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Chapter 1

Synthesizing Combinational Logic to Generate

Probabilities: Theories and Algorithms

1.1 Chapter Overview

As CMOS devices are scaled down into the nanometer regime, concerns about

reliability are mounting. Instead of viewing nano-scale characteristics as an im-

pediment, technologies such as PCMOS exploit them as a source of randomness.

The technology generates random numbers that are used in probabilistic algorithms.

With the PCMOS approach, different voltage levels are used to generate different

probability values. If many different probability values are required, this approach

becomes prohibitively expensive.

In this chapter, we demonstrate a novel technique for synthesizing logic that gen-

erates new probabilities from a given set of probabilities. We focus on synthesizing

combinational logic to generate arbitrary decimal probabilities from a given set of

input probabilities. We demonstrate how to generate arbitrary decimal probabilities

from small sets – a single probability or a pair of probabilities – through combina-

tional logic.

The remainder of this chapter is organized as follows: Section 1.2 introduces the

problem of synthesizing combinational logic to generate decimal probabilities. Sec-

tion 1.3 describes related work. Sections 1.4 and 1.5 show the existence of a pair

of probabilities and of a single probability, respectively, that can be used as input

sources to generate arbitrary decimal probabilities. Section 1.6 describes our imple-

mentation and presents algorithms for optimizing the resulting circuits. Section 1.7

demonstrates the effectiveness of the proposed algorithms. Finally, Section 1.8 sum-

marizes this chapter.

1.2 Introduction and Background

It can be argued that the entire success of the semiconductor industry has been

predicated on a single, fundamental abstraction, namely, that digital computation

1



2 1 Synthesizing Combinational Logic to Generate Probabilities: Theories and Algorithms

consists of a deterministic sequence of zeros and ones. From the logic level up,

the precise Boolean functionality of a circuit is prescribed; it is up to the physical

layer to produce voltage values that can be interpreted as the exact logical values

that are called for. This abstraction delivers all the benefits of the digital paradigm:

precision, modularity, extensibility. And yet, as circuits are scaled down into the

nanometer regime, delivering the physical circuits underpinning the abstraction is

increasingly costly and challenging. Power consumption is a major concern [6].

Also, soft errors caused by ionizing radiation are a problem, particularly for circuits

operating in harsh environments [1].

We advocate a novel view for digital computation: instead of transforming defi-

nite inputs into definite outputs – say, Boolean, integer, or real values into the same –

we design circuits that transform probability values into probability values; so, con-

ceptually, real-valued probabilities are both the inputs and the outputs. The circuits

process random bit streams; these are digital, consisting of zeros and ones; they are

processed by ordinary logic gates, such as AND and OR. The inputs and outputs are

encoded through the statistical distribution of the signals instead of specific values.

When cast in terms of probabilities, the computation is robust [10].

The topic of computing probabilistically dates back to von Neumann [9]. Many

flavors of probabilistic design have been proposed for circuit-level constructs. For

instance, [8] presents a design methodology based on Markov random fields, geared

toward nanotechnology.Recent work on probabilisticCMOS (PCMOS) is a promis-

ing approach. Instead of viewing variable circuit characteristics as an impediment,

PCMOS exploits them as a source of randomness. The technology generates random

numbers that are used in probabilistic algorithms [3].

Vin

Vdd

CL

noise

Fig. 1.1: A PCMOS switch. It consists of an inverter with its input coupled to a noise

source.

A PCMOS switch is an inverter with the input coupled to a noise source, as

shown in Figure 1.1. With the input Vin set to 0 volts, the output of the inverter

has a certain probability p (0 ≤ p ≤ 1) of being at logical one. Suppose that the

probability density function of the noise voltage V is f (V ) and that the trip point of
the inverter is Vdd/2, where Vdd is the supply voltage. Then, the probability that the
output is one equals the probability that the input to the inverter is below Vdd/2, or

p =

∫ Vdd/2

−∞
f (V )dV,
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which corresponds to the shaded area in Figure 1.2. Thus, with a given noise distri-

bution, p can be modulated by changingVdd .

↑

0 Vdd

2

Noise Voltage V

Probability Density of V

Fig. 1.2: Probability density function of the noise source. The probability that the

output of the PCMOS switch is one equals the shaded area in the figure. Changing

Vdd will change this probability.

In [2], PCMOS switches are applied to form a probabilistic system-on-a-chip

(PSOC) architecture that is used to execute probabilistic algorithms. In essence, the

PSOC architecture consists of a host processor that executes the deterministic part

of the algorithm, and a coprocessor built with PCMOS switches that executes the

probabilistic part of the algorithm. The PCMOS switches in the coprocessor are

configured to realize the set of probabilities needed by the algorithm. This approach

achieves an energy-performance-product improvement over conventional architec-

tures for some probabilistic algorithms.

However, as is pointed out in [2], a serious problem must be overcome before

PCMOS can become a viable design strategy for many applications: since the prob-

ability p for each PCMOS switch is controlled by a specific voltage level, different

voltage levels are required to generate different probability values. For an appli-

cation that requires many different probability values, many voltage regulators are

required; this is costly in terms of area as well as energy.

In this chapter, we present a synthesis strategy to mitigate this issue: we describe

a method for transforming probability values from a small set to many different

probability values entirely through combinational logic. For what follows, when we

say “with probability p,” we mean “with a probability p of being at logical one.”

When we say “a circuit,” we mean a combinational circuit built with logic gates.

Example 1.1. Suppose that we have a set of probabilities S = {0.4,0.5}. As illus-
trated in Figure 1.3, we can generate new probabilities from this set:

1. An inverter with an input x with probability 0.4 will have output z with proba-

bility 0.6 since for an inverter,

P(z = 1) = P(x = 0) = 1−P(x= 1). (1.1)



4 1 Synthesizing Combinational Logic to Generate Probabilities: Theories and Algorithms

P(x = 1) = 0.4
x z

P(z = 1) = 0.6

(a)

AND

P(x = 1) = 0.4

P(y = 1) = 0.5

x

y
z

P(z = 1) = 0.2

(b)

NOR

P(x = 1) = 0.4

P(y = 1) = 0.5

x

y
z

P(z = 1) = 0.3

(c)

Fig. 1.3: An illustration of generating new probabilities from a given set of proba-

bilities through logic. (a): An inverter implementing pz = 1− px. (b): An AND gate

implementing pz = px · py. (c): A NOR gate implementing pz = (1− px) · (1− py).

2. An AND gate with inputs x and y with independent probabilities 0.4 and 0.5,

respectively, will have an output z with probability 0.2 since for an AND gate,

P(z = 1) = P(x = 1,y = 1) = P(x = 1)P(y = 1). (1.2)

3. A NOR gate with inputs x and y with independent probabilities 0.4 and 0.5,

respectively, will have output z with probability 0.3 since for a NOR gate,

P(z = 1) = P(x = 0,y = 0) = P(x = 0)P(y = 0)

= (1−P(x= 1))(1−P(y= 1)).
(1.3)

Thus, using only combinational logic, we can get the additional set of probabilities

{0.2,0.3,0.6}.�

Motivated by this example, we consider the problem of how to synthesize com-

binational logic to generate a required probability q from a given set of probabilities

S = {p1, p2, . . . , pn}. Specifically, we focus on synthesizing arbitrary decimal prob-

abilities (i.e., q is a decimal number). We assume that the probabilities in a set S

can be freely chosen and each element in S can be used as the input probability any

number of times. (We say that the probability is duplicable.) The problem is to find

a good set S such that, for an arbitrary decimal probability, we can construct a circuit

to generate it.

As a result, in Section 1.4, we will show that there exist sets consisting of two

elements that can be used to generate arbitrary decimal probabilities. In fact, in

Section 1.4.1, we will first show that we can generate arbitrary decimal probabili-

ties from the set S = {0.4,0.5}. The proof is constructive: we will show a proce-

dure for synthesizing logic that generates such probabilities. Next, in Section 1.4.2,

we will show that we can generate arbitrary decimal probabilities from the set
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S = {0.5,0.8}. We will show that with this set of input probabilities, for an out-

put probability of n decimal digits, we can synthesize combinational logic with 2n

inputs.

Further, in Section 1.5, we will show that there exist sets consisting of a single

element that can be used to generate arbitrary decimal probabilities. This is essen-

tially a mathematical result: we will show that the single probability value cannot

be a rational value; it must be an irrational root of a polynomial.

In Section 1.6, we will show a practical algorithm based on fraction factorization

to synthesize circuits that generate decimal probabilities from the set S= {0.4,0.5}.
The proposed algorithm optimizes the depth of the circuit.

1.3 Related Work

We point to three related pieces of research:

• In an early set of papers, Gill discussed the problem of generating a new set of

probabilities from a given set of probabilities [4, 5]. He focused on synthesizing

a sequential state machine to generate the required probabilities.

• In recent work, the proponents of PCMOS discussed the problem of synthesizing

combinational logic to generate probability values [2]. These authors suggest a

tree-based circuit. Their objective is to realize a set of required probabilities with

minimal additional logic. This is positioned as future work; no details are given.

• Wilhelm and Bruck [11] proposed a general method for synthesizing switching

circuits to achieve a desired probability. Their designs consist of relay switches

that are open or closed with specified probabilities. They proposed an algorithm

that generates circuits of optimal size for any binary fraction.

In contrast to Gill’s work and Wilhelm and Bruck’s work, we focus on com-

binational circuits built with logic gates. Our approach dovetails nicely with the

circuit-level PCMOS constructs. It is complementary and orthogonal to the switch-

based approach of Wilhelm and Bruck. Our scheme can generate arbitrary decimal

probabilities, whereas the method of Wilhelm and Bruck only generates binary frac-

tions.

1.4 Sets with Two Elements that Can Generate Arbitrary

Decimal Probabilities

In this section, we will show two input probability sets that contain only two

elements and can generate arbitrary decimal probabilities. The first one is the set

S = {0.4,0.5} and the second one is the set S = {0.5,0.8}.
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1.4.1 Generating Decimal Probabilities from the Input Probability

Set S = {0.4,0.5}

We will first show that we can generate arbitrary decimal probabilities from the

input probability set S = {0.4,0.5}. Then, we will show an algorithm to synthesize

circuits that generate arbitrary decimal probabilities from the set of input probabili-

ties.

Theorem 1.1. With circuits consisting of fanin-two AND gates and inverters, we can

generate arbitrary decimal fractions as output probabilities from the input proba-

bility set S = {0.4,0.5}.

Proof. First, we note that an inverter with a probabilistic input gives an output prob-

ability equal to one minus the input probability, as was shown in Equation (1.1). An

AND gate with two probabilistic inputs performs a multiplication on the two input

probabilities, as was shown in Equation (1.2). Thus, we need to prove that with the

two operations 1− x and x · y, we can generate arbitrary decimal fractions as output

probabilities from the input probability set S = {0.4,0.5}. We prove this statement

by induction on the number of digits n after the decimal point.

Base case:

1. n = 0. It is trivial to generate 0 and 1.

2. n = 1. We can generate 0.1, 0.2 and 0.3 as follows:

0.1 = 0.4×0.5×0.5,

0.2 = 0.4×0.5,

0.3 = (1−0.4)×0.5.

Since we can generate the decimal fractions 0.1,0.2,0.3 and 0.4, we can gen-

erate 0.6,0.7,0.8 and 0.9 with an extra 1− x operation. Together with the given

value 0.5, we can generate any decimal fraction with one digit after the decimal

point.

Inductive step:

Assume that the statement holds for all m≤ (n−1). Consider an arbitrary decimal

fraction z with n digits after the decimal point. Let u = 10n · z. Here u is an integer.

Consider the following four cases.

1. The case where 0≤ z≤ 0.2.

a. The integer u is divisible by 2. Let w = 5z. Then 0≤w≤ 1 and w = (u/2) ·
10−n+1, having at most (n− 1) digits after the decimal point. Thus, based

on the induction hypothesis, we can generate w. It follows that z can also

be generated as z = 0.4×0.5×w.
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b. The integer u is not divisible by 2 and 0 ≤ z ≤ 0.1. Let w = 10z. Then

0 ≤ w ≤ 1 and w = u · 10−n+1, having at most (n− 1) digits after the dec-
imal point. Thus, based on the induction hypothesis, we can generate w. It

follows that z can also be generated as z = 0.4×0.5×0.5×w.

c. The integer u is not divisible by 2 and 0.1< z≤ 0.2. Let w = 2−10z. Then

0 ≤ w < 1 and w = 2− u · 10−n+1, having at most (n− 1) digits after the
decimal point. Thus, based on the induction hypothesis, we can generate w.

It follows that z can also be generated as z = (1−0.5×w)×0.4×0.5.

2. The case where 0.2 < z≤ 0.4.

a. The integer u is divisible by 4. Let w = 2.5z. Then 0 < w ≤ 1 and w =
(u/4) ·10−n+1, having at most (n−1) digits after the decimal point. Thus,

based on the induction hypothesis, we can generate w. It follows that z can

be generated as z = 0.4×w.

b. The integer u is not divisible by 4 but is divisible by 2. Let w= 2−5z. Then

0≤w< 1 andw= 2−(u/2) ·10−n+1, having at most (n−1) digits after the
decimal point. Thus, based on the induction hypothesis, we can generate w.

It follows that z can be generated as z = (1−0.5×w)×0.4.
c. The integer u is not divisible by 2 and 0.2< u≤ 0.3. Let w= 10z−2. Then

0 < w ≤ 1 and w = u · 10−n+1− 2, having at most (n− 1) digits after the
decimal point. Thus, based on the induction hypothesis, we can generate w.

It follows that z can also be generated as z= (1−(1−0.5×w)×0.5)×0.4.
d. The integer u is not divisible by 2 and 0.3< u≤ 0.4. Let w= 4−10z. Then

0 ≤ w < 1 and w = 4− u · 10−n+1, having at most (n− 1) digits after the
decimal point. Thus, based on the induction hypothesis, we can generate w.

It follows that z can be generated as z = (1−0.5×0.5×w)×0.4.

3. The case where 0.4 < z ≤ 0.5. Let w = 1− 2z. Then 0 ≤ w < 0.2 and w falls

into case 1. Thus, we can generate w. It follows that z can be generated as

z = 0.5× (1−w).
4. The case where 0.5 < z ≤ 1. Let w = 1− z. Then 0 ≤ w < 0.5 and w falls into

one of the above three cases. Thus, we can generate w. It follows that z can be

generated as z = 1−w.

For all of the above cases, we proved that z can be generated with the two opera-

tions 1− x and x · y on the input probability set S = {0.4,0.5}. Thus, we proved the
statement for all m≤ n. Thus, the statement holds for all integers n. �

Based on the proof above, we derive an algorithm to synthesize a circuit that gen-

erates an arbitrary decimal fraction output probability z from the input probability

set S = {0.4,0.5}. See Algorithm 1.

The function GetDigits(z) in Algorithm 1 returns the number of digits after the

decimal point of z. The while loop continues until z has at most one digit after

the decimal point. During the loop, it calls the function ReduceDigit(ckt,z), which
synthesizes a partial circuit such that the number of digits after the decimal point of z

is reduced,which corresponds to the inductive step in the proof. Finally, Algorithm 1
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Algorithm 1 Synthesize a circuit consisting of AND gates and inverters that gen-

erates a required decimal fraction probability from the given probability set S =
{0.4,0.5}.

1: {Given an arbitrary decimal fraction 0≤ z≤ 1.}
2: Initialize ckt;

3: while GetDigits(z) > 1 do

4: (ckt, z) ⇐ ReduceDigit(ckt, z);
5: AddBaseCkt(ckt, z); {Base case: z has at most one digit after the decimal point.}
6: return ckt;

calls the function AddBaseCkt(ckt,z) to synthesize a circuit that realizes a number

having at most one digit after the decimal point; this corresponds to the base case of

the proof.

Algorithm 2 ReduceDigit(ckt,z)

1: {Given a partial circuit ckt and an arbitrary decimal fraction 0≤ z ≤ 1.}
2: n⇐ GetDigits(z);
3: if z > 0.5 then {Case 4}
4: z⇐ 1− z; AddInverter(ckt);
5: if 0.4 < z≤ 0.5 then {Case 3}
6: z⇐ z/0.5; AddAND(ckt,0.5);
7: z⇐ 1− z; AddInverter(ckt);
8: if z≤ 0.2 then {Case 1}
9: z⇐ z/0.4; AddAND(ckt,0.4);
10: z⇐ z/0.5; AddAND(ckt,0.5);
11: if GetDigits(z) < n then

12: go to END;

13: if z > 0.5 then

14: z⇐ 1− z; AddInverter(ckt);
15: z = z/0.5; AddAND(ckt,0.5);
16: else {Case 2: 0.2 < z≤ 0.4}
17: z⇐ z/0.4; AddAND(ckt,0.4);
18: if GetDigits(z) < n then

19: go to END;

20: z⇐ 1− z; AddInverter(ckt);
21: z⇐ z/0.5; AddAND(ckt,0.5);
22: if GetDigits(z) < n then

23: go to END;

24: if z > 0.5 then

25: z⇐ 1− z; AddInverter(ckt);
26: z = z/0.5; AddAND(ckt,0.5);
27: END: return ckt, z;

Algorithm 1 builds the circuit from the output back to the inputs. The circuit

is built up gate by gate when calling the function ReduceDigit(ckt,z), shown in

Algorithm 2. Here the function AddInverter(ckt) attaches an inverter to the input of
the circuit ckt and then changes the input of the circuit to the input of the inverter.
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The function AddAND(ckt, p) attaches a fanin-two AND gate to the input of the

circuit and then changes the input of the circuit to one of the inputs of the AND

gate. The other input of the AND gate is connected to a random input source of

probability p. In Algorithm 2, Lines 3–4 correspond to Case 4 in the proof; Lines

5–7 correspond to Case 3 in the proof; Lines 8–15 correspond to Case 1 in the proof;

Lines 16–26 correspond to Case 2 in the proof.

The synthesized circuit has a number of gates that is linear in the number of digits

after the required value’s decimal point, since at most 3 AND gates and 3 inverters

are needed to generate a value with n digits after the decimal point from a value

with (n− 1) digits after the decimal point.1 The number of primary inputs of the

synthesized circuit is at most 3n+1.

Example 1.2. We show how to generate the probability value 0.757. Based on Al-

gorithm 1, we can derive a sequence of operations that transform 0.757 to 0.7:

0.757
1−
=⇒ 0.243

/0.4
=⇒ 0.6075

1−
=⇒ 0.3925

/0.5
=⇒ 0.785

1−
=⇒ 0.215

/0.5
=⇒ 0.43,

0.43
/0.5
=⇒ 0.86

1−
=⇒ 0.14

/0.4
=⇒ 0.35

/0.5
=⇒ 0.7.

Since 0.7 can be realized as 0.7= 1−(1−0.4)×0.5, we obtain the circuit shown
in Figure 1.4. (Note that here we use a black dot to represent an inverter.) �

0.4

0.5

0.6 0.7

0.5

0.35

0.4

0.86

0.5

0.5

0.43

0.785

0.6075

0.5

0.4

0.757

AND

AND

AND

AND

AND

AND

AND

Fig. 1.4: A circuit taking input probabilities from the set S = {0.4,0.5} generating

a decimal output probability of 0.757.

1 In Case 3, z is transformed into w = 1−2z where w is in Case 1(a). Thus, we actually need only

3 AND gates and 1 inverter for Case 3. For the other cases, it is not hard to see that we need at

most 3 AND gates and 3 inverters.
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1.4.2 Generating Decimal Probabilities from the Input Probability

Set S = {0.5,0.8}

Given a probability set S = {0.4,0.5}, the algorithm in the previous section pro-

duces a circuit with at most 3n+ 1 inputs to generate a decimal probability of n

digits. If we use the set S = {0.5,0.8}, then we can do better in terms of the num-

ber of inputs. With this set, we can synthesize a circuit with at most 2n inputs that

generates a decimal probability of n digits. To prove this, we need the following

lemma.

Lemma 1.1. Given an integer n≥ 2, for any integer 0≤m≤ 10n, there exist integers

0≤ ai ≤ 2n
(

n
i

)

, i = 0,1, . . . ,n, such that m = ∑
n
i=0 ai4

i.

Proof. Define sk = ∑
k
i=0 2

n

(

n

i

)

4i. We first prove the following statement:

Given 0≤ k ≤ n, for any integer 0≤ m≤ sk, there exist integers 0≤ ai ≤ 2n
(

n
i

)

,

i = 0,1, . . . ,k, such that m = ∑
k
i=0 ai4

i.

We prove the above statement by induction on k.

Base case: When k = 0, we have s0 = 2n. For any integer 0≤m≤ 2n, let a0 =m.

Then 0≤ a0 ≤ 2n
(

n
0

)

. The statement is true for k = 0.

Inductive step: Assume the statement holds for k−1 (k≤ n). Consider the state-
ment for k. There are two cases for 0≤ m≤ sk.

1. 0≤ m≤ 2n
(

n
k

)

4k. Let ak =
⌊

m

4k

⌋

. Then,

0≤ ak ≤
m

4k
≤ 2n

(

n

k

)

and

0≤m−ak4
k < 4k ≤ 2n4k−1 ≤

k−1

∑
i=0

2n
(

n

i

)

4i = sk−1.

Based on the induction hypothesis, there exist integers 0 ≤ ai ≤ 2n
(

n
i

)

, i =
0,1, . . . ,k−1, such that

m−ak4
k =

k−1

∑
i=0

ai4
i.

Therefore, m = ∑
k
i=0 ai4

i, where 0≤ ai ≤ 2n
(

n
i

)

, for i = 0,1, . . . ,k.

2. 2n
(

n
k

)

4k < m≤ sk. Let ak = 2n
(

n
k

)

. Then,

0 < m−ak4
k ≤ sk−2n

(

n

k

)

4k = sk−1.

Based on the induction hypothesis, there exist integers 0 ≤ ai ≤ 2n
(

n
i

)

, i =
0,1, . . . ,k−1, such that
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m−ak4
k =

k−1

∑
i=0

ai4
i.

Therefore, m = ∑
k
i=0 ai4

i, where 0≤ ai ≤ 2n
(

n
i

)

, for i = 0,1, . . . ,k.

Thus, the statement is true for all 0≤ k≤ n.

Note that when k = n,

sk =
n

∑
i=0

2n
(

n

i

)

4i = 2n(4+1)n = 10n.

Thus, for any integer 0 ≤ m ≤ 10n = sn, there exist integers 0 ≤ ai ≤ 2n
(

n
i

)

,

i = 0,1, . . . ,n, such that m = ∑
n
i=0 ai4

i. �

With the above lemma, we can prove the following theorem.

Theorem 1.2. For any decimal fraction of n (n ≥ 2) digits, there exists a combina-

tional circuit with 2n inputs generating that decimal probability with input proba-

bilities taken from the set S = {0.5,0.8}.

Proof. Consider combination logic with 2n inputs x1,x2, . . . ,x2n with input proba-

bilities set as

P(xi = 1) =

{

0.8, i = 1, . . . ,n,

0.5, i = n+1, . . . ,2n.

For n+1≤ i≤ 2n, since P(xi = 1) = 0.5, we have P(xi = 1) = P(xi = 0) = 0.5.
Therefore, the probability of a certain input combination occurring only depends

on the values of the first n inputs or, more precisely, only depends on the number of

ones in the first n inputs. Thus, there are in total 2n
(

n
i

)

(0≤ i≤ n) input combinations

whose probability of occurring is 0.8i ·0.2n−i ·0.5n.
Suppose the given decimal fraction of n digits is q = m

10n
, where 0 ≤ m ≤ 10n

is an integer. Then, based on Lemma 1.1, there exist integers 0 ≤ ai ≤ 2n
(

n
i

)

, i =
0,1, . . . ,n, such that m = ∑

n
i=0 ai4

i.

For each 0 ≤ i ≤ n, since 0 ≤ ai ≤ 2n
(

n
i

)

, we are able to choose ai out of 2
n
(

n
i

)

input combinations whose probability of occurring is 0.8i ·0.2n−i ·0.5n; let the com-

binational logic evaluate to one for these ai input combinations. Thus, the probabil-

ity of the output being one is the sum of the probability of occurrence of all input

combinations for which the logic evaluates to one, which is,

n

∑
i=0

ai0.8
i ·0.2n−i ·0.5n =

n

∑
i=0

ai4
i ·0.1n =

m

10n
= q. �

Remarks: Like Theorem 1.1, Theorem 1.2 implies a procedure for synthesizing

combinational logic to generate a required decimal fraction. Although this proce-

dure will synthesize a circuit with fewer inputs than that synthesized through Algo-

rithm 1, the number of two-input logic gates in this circuit may be greater. Moreover,

for this procedure, we must judiciously choose ai out of 2
n
(

n
i

)

input combinations
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with probability 0.8i ·0.2n−i ·0.5n of occurring as the minterms of the Boolean func-

tion, in order to minimize the gate count. In contrast, Algorithm 1 produces a circuit

directly.

1.5 Sets with A Single Element that Can Generate Arbitrary

Decimal Probabilities

In Section 1.4, we showed that there exist input probability sets of two ele-

ments that can be used to generate arbitrary decimal fractions. A stronger question

is whether we can further reduce the size of the set down to one, i.e., whether there

exists a real number 0≤ p≤ 1 such that any decimal fraction can be generated from

p with combinational logic.

The first answer to this question is that there is no rational number p such that

an arbitrary decimal fraction can be generated from that p through combinational

logic. To prove this, we first need the following lemma.

Lemma 1.2. If the probability
1

2
can be generated from a rational probability p

through combinational logic, then p =
1

2
.

Proof. Obviously, 0 < p < 1. Thus, we can assume that

p =
a

b
, (1.4)

where both a and b are positive integers, satisfying that a < b and (a,b) = 1.

Moreover, we can assume that a ≥ b− a. Otherwise, suppose that a < b− a.

Since we can generate
1

2
from p, we can also generate

1

2
from p∗ = 1− p by using

an inverter to convert p∗ into p. Note that p∗ =
a∗

b∗
, where a∗ = b− a and b∗ = b,

satisfying that a∗ > b∗−a∗. Thus, we can assume that a≥ b−a.

Suppose that the combinational logic generating
1

2
from p has n inputs. Let lk

(k = 0,1, . . . ,n) be the number of input combinations that evaluate to one and have

exactly k ones. Note that 0≤ lk ≤
(

n
k

)

, for k = 0,1, . . . ,n.
Since each input of the combinational logic has probability p of being 1, we have

1

2
=

n

∑
k=0

lk(1− p)n−kpk. (1.5)

Let c = b−a. Based on Equation (1.4), we can rewrite Equation (1.5) as

bn = 2
n

∑
k=0

lka
kcn−k. (1.6)



1.5 Sets with A Single Element that Can Generate Arbitrary Decimal Probabilities 13

From Equation (1.6), we can show that a = 1, which we prove by contradiction.

Suppose that a> 1. Since 0≤ l0 ≤
(

n
0

)

= 1, l0 is either 0 or 1. If l0 = 0, then from

Equation (1.6), we have

bn = 2
n

∑
k=1

lka
kcn−k = 2a

n

∑
k=1

lka
k−1cn−k.

Thus, a|bn. Since (a,b) = 1, the only possibility is that a = 1 which is contradictory

to our hypothesis that a > 1. Therefore, we have l0 = 1. Together with binomial

expansion

bn =
n

∑
k=0

(

n

k

)

akcn−k,

we can rewrite Equation (1.6) as

cn +
n

∑
k=1

(

n

k

)

akcn−k = 2cn +2
n

∑
k=1

lka
kcn−k,

or

cn = a
n

∑
k=1

((

n

k

)

−2lk

)

ak−1cn−k. (1.7)

Thus, a|cn. Since (a,b) = 1 and c = b−a, we have (a,c) = 1. Thus, the only possi-

bility is that a = 1, which is contradictory to our hypothesis that a > 1.

Therefore, we proved that a= 1. Together with the assumption that b−a≤ a< b,

we get b = 2. Thus, p can only be
1

2
. �

Now, we can prove the original statement:

Theorem 1.3. There is no rational number p such that an arbitrary decimal fraction

can be generated from that p with combinational logic.

Proof. We prove the above statement by contradiction. Suppose that there exists a

rational number p such that an arbitrary decimal fraction can be generated from it

through combinational logic.

Since an arbitrary decimal fraction can be generated from p, 0.5 =
1

2
can be

generated. Thus, based on Lemma 1.2, we have p =
1

2
.

Note that 0.2 =
1

5
is also a decimal number. Thus, there exists combinational

logic which can generate the decimal fraction
1

5
from p =

1

2
. Suppose that the

combinational logic has n inputs. Let mk (k = 0,1, . . . ,n) be the number of input

combinations that evaluate to one and that have exactly k ones.

Since each input of the combinational logic has probability p=
1

2
of being 1, we

have
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1

5
=

n

∑
k=0

mk

(

1−
1

2

)n−k(
1

2

)k

,

or

2n = 5
n

∑
k=0

mk,

which is impossible since the right-hand side is a multiple of 5.

Therefore, we proved the statement in the theorem. �

Thus, based on Theorem 1.3, we have the conclusion that if such a p exists, it

must be an irrational number.

On the one hand, we note that if such a value p exists, then 0.4 and 0.5 can

be generated from it. On the other hand, if p can generate 0.4 and 0.5, then p can

generate arbitrary decimal numbers, as was shown in Theorem 1.1. The following

lemma shows that such a value p that could generate 0.4 and 0.5 does, in fact, exist.

Lemma 1.3. The polynomial g1(t) = 10t− 20t2 + 20t3− 10t4− 1 has a real root

0 < p < 0.5. This value p can generate both 0.4 and 0.5 through combinational

logic.

Proof. First, note that g1(0) = −1 < 0 and that g1(0.5) = 0.875 > 0. Based on the

continuity of the function g1(t), there exists a 0 < p < 0.5 such that g1(p) = 0. Let

polynomial g2(t) = t−2t2+2t3− t4. Thus, g2(p) = 0.1.

Note that the Boolean function

f1(x1,x2,x3,x4,x5) = (x1∨ x2∨ x3∨ x4∨ x5)∧ (¬x1∨¬x2∨¬x3∨¬x4∨¬x5)

has 30 minterms, m1,m2, . . . ,m30. It is not hard to verify that with P(xi = 1) = p for

i = 1,2,3,4,5, the output probability of f1 is

p1 = 5(1− p)4p+10(1− p)3p2 +10(1− p)2p3 +5(1− p)p4

= 5g2(p) = 0.5.

Thus, the probability value 0.5 can be generated. The Boolean function

f2(x1,x2,x3,x4,x5) = (x1∨ x2∨ x3∨ x4)∧ (x1∨ x3∨¬x5)

∧ (¬x2∨ x3∨¬x5)∧ (¬x1∨¬x2∨¬x4∨¬x5)

has 24 minterms, m2,m4,m5, . . . ,m8,m10, m12,m13, . . . ,m24,m26,m28,m29,m30. It is

not hard to verify that with P(xi = 1) = p for i = 1,2,3,4,5, the output probability
of f2 is

p2 = 4(1− p)4p+8(1− p)3p2 +8(1− p)2p3 +4(1− p)p4

= 4g2(p) = 0.4.
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Thus, the probability value 0.4 can be generated. �

Based on Theorem 1.1 and Lemma 1.3, we have the following theorem.

Theorem 1.4. With the set S = {p}, where p is the root of the polynomial g1(t) =
10t−20t2+20t3−10t4−1 in the unit interval, we can generate arbitrary decimal

fractions with combinational logic.

1.6 Implementation

In this section, we will discuss algorithms to optimize circuits that generate dec-

imal probabilities from the input probability set S = {0.4,0.5}.
As shown in Example 1.2, the circuit synthesized by Algorithm 1 is in a linear

style (i.e., each gate adds to the depth of the circuit). For practical purposes, we want

circuits with shallower depth. We explore two kinds of optimizations to reduce the

depth.

The first kind of optimization is at the logic level. The circuit synthesized by

Algorithm 1 is composed of inverters and AND gates. We can reduce its depth by

properly repositioning certain AND gates, as illustrated in Figure 1.5.

a
b

...AND
AND

Fanin

Cone

a

b

...AND

AND

Fanin

Cone

(a) (b)

Fig. 1.5: An illustration of balancing to reduce the depth of the circuit. Here a and b

are primary inputs. (a): The circuit before balancing. (b): The circuit after balancing.

The second kind of optimization is at a higher level, based on the factorization of

the decimal fraction. We use the following example to illustrate the basic idea.

Example 1.3. Suppose we want to generate the decimal fraction probability value

0.49.

Method based on Algorithm 1: We can derive the following transformation se-

quence:

0.49
/0.5
=⇒ 0.98

1−
=⇒ 0.02

/0.4
=⇒ 0.05

/0.5
=⇒ 0.1.

The synthesized circuit is shown in Figure 1.6(a). Notice that the circuit is balanced

and it still has 5 AND gates and depth 4.
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Method based on factorization: Notice that 0.49= 0.7×0.7. Thus, we can generate
the probability 0.7 twice and feed these values into an AND gate. The synthesized

circuit is shown in Figure 1.6(b). Compared to the circuit in Figure 1.6(a), both the

number of AND gates and the depth of the circuit are reduced. �

0.5
0.5

0.2

0.98
0.49

0.4

0.5

AND

AND

AND

0.4

0.25

0.1

0.5

AND

AND

AND

AND

AND

0.5

0.5

0.4

0.4
0.7

0.7

0.49

(a) (b)

Fig. 1.6: Synthesizing combinational logic to generate probability 0.49. (a): The cir-

cuit synthesized through Algorithm 1. (b): The circuit synthesized based on fraction

factorization.

Algorithm 3 shows the procedure that synthesizes the circuit based on the fac-

torization of the decimal fraction. The factorization is actually carried out on the

numerator. A crucial function is PairCmp(al,ar,bl,br), which compares the integer

factor pair (al,ar) with the pair (bl ,br) and returns a positive (negative) value if

the pair (al,ar) is better (worse) than the pair (bl,br). Algorithm 4 shows how the

function PairCmp(al ,ar,bl,br) is implemented.

The quality of a factor pair (al,ar) should reflect the quality of the circuit that

generates the original probability based on that factorization. For this purpose, we

define a function EstDepth(x) to estimate the depth of the circuit that generates the

decimal fraction of a numerator x. If 1 ≤ x ≤ 9, the corresponding fraction is x/10.
EstDepth(x) is set as the depth of the circuit that generates the fraction x/10, which
is

EstDepth(x) =











0, x = 4,5,6,

1, x = 2,3,7,8,

2, x = 1,9.

When x≥ 10, we use a simple heuristic to estimate the depth: we let EstDepth(x)=
⌈log10(x)⌉+ 1. The intuition behind this is that the depth of the circuit is a mono-

tonically increasing function of the number of digits of x. The estimated depth of

the circuit that generates the original fraction based on the factor pair (al,ar) is

max{EstDepth(al),EstDepth(ar)}+1. (1.8)

The function PairCmp(al,ar,bl,br) essentially compares the quality of pair

(al,ar) and pair (bl,br) based on Equation (1.8). Further details are given in Al-

gorithm 4.
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Algorithm 3 ProbFactor(ckt,z)

1: {Given a partial circuit ckt and an arbitrary decimal fraction 0≤ z ≤ 1.}
2: n⇐ GetDigits(z);
3: if n≤ 1 then

4: AddBaseCkt(ckt, z);
5: return ckt;

6: u⇐ 10nz; (ul ,ur) ⇐ (1,u); {u is the numerator of the fraction z}
7: for each factor pair (a,b) of integer u do

8: if PairCmp(ul ,ur,a,b) < 0 then

9: (ul ,ur) ⇐ (a,b); {Choose the best factor pair for z}
10: w⇐ 10n−u; (wl ,wr) ⇐ (1,w);
11: for each factor pair (a,b) of integer w do

12: if PairCmp(wl ,wr,a,b) < 0 then

13: (wl ,wr) ⇐ (a,b); {Choose the best factor pair for 1− z}
14: if PairCmp(ul ,ur,wl ,wr) < 0 then

15: (ul ,ur) ⇐ (wl ,wr); z⇐ w/10n;
16: AddInverter(ckt);
17: if IsTrivialPair(ul ,ur) then {ul = 1 or ur = u}
18: ReduceDigit(ckt, z); ProbFactor(ckt, z);
19: return ckt;

20: nl ⇐ ⌈log10(ul)⌉; nr ⇐ ⌈log10(ur)⌉;
21: if nl +nr > n then {Unable to factor z into two decimal fractions in the unit interval}
22: ReduceDigit(ckt, z); ProbFactor(ckt, z);
23: return ckt;

24: zl ⇐ ul/10
nl ; zr ⇐ ur/10

nr ;

25: ProbFactor(cktl , zl); ProbFactor(cktr , zr);
26: Add an AND gate with output as ckt and two inputs as cktl and cktr;

27: if nl +nr < n then

28: AddExtraLogic(ckt,n−nl −nr);
29: return ckt;

Algorithm 4 PairCmp(al,ar,bl,br)

1: {Given two integer factor pairs (al ,ar) and (bl ,br)}
2: cl ⇐ EstDepth(al); cr ⇐ EstDepth(ar);
3: dl ⇐ EstDepth(bl); dr ⇐ EstDepth(br);
4: Order(cl ,cr); {Order cl and cr , so that cl ≤ cr}
5: Order(dl ,dr); {Order dl and dr , so that dl ≤ dr}
6: if cr < dr then {The circuit w.r.t. the first pair has smaller depth}
7: return 1;

8: else if cr > dr then {The circuit w.r.t. the first pair has larger depth}
9: return -1;

10: else

11: if cl < dl then {The circuit w.r.t. the first pair has fewer ANDs}
12: return 1;

13: else if cl > dl then {The circuit w.r.t. the first pair has more ANDs}
14: return -1;

15: else

16: return 0;
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In Algorithm 3, Lines 2–5 corresponds to the trivial fractions. If the fraction z

is non-trivial, Lines 6–9 choose the best factor pair (ul ,ur) of integer u, where u is

the numerator of the fraction z. Lines 10–13 choose the best factor pair (wl ,wr) of
integer w, where w is the numerator of the fraction 1− z. Finally, the better factor

pair of (ul,ur) and (wl ,wr) is chosen. Here, we consider the factorization on both z

and 1− z, since in some cases the latter might be better than the former. An example

is z = 0.37. Note that 1− z = 0.63 = 0.7× 0.9; this has a better factor pair than z

itself.

After obtaining the best factor pair, we check whether we can utilize it. Lines

17–19 check whether the factor pair (ul,ur) is trivial. A factor pair is considered

trivial if ul = 1 or ur = 1. If the best factor pair is trivial, we call the function

ReduceDigit(ckt,z) (shown in Algorithm 2) to reduce the number of digits after the

decimal point of z. Then we perform factorization on the new z.

If the best factor pair is non-trivial, Lines 20–23 continue to check whether the

factor pair can be transformed into two decimal fractions in the unit interval. Let

nl be the number of digits of the integer ul and nr be the number of digits of the

integer ur. If nl +nr > n, where n is the number of digits after the decimal point of

z, then it is impossible to utilize the factor pair (ul,ur) to factorize z. For example,

consider z = 0.143. Although we could factorize u = 143 as 11×13, we could not

utilize the factor pair (11,13) for the factorization of 0.143. The reason is that either
the factorization 0.11×1.3 or the factorization 1.1×0.13 contains a fraction larger
than 1, which cannot be a probability value.

Finally, if it is possible to utilize the best factor pair, Lines 24–26 synthesize two

circuits for fractions ul/10
nl and ur/10

nr , respectively, and then combine these two

circuits with an AND gate. Lines 27–28 check whether n > nl + nr. If this is the

case, we have

z = u/10n = ul/10
nl ·ur/10

nr ·0.1n−nl−nr .

We need to add an extra AND gate with one input probability 0.1n−nl−nr and the

other input probability ul/10
nl ·ur/10

nr . The extra logic is added through the func-

tion AddExtraLogic(ckt,m).

1.7 Empirical Validation

We empirically validate the effectiveness of the synthesis scheme that was pre-

sented in Section 1.6. For logic-level optimization, we use the “balance” command

of the logic synthesis tool ABC [7], which we find very effective in reducing the

depth of a tree-style circuit.2

Table 1.1 compares the quality of the circuits generated by three different

schemes. The first scheme is called “Basic,” which is based on Algorithm 1. It gen-

erates a linear-style circuit. The second scheme is called “Basic+Balance,” which

2 We find that the other combinational synthesis commands of ABC such as “rewrite” do not affect

the depth or the number of AND gates of a tree-style AND-inverter graph.
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Table 1.1: A comparison of the basic synthesis scheme, the basic synthesis scheme with balancing,

and the factorization-based synthesis scheme with balancing.

Number Basic Basic+Balance Factor+Balance

of Digits #AND Depth #AND Depth Runtime #AND Depth Runtime #AND Depth

(ms) (ms) Imprv. (%) Imprv. (%)

n a1 d1 a2 d2 100
a1−a2

a1
100

d1−d2

d1
2 3.67 3.67 3.67 2.98 0.22 3.22 2.62 0.22 12.1 11.9

3 6.54 6.54 6.54 4.54 0.46 5.91 3.97 0.66 9.65 12.5

4 9.47 9.47 9.47 6.04 1.13 8.57 4.86 1.34 9.45 19.4

5 12.43 12.43 12.43 7.52 0.77 11.28 5.60 0.94 9.21 25.6

6 15.40 15.40 15.40 9.01 1.09 13.96 6.17 1.48 9.36 31.5

7 18.39 18.39 18.39 10.50 0.91 16.66 6.72 1.28 9.42 35.9

8 21.38 21.38 21.38 11.99 0.89 19.34 7.16 1.35 9.55 40.3

9 24.37 24.37 24.37 13.49 0.75 22.05 7.62 1.34 9.54 43.6

10 27.37 27.37 27.37 14.98 1.09 24.74 7.98 2.41 9.61 46.7

11 30.36 30.36 30.36 16.49 0.92 27.44 8.36 2.93 9.61 49.3

12 33.35 33.35 33.35 17.98 0.73 30.13 8.66 4.13 9.65 51.8

combines Algorithm 1 and the logic-level balancing algorithm. The third scheme is

called “Factor+Balance,” which combines Algorithm 3 and the logic-level balanc-

ing algorithm. We perform experiments on a set of target decimal probabilities that

have n digits after the decimal point and average the results. The table shows the re-

sults for n ranging from 2 to 12. When n≤ 5, we synthesize circuits for all possible

decimal fractions with n digits after the decimal point. When n ≥ 6, we randomly

choose 100000 decimal fractions with n digits after the decimal point as the synthe-

sis targets. We show the average number of AND gates, average depth and average

CPU runtime in columns “#AND,” “Depth,” and “Runtime,” respectively.

FromTable 1.1, we can see that both the “Basic+Balance” and the “Factor+Balance”

synthesis schemes have only millisecond-order CPU runtimes. Compared to the

“Basic+Balance” scheme, the “Factor+Balance” scheme reduces by 10% the num-

ber of AND gates and by more than 10% the depth of the circuit for all n. The

percentage of reduction on the depth increases with increasing n. For n = 12, the

average depth of the circuit is reduced by more than 50%.

In Figure 1.7, we plot the average number of AND gates and depth of the circuit

versus n for both the “Basic+Balance” scheme and the “Factor+Balance” scheme.

Clearly, the figure shows that the “Factor+Balance” scheme is superior to the “Ba-

sic+Balance” scheme. As shown in the figure, the average number of AND gates

in the circuits synthesized by both the “Basic+Balance” scheme and the “Fac-

tor+Balance” scheme increases linearly with n. The average depth of the circuit

synthesized by the “Basic+Balance” scheme also increases linearly with n. In con-

trast, the average depth of the circuit synthesized by the “Factor+Balance” scheme

increases logarithmically with n.
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Fig. 1.7: Average number of AND gates and depth of the circuit versus n.

1.8 Chapter Summary

In this chapter, we introduced the problem of synthesizing combinational logic

to generate specified output probabilities from a given set of input probabilities. We

focused on generating decimal output probabilities and aimed at finding a small set

of input probabilities. We first showed that input probability sets consisting of two

elements can be used to generate arbitrary decimal output probabilities. Next, as

a mathematical result, we demonstrated that there exists a single input probability

that can be used to generate any output decimal probability. That input probability

cannot be rational; it must be an irrational root of a polynomial. We proposed al-

gorithms to synthesize circuits that generate output decimal probabilities from the

input probability set S = {0.4,0.5}. To optimize the depth of the circuits, we pro-

posed a method based on fraction factorization. We demonstrated the effectiveness

of our algorithm with experimental results. The average depth of the circuits syn-

thesized by our method is logarithmic in the number of digits of the output decimal

probability.
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