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S.1 Proof for Unipolar Mult Unit

In this section, using both stochastic modeling and mass-action kinetics, we prove that the
Mult unit computes product of its inputs in unipolar fractional representation.

S.1.1 Stochastic model:

Based on the stochastic modeling of molecular behavior, we describe how chemical reactions in
Fig. 1(a) of the main text compute the multiplication operation. The reactions are represented
in (1) as R1 to R4.

Rl1: Ay+By — Cy
R2: Ay+B, — ()
R3: A +By, — (p
R4: A+B — (1)

In the stochastic model the concentrations of molecules are considered as discrete quantities
and they are used to analyze the behavior of molecular reactions. The probabilities of firing
each one of the four reactions listed in (1) are shown by four equations in (2), respectively.
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P(R4) = W) = 4D : (2)
(V) + )+ )+ () Ao+ A)(Bo+ Bi)
Due to the consumption of participating molecules after firing each reaction the probabilities
of firing reactions change. However, since the reactions are symmetric, the probabilities remain
proportional until the system reaches equilibrium. Only the last reaction produces C; and the
other ones produce Cy. Therefore, the probability of generating Cy is equal to P(R4) and can
be represented as follows.

P(Cy) = P(R4) = T 21)'5910 B a.b. (3)

Since the system has only two outputs Cy and C;, we can write

Ch
P(C)) = ———=<=c 4
( 1) (Co‘l’cl) ¢ ( )
From (3) and (4) we can show that
c=a.b. (5)

Another interpretation is to say the probability of generating a molecule of C is the probability
of reacting a molecule of A; and a molecule of B;. Therefore, we have
Cl Al Bl

PG = PA-PBY) = 37ay = Gt A (Bo + B o

We perform a Monte Carlo simulation to verify the validity and accuracy of the proposed
molecular multiplier presented in Fig. 1(a) of the main text. We considered the initial quantities
of molecules as [Ag] = 30, [41] = 70, [By] = 20, [B4] = 80, and [Cy] = [C}] = 0. The simulation
was repeated 10° times. Fig. S.1.1 illustrates the simulation results. The horizontal axis in this
figure represents number of molecules and vertical axis shows the number of iterations that the
simulation ended with molecules Cy and C.

The values of a and b are 0.7 and 0.8, respectively, based on the initial values for molecules
Ay, Ay, By, and By. The simulation results show that the mean values for Cy and C are 44 and
56, respectively. Thus, the computed c is equal to 0.56. We repeat the simulation for different
initial values of Ay, A;, By, and B;. Obtained mean values for Cy and C are listed in Table
S.1.1.
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Figure S.1.1: Monte Carlo simulation results for Mult unit. We initialize molecules as
[Ag] = 30, [A1] = 70, [Bo] = 20, [B:1] = 80, and [Cy] = [C}] = 0, and randomly fire each reaction
until it can no longer be fired. We repeat the same simulation for 10° times and plot the number
of times that the simulations terminated with each number of the molecules Cy and C}.

Table S.1.1: Monte Carlo simulation for different initial values of a and b.
a | b |Ay| A |By| B |Co|Cr| ¢

091031090 |70 |30 | 73| 27027
0.7]108 130 |70 |20 | 80 | 44 | 56 | 0.56
0504|5050 |60 40|80 |20 ]| 0.2
0.1]06]90 |10 |40 | 60|94 | 6 | 0.06

S.1.2 Mass-action kinetics model

In this section, we show that the continuous molecular concentration kinetics of reactions listed
in Fig. 1(a) of the main text compute the product.
For these reactions the ODEs are given by:

A~ s - (AdB
T2l 4B - (441
@ — —[Ad)[Bo] — [A1][Bo]
% = —[A[B1] - [A][BY]



d[Co]
dt
d[C]

7 = [Al][Bl]' (7)

= [Ao][Bo] + [Ao][B1] + [A1][Bo]

It should be noted that, in our notation, [A] represents the time-varying concentration of
molecule A and we use it for the mass-action kinetics model.

Using the ODE equations in (7) we can prove that the CRN for Mult unit computes the
multiplication in fractional encoding. We rewrite the first four equations of (7) as

ol i+ )
Tl — () + B
Tl —(an+ (4
T~ ) + [ ®

Comparing the first two equations of (8) we have
YdlA)  [tdA) [
/o Ao /0 A /0 ([Bol + [Bi])dt
(9)

Suppose ag and aj,respectively, represent the initial concentrations for the molecules Ay and
A;. From (9) we have

In[Ap] — Inap = In[A;] — Inay
= Ao _ [A4] (10)
ao

al

Similarly, from the last two reactions in (8) we obtain

B B

bo by
where by and b, are the initial concentrations for the molecules By and Bj, respectively. The
initial values for molecules Cy and C; are zero and we can write

d[Cq
C1] s

— dCo] | diCh]”
[Col + [C1] ~ 40l | 0%

(12)
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From the last two equations of (7) we write

[Co] +[Ch]  [Aol[Bo] + [Ao][Bi] + [Ai][Bo] + [Au][Bi]
By inserting (10) and (11) we obtain
_ 1G] _ [A4][B1]
[Co] + [C1] o [A[B] + 2 [A[Bi] + R A][Bi] + [Ai][B)]
_ [A4][B1]
[Ar][By] (202 4 0 4 B0 4 1)
1
T owmhojw g
- by —axb (14)

(ao -+ al)(bo + bl)

Note that in Equation (14) we assume that molecular types Ag, A1, By, and B; are initialized

_ _a _ _b
such that a = Z-2t and b = 524

S.2 Variations of Mult units

The CRN for the multiplication module can be modified such that the concentrations of
molecules related to one of the inputs remains unchanged. The set of molecular reactions
that preserves molecules of Ay and A; is shown in (15). Similar to the CRN presented in
Fig. 1(a) of the main text, it is easy to show that the CRN listed in (15) computes the product
¢ =a X b in fractional coding.

Ao+ By
Ay + By Co+ Ay
A1+ By Co+ Ay
A+ B — Ci+ A (15)

Co + Ay

Ll

Furthermore, the CRN can be designed such that the concentration of both input molecules
remain unchanged while they produce the output molecules. In order to avoid the infinite
output concentrations, we add two more reactions for annihilation of the output molecules.
The set of reactions in (16) shows the CRN for this module.

A0+BO — 00+A0+BO
A0+Bl — 00+A0+Bl
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A1+ By — Co+ A+ By
Ai+B — Ci+A+ B
Co — ©
C; — @. (16)

For these reactions the ODEs are given by:

AL L)l + (40131 + [411B6] - (G
d[Ch]
o [A][Bi] = [C4]. (17)
Then at the equilibrium we have
[Co] = [Ao][Bo] + [Ao][B1] + [A1][Bo]
[Cl] = [Al][Bl]- (18)

Therefore the output value, ¢, is given by:

.o ] [A1][B1]
[Co] + [C1]  [Ao][Bo] + [Ao][B1] + [A1][Bo] + [A1][Bi]
[A4] [Bi]

T (A + [A[Bo] + [B] ab. (19)

Clearly, the alternative CRNs for NMult unit can be designed in a similar way.

S.3 Proof for Bipolar Mult Unit

Similar to the Mult for unipolar fractional coding and using both stochastic modeling and
mass-action kinetics, in this section we prove that the Mult unit computes the product of its
inputs in bipolar fractional representation.

S.3.1 Stochastic model:

In bipolar fractional coding we have

Cy — Cy Cy Co
— - - — P(Cy) — P(Cy). 20
TG TG Gor G Gora TGP (20)

It means that the output c is equal to the probability of producing C; minus the probability of
producing Cj. Since the first and last reactions of the bipolar Mult produce C; and the other
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two reactions produce Cj, according to the stochastic modeling of chemical reaction networks,
these probabilities are computed as:

AoB1 + A1 By

PO = G+ 40 B+ ) 2y
Pley = (AoAﬁi]l;E;)llel). (22)
Therefore, we have
C__ABy+AB AB +AB
(Ao + A1)(Bo + B1) (Ao + A1)(Bo + B1)
- W A)B =By (23)

(Ao + A1) (Bo + B1)

S.3.2 Mass-action kinetics model:

The proof based on the Mass-action kinetics model for bipolar fractional coding is similar to
the one for the unipolar fractional coding. The first four ODEs in (7) and the two ODEs in
(24) constitute the ODEs for the molecular reactions of the bipolar Mult unit.

dlCo]
- [Ao][B1] + [A1][Bo]
dgl] = [Ao][Bo] + [41][B1]. (24)

Assuming the initial concentrations of Cy and Cy are zero, from the equations in (24) we have

(C)] - [C,) o) — 4%

~ d[Cp] d[C1]
[CO] + [Cl] d_to + —a

[Ao][Bo] + [A1][B1] — [Ao][B1] — [A1][ By

25
([Ad] + ALY (Bol + [B1]) )
Using (10) and (11), earlier obtained from the first four ODEs in (7), we have
AlIB; (%l 1 b a0 _ _
c = [ 1][ 1](111 Zl 1131 a1) _ (al a0)<b1 bO) —axb (26)
[AdB (523 + 1+ +52) (a1 + ao)(by + bo)

Obviously, we assumed that molecular types Ag, A1, By, and B; are initialized such that
a = -4z apd p = b

(ao+a1) . (botb1)° U . .

The proof for bipolar NMult unit is similar to the proof for the unipolar Mult unit.




S.4 Proof for the MUX Unit

The MUX unit is implemented using the four reactions shown in Fig. 1(c) of the main text.
These reactions compute scaled addition both for unipolar and bipolar fractional representa-
tions. We show this based on the stochastic and mass-action kinetics models.

S.4.1 Stochastic model

As described earlier for the stochastic model we compute the probabilities of firing reactions.
The probability of producing C} is given by Equation (27).

(& A1So + B1S,
¢ Co+ Cy (1) (Ag+ A1)So + (Bo + B1)5: 27)

If (Ap + A1) = (By + B1), Equation (27) can be rewritten as
c= A1 + Bi5y = (1 —s)a + sb. (28)

(A0+A1)(So+51) (Bo+Bl)(So—|-Sl)

Note that (Ag+ A1) must equal (By+ B;) during the initial selection of reactant concentrations.
For bipolar fractional coding we compute P(Cy) — P(Cy) as follows:

C, -Gy (A1S0 + B1S1) — (AoSo + Bo'Sh)
= = P(Cy) — P(Cy) = 29
‘Tt (C1) = P(Co) (Ao + A1)Sy + (By + B1)Sy (29)
Since (Ap + A1) = (By + B1), we can rewrite Equation (29) as given in Equation (30).
c= (A1 = 4o)5% + (B1 = Bo)Sy = (1 —s)a+ sb. (30)

(Ao + A1)(So + S1)  (Bo+ B1)(So + S1)

S.4.2 Mass-action kinetics model

For molecules of Cyy and C4, the ODEs of chemical reactions shown in Fig. 1(c) are described
by Equation (31).

dc
o = [Ao][So] + [Bo][51]
ML~ (sl + (Biis) (31)

By assuming that the initial concentration for Cjy and ' is zero, for unipolar fractional coding
the output ¢ can be computed by Equation (32).




[A1][So] + [B1][S1]

= (A DS + (B + BET )
If ([Ao] + [A1]) = ([Bo] + [Bi1]) we can rewrite Equation (32) as given by Equation (33).
A4Sy B4]|5:
= DT BT Gy S0
Similarly for bipolar fractional coding we can compute ¢ by Equation (34).
C] - (G _ 5t =
I (& (A e
_ [A[So] + [Ba][S1] = ([A4][S4] + [Bo][S4] (34)
([Ao] + [A1])[So] + ([Bo] + [B1])[51]
If ([Ao] + [A1]) = ([Bo] + [Bi]), we can rewrite Equation (34) as given by Equation (35).
Aq] — [Ao])[So Bi| — [Bo])[S1
T Ear [ E ey RS ereara i cy R A D

S.5 Molecular Inner Product

The set of eight reactions listed in (36) computes the scaled version of inner product for two

vectors {Z] and {Z] in unipolar fractional coding.

Ag + By — Ey Co+ Dy — Ey
Ag+ By — Ey Co+ D1 — Ej
Ay + By — Ey Ci+ Dy — Ey
A+ By — E; Ci+ D, — E;. (36)

According to the stochastic model we have

_ E1 :P(E)I AlBl+OlD1
Ey+ F, YT (Ao + AN (By + By) + (Co + C) (Do + Dy

If ([Ao] + [A1])([Bo] + [B1]) = (Co + C1)(Dy + Dy) we can rewrite Equation (37) as given by
Equation (38).

(37)

A1B, + C1D, (
2(Ao + A1) (Bo + Bl) 2

e= ab + cd). (38)
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In general, we can compute the inner product of two n x 1 vectors using 4n chemical
reactions where each of the four reactions is related to a corresponding pair of elements of the

x w1y

. . i) Wao .

input vectors. In fact, if x = | "“ | and w = | | are input vectors, the proposed molecular
TN wN

reactions compute the scaled version of their inner product as shown in Equation (39).

1
Yy = N(xlwl + zows + ... + TyWy) (39)

Evidently, similar to the unipolar case for bipolar coding the set of eight reactions in (40)
. b ) .
computes the scaled inner product of two vectors {Z} and [ d] . In other words reactions listed

in (40) compute 1(ab+ cd) in bipolar fractional coding.

Ao+ By — E4 Co+ Dy — E;
Ao+ B1 — Ey Co+ D1 — Ej
A1+ By — Ej Ci+ Dy — Ej
A+ B, — E C,+ D, = I (40)

S.6 Maclaurin Series Expansion of Target Functions

Maclaurin series expansion of target functions are listed below.

e & (_x)n B 2 :C3 Q:4
¢ —ZM P AR TR T (41)
- (=" (2n+1) a®
=) ) g Dy 42
sin(z) 2 (2n+ 1)! 317 42)
_ - (_1)n (2n) a? !
cos(x) = ngzo @) =1 o + T (43)
log(1 + ) EOO (—1yrt LT (44)
xTr) = = r— — _—— —
& 2 ! 2 734
L Bopdn (4" —1) o, 1, 2 5 17 .
tanh(z) = Y =gt =g — 2o 4 S — a7 45
anh(x) 2 2n)l x T— g8+t — gt + (45)
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1 = (=1)"E,(0 1 = 23 2P
- CUEO)

sigmoid(z) 14+e® — (2n)! x 5 + 1718 + 150 + (46)
sin(rz) o~ (=1)" s 203 4.5 6.7 8.9

- e = - - 47

m ;(Znﬂ)!w ! TR T T T (47)
D, (@) ()t () (7

cos(mr) = HZ:O @n)] ()™ =1~ TR TR T TR (48)

where B,, is a Bernoulli number, E,(z) is an Euler polynomial, and for logarithm function
lz] < 1.

S.7 Coefficients and Inputs for Perceptron

A B C

wy; | 0.5 0.5 0.5
wy | 0.5 0.5 0.5
ws | 0.5 0.5 0.5
wy | 0.5 0.5 0.5
ws | 0.5 0.5 0.5
we | 0.5 0.5 0.5
wy | 0.5 0.5 | -0.5
wg | 0.5 0.5 | -0.5
wyg | -0.5 | 0.5 | -0.5
wip | -0.5 | 0.5 | -0.5
wip | -0.5 | -0.5 | -0.5
W12 -0.5 -0.5 -0.5
W13 -0.5 -0.5 -0.5
W14 -0.5 -0.5 -0.5
W15 -0.5 -0.5 -0.5
wie | -0.5 | -0.5 | -0.5
wir | 0.25 | 0.25 | 0.25
wig | 0.25 | 0.25 | 0.25
wig | 0.25 | 0.25 | 0.25
woo | 0.25 | 0.25 | 0.25
wee | 0.25 | 0.25 | 0.25
wes | 0.25 | 0.25 | -0.25
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Inputs of three perceptrons, denoted A, B and C. Inputs to the perceptron:

Figure S.7.1

inary inputs.

each column of the 32 x 100 matrix illustrates an input vector containing 32 b

S.8 DNA Implementation Details

tial system

ni

Fig. S.8.1 shows a sequence of six DNA reactions, R1-R6, that implement molecular reaction

A+ B — C. All DNA reactions are based on the toehold mediated mechanism first presented
[2]. The primary molecules, A, B, and C, are represented by single strand DNA molecules —

product. We use the template presented in Fig. S.8.1 for implementation of our molecular
red strands in Fig. S.8.1 — composed of a toehold and a main domain part. The

The proposed CRNs for computing functions are composed of bimolecular reactions with one
reactions by DSD reactions.

m

provides required gate and auxiliary molecules, i.e., DNA molecules G1, G2, <tr r>, <c tr>,

and <i tc> — black strands in Fig. S.8.1

the system. Furthermore,

tialized to be large enough to efficiently

m

tially available i

— are 1l

ni

the concentration of gate and auxiliary strands are

supply the sequence of DNA reactions to continue as long as the primary molecules last.
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Figure S.8.1: DN A implementation of A+B — C'. According to the methodology developed
in [1], a sequence of six DNA strand displacement reactions, R1 — R6, implement bimolecular
reaction A+ B — C.

Each reaction in the sequence of DNA reactions produces the mediating toehold for the
next reaction. The sequence starts when the toehold domain of input molecule A, i.e., ta, binds
with its WatsonCrick complementary domain in gate G1, i.e., ta*. This leads to the binding
of whole molecules of A to gate G1. Similarly, through reaction R2, the DNA molecule B
binds to gate G1 and in Reaction R5 the output DNA molecule C' is released from gate G2.
For the details about the mechanism, the reader is referred to [1]. The authors in [1] have
experimentally validated that the sequence of DNA strand displacement reactions in Fig S.8.1
does implement the expected kinetics for the desired bimolecular reaction. They also showed
that the rate constant can be tuned by adjusting the initial concentrations of gates and auxiliary
molecules. The linear, double-stranded DNA molecules used in the mechanism can be derived
from biologically synthesized (plasmid) DNA. Compatibility with natural DNA leads to the
reduction of errors associated with chemically synthesized DNA.

For each of the six target functions in this paper we perform the DNA simulation based on
the software provided in [3]. Each function is computed for 11 different inputs and the results
are demonstrated in Fig. S.8.2. The DNA computed outputs are shown by red stars and the
exact values of functions are shown as blue lines. The DNA computed values follow the exact
values with an acceptable accuracy for all functions except smfr—”), 5 2(31? and sigmoid(z) for
large values of z. The molecular outputs for these three functions cannot reach steady-state
values within 50 hours of simulation. For example, at + = 0.9, the DNA simulation (exact)
values of these three functions are given by, 0.1329 (0.0984), -0.0852 (-0.1603), and 0.6906
(0.7109), respectively, after 50 hours of simulation time. However, these DNA reactions can
reach more accurate values after longer simulation time. Figure S.8.3 shows the kinetics of the
DNA simulations for these three functions for x = 0.9. The DNA simulation (exact) values of
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these functions at =

exact values.

0.9 are given by 0.1023 (0.0984), -0.1416 (-0.1603), and0.7061 (0.7109)
after 200, 200 and 500 hours of simulation time, respectively. These DNA outputs are closer to
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Figure S5.8.2: Exact and computed values of the functions. Computed values of functions
using our proposed molecular systems along their exact graphs for e™* sin(z), cos(x), log(1+x),
tanh(x), and sigmoid(x),

. cos(mx)
input. For —g-=,

computed values.

Y

sin(mx) cos(mx)
= and o

the output is in bipolar encoding. Blue lines: exact values, red stars:
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with unipolar input, and sigmoid(x) with bipolar
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Figure S.8.3: DNA simulation results. The DNA reaction kinetics for the computation of

sin7(:r:c)’ and C;zg;? and sigmoid(x) for x = 0.9.
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