 + · · · + xj(1 + 0(0 + 0(· · ·))))) = xj.

2. To show that all the functions are distinct, we exhibit an assignment that sets

any chosen function to 0 if it is odd-numbered (to 1 if it is even-numbered),

while setting all the other functions to 1 (to 0, respectively). Without loss of

generality, consider function fi, for an odd i ≤ n. This function is the output

of an AND gate with input xi. Set xi to 0 and set all the other the variables to

1. Clearly, fi has value 0 while all the other functions have value 1 in this case.

(Rivest stated these conditions without proof.)

3.4.2 Acyclic Lower Bound

Note that the Rivest circuit has n input variables and implements 2n distinct output

functions with 2n fan-in 2 gates. According to Claim 3.2, an acyclic circuit imple-

menting the same functions requires at least

⌈

n − 1

2 − 1

⌉

+ 2n − 1 = 3n − 2

41

fan-in 2 gates. For large n, the improvement factor is

size of cyclic

size of acyclic
=

2n

3n − 2
≈

2

3
.

Rivest’s cyclic circuit is two-thirds the size of any acyclic circuit implementing the

same functions.

Given a circuit with a single cycle, we can always obtain a corresponding acyclic

version by breaking the feedback and doubling the length of the chain, as shown in

Figure 3.6. (The input ⊥ indicates any constant value.)

�
�

�
�

� � � � � � � � � � � 	 �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�⊥

� � � �

 � � � � � � � � � � � 	 �

PSfrag replacements

f1

f2

f3

f4

Figure 3.6: Obtaining an equivalent acyclic circuit from a cyclic circuit.

In general, this will not yield an optimal acyclic circuit. However, in the case of

Rivest’s circuit, the bound of 3n − 2 is, in fact, tight. To obtain an acyclic circuit

with 3n− 2 gates, we break the cycle and prepend a copy of the last n− 2 gates. For

n = 3, we simply prepend an OR gate with inputs x2 and x3, as shown in Figure 3.7.

Rivest’s circuit is also optimal seen from a different perspective. The circuit

consists of AON gates, and yet none of the output functions are implementable with

a single AON gate, regardless of the fan-in. Thus, any acyclic circuit implementing

the functions requires at least one more gate.

42

�
�

�
�

�
�

�
�

�
� �

�

�
��

�

�
�

�
��

�

�
�

�
��

�

�
�

�
��

�

�
�

�
��

�

�
�

PSfrag replacements

f1

f2

f3

f4

Figure 3.7: An acyclic circuit implementing the same functions as the circuit in
Figure 3.4.

3.4.3 A Generalization

We note that Rivest’s circuit can be generalized to AND and OR gates with arbitrary

fan-in. The circuit, shown in Figure 3.8, consists of 2n fan-in d AND/OR gates, with

n(d − 1) inputs repeated, for n ≥ 3, n odd, and d ≥ 2.

�
�

�
� � �

�
�

�
�

�
�

�� ��

�
� � �

�
�

� ��

�
� � �

�
� � �

�
�

�� ��

�
� �

�
� �

��� ���

���� ��� ���

�
�

��

� ��

PSfrag replacements

f1

f2

f3

f4

Figure 3.8: A generalization of Rivest’s circuit to gates with fan-in greater than 2.

43

This circuit produces outputs

f1 = y1(yn + yn−1(· · · (y3 + y2) · · ·))

f2 = y2 + y1(yn + · · · (y4y3) · · ·)

...

f2n = yn + yn−1(yn−2 + · · · (y2y1) · · ·),

where

y1 = x1 · · ·xd−1

y2 = xd + · · ·+ x2d−2

...

yn = x(n−1)(d−1)+1 + · · · + xn(d−1).

It may be shown that all 2n functions are distinct, and that each depends on all

n(d − 1) input variables.

3.4.4 Variants

We note that many different circuits of the same general form as Rivest’s example

exist. In Figure 3.9, we show a circuit with 4 variables and 8 gates in a single cycle.

As with Rivest’s circuit, this one produces distinct output functions, each of which

depends on all the variables.

A more intriguing example is shown in Figure 3.10. It consists of two copies of

Rivest’s circuit with the outputs of the first fed as inputs into the second. Although

not shown here, we assert that this circuits produces 20 functions are distinct, and

each depends on all 5 variables.

44

���
��� 43218)(xxxxf +=

���
��� 34217)(xxxxf ++=

��	
��
 43216 xxxxf ++=

���
�� 43215 xxxxf +=

���
� � 43214)(xxxxf +=

���
��� 34213 xxxxf +=

���
�
 43212 xxxxf ++=

���
�)(43211 xxxxf ++=

PSfrag replacements

f1

f2

f3

f4

Figure 3.9: A circuit with the same properties as Rivest’s example.

45

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� 	

�

�
� �

�
� �

�
� �

�
� �

�
� �

�
� �

�
� �

�
� �

�
�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

� 	
�

� �
�

� �
�

� �
�

� �
�

� �
�

� �
�

� �
�

� �
�

�

�

�	
�

� � � � � � � � � �

PSfrag replacements

f1

f2

f3

f4

Figure 3.10: A pair of Rivest circuits, n = 5, stacked.

3.5 A Minimal Cyclic Circuit with Two Gates

We provide an example of a circuit with the same property as Rivest’s circuit, but

with only two gates. The circuit, shown in Figure 3.11, consists of two fan-in 4 gates

of the form

g(w, x, y, z) = wx ⊕ yz.

connected in a cycle with 5 inputs, a, b, c, d, e. The circuit computes f and g:

f = ab ⊕ gc

g = f c̄ ⊕ de.

To verify that the circuit is combinational, note that if c = 0, f assumes a definite

value. We have

f |c̄ = ab ⊕ g 0 = ab

g |c̄ = f1 ⊕ de = ab ⊕ de.

Similarly, if c = 1, then g also assumes a definite value. We have

g |c = f 0 ⊕ de = de

f |c = ab ⊕ g 1 = ab ⊕ de.

46

Assembling the output functions, we obtain

f = c̄ · f |c̄ + c · f |c = ab ⊕ cde

g = c̄ · g |c̄ + c · g |c = abc̄ ⊕ de.

With the functions thus written in XNF form, we can readily assert that f and g are

distinct and that each depends on all 5 variables. Now, consider an acyclic circuit,

also with fan-in 4 gates, that computes the same functions. Since a single fan-in 4

gate cannot possibly compute a function of 5 variables, we conclude that the acyclic

circuit must have 3 gates.

�

�

�

�

�

�

�
�

����
�

� � ����

� ���
�

� �����

�
�

PSfrag replacements

f1

f2

f3

f4

Figure 3.11: A cyclic circuit with two gates.

3.6 Circuits with Multiple Cycles

In this section, we present examples of cyclic circuits with multiple cycles, culminating

with the main result of this section: a cyclic circuit that is one-half the size of any

equivalent acyclic circuit.

3.6.1 A Cyclic Circuit with Two Cycles

Consider the circuit shown in Figure 3.12, written in a general form. The inputs

are x1, . . . , xn, grouped together in the figure as X. (A diagonal line across a line

indicates that it represents multiple wires.) There are three gates, connected in a

47

configuration consisting of two cycles:

f1 = α1 ⊕ β1f3

f2 = α2 ⊕ β2f3

f3 = α3 ⊕ β3f1 ⊕ γ3f2 ⊕ δ3f1f2

where the α’s, β’s, γ’s, and δ’s are arbitrary functions of the input variables.

3111 ff βα ⊕=

�

�

� 213231333 fffff δγβα ⊕⊕⊕=

3222 ff βα ⊕=

nxxxX ,,, 21 �=

1g

2g

3g

PSfrag replacements

f1

f2

f3

f4

Figure 3.12: A cyclic circuit with two cycles.

3.6.2 Analysis in Arbitrary Terms

We analyze this circuit with the goal of obtaining a necessary and sufficient condition

for combinationality, as well as expressions for the gate outputs in terms of the inputs.

We proceed on a case basis.

Case I

Suppose that for some X, β1 = 0. In this case f1 assumes the definite value α1. This

situation is shown in Figure 3.13. Now suppose further that γ3 ⊕ δ3α1 = 0. In this

case, f3 assumes a definite value of α3 ⊕ β3α1. Given this value for f3, f2 assumes

a definite value of α2 ⊕ β2α3 ⊕ β2β3α1. This situation is shown in Figure 3.14. We

conclude that the functions assume definite values if β1 = 0 and γ3 ⊕ δ3α1 = 0.

48

11 α=f

21331333)(ff αδγαβα ⊕⊕⊕=

3222 ff βα ⊕=

�

�

�

1g

2g

3g

PSfrag replacements

f1

f2

f3

f4

Figure 3.13: The circuit of Figure 3.12 if β1 = 0.

11 α=f

1333 αβα ⊕=f

1323222 αββαβα ⊕⊕=f

�

�

�

1g

2g

3g

PSfrag replacements

f1

f2

f3

f4

Figure 3.14: The circuit of Figure 3.12 if β1 = 0 and γ3 ⊕ δ3α1 = 0.

49

Case II

A symmetrical analysis shows that the functions f1, f2 and f3 assume definite values

if β2 = 0 and β3 ⊕ δ3α2 = 0.

Case III

Suppose that for some X, we have β1 = 0 and β2 = 0. In this case f1 and f2 assume

definite values of α1 and α2, respectively. Given these values for f1 and f2, f3 assumes

a definite value of α3 ⊕ β3α1 ⊕ γ3α2 ⊕ δ3α1α2. This situation is shown in Figure 3.15.

11 α=f

213231333 ααδαγαβα ⊕⊕⊕=f

22 α=f

�

�

�

1g

2g

3g

PSfrag replacements

f1

f2

f3

f4

Figure 3.15: The circuit of Figure 3.12 if β1 = 0 and β2 = 0.

Case IV

Suppose that β3 = γ3 = δ3 = 0. In this case f3 assumes the definite value α3. Given

this value for f3, f1 and f2 assume the definite values α1 ⊕ β1α3 and α2 ⊕ β2α3,

respectively. This situation is shown in Figure 3.16. 2

Let

c1 = β1 · (γ3 ⊕ δ3α1), (3.1)

c2 = β2 · (β3 ⊕ δ3α2), (3.2)

c3 = β1 · β2, (3.3)

c4 = β3 · γ3 · δ3. (3.4)

50

3111 αβα ⊕=f

�

�

� 33 α=f

3222 αβα ⊕=f

1g

2g

3g

PSfrag replacements

f1

f2

f3

f4

Figure 3.16: The Circuit of Figure 3.12 if β3 = γ3 = δ3 = 0.

We conclude that the circuit is combinational iff

C = c1 + c2 + c3 + c4

holds. If C holds, then the functions have values

f1 = c1α1 + c2(α1 ⊕ β1α3 ⊕ β1γ3α2) + c3α1 + c4(α1 ⊕ β1α3) (3.5)

f2 = c1(α2 ⊕ β2α3 ⊕ β1β3α1) + c2α2 + c3α2 + c4(α2 ⊕ β2α3) (3.6)

f3 = c1(α3 ⊕ β3α1) + c2(α3 ⊕ γ3α2) + c3(α3 ⊕ β3α1 ⊕ γ3α2δ3α1α2) + c4α3(3.7)

3.6.3 A Circuit Three-Fifths the Size

Let’s make the circuit of Figure 3.12 somewhat more concrete. Suppose that the

inputs are a, b, x1, x2, . . . , y1, y2, . . . , z1, z2, Suppose that the gates are defined by

α1 = āX, α2 = b̄Y, α3 = Z,

where

X = x1x2 · · · , Y = y1y2 · · · , Z = z1z2 · · · ,

51

and

β1 = a, β2 = b

β3 = ā, γ3 = b̄, δ3 = āb̄.

The resulting circuit is shown in Figure 3.17. For this circuit, the conditions defined

31 faXaf ⊕=

21213 ffbafbfaZf ⊕⊕⊕=

32 fbYbf ⊕=

1g

2g

3g

)(21 �xxX =

),,(21 �yyY =

),,(21 �zzZ =

�21, xxa

�21, xxb

�2,1,, zzba

PSfrag replacements

f1

f2

f3

f4

Figure 3.17: Variant of the circuit of Figure 3.12.

in Equations 3.1– 3.4 evaluate to

c1 = ā(b + X)

c2 = b̄(a + Y)

c3 = āb̄

c4 = ab

It may easily be verified that for every combination of values assigned to a and b, one

of c1, c2, c3, c4 is true. The functions defined in Equations 3.5– 3.7 become

f1 = X ⊕ a(X ⊕ Y ⊕ Z) ⊕ abY

f2 = Y ⊕ b(X ⊕ Y ⊕ Z) ⊕ abX

f3 = X ⊕ Y ⊕ Z ⊕ XY ⊕ a(X ⊕ XY) ⊕ b(Y ⊕ XY) ⊕ abXY

52

With the functions expressed in XNF notation, we can assert that they are distinct

and that each depends on all the variables.

To make the situation more concrete, suppose that

X = c e g i, Y = d f h j, Z = k l.

There are a total of 12 variables (a through l). Each gate has fan-in 6. This

situation is shown in Figure 3.18.

31)(faigecaf ⊕=

���������

� �� �	 �
 ��

��� �� � 21213 ffbafbfaklf ⊕⊕⊕=

32)(fbjhfdbf ⊕=

1g

2g

3g

PSfrag replacements

f1

f2

f3

f4

Figure 3.18: Circuit of Figure 3.17 with 12 variables.

According to Claim 3.2, an acyclic circuit implementing the same functions re-

quires at least
⌈

v − 1

d − 1

⌉

+ m − 1

gates, where v = 12 (the number of variables), d = 6 (the fan-in) and m = 3 (the

number of functions). Thus

⌈

v − 1

d − 1

⌉

+ m − 1 =

⌈

12 − 1

6 − 1

⌉

+ 3 − 1 = 5.

We conclude that the circuit in Figure 3.18 is at most 3
5

the size of any equivalent

acyclic circuit.

53

3.6.4 A Circuit One-Half the Size

Consider the circuit shown in Figure 3.19, a generalization of the circuit in Figure 3.12

to k gates. We argue the validity of this circuit informally. On the one hand, for each

11111 +⊕= kfxYxf

1+⊕= kkkkk fxYxf

1g

kg

1+kg

kiyyY diii ,,1for),(1,1, �
� == −

)(1 kdzzZ −= �

1,1, ,,, −dkkk yyx �

kdk zzxx −,,,,, 11
��

12222 +⊕= kfxYxf

2g
1,21,22 ,,, −dyyx �

kkk ffxxfxfxZf ���
1122111 ⊕⊕⊕⊕=+

1,11,11 ,,,, −dyyx �

PSfrag replacements

f1

f2

f3

f4

Figure 3.19: A generalization of the circuit of Figure 3.12.

variable xi, if xi = 0 then the function fi does not depend on fk+1. On the other hand,

if xi = 1, then fk+1 does not depend on fi. We conclude that none of the k cycles

can be sensitized, and so the circuit is combinational. Now consider the function fi

implemented by each gate. With xi = 0, fi depends on the variables y1,1, . . . , y1,d−1.

Since fk+1 depends on fi, it also depends on these variables. Thus fk+1 depends all

the variables yi,j for i = 1, . . . , k, j = 1, . . . , d − 1. With xi = 1, fi depends on fk+1;

hence it also depends on all these variables. We conclude that each function depends

on all the variables.

With a fan-in of d, we have a total of

v = k(d − 1) + d − 2k = (k + 1)d − 3k

variables. We have

m = k + 1

54

gates. According to Claim 3.2, an acyclic circuit implementing the same functions

requires at least
⌈

v − 1

d − 1

⌉

+ m − 1

gates. The improvement factor is,

m
⌈

v−1
d−1

⌉

+ m − 1
=

k + 1
⌈

(k+1)d−3k

d−1

⌉

+ k

gates. Suppose that d = 3k, and that k is large. Then the ratio is

k + 1
⌈

3k2−1
3k−1

⌉

+ k
≈

k

k + k
=

1

2
.

We conclude that the circuit of Figure 3.19 is at most one-half the size of any equiv-

alent acyclic circuit. According to Claim 3.3, this is the best possible improvement

factor that we can obtain with the fan-in lower bound of Section 3.2.

3.7 Summary

Admittedly, the circuits in latter half of this chapter are a bit contrived. The con-

structions assume “gates” with arbitrarily large fan-in. The gates in this context

should properly be described as sub-circuits. And yet the fact remains that there

exist families of functions that can be implemented by cyclic circuits with 50% fewer

gates than is possible with equivalent acyclic circuits. Feedback is an inescapable fea-

ture of the Boolean circuit model. Hereafter, complexity theorists must stop speaking

of Boolean circuits as directed acyclic graphs (DAG’s). Even in an abstract setting,

the optimal circuit under consideration may well be cyclic.

55

Chapter 4

Analysis

All are lunatics, but he who can analyze his delusions is called a philoso-

pher. – Ambrose Pierce (1869–1950)

For logic design, as with any engineering construct, analysis provides the under-

pinnings to synthesis. In Chapter 2, we characterized combinational circuits in terms

of explicit signal values (0, 1, and ⊥). For most real circuits, an exhaustive analysis

of every input combination is intractable. Instead, we turn to symbolic techniques to

analyze and validate cyclic designs.

In what has been described as the most influential Master’s Thesis ever, in 1938

Claude Shannon proposed the use of symbolic logic for the analysis of relay cir-

cuits [39]. What had been until then a desultory, ad hoc process was now logical and

systematic. His brilliant work brought digital systems into the realm of mathematics.

Symbolic analysis derives formulas that describe the logic values of signals in a

circuit in terms of its input signals. Instead of working with explicit values, the

analysis takes place over a domain consisting of a set of functions. In a Boolean

setting, this domain is the set B of Boolean-valued functions of Boolean variables,

i.e., of maps

{f : {0, 1}n → {0, 1}} .

for all positive integers n.

56

Boolean operations, such as AND, OR and NOT, are applied to functions. For

instance, given functions f and g

f = x1(x2 + x3),

g = x1 + x2x3,

the XOR operation yields a new function h of these input variables,

h = x1x̄2x̄3 + x̄1x2x3.

In a sense, symbolic computation is equivalent to processing all input combinations

in parallel. For the gate on the left of Figure 4.1, the computation is equivalent to

processing the truth tables shown on the right.

�

�

�

PSfrag replacements

f1

f2

f3

f4

x1 x2 x3 f g h

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 0 1 1
1 0 0 0 1 1
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 1 0

Figure 4.1: An example of symbolic computation.

Throughout, we often make statements such as

“if x1 + x2x3, then . . . ”

By this we mean, implicitly,

“for (x1, x2, x3) ∈ {0, 1}3 such that x1 + x2x3 = 1, ...”

For cyclic circuits, we must allow for the possibility that signals never settle to

definite values. Symbolically, the analysis takes place over a domain T of the set of

57

ternary-valued functions of ternary variables, i.e., maps

{f : {0, 1,⊥}n → {0, 1,⊥}} .

for all positive integers n. For instance, given ternary-valued functions f and g

f =

0 if x̄1 + x̄2x̄3

1 if x1(x2 ⊕ x3)

⊥ else

g =

0 if x̄1x̄2 + x̄1x̄3

1 if x1x̄2 + x̄1x2x3

⊥ else

the XOR operation yields a new ternary-valued function h

h =

0 if x̄1x̄3 + x̄2x3

1 if x1x̄2x̄3 + x̄1x2x3

⊥ else

The corresponding truth tables are shown in Figure 4.2.

�

�

�

PSfrag replacements

f1

f2

f3

f4

x1 x2 x3 f g h

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 0 1 1
1 0 0 0 1 1
1 0 1 1 1 0
1 1 0 1 ⊥ ⊥
1 1 1 ⊥ ⊥ ⊥

Figure 4.2: An example of ternary-valued symbolic computation.

58

Note that XOR(⊥, x) = XOR(x,⊥) =⊥, for all x ∈ {0, 1,⊥}.

4.1 Decision Diagrams

From a computational standpoint, there would be little advantage to the symbolic

approach if each function were represented as a truth table of all 2n combinations

of Boolean values for n inputs. We could instead analyze the circuit for each input

combination separately, in the manner described in Chapter 2.

Symbolic analysis gets its traction from efficient data structures. Chief among

these are Binary Decision Diagram (BDDs). A BDD consists of a directed graph.

Each node either has an associated input variable or is designated as a constant (“0”

or “1”). Variables nodes have out-degree two: one edge designated as “0” (represented

by a dashed line in diagrams) and the other designated as “1” (represented by a

solid line in diagrams). Constant nodes have out-degree zero. To evaluate a function

represented by BDD, we begin at a designated source node, and follow a path dictated

by the values of the variables. When we terminate at a constant node, the function

evaluates to this constant. An example of a BDD is given in Figure 4.3.

�
�

�

�

�

��

�
�

�
�

PSfrag replacements

f1

f2

f3

f4

Figure 4.3: A binary decision diagram (BDD) implementing the function: f = x1(x2+
x3).

59

First proposed in 1959 by Lee [21], BDDs were popularized in 1986 by a seminal

paper by Bryant [7]. (As of this writing, Bryant’s paper is ranked as the most widely

cited paper in the history of Computer Science.) Although comparable in size to a

truth table in the worst case, BDDs are surprisingly compact for most of the functions

encountered in practice. Functions of up to 50 variables can often be represented with

ease. The strength of the representation resides in the fact that it is canonical, and

that it can be manipulated efficiently. Most logical operations have linear complexity

in the number of variables.

Decision diagrams can readily be adapted to the multi-valued case. Multi-terminal

binary decision diagrams (MTBDD), also known as “algebraic” decision diagrams,

share all of the features of their two terminal counter parts: the representation is

canonical, compact and efficient [2]. MTBDDs seem tailor-made for timing analysis.

We use multiple terminal nodes to represent the combination of Boolean values and

associated arrival times.

Consider the function specified by the truth table on the left-hand side in Fig-

ure 4.4 (implemented by the circuit fragment in Figure 2.12 in Chapter 2). Subscripts

on the logical values indicate the arrival times. The corresponding MTBDD is shown

on the right-hand side.

4.2 Controlling Values

Central to timing analysis is the concept of controlling values. Recall that 0 is the

controlling value for an AND gate, as shown in Figure 2.5. Similarly, 1 is the con-

trolling value for an OR gate. We propose a symbolic technique, called the marginal

operator, for computing the set of controlling values for an arbitrary logic function .

Before explaining the marginal, we define some ancillary operations.

The restriction operation (also known as the cofactor) of a function f with

respect to a variable x,

f | x=v,

60

x1 x2 x3 f

0 0 0 02

0 0 1 04

0 1 0 02

0 1 1 13

1 0 0 11

1 0 1 11

1 1 0 11

1 1 1 11

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
� �
� � � � 	
 � �
 � � � � � � � � � � � � � �
 � � �

�

�

PSfrag replacements

f1

f2

f3

f4

Figure 4.4: A multi-terminal binary decision diagram (MTBDD).

refers to the assignment of the constant value v ∈ {0, 1} to x. The composition

operation of a function f with respect to a variable x and a function g,

f | x=g,

refers to the substitution of g for x in f . A function f depends upon a variable x

iff f | x=0 is not identically equal to f | x=1. Call the variables that a function depends

upon its support set.

The universal quantification operation (also known as consensus) yields a func-

tion

∀ (y1, . . . , yn)f

that equals 1 iff the given function f equals 1 for all 2n assignments of Boolean values

to the variables y1, . . . , yn. The existential quantification operation (also known

as smoothing) yields a function

∃ (y1, . . . , yn)f

61

that equals 1 iff the given function f equals 1 for some assignment of Boolean values

to the variables y1, . . . , yn.

Now, the marginal operation yields a function

f ↓ (y1, . . . , yn)

that equals 1 iff the given function f is invariant for all 2n assignments of Boolean

values to y1, . . . , yn. For a single variable y, it equals 1 iff f | y=0 agrees with f | y=1:

f ↓ y = f | y=0 · f | y=1 + f | y=0 · f | y = 1.

(For a single variable, the marginal is the complement of what is known as the Boolean

difference.) For several variables y1, . . . , yn, the marginal is computed as the universal

quantification of the product of the marginals:

f ↓ (y1, . . . , yn) = ∀ y1, . . . yn [(f ↓ y1) · · · (f ↓ yn)] .

(With several variables, the marginal is not the same as the complement of the

Boolean difference, in general.) For example, with

f = x1 + x2y1 + x3y2 + x4y1y2,

we have

f ↓ y1 = x1 + x3y2 + x̄2(x̄4 + ȳ2),

f ↓ y2 = x1 + x2y1 + x̄3(x̄4 + ȳ1),

f ↓ (y1, y2) = x1 + x̄2x̄3x̄4.

Note that computing a marginal of n variables requires O(n) symbolic operations.

62

4.3 Analysis

Conceptually, the analysis is just an algorithmic implementation of procedure de-

scribed in Chapter 2, Section 2.2.3. We apply definite values to the primary inputs,

and track the propagation of signal values. Once we have established that a defi-

nite value has appeared on a gate output, this value persists for the duration of the

analysis. The arrival time of a well-defined value at a gate output is determined

either:

• by the arrival time of the earliest controlling input value;

• or by the arrival time of the latest non-controlling input value.

The analysis proceeds in time intervals. If the gates have fixed delay bounds,

we can choose the interval length to match the shortest delay bound. In each time

interval, we evaluate all the gates that received new input values in the previous

interval. In this manner, we are assured that we know the earliest time that signal

values becomes known. If definite Boolean values never arrive at one or more of the

primary outputs, then we conclude that the circuit is not combinational.

We state the algorithm – somewhat informally – and illustrate its execution on ex-

amples.

4.3.1 Symbolic Analysis Algorithm

Let X = (x1, . . . , xn) be the primary inputs. We maintain a pair of characteristic sets

for the output of each gate gi. The first

C
(0)
i (X),

consists of the set of input assignments for which the gate evaluates to 0; the second,

C
(1)
i (X),

63

the set for which it evaluates to 1. Implicitly, the complement of the union of these

two sets is the set of assignments for which the gate evaluates to ⊥.

At the outset, all wires are assumed to have undefined values, so the characteristic

sets are empty,

C
(0)
i := C

(1)
i := 0.

As the analysis proceeds, input assignments that induce gates to produce definite

output values are added to these sets. Call the addition of input assignments to the

set C
(v)
i , for some v ∈ {0, 1}, an arrival event valued v at gate gi.

Initialization

The initial arrival events occur at gates controlled by primary inputs. For instance,

suppose that an AND gate gi is connected to the primary input x. We have an initial

arrival event

C
(0)
i := x̄.

Similarly, suppose that an OR gate gj is connected to the primary input y. We have

an initial arrival event

C
(1)
j := y.

We compute such arrival events for all gates attached to the primary inputs.

Propagation

Given the initial set of arrival events, we begin propagating events forward: to the

fan-outs of the gates at which the signals arrived, and then to the fan-outs of these

gates, and so on. In each interval, we compute new arrival events for gates based on

the antecedent arrival events on their inputs.

1. Suppose that in the previous interval there was an arrival event valued v at gate

gi; that gi is a fan-in to gate gj; and that v is a controlling input value for gj,

64

producing an output value w. We compute

C
(w)
j := C

(w)
j + C

(v)
i .

If C
(w)
j changes as a result (i.e., C

(v)
i was not contained in C

(w)
j), then we have

a new arrival event valued w at gj.

2. Suppose that in the previous interval there was an arrival event valued v at gate

gi; that gi is a fan-in to gate gj; and that v is a non-controlling input value for

gj. Let gi1, . . . , gik be all the gates that fan-in to gj, and let vi1 , . . . , vik be the

non-controlling values for these fan-in gates. Suppose that these non-controlling

inputs produce an output value w for gj. We compute

C
(w)
j := C

(w)
j +

[

C
(vi1

)

i1
· · ·C

(vik
)

ik

]

.

Again, if C
(w)
j changes as a result, then we have a new arrival event valued w

at gj.

To illustrate these propagation conditions, suppose that we have an AND gate g3

with fan-in gates g1 and g2, as shown in Figure 4.5.

},{)1(
1

)0(
1 CC

},{)1(
3

)0(
3 CC

},{)1(
2

)0(
2 CC

���

��

� �

��

PSfrag replacements

f1

f2

f3

f4

Figure 4.5: An illustration of the propagation conditions.

Suppose that the characteristic sets are

C
(0)
1 = x1, C

(1)
1 = x2,

C
(0)
2 = x3, C

(1)
2 = x4,

C
(0)
3 = x1 + x3, C

(1)
3 = x2 x4.

65

Now suppose that there is an arrival event valued 0 at g1 setting

C
(0)
1 = x1 + x5.

In the next interval, we compute

C
(0)
3 := C

(0)
3 + C

(0)
1 = x1 + x3 + x5.

Now suppose that there is an arrival event valued 1 at g1 setting

C
(1)
1 = x2 + x6.

In the next interval, we compute

C
(1)
3 := C

(1)
3 +

[

C
(1)
1 C

(1)
2

]

= (x2 + x6)x4.

Termination

Termination is guaranteed since the cardinality of the characteristic sets either

increases or remains unchanged with arrival events. A characteristic set cannot grow

beyond the size of the full set of input assignments.

When the algorithm terminates, the union of the characteristic sets

C
(0)
i + C

(1)
i

for each gate gi specifies the input assignments for which gi produces definite values.

If the complement of this union includes input assignments not in the “don’t care”

set for any gate producing a primary output, then we conclude that the circuit is not

combinational. In particular, if there are no “don’t care” input assignments, then the

circuit is combinational if and only if the union consists of all input assignments for

every gate producing a primary output.

66

Also, when the algorithm terminates, the time that has lapsed – the number of

intervals times the interval length – gives a bound on the circuit delay.

4.3.2 Examples

We illustration symbolic analysis on two detailed examples.

Example 4.1

Consider the circuit shown in Figure 4.6. It consists of six AND and OR gates, with

two primary outputs, f1 and f2, and five primary inputs a, b, c, d and x (note that

the input x is repeated).

�

�

�
�

�

���

� �

���

�

�

�
�

�

� �

���

� �

�
�

�
�

�
�

�
�

�
�

�
�

PSfrag replacements

f1

f2

f3

f4

Figure 4.6: A cyclic combinational circuit.

We step through a symbolic analysis of this circuit. We assume that each gate has a

delay bound of 1 time unit, and that the primary inputs arrive at time 0.

67

Time 1

For the AND gates, controlling values of 0 on the primary inputs result in

C
(0)
1 = x̄, C

(0)
3 = b̄, C

(0)
5 = c̄.

For the OR gates, controlling values of 1 on the primary inputs result in

C
(1)
2 = a, C

(1)
4 = x, C

(1)
6 = d.

Time 2

For the AND gates, non-controlling values of 1 from the preceding OR gates result in

C
(1)
1 = x d, C

(1)
3 = b a, C

(1)
5 = c x.

For the OR gates, non-controlling values of 0 from the preceding AND gates result in

C
(0)
2 = ā x̄, C

(0)
4 = x̄ b̄, C

(0)
6 = d̄ c̄.

Time 3

For the AND gates, controlling values of 0 from the preceding OR gates result in

C
(0)
1 = x̄ + d̄ c̄, C

(0)
3 = b̄ + ā x̄, C

(0)
5 = c̄ + x̄ b̄.

For the OR gates, controlling values of 1 from the preceding AND gates result in

C
(1)
2 = a + x d, C

(1)
4 = x + b a, C

(1)
6 = d + c x.

68

Time 4

For the AND gates, non-controlling values of 1 from the preceding OR gates result in

C
(1)
1 = x(d + c),

C
(1)
3 = b(a + x d),

C
(1)
5 = c(x + b a).

For the OR gates, non-controlling values of 0 from the preceding AND gates result in

C
(0)
2 = ā(x̄ + d̄ c̄),

C
(0)
4 = x̄(ā + b̄),

C
(0)
6 = d̄(c̄ + x̄ b̄).

Time 5

For the AND gates, controlling values of 0 from the preceding OR gates result in

C
(0)
1 = x̄ + d̄ c̄,

C
(0)
3 = b̄ + ā(x̄ + d̄ c̄),

C
(0)
5 = c̄ + x̄(b̄ + ā).

For the OR gates, controlling values of 1 from the preceding AND gates result in

C
(1)
2 = a + x(d + c),

C
(1)
4 = x + b a,

C
(1)
6 = d + c(x + b a).

69

Time 6

For the AND gates, non-controlling values of 1 from the preceding OR gates result in

C
(1)
1 = x(d + c),

C
(1)
3 = b(a + x(d + c)),

C
(1)
5 = c(x + ba).

For the OR gates, non-controlling values of 0 from the preceding AND gates result in

C
(0)
2 = ā(x̄ + d̄ c̄),

C
(0)
4 = x̄(b̄ + ā).

C
(0)
6 = d̄(c̄ + x̄(b̄ + ā)).

At this point, there are no new arrival events. The characteristic sets are:

C
(0)
1 = x̄ + d̄ c̄, C

(1)
1 = x(d + c),

C
(0)
2 = ā(x̄ + d̄ c̄), C

(1)
2 = a + x(d + c),

C
(0)
3 = b̄ + ā(x̄ + d̄ c̄), C

(1)
3 = b(a + x(d + c)),

C
(0)
4 = x̄(b̄ + ā), C

(1)
4 = x + b a,

C
(0)
5 = c̄ + x̄(b̄ + ā), C

(1)
5 = c(x + ba),

C
(0)
6 = d̄(c̄ + x̄(b̄ + ā)), C

(1)
6 = d + c(x + b a).

Note that for each i = 1, . . . , 6

C
(0)
i + C

(1)
i = 1.

Hence, all input assignments produce definite values at the outputs, and so we con-

clude that the circuit is combinational. Since we propagated events for 6 time units,

we conclude that the circuit has delay 6. 2

70

Example 4.2

Consider the circuit shown in Figure 4.7. It computes four output functions, f1, f2,

f3, and f4 of three input variables a, b, and c. The corresponding equations are

2f

� �

1f

�

� �

�

3f

� �

�

4f

�

�

�

1g

2g

3g

4g

5g

6g

7g 8g

9g

10g

11g

12g

13gPSfrag replacements

f1

f2

f3

f4

Figure 4.7: A cyclic combinational circuit.

f1 = bc + b̄ f̄2

f2 = ac + bf̄3

f3 = af̄1 + bf1 + c̄f̄4

f4 = ab̄ + f̄1 + bf̄2

PSfrag replacements

f1

f2

f3

f4

71

Note that there are cyclic dependencies: f1 depends on f2; f2 depends on f3; f3

depends on f1 and f4; and f4 depends on f1 and f2. Nevertheless, this circuit is

combinational with delay 8.

We do not trace through the analysis this time. The table in Figure 4.8 summarizes

the results. It gives the characteristic sets C
(0)
i and C

(1)
i for the output gates. 2

g3

[bc̄, bc]2
[ab̄c + bc̄, c(b + ā) + b̄c̄]4

g6

[b̄(c̄ + ā), ac]2
[ā(c + b̄) + ac̄, ac]6
[ā(c + b̄) + ac̄, ābc̄ + ac]7

g10

[āb̄c, 0]2
[āb̄c, b(c + a)]4
[ā(bc̄ + b̄c), b(c + a)]5
[āb̄c + c̄(ab̄ + āb), c(b + a) + ab]6
[āb̄c + c̄(ab̄ + āb), āb̄c̄ + c(b + a) + ab]7

g13

[0, ab̄]2
[0, bc̄ + ab̄]3
[abc, bc̄ + ab̄]4
[abc + āb̄, bc̄ + ab̄]5
[abc + āb̄, b(c̄ + ā) + ab̄]8

Figure 4.8: Characteristic sets [C
(0)
i , C

(1)
i]j for the circuit of Figure 4.7, for gates gi,

i = 3, 6, 10, 13, at time intervals j = 2, . . . , 8.

Timing analysis with such an idealized model is transparent. However, the devil

is in the details – and with realistic timing models there are many detailed aspects

to consider. Nevertheless, we conclude that, at least in a conceptual sense, the anal-

ysis of cyclic circuits is no more complicated than that of acyclic circuits. We can

perform this task efficiently through symbolic event propagation, within the ternary

framework.

72

Chapter 5

Synthesis

To invent, all you need is a pile of junk and a good imagination. – Thomas

A. Edison (1847–1931)

Logic synthesis is the task of designing circuits at the level of gates and wires

to meet a specification. As a research area, it is at once mature and wide-open.

It is mature in the sense that great intellectual effort has been expended in the

development of sophisticated tools with a dizzying array of heuristics; it is wide-open

in the sense that even the best available tools produce results that everyone admits

are probably far from optimal.

For combinational logic, synthesis begins with a set of target functions, each ex-

pressed in terms of the primary input variables. This is sometimes called a register-

transfer level specification, since it specifies what must be computed by blocks of

combinational logic situated between memory registers, as shown in Figure 5.1.

���

���

���

),,(3211 xxxf

),,(3212 xxxf

),,(3213 xxxf

PSfrag replacements

f1

f2

f3

f4

Figure 5.1: A register-transfer level specification.

73

Suppose that we are given target functions, one for each gate, and asked to verify

that the circuit implements these functions. The first step is to check that the spec-

ification is consistent. By this we mean: for each gate – viewed in isolation – if we

apply the specified target functions at its inputs, do we obtain the specified target

function at its output? This is illustrated in Figure 5.2. Here we check whether a

gate g computes the target function f3 at its output given the target functions f1 and

f2 at its inputs.

�
�

�
�

�
�

� � �

� � �

� � ��

PSfrag replacements

f1

f2

f3

f4

Figure 5.2: Consistent specifications.

In an acyclic circuit, consistency is sufficient to guarantee correctness. In a cyclic

circuit, however, we may have a consistent specification, and yet the computation

may be spurious. Consider the circuit in Figure 5.3. Although absurd, the circuit is

consistent for an arbitrary function f1 and its complement f̄1.

1f 1f

PSfrag replacements

f1

f2

f3

f4

Figure 5.3: A consistent, yet spurious circuit.

We will use the following target functions to illustrate the concepts in this section:

Example 5.1 Target Functions

f1 = x̄1x2x̄3 + x1x̄2x̄3 + x1x̄2x3 + x̄1x̄2x3,

f2 = x̄1x̄2x̄3 + x1x2x3 + x1x2x̄3 + x1x̄2x3,

f3 = x̄1x2x̄3 + x̄1x̄2x̄3 + x1x̄2x̄3 + x̄1x̄2x3.

74

The end product of synthesis is a set of simplified expressions that can be trans-

lated into a network of gates. The goals may vary greatly depending on the technology

and the setting. Two obvious criteria for optimization are

• Area, as a measure of the number of transistors in the final silicon implemen-

tation. This correlates to the cost of manufacturing the circuit.

• Delay, as a measure of the time it takes for the circuit to produce outputs, given

stable inputs. This determines the performance of the circuit – in synchronous

designs, the clock speed achievable.

Our cost measure for area is the number of the literals in the algebraic expressions

– that is to say, the number of appearances of variables, without regard to negations.

For instance, in the expressions above, each function has a cost of 12, for a total

cost of 36. The literal count seems to correlate well with the silicon area of the final

implementation [6].

Our cost measure for delay is the propagation time from inputs to outputs. In most

examples, we assume a unit delay model for the gates. Accordingly, the propagation

delay is simply the number of hops along the longest sensitized path.

5.1 Logic Minimization

The first step in logic design is to simplify the Boolean expressions individually, if pos-

sible. In the sum-of-products (S-of-P) form, a Boolean expression is formulated as the

OR (disjunction) of AND (conjunctive) terms. Every student of logic design learns

the Karnaugh Map method, and perhaps the tabular Quine-McCluskey algorithm for

finding the minimal sum-of-products expression of a logic function [16], [27], [31].

Minimal in this context means with the fewest conjunctive terms, and the fewest

literals per conjunctive term. Using such a technique, the functions in Example 5.1

75

simplify to

f1 = x1x̄2 + x̄1x2x̄3 + x̄2x3,

f2 = x1x2 + x1x3 + x̄1x̄2x̄3,

f3 = x̄1x̄3 + x̄1x̄2 + x̄2x̄3,

with a total cost of 20.

For some technologies, such as programmable logic arrays (PLAs), so-called “two-

level” designs are required. In two-level designs, the functions are expressed in S-of-P

form, but conjunctive terms may be shared among the expressions. For Example 5.1,

if we select the terms,

c1 = x1x̄2x3,

c2 = x1x̄2x̄3,

c3 = x̄1x̄2x3,

c4 = x̄1x2x̄3,

c5 = x̄1x̄2x̄3,

c6 = x1x2,

we obtain the expressions

f1 = c1 + c2 + c3 + c4,

f2 = c1 + c5 + c6,

f3 = c2 + c3 + c4 + c5,

with a total cost of 17. A two-level design can be viewed as a layer of AND gates on

top of a layer of OR gates, as shown in Figure 5.4.

As a research area, two-level minimization is evidently quite mature. Sophisticated

algorithms – some exact, some heuristic – can routinely find the optimal or near

76

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

3f2f1f

PSfrag replacements

f1

f2

f3

f4

Figure 5.4: A two-level implementation for the target functions of Example 5.1.

optimal solution for networks of hundreds of functions, each depending on hundreds

of variables [4].

5.2 Multi-Level Logic

In multi-level designs, an arbitrary structure is permitted. Many of the examples

presented thus are, in fact, multi-level. Since there is greater freedom of structure,

the search space of potential solutions is correspondingly much larger. In fact, for

anything more complex than a single function of 5 input variables, an exhaustive

search of all solutions is generally intractable.

In spite of the daunting complexity, practitioners can claim considerable success

with heuristic optimization methods. For a survey of the topic, see [6]. Although there

have been innumerable approaches suggested, the most widely adopted paradigm is

that championed by the University of California at Berkeley group. It consists of an

iterative application of minimization, decomposition, and restructuring operations [5].

In a multi-level setting, expressions are often manipulated in factored form. Alge-

77

braically, a factored form is a parenthesized expression of OR and AND operations.

For Example 5.1, factored forms of the functions are

f1 = x̄1x2x̄3 + x̄2(x1 + x3),

f2 = x̄1x̄2x̄3 + x1(x2 + x3),

f3 = x̄3(x̄1 + x̄2) + x̄1x̄2,

with a total cost of 17.

The factored forms of a collection of Boolean functions {f1, . . . , fn} are in one-

to-one correspondence with multi-level structures of gates. For the example above,

the circuit is shown in Figure 5.5. In general, a factored form is not unique. Deter-

mining the optimal factorization is a difficult (NP-complete) problem. Nevertheless,

algorithms such as those in the Berkeley SIS package [38] work efficiently in practice.

Although we use the factored form in our examples, we do not discuss the algorithms

or the implementation. (The interested reader is referred to [6].)

�
�
�
�
�
�

�
�

�
�

1f

�
�

�
�
�
�
�
�

�
�

�
�

2f

�
�

�
�

�
�

�
�

�
�

2f

�
�

PSfrag replacements

f1

f2

f3

f4

Figure 5.5: A factored form for the target functions in Example 5.1.

An important operation in multi-level synthesis is substitution (also sometimes

78

called “re-substitution”). In the substitution phase, node functions are expressed, or

re-expressed, in terms of other node functions as well as of the original inputs. For

instance, with the target functions in Example 5.1, we can express f1 in terms of f2

and f3,

f1 = x̄2x3 + f̄2f3.

The substitution and minimization steps are often performed jointly. The algorithms

for this task form the corner-stone of multi-level synthesis, and are key to our expo-

sition; however, it is beyond the scope of this dissertation to delve into the details.

The reader is referred to [6]. In our implementation, we use the simplify command

of the Berkeley SIS package [38].

5.3 Substitutional Orderings

In general, for a given collection of target functions we have a choice of substitutions

that can be performed. For each target function, call the set of other target functions

that it is expressed in terms of its substitutional set. Different substitutional sets

yield alternative expression of varying cost.

With the functions in Example 5.1, substituting f3 into f1, we obtain

f1 = f3(x1 + x2) + x̄2x3.

Substituting f2 and f3 into f1, we obtain

f1 = x̄2x3 + f̄2f3.

Substituting f3 into f2, we obtain

f2 = x̄1x̄2x̄3 + x1f̄3.

79

Substituting f1 and f3 into f2, we obtain

f2 = f̄1x̄3 + f̄3x1.

Substituting f1 into f3, we obtain

f3 = f1x̄1 + x̄2x̄3.

Finally, substituting f1 and f2 into f3, we obtain

f3 = f1f̄2 + x̄2x̄3.

Other combinations of substitutions are not helpful.

In existing methodologies, an ordering is enforced among the functions in the

substitution phase to ensure that no cycles occur. This choice can influence the cost

of the solution. With the ordering shown on the right in Figure 5.6, substitution

yields the network shown on the left with a cost of 14. The corresponding circuit is

shown in Figure 5.7.

f1 = x̄2x3 + f̄2f3

f2 = x̄1x̄2x̄3 + x1f̄3

f3 = x̄3(x̄1 + x̄2) + x̄1x̄2.

PSfrag replacements

f1

f2

f3

f4

Figure 5.6: Acyclic substitution order.

Enforcing an ordering is limiting since functions near the top cannot be expressed

in terms of very many others (the one at the very top cannot be expressed in terms

of any others). Dropping this restriction can lower the cost. However, cyclic substi-

tutions can result in spurious computation.

80

�
�
�
�
�
�

2f

�
�

�
�

�
�

�
�

�
�

3f

�
�

�
�

�
�

1f

PSfrag replacements

f1

f2

f3

f4

Figure 5.7: Implementation of the acyclic solution in Figure 5.6.

81

Similarly, for the target functions of Example 5.1, if we allow every function to

be substituted into every other, then we obtain the network shown on the left in

Figure 5.8, with a cost of 12. This network is cyclic, with the dependency shown on

the right.

f1 = x̄2x3 + f̄2f3

f2 = x1f̄3 + x̄3f̄1

f3 = f1f̄2 + x̄2x̄3 �
�

�
�

�
�

PSfrag replacements

f1

f2

f3

f4

Figure 5.8: A network obtained with unordered substitutions (it is not combinational).

Unfortunately, analysis according to the techniques in Chapter 4 tells us that this

solution is not combinational. Indeed, setting x1 = 1, x2 = 1 and x3 = 1 yields

f1 = f̄2f3,

f2 = f̄3 + f̄1,

f3 = f1f̄2,

which results in indeterminate values. The key is to select a substitutional order that

minimizes the cost, and yet results in a combinational solution. Given a candidate

network, we analyze it using the analysis techniques described in Chapter 4 to decide

whether it is valid.

5.4 Branch-and-Bound Algorithms

For each node, we expect the lowest cost expression to be obtained with the full

substitutional set (i.e., all other node functions) and the highest cost expression to

be obtained with the empty set. For a network with a non-trivial number of nodes, a

brute-force exhaustive search is evidently intractable. With n nodes, there are 2n−1

substitutional sets for each node, for a total of n · 2n−1 possibilities.

We describe a branch-and-bound approach, as well as various heuristics.

82

5.4.1 The “Break-Down” Approach

With this approach, the search is performed outside the space of combinational solu-

tions. A branch terminates when it hits a combinational solution. The search begins

with a densely connected network, such as that in Figure 5.8. This initial branch

provides a lower bound on the cost. As edges are excluded in the branch-and-bound

process, the cost of the network remains unchanged or increases. (Again, since the

substitution step is heuristic, this may not be strictly true.)

Algorithm 5.1 Break-Down Synthesis

1. Analyze the current branch for combinationality. If it is combinational, add

it to a solution list. If it is not, select a set of edges to exclude based on the

analysis.

2. For each edge in the set, create a new branch. Create a node expression, ex-

cluding the incident node from the substitutional set. If the cost of the new

branch equals or exceeds that of a solution already found, kill the branch.

3. Mark the current branch as “explored”.

4. Set the current branch to be the lowest cost unexplored branch.

5. Repeat steps 1 – 4 until the cost goal is met, or until the cost of all unexplored

branches exceeds that of a solution.

2

The branching point of the algorithm occurs in Step 1. Symbolic analysis in-

forms us whether the current branch is combinational or not. If not, the analysis

suggests which new branches to form. Consider the example in Figure 5.9. Analysis

begins by dividing the network into strongly connected components. We focus on the

non-combinational components, selecting edges from them to exclude. Suppose that

component II is combinational, while component I is not. Accordingly, we form new

branches with the edges e1, e2 and e3 excluded. We preserve edges that do not belong

83

to strongly connected components, as such dependencies do not affect combination-

ality. Thus, we do not cut the edges e12, e13 and e14 for any of the newly formed

branches.

�
��

�
��

�
��

�
�

�
�

� � � 	
 � � � � 	

 � � � � � � � 	 � � 	
 �
 � � �

� � � 	
 � � � � 	

 � � � � � � � 	 � � 	
 �
 � � � �

�
�

�
�

�
�

�
�

�
�

�
��

�
��

�
�

�
�

PSfrag replacements

f1

f2

f3

f4

Figure 5.9: Example illustrating edge selection for“break-down” search strategy.

A sketch of the algorithm is shown in Figure 5.12. (This is not a complete trace

of the search; only the trajectory to a solution is shown.) For the target functions of

Example 5.1, the algorithm yields a cyclic combinational solution with a cost of 13.

The expressions are shown in Figure 5.10, and the corresponding circuit in Figure 5.11.

We argue that Algorithm 5.1 produces the optimal solution. Indeed, as the algo-

rithm proceeds, the cardinality of the substitutional sets decrease along each branch.

This produces networks with monotonically non-decreasing cost. The algorithm al-

ways explores the lowest cost open branch first. Therefore, when the algorithm termi-

84

f1 = x̄3f̄2 + x̄2x3

f2 = x̄1x̄2x̄3 + x1f̄3

f3 = x̄1f1 + x̄2x̄3 �
�

�
�

�
�

PSfrag replacements

f1

f2

f3

f4

Figure 5.10: Cyclic solution for target functions of Example 5.1.

�
�

�
�

1f

�
�

�
�
�
�
�
�

2f

�
�

�
�

�
�

3f

�
�

PSfrag replacements

f1

f2

f3

f4

Figure 5.11: Implementation of the cyclic solution in Figure 5.10.

85

nates on a combinational solution, we can assert that this is the lowest cost solution

possible.

This bold claim must be tempered with an important qualification. The substi-

tute/minimize operations that we use are based on heuristics, and themselves provide

no guarantee of optimality. The quality of our solutions is only as good as that of

these operations. For target functions with large support sets, it would appear that

the substitute/minimize step often produces results that are very far from optimal.

Many ideas immediately suggest themselves for expediting the search heuristically.

We can prioritize progress slightly, at the expense of quality, for instance by choosing

branches with fewer gates in strongly connected components. Also, we can limit the

density of edges a priori, or prune the set of edges before creating new branches.

5.4.2 The “Build-Up” Approach

With this approach, the search is performed inside the space of combinational solu-

tions. A branch terminates when it hits a non-combinational solution. The search

begins with an empty edge set. Edges are added as the substitutional sets of nodes

are augmented. As edges are included, the cost of the network remains the same or

decreases.

Algorithm 5.2 Build-Up Synthesis

1. Analyze the current branch for combinationality. If it is not combinational

discard it. If it is combinational, select a set of edges to include based on the

analysis.

2. For each edge in the set, create a new branch. Create a new node expression,

including the incident node from the substitution set.

3. Mark the current branch as “explored.”

4. Set the current branch to be the lowest cost unexplored branch.

5. Repeat steps 1 – 4 until the cost goal is met.

86

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � � � � � � � � � � � � �

� � � � � � �� � � � � � �

� � 	
 � � � � � � � � � � � � � � � �

�
 � � � � � � � � � � � � �

� � � � � � �

PSfrag replacements

f1

f2

f3

f4

Figure 5.12: “Break-down” search strategy.

87

2

A sketch of the algorithm is shown in Figure 5.13. (Again, not a complete trace.)

For the target functions of Example 5.1, the algorithm yields the same cyclic combi-

national solution, that shown in Figure 5.10.

With this method, we cannot prune branches through a lower-bound analysis.

However, exploring within the space of combinational solutions ensures that incre-

mentally better solutions are found as the computation proceeds. As an alternative

starting point, we can use an existing acyclic solution. Adding edges reduces the cost,

while potentially introducing cycles.

5.5 Example: 7-Segment Decoder

As a final example, we illustrate the design of the 7-Segment Decoder circuit shown in

Figure 1.15 of Chapter 1. As described there, the inputs to this circuit are four bits,

x0, x1, x2, x3, specifying a number from 0 to 9. The outputs are 7 bits, a, b, c, d, e, f ,

g, specifying which segments to light up in a 7-segment LED display in order to form

the image of this number.

Our goal is to design a circuit that implements the following functions:

a = x̄0x2x̄3 + x̄1(x̄2(x3 + x̄0) + x2x̄3)

b = x̄0(x1x̄3 + x̄1x̄2)

c = x̄1x̄2x3 + x̄3(x0(x2 + x1) + x̄0x̄2)

d = x̄1x̄2x3 + x̄3(x2(x̄1 + x̄0) + x1x̄2)

e = x̄0x̄1x̄2 + x̄3(x0x̄1x2 + x1(x̄2 + x̄0))

f = x̄3(x̄0x̄1 + x0x1 + x̄2) + x̄1x̄2

g = x̄3(x2 + x0) + x̄1x̄2.

With the break-down approach, we begin with the network shown in Figure 5.14,

with the ordering illustrated. This network was obtained by permitting the substi-

88

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � � � � � 	 � � � � � �

� � � � � �
 �

� � � � � � � � � � � � � � � �

� � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � ��

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

� � � � � � �

PSfrag replacements

f1

f2

f3

f4

Figure 5.13: “Build-up” search strategy.

89

tution of every function into every other. The result is a network with cost 30, as

measured by the literal count. Not surprisingly, analysis tells us that this circuit is

not combinational.

a = x̄1 c + c̄ d

b = x̄0 e

c = x̄2 a + x0x2 g + e f

d = x2 a + x1 e + x3 g

e = x̄3 c d + b

f = x̄2 e + ē g

g = b̄ f + a

b

e

g

a

c

d

f

PSfrag replacements

f1

f2

f3

f4

Figure 5.14: An invalid cyclic network for the example in Figure 1.15.

Through the branch-and-bound process, the algorithms prunes the following de-

pendencies:

d → a

a → c, g → c, f → c

g → d

c → e, b → e, d → e

e → f, g → f

f → g

90

a = x̄3x̄0 c̄ + x̄1 c

b = x̄0e

c = x̄3x2x0 + x̄2(x3x̄1 + e)

d = (x3 + x2) a + x1 e

e = x̄2(x1 + x̄0) f + x̄3 f̄

f = (x̄2 + x̄1x̄0) g + x̄3 ā

g = x̄3b̄ + a

a

g

df

b c

e
PSfrag replacements

f1

f2

f3

f4

Figure 5.15: A valid cyclic network for the example in Figure 1.15.

Paradoxically, pruning these dependencies introduces new ones:

f → e

a → f

Here f only becomes helpful in expressing e when the dependencies on b, c and d are

excluded. Similarly, a only becomes helpful in expressing f when the dependency on

e is excluded.

The result is the network shown in Figure 5.15, with the ordering illustrated.

Note that this network contains cyclic dependencies; in fact, all the functions except

d form a strongly connected component. However, analysis tells us that this network

is combinational. Note that it has cost 34. In contrast, using existing methods, we

would obtain an acyclic network with a higher cost of 37.

In Appendix B, we present synthesis results obtained with our program CYCLIFY.

We have run trials on a range of randomly generated examples and benchmark cir-

cuits. In Section B-1 we present results for optimizations of area at the network level,

that is to say, in terms of functional dependencies only. In Section B-2 we present

91

area optimizations at the gate level, that is to say, for circuits decomposed into prim-

itive gates (2-input NAND and NOR gates). Nearly all trials produced significant

optimizations, with improvements of up to 30% in the area. We note that solutions

for many of the circuits have dense strongly connected components. For example, the

dependency graph for the cyclic solution of one of the benchmark circuits, called exp,

is shown in Figure 5.16. (The circuit performs binary exponentiation.)

In this chapter, we have focused on area as our cost measure. Indeed, the case for

using feedback to optimize area is the most compelling. However, our branch-and-

bound algorithm can readily be adapted for optimization according to other metrics,

provided that analysis techniques exist to measure these. The symbolic algorithm

in Chapter 4 provides not only functional validation, but also timing information.

Accordingly, we can use our synthesis strategy to optimize for delay. While this is a

topic of ongoing research, we present preliminary results in Appendix B.

We incorporated a sliding scale for the relative weight of the two criteria, area

and delay, in the cost metric for the branch-and-bound algorithm. In Section B-3,

we present synthesis results for optimizations at the gate level, with area weighted at

one-third, and delay weighted at two-thirds. Again, nearly all designs were optimized

significantly, with simultaneous improvements of up to 10% in the area and 25% in

the delay.

The most salient result to report, and one of the main messages of this disser-

tation, is that cyclic solutions are not a rarity; they can readily be found for nearly

all of the circuits that we encountered. Our search algorithms, while heuristic in

nature, can effectively tackle circuits of sizes that are of practical importance. The

synthesis results are sufficiently convincing to warrant a bold claim: practitioners

should explore feedback optimizations for all types of combinational circuits, ranging

from the examples that we find in textbooks, to the benchmark circuits referenced

by the research community, to real-world circuits. Perhaps the ALU of the next Intel

Pentium chip will be designed with feedback. . .

92

a

h

i

b

c

g

j

k

m

o

n

PSfrag replacements

f1

f2

f3

f4

Figure 5.16: Topology of the cyclic solution for the benchmark circuit exp, with 8
inputs, 18 outputs, and cost 262. (Only nodes in the strongly connected component
are shown.)

93

Chapter 6

Discussion

A person with a new idea is a crank until the idea succeeds.

– Mark Twain (1835–1910)

In theoretical computer science, one of the main goals is to prove lower bounds on

the resources (e.g., time and/or space) required for computation. A combinational

circuits is often postulated as a representative model. In this context, a circuit is

viewed not as an abstract device, such as a Turing machine, but as a bit-level imple-

mentation of a computational procedure – in a sense, the most basic way that one

can compute something [22]. A lower bound on the circuit size is taken as a true

measure of the computational requirements of a problem. For instance, lower bounds

on circuit size have be used to justify the security of cryptographic algorithms [36].

Complexity theorists invariably define a combinational circuit as a directed acyclic

graph (DAG); see, for instance, the textbook by Papadimitriou [23]. It is conceivable

that some of the proofs of lower bounds on circuit size depend on this definition. We

hope that this dissertation will help promulgate the view that a Boolean circuit is

not necessarily a DAG; rather it is a directed graph that may have cycles, as long as

it is combinational.

In spite of the synthesis results in Chapter 5, the contemplative reader might still

ask: How much do we really gain with feedback? What is the true potential of this

idea? In a sense, feedback is a boundary optimization. In an acyclic circuit, there

94

is a topological ordering among the output functions. A function at the top of this

ordering does not depend on any other. A function at the bottom of the ordering

depends on all the others. On average, each function depends on about half the

others.

In a cyclic circuit, every gate producing an output function may depend on all

the others. Thus, reasoning in a very loose manner, feedback yields at most a 50%

increase in the overlap of the computational resources. Viewed this way, the example

in Chapter 3 – a cyclic circuit that is one-half the size of the smallest equivalent

acyclic circuit – may be representative of the best improvement that can be achieved.

Feedback is clearly effective when implementing a collection of output functions.

Could there be a benefit in implementing a single output function with feedback?

The structure shown in Figure 6.1 is certainly plausible. The output function f is

decomposed into sub-functions, and these are implemented in a cyclic configuration.

Of course, we cannot use the fan-in lower bound to argue the optimality of such a

cyclic circuit.

�

PSfrag replacements

f1

f2

f3

f4

Figure 6.1: A cyclic circuit with a single output.

95

6.1 High-Level Design

In this dissertation, we discussed combinational logic design at the gate level. The

circuit design process typically begins at higher, more abstract level in the form of

a behavioral specification. The design is approached in a hierarchical fashion: a

solution is given in terms of modules, initially viewed as “black boxes”. Each of these

modules is further refined, and perhaps broken down into simpler modules. Finally,

with modules of manageable size and complexity defined, a gate-level solution is

synthesized. This is illustrated in Figure 6.2.

������ ������

������

PSfrag replacements

f1

f2

f3

f4

Figure 6.2: Cycles at various levels within a hierarchy.

Of course, internally the modules should be designed with feedback. What can we

say about feedback between modules? Conceptually, the requirements are the same

and the potential benefits just as compelling.

The methodology that we have proposed and the software tools that we have

developed for the analysis and synthesis of cyclic circuits at the logic-level should

obviate these concerns. The development of cyclic design strategies at the behavioral

level, for instance within the framework of hardware description languages such as

96

Verilog and VHDL, is an ambitious but exciting direction of future research.

6.2 Data Structures

Throughout this dissertation, the discussion has pertained to circuits: physical de-

vices, computing by means of electrical current. The concept of a combinational

circuit with cycles required careful justification – indeed, electrical current running

in a loop could render the computation invalid.

By definition, a combinational circuit is a device that accepts inputs and produces

outputs, as shown in Figure 6.3. This definition could equally apply at a higher level

1x

2x

mx

),,(11 mxxf �

),,(12 mxxf �

),,(1 mn xxf �

� � �∆

PSfrag replacements

f1

f2

f3

f4

Figure 6.3: A combinational network.

of abstraction: that of a data structure. For instance, with a database the input

consists of a search key, and the output consists of the corresponding record. Data

structures are often represented as graphs. To extract data from the structure, we

begin at the leaves, follow a path dictated by the search criteria, and terminate at a

root node where the data is stored.

Consider binary decision diagrams (BDD), the preeminent data structure for cir-

cuit design, described in Chapter 4. An example is shown in Figure 6.4. BDDs are

defined as acyclic graphs. Indeed, the accepted wisdom is that BDDs cannot contain

cycles. If a BDD contained a cycle, then we might loop indefinitely when evaluating

a function. Or maybe not?

Consider the example in Figure 6.5. To see that this BDD is valid, note that we

drop out of the cycle at the first node if x1 = 0, and we drop out of the cycle at the

97

�
�

�

�

�

��

�
�

�
�

PSfrag replacements

f1

f2

f3

f4

Figure 6.4: A binary decision diagram (BDD) implementing the function: f = x1(x2+
x3).

fourth node if x1 = 1.

It may be shown that this cyclic BDD implements the the six functions

f1 = x1(x2 + x3),

f2 = x2 + x1x3,

f3 = x3(x1 + x2),

f4 = x1 + x2x3,

f5 = x2(x1 + x3),

f6 = x3 + x1x2.

Clearly we cannot implement the six distinct functions with a BDD consisting of fewer

than six non-terminal nodes, so this BDD is optimal with respect to the number of

nodes.

In an acyclic BDD implementing the same functions, there is an ordering among

the variable nodes. A node at the bottom of the ordering must have both out-going

edges leading to constant nodes. Consequently, it cannot be a source node for any of

these functions, since each function depends on three variables. We conclude that any

98

acyclic BDD implementing these functions has more than six non-terminal nodes.

���

������� � ������� �

� � � � �
	 ��� ��

PSfrag replacements

f1

f2

f3

f4

Figure 6.5: A cyclic BDD.

Thus, we see that the concept of a cyclic data structure is not only viable, but

also offers the possibility for size improvements over acyclic structures. This example

enlarges the scope of the concepts in this thesis: feedback is a general phenomenon

in computation, whether at a physical level or an abstract level. Future research

awaits. . .

99

Appendix A: XNF Representation

Boolean functions are most commonly represented with the operations AND, OR and

NOT. We refer to this representation as AON. For instance, the function specified

by the truth table

x1 x2 x3 f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

can be represented as

f = x̄1(x̄2 + x̄3).

Here addition denotes OR, multiplication denotes AND, and an overbar denotes

NOT.

A less common, but equally general, representation is based on the AND and

XOR operations. Together, these operations form the Galois Field GF (2). In GF (2),

we may use all the arithmetic properties valid in the familiar fields, e.g., the fields of

rational, real and complex numbers. In addition, GF (2) satisfies x ·x = x and x⊕x =

0, where multiplication denotes AND, and ⊕ denotes XOR. In this representation,

the function above is

f = 1 ⊕ x1 ⊕ x2x3 ⊕ x1x2x3.

Note that 1 ⊕ x = x̄.

100

As early as 1929, Zhegalkin showed that this representation is canonical [51]: if

we multiply out all parentheses, perform the simplifications x ⊕ x = 0 and x · x = x,

and sort the product terms, the resulting expression is unique. Accordingly, we call

the representation XNF, for XOR Normal Form. It is also sometimes known as the

Reed-Muller form.

The XNF representation has distinct advantages when manipulating expressions

algebraically. Since it is canonical, we need not concern ourselves with simplifying

the expressions, as we would working with the AON representation. Furthermore,

unlike AON, the dependence of a function on its variables is explicit in XNF. If a

variable appears in an expression, then there exists some assignment of values to the

other variables such the value of the expression depends on the value of that variable.

What follows is a proof of the uniqueness of the representation. Denote

x1 ⊕ · · · ⊕ xn by

n
∑

i=1

xi,

and

x1 · · ·xn by

n
∏

i=1

xi.

Let f be an n-ary Boolean function.

Proposition 6.1 To every n-ary Boolean function f there exists a unique family F

of subsets of N = {1, . . . , n} such that

f(x1, . . . , xn) =
∑

I ∈F

∏

i∈I

xi. (6.1)

For example,

x1 + x2 = x1 ⊕ x2 ⊕ x1x2

with F = {{1}, {2}, {1, 2}}. Call the right-hand side of Equation 6.1 a Boolean poly-

nomial.

Proof: Let P(N) be the family of all subsets of N , and let O(n) be the set of n-ary

101

Boolean functions. For every F ⊆ P(N), denote by φ(F) the corresponding Boolean

polynomial. Clearly φ is a map from the set P(P(N)) of families of subsets of N into

O(n).

Claim The map φ is injective.

Proof: Let φ(F) = φ(G) for some F, G ⊆ P(N). By the way of contradiction,

suppose that F \ G 6= ∅. Choose I ∈ F \ G of the least possible cardinality. Put

ai = 1 for i ∈ I and ai = 0 otherwise. For A = (a1, . . . , an), we have φ(F)(A) = 1,

since
∏

i∈ I ai = 1 and all the other monomials vanish at A; while φ(G)(A) = 0 , since

every J ∈ G meets N \ I. This contradiction shows that F ⊆ G. By symmetry

G ⊆ F and so G = F . Now |P(P(N))| = 22n

= |O(n)| and hence φ is a bijection

from P(P(N)) onto O(n), proving the uniqueness. 2

102

Appendix B: Synthesis Results

B-1 Optimization of Area at the Network Level

We present a simple comparison between the cost of cyclic versus acyclic substitutions.

The substitution/minimization operation is performed with the simplify procedure

in the Berkeley SIS package [38], with parameters:

• method = snocomp,

• dctype = all,

• filter = exact,

• accept = fct lits.

The cost given is that of the resulting network, as measured by the literal count

of the nodes expressed in factored form. This is compared to the cost of the network

obtained by executing simplify directly with the same parameters. For the larger

circuits, the amount of improvement drops off due to time limits imposed on the

search.

For benchmark circuits, we used the usual suspects, namely the Espresso [52] suite,

as well as the International Workshop on Logic Synthesis [53] suite. Examples were

selected based on size and suitability (generally, circuits with fewer than 30 inputs

and fewer than 30 outputs). For circuits with latches, we extracted the combinational

part. In Tables 6.1 and 6.2, we present those circuits for which cyclic solutions were

found. Column 4 gives the improvement, and Column 5 the computation time.

Since randomly generated functions are very dense, they are not generally rep-

resentative of functions encountered in practice. Nevertheless, it is interesting to

103

Espresso Benchmarks
Simplify CYCLIFY Improvement Time (H:M:S)

p82 104 90 13.5% 00:02:03
t4 109 89 18.3% 00:00:02

dc2 130 123 5.4% 00:01:34
apla 185 131 29.2% 00:00:31
tms 185 158 14.6% 00:01:17
m2 231 207 10.4% 00:06:02
t1 273 206 24.5% 00:21:40
b4 292 281 3.8% 00:09:50

exp 320 260 18.8% 00:33:26
in3 361 333 7.8% 00:22:06
in2 397 291 26.7% 00:00:45
b10 398 359 9.8% 00:08:29

gary 421 404 4.0% 00:18:15
m4 439 412 6.2% 00:07:22
in0 451 434 3.8% 00:05:53

max1024 793 774 2.4% 00:00:29

Table 6.1: Cost (literals in factored form) of Berkeley SIS Simplify vs. CYCLIFY

for Espresso Benchmarks.

examine the performance of the CYCLIFY program on these. We present results

from random trials in Table 6.3. Each row lists the results of 25 trials. Cyclic solu-

tions were found in nearly all cases (3rd column). The average improvement is given

in the 4th column, and the range of improvement in the 5th column.

B-2 Optimization of Area at the Gate Level

Here we compare the results of cyclic vs. acyclic optimizations for designs carried

through to the decomposition and mapping phases The optimizations are performed

according to the standard “script.rugged” sequence and then mapped to fan-in 2

NAND/NOR gates and inverters.

Table 6.4 shows the results on some of the same benchmark collection. Again, the

sequence begins with a collapsed specification of the circuit.

104

IWLS 93 Benchmarks
Simplify CYCLIFY Improvement Time (H:M:S)

ex6 85 76 10.6% 00:00:06
inc 116 112 3.4% 00:00:04

bbsse 118 106 10.2% 00:00:08
sse 118 106 10.2% 00:00:10

5xp1 123 109 11.4% 00:00:01
s386 131 113 13.7% 00:00:08
bw 171 163 4.7% 00:15:41

s400 179 165 7.8% 00:02:12
s382 180 165 8.3% 00:02:30

s526n 194 189 2.6% 00:00:29
s526 196 188 4.1% 00:00:25
cse 212 177 16.5% 00:00:05
clip 213 193 9.4% 00:00:01

pma 226 211 6.6% 00:04:30
dk16 248 233 6.0% 00:00:53
s510 260 227 12.7% 00:00:05
ex1 309 276 10.7% 00:09:11
s1 332 322 3.0% 00:03:34

duke2 415 397 4.3% 00:02:58
styr 474 443 6.5% 00:03:24

planet1 550 517 6.0% 05:09:19
planet 555 504 9.2% 02:57:47
s1488 622 589 5.3% 00:47:04
s1494 659 634 3.8% 05:19:41
table3 1287 1175 8.7% 12:39:20
table5 1059 1007 4.9% 14:10:10

s298 2598 2445 5.9% 10:15:03
ex1010 3703 3593 3.0% 10:57:58

Table 6.2: Cost (literals in factored form) of Berkeley SIS Simplify vs. CYCLIFY

for the Workshop on Logic and Synthesis Benchmarks.

105

Randomly Generated Networks
In. # Out. Cyclic Solns. Found Average. Improvement Range

5 5 100% 8.5% 3% – 17%
5 7 96% 9.1% 0% – 18%
5 10 100% 12.0% 2% – 20%
5 15 100% 13.4% 7% – 23%
5 20 100% 14.2% 8% – 18%
7 10 96% 5.6% 0% – 11%
7 15 88% 3.6% 0% – 10%

Table 6.3: Cost improvement (literals in factored form) of CYCLIFY over Berkeley
SIS Simplify for randomly generated networks (25 trials per row).

• For the results in column 2, we apply the “script.rugged” sequence.

• For the results in column 3, we apply the “script.rugged” sequence, but using

our CYCLIFY command in the place of the SIS simplify command.

In both cases, the results are mapped with the command “map -m 0” to a NAND2/NOR2

library, specified in Figure 6.6. The area improvements obtained with the cyclic solu-

tions, as a percentage of the area of the acyclic solutions, are given in column 4. All

cyclic solutions were validated in their final form, at the gate-level.

GATE zero 0 O=CONST0;

GATE one 0 O=CONST1;

GATE inv1 1 O=!a; PIN * INV 1 999 1.0 0.0 1.0 0.0

GATE nand2 2 O=!(a*b); PIN * INV 1 999 2.0 0.0 2.0 0.0

GATE nor2 2 O=!(a+b); PIN * INV 1 999 2.0 0.0 2.0 0.0

Figure 6.6: NAND2/NOR2 library, in “genlib” format.

B-3 Joint Optimization of Area and Delay at the

Gate Level

Finally, we compare gate-level optimization according to the standard “script.delay”

sequence. In the optimizations with CYCLIFY, we assigned an arbitrary weighting

106

LGSynth93 Benchmarks
SIS Area CYCLIFY Area Improvement

5xp1 203 182 10.34%
ex6 194 152 21.65%

planet 943 889 5.73 %
s386 231 222 3.90 %
bw 302 255 15.56%
cse 344 329 4.36 %

pma 409 393 3.91 %
s510 514 483 6.03 %

duke2 847 673 20.54%
styr 858 758 11.66%

s1488 1084 1003 7.47 %

Table 6.4: Area of SIS solutions vs. CYCLIFY solutions for Benchmarks Optimized
with “script.rugged”, and mapped to NAND2/NOR2 gates and inverters.

of one-third to the area and two-thirds to the delay. Again, the results were mapped

to two-input NAND/NOR gates and inverters. We assume an area of 2 units per

gate, and 1 unit per inverter; and a delay of bound of 1 time unit per gate, and 0.5

time units per inverter.

Table B-3 shows the benchmarks for which cyclic solutions were found offering

improvement in either area or delay. The area and delay of the SIS solutions are

given in columns 2 and 3, respectively. The area and delay of the CYCLIFY solutions

are given in columns 4 and 6, respectively. The improvements in area and delay, as

percentages of the SIS solutions, are given in Columns 5 and 7, respectively.

107

Espresso Benchmarks
SIS CYCLIFY

Area Delay Area Delay
p82 175 19.0 167 4.6 % 15.0 21.1 %
apla 242 26.0 243 -0.4 % 25.0 3.8 %
tms 302 31.0 292 3.3 % 30.0 3.2 %

t1 343 17.0 327 4.6 % 14.0 17.6 %
b4 474 30.0 464 2.1 % 29.0 3.4 %

exp 502 31.0 480 4.4 % 29.0 6.4 %
in3 599 40.0 593 1.0 % 33.0 17.5 %
in2 590 34.0 558 5.4 % 29.0 14.7 %
b10 681 37.0 691 -1.5 % 35.0 5.4 %
in0 751 42.0 777 -3.5 % 37.0 11.9 %

LGSynth93 Benchmarks
SIS CYCLIFY

Area Delay Area Delay
5xp1 210 23.0 180 14.3 % 22.0 4.3 %

planet 964 40.0 938 2.7 % 38.0 5.0 %
s386 222 21.0 217 2.2 % 20.0 4.7 %
bw 280 28.0 254 9.3 % 20.5 26.8 %
cse 337 29.5 333 1.2 % 27.5 6.7 %
clip 356 28.0 342 3.9 % 27.0 3.5 %

s510 452 28.0 444 1.8 % 24.0 14.3 %
ex1 526 40.0 522 0.7 % 34.0 15.0 %
s1 566 36.0 542 4.2 % 31.0 13.9 %

duke2 742 38.0 716 3.5 % 34.0 10.5 %
styr 821 39.0 827 -0.7 % 36.0 7.7 %

s1488 1016 43.0 995 2.1 % 34.0 20.9 %
s1494 1090 46.0 1079 1.0 % 39.0 15.2 %

Table 6.5:

Area and Delay of Berkeley SIS vs. CYCLIFY for Benchmarks with “script.delay”
optimizations, and mapping to NAND2/NOR2 gates and inverters.

108

Bibliography

[1] E. Allender, “Circuit Complexity before the Dawn of the New Millennium,” in

Conf. Foundations of Software Technology and Theoretical Computer Science,

published as Springer Lecture Notes in Computer Science, Vol. 1180, pp. 1–18,

1996.

[2] R. I. Bahar, H. Cho, G. D. Hachtel, E. Macii, F. Somenzi, “Timing Analysis of

Combinational Circuits Using ADDs,” European Conf. Design Automation, pp.

625–629, 1994.

[3] R. I. Bahar, E.A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo,

F. Somenzi, “Algebraic Decision Diagrams and their Applications,” Int’l Conf.

Computer-Aided Design, 1993.

[4] R. K. Brayton, G. D. Hachtel, C. T. McMullen, A. L. Sangiovanni-Vincentelli,

“Logic Minimization Algorithms for VLSI Synthesis,” Kluwer Academic, 1984.

[5] R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, A. Wang, “MIS:

Multiple-level Interactive Logic Optimization System,” IEEE. Trans. Computer-

Aided Design, Vol. 6, No. 6, pp. 1062–1081, 1987.

[6] R. K. Brayton, G. D. Hachtel, C. T. McMullen, A. L. Sangiovanni-Vincentelli,

“Multilevel Logic Synthesis,” Proceedings IEEE, Vol. 78, No. 2, pp. 264–300,

1990.

[7] R. E. Bryant, “Graph-Based Algorithms For Boolean Function Manipulation,”

IEEE Trans. Computers, Vol. C-35, No. 6, pp. 677–691, 1986.

109

[8] R. E. Bryant, “Boolean Analysis of MOS Circuits,” IEEE Trans. Computer-Aided

Design, pp. 634–649, 1987.

[9] J. A. Brzozowski, C.-J. H. Seger, “Asynchronous Circuits,” Springer-Verlag, 1995.

[10] E. S. Davidson, “An Algorithm for NAND Decomposition under Network Con-

straints,” IEEE Trans. Computers, Vol. C-18, No. 12, pp. 1098–1109, 1969.

[11] R. Drechsler, W. Gunter, “Exact Circuit Synthesis,” Int’l Conf. Advanced Com-

puter Systems, pp. 517–524, 1998.

[12] S. A. Edwards, “Making Cyclic Circuits Acyclic,” Design Automation Conf., pp.

159–162, 2003.

[13] E. B. Eichelberger, “Hazard Detection in Combinational and Sequential Switch-

ing Circuits,” IBM J. Research & Development, Vol. 9, pp. 90–99, 1965.

[14] M. R. Garey, D. S. Johnson, “Computers and Intractability: A Guide to the

Theory of NP-completeness,” W. H. Freeman & Co., 1979.

[15] D. A. Huffman, “Combinational Circuits with Feedback,” Recent Developments

in Switching Theory, A. Mukhopadhyay, ed., pp. 27–55, 1971.

[16] M. Karnaugh, “The Map Method for Synthesis of Combinational Logic Circuits,”

Trans. AIEE, Pt. I, Vol. 79, No. 9, pp. 593–599, 1953.

[17] W. H. Kautz, “The Necessity of Closed Circuit Loops in Minimal Combinational

Circuits,” IEEE Trans. Computers, Vol. C-19, pp. 162–166, 1970.

[18] V. Khrapchenko, ”Depth and Delay in a Network,” Soviet Math. Dokl., No. 19,

pp. 1006–1009, 1978.

[19] Y. Kukimoto, R. Brayton, “Exact Required Time Analysis via False Path De-

tection,” Design Automation Conf., pp. 220–225, 1997.

[20] E. L. Lawler, “An Approach to Multilevel Boolean Minimization,” Journal of

the ACM, Vol. 11, No. 3, pp. 283–295, 1964.

110

[21] C. Y. Lee, “Representation of Switching Circuits by Binary-Decision Programs,”

Bell System Technical Journal, Vol. 38, pp. 985–999, 1959.

[22] L. Lovász, D. B. Shmoys, É. Tardos, “Combinatorics in Computer Science, ” in

Handbook of Combinatorics, R. L. Graham, M. Grötschel, L. Lovász, eds., Elsevier

Science, pp. 2012, 1995.

[23] C. H. Papadimitriou, “Computational Complexity,” Addison-Wesley, pp. 80,

1995.

[24] S. Malik, “Analysis of Cyclic Combinational Circuits,” IEEE Trans. Computer-

Aided Design, Vol. 13, No. 7, pp. 950–956, 1994.

[25] A. Markov, “On the Inversion Complexity of a System of Functions,” Soviet

Math. Dokl., No. 116, pp. 917–919, 1957; also published in Journal of the ACM,

Vol. 5, pp. 331–334, 1958.

[26] C. R. McCaw, “Loops in Directed Combinational Switching Networks,” Engi-

neer’s Thesis, Stanford University, 1963.

[27] E. McCluskey, “Minimization of Boolean Functions,” Bell System Technical

Journal, Vol. 35, pp. 437–457, 1956.

[28] C. Mead, L. Conway, “Introduction to VLSI Systems,” Addison-Wesley, 1980.

[29] M. Mendler, M. Fairlough, “Ternary Simulation: A Refinement of Binary Func-

tions or an Abstraction of Real-Time Behavior, ” Workshop on Designing Correct

Circuits, 1996.

[30] S. Minato, “Zero-suppressed BDDs for Set Manipulation in Combinational Prob-

lems,” Design Automation Conf., pp. 272–277, 1993.

[31] W. Quine, “The Problem of Simplifying Truth Functions,” American Math.

Monthly, Vol. 59, No. 8, pp. 521–531, 1952.

111

[32] A. Raghunathan, P. Ashar, S. Malik, “Test Generation for Cyclic Combinational

Circuits,” IEEE Trans. Computer-Aided Design, Vol. 14, No. 11, pp. 1408–1414,

1995.

[33] M. Riedel, J. Bruck, “Cyclic Combinational Circuits: Analysis for Synthesis,”

Int’l Workshop Logic and Synthesis, pp. 105–112, 2003.

[34] M. Riedel, J. Bruck, “The Synthesis of Cyclic Combinational Circuits,” Design

Automation Conf., pp. 163–168, 2003.

[35] R. L. Rivest, “The Necessity of Feedback in Minimal Monotone Combinational

Circuits,” IEEE Trans. Computers, Vol. C-26, No. 6, pp. 606–607, 1977.

[36] J. Rothe, “Some Facets of Complexity Theory and Cryptography,” ACM Com-

puting Surveys, Vol. 34, No. 4, pp. 504–549, 2002.

[37] D. Scott, “A Type-Theoretical Alternative to CUCH, ISWIM, OWHY,” Theoret-

ical Computer Science, Vol. 121, pp. 411–440. (Published version of unpublished

notes, Oxford, 1969.)

[38] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,

P. Stephan, R. Brayton, A. Sangiovanni-Vincentelli, “SIS: A System for Sequential

Circuit Synthesis,” Tech. Rep., UCB/ERL M92/41, Electronics Research Lab,

University of California, Berkeley, 1992.

[39] C. E. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,” Trans.

AIEE, Vol. 57 , pp. 713–723, 1938.

[40] C. E. Shannon, “The Synthesis of Two Terminal Switching Circuits,” Bell System

Technical Journal, Vol. 28, pp. 59–98, 1949.

[41] C. E. Shannon, “Realization of All 16 Switching Functions of Two Variables

Requires 18 Contacts,” Memorandum MM 53-1400-40, Bell Laboratories, 1953.

[42] T. R. Shiple, “Formal Analysis of Synchronous Circuits,” Ph.D. Dissertation,

University of California, Berkeley, 1996.

112

[43] T. R. Shiple, V. Singhal, R. K. Brayton, A. L. Sangiovanni-Vincentelli, “Analysis

of Combinational Cycles in Sequential Circuits,” IEEE Int’l Symp. Circuits and

Systems, Vol. 4, pp. 592–595, 1996.

[44] T. R. Shiple, G. Berry, H. Touati, “Constructive Analysis of Cyclic Circuits,”

European Design and Test Conf., pp. 328–333, 1996.

[45] R. A. Short, “A Theory of Relations Between Sequential and Combinational

Realizations of Switching Functions,” Ph.D. Dissertation, Stanford University,

1961.

[46] A. Srinivasan, S. Malik, “Practical Analysis of Cyclic Combinational Circuits,”

IEEE Custom Integrated Circuits Conf., pp. 381–384, 1996.

[47] L. Stok, “False Loops Through Resource Sharing,” Int’l Conf. Computer-Aided

Design, pp. 345–348, 1992.

[48] I. Wegener, “The Complexity of Boolean Functions,” John Wiley & Sons, 1987.

[49] H. Yalcin, J. Hayes, “Event Propagation Conditions in Circuit Delay Computa-

tion,” ACM Trans. Design Automation of Electronic Systems, Vol. 2, No. 3, pp.

249—280, 1997.

[50] M. Yoeli, S. Rinon, “Application of Ternary Algebra to the Study of Static

Hazards,” Journal of the ACM, Vol. 11, No. 1, pp. 84–97, 1964.

[51] I. Zhegalkin, “The Arithmetization of Symbolic Logic,” Math. Sbornik, Vol. 36,

pp. 205–338, 1929.

[52] Benchmarks from “Logic Minimization Algorithms for VLSI Synthesis,” by R.

K. Brayton et al., available at ftp://ic.eecs.berkeley.edu/.

[53] Benchmarks from the 1993 Int’l Workshop on Logic and Synthesis, available at

http://www.cbl.ncsu.edu/.

	intro
	riedel-cyclic-combinational-circuits

