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Işçen, Will Curran, Carrie Rebhuhn, and Josie Hunter.

I am lucky to have had such a great and positive committee for my dissertation.

Sachin Sapatnekar taught my first course in graduate school: VLSI Design Automa-

tion. His teaching helped me tremendously when I began doing research in EDA.

Kia Bazargan has given me great feedback on my research, and his mentorship dur-

ing “Teaching Experiences in ECE” taught me how to best articulate my ideas. When

it came time for me to ask professors to be on my committee, I wanted to find someone

in the computer science department that had experience with Formal Methods. I cannot

articulate accurately how grateful I am that I found Mike Whalen. Dr. Whalen’s advice

i



for my research has been extremely helpful, and I will never be able to adequately repay

him for the doors of opportunity that he has opened for me in my professional life.

During my third semester of undergraduate study, I was frustrated to find that a

new professor who was supposed to teach the recitation for my class on “Introduction

to Digital System Design” did not show up to the first discussion. Apparently he had

confused the names of the buildings “Akerman Hall” and “Amundson Hall” and was

over 15 minutes late. To make it up to his students, he offered extra offices hours

so we could get caught up on the material that was supposed to be taught during

the discussion. While Professor Riedel’s complete lack of temporal organization was

sometimes frustrating in the future, the disorganization inadvertently caused the first

of what would be many meetings over the next six years of my life. Marc’s gleeful

excitement when discussing technical concepts and unending positive feedback was what

convinced me to go to graduate school. He routinely encouraged me to study whatever

topics I found interesting. I am thoroughly convinced that I would not have been

successful studying under the guidance of anyone else other than him.

Finally, I must thank my brilliant and beautiful girlfriend Caitlyn. She gave me

relentless encouragment and had an endless amount of patience with me over the past

three and a half years. She was truly my greatest discovery during graduate school.

ii



Dedication

To my parents,

who have always been able to find ways to satisfy all of my constraints...

iii



Abstract

Boolean satisfiability (SAT) was the first problem to be proven to be NP-Complete.

The proof, provided by Stephen Cook in 1971, demonstrated that inputs accepted by

a non-deterministic Turing machine can be described by satisfying assignments of a

Boolean formula. The reduction to SAT feels natural for a wealth of decision problems;

this has motivated an immense amount of research into heuristics for solving SAT in-

stances quickly. Over the past decade the performance of SAT solvers has improved

tremendously, and as a consequence, real-world problems that were once thought to be

intractable are now feasible in many cases.

In this thesis we discuss how some problems in logic synthesis and verification can be

solved with Boolean satisfiability. The dissertation begins by discussing Cyclic Combi-

national Circuits. Cyclic Combinational Circuits are logic circuits that contain feedback,

but exhibit no state behavior. Many functions can be implemented with fewer gates

using a cyclic topology rather than an acyclic topology. A pivotal step in synthesizing

these circuits is proving whether or not the resulting structure is actually combinational,

and if not, how to modify the circuit to behave properly. This analysis can be elegantly

cast as an instance of SAT. Furthermore, this thesis demonstrates how modern SAT-

Based synthesis techniques can be used to generate cyclic structures, rather than just

analyze them.

These SAT-Based synthesis techniques rely on augmenting proofs of unsatisfiability

to generate circuit structures. These structures, called Craig Interpolants, and the

proofs they are generated from are the focus of the second portion of this dissertation.

Techniques are proposed for reducing the size of these interpolants, and then the use of

proofs of unsatisfiability as an underlying data structure for synthesis is advocated.

Finally, the last portion of this thesis discusses some improvements to a new model

checking algorithm known as Property Directed Reachability (PDR). This algorithm
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iteratively solves SAT instances representing discrete time frames of a sequential circuit

in order to demonstrate that a state invariant exists.
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Chapter 1

Overview

This first chapter serves as an introduction to concepts and terms that are common

to all the topics presented in this dissertation. We begin by discussing the organization

and how the subjects are related.

1.1 Organization and Contributions

This thesis encompasses many of the topics that I researched during my graduate

education. Each of these topics naturally evolved out of the previous while maintaining

the common theme of Boolean Satisfiability. The topics in this thesis are presented in

the order in which preserves this natural evolution. Figure 1.1 shows how the topics

relate to each other. The first topic discusses how to analyze and synthesize cyclic com-

binational circuits with Boolean Satisfiability. The synthesis method relies on generating

Craig Interpolants to generate functional dependencies. The second topic, Reduction

of Interpolants for Logic Synthesis, discusses a method for reducing the size of these

interpolants. This method modifies the structure of resolution proofs to reduce the com-

plexity of the interpolant’s structure. The third topic discusses how resolution proofs

can be used as an underlying data structure in which to perform synthesis. Resolution

proofs and Craig Interpolants are common constructs used in formal verification. The

1



2

final topic of this thesis discusses some improvements to a new SAT-based algorithm

for formally verifying safety properties in a finite-state transition system.

Interpolation−Based

Synthesis
Cyclic Combinational Circuits Reduction of Interpolants

Resolution Proofs Property Directed Reachability
Formal Verifcation

Proof Manipulation

Figure 1.1: A diagram of how the thesis topics relate to each other.

Explicitly stated, this thesis makes the following contributions:

• We propose a SAT-Based algorithm to analyze and synthesize cyclic combinational

circuits on a network level. This method synthesizes cyclic circuits while trying

to minimize the support set size of the circuit’s intermediate functions.

• We propose a SAT-Based algorithm for analyzing and mapping cyclic circuits with

gate-level implementations. There are subtle challenges associated with translat-

ing cyclic circuits from a network-level to a gate-level implementation that we

address.

• We propose a method for reducing the size of Craig Interpolants used to synthesize

functional dependencies.

• We discuss the use of resolution proofs as a general data structure for logic syn-

thesis.
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• We discuss some improvements to a new model checking algorithm known as

Property Directed Reachability.

In the following section we describe concepts and notation that are common to most

of the concepts in this thesis.

1.2 Definitions, Notation, and Common Concepts

1.2.1 Boolean Satisfiability

Boolean satisfiability is the problem of determining whether there exists some truth

assignment to the variables of a Boolean formula such that the formula is satisfied (is

true for that assignment). Many combinatorial problems can be described simply by a

set of Boolean constraints. Thus many combinatorial problems are easily translated into

the Boolean Satisfiability problem. For example, consider the problem of three Ph.D.

students (Hua, John, and Mustafa) deciding where to go to happy hour. This problem

consists of a number of variables and constraints. The variables and their meanings are

listed in Figure 1.2. The constraints and their meanings are listed in Figure 1.3.

Variable Meaning

Joh Att John will attend
Mus Att Mustafa will attend
Hua Att Hua will attend
Hua Dea Hua has a paper deadline he needs to meet
Mus Per Mustafa has permission to go from his wife Banu
Gro Mee There is a group meeting scheduled for the evening
War Wea The weather is warm
Bur Loc The students will go to the bar: “Burrito Loco”
Stu Her The students will go to the bar: “Stub & Herbs”
Sal The students will go to the bar: “Sally’s”

Figure 1.2: Variables for deciding what bar to go to for happy hour.

The truth assignments to the Boolean variables listed in Figure 1.2 that satisfy all

of the constraints in Figure 1.3 represent the possible scenarios in which at least some
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Constraint Meaning

Joh Att→ Hua Att ∨Mus Att A student will only attend if at least
Hua Att→ Joh Att ∨Mus Att one of the other students attends
Mus Att→ Hua Att ∨ Joh Att
Mus Att→Mus per ∧ ¬Gro Mee Mustafa will attend only if he has permission

and there is no group meeting

Hua Att→ ¬Hua Dea ∧ ¬Gro Mee Hua will attend only if he does not have
a paper deadline and there is no group meeting

Bur Loc→ ¬Hua Att Hua refuses to go to “Burrito Loco”

Stu Her → ¬War Wea The students will only go to “Stub and Herbs”
if the weather is not warm

Sal→War Wea ∨ ¬Joh Att John refuses to go to “Sally’s”
unless the weather is warm

Bur Loc→ ¬Sal ∧ ¬Stu Her The students cannot attend more than one bar
Stu Her → ¬Sal ∧ ¬Bur Loc
Sal→ ¬Bur Loc ∧ ¬Stu Her
Joh Att ∨Hua Att ∨Mus Att At least one student will attend

Figure 1.3: Constraints for deciding what bar to go to for happy hour

of the students will attend happy hour. For example, the truth assignment: Joh Att =

Hua Att = Mus Att = War Wea = Mus Per = Sal = true, Hua Dea = Bur Loc =

Stu Her = Gro Mee = false satisfies all of the constraints. This indicates a scenario

where all of the students attend “Sally’s”. Another satisfying assignment: Joh Att =

Mus Att = Hua Dea = Mus Per = Stu Her = true, Hua Att = Bur Loc = Sal =

Gro Mee = false indicates a scenario where only John and Mustafa go to “Stub &

Herbs” because Hua has a paper deadline. Notice that in this scenario the truth value

of the variable War Wea does not affect the truth values of the constraints. There are

several truth values which do not satisfy all of the constraints. For example, whenever

there is a group meeting, neither Mustafa nor Hua will be able to go out for happy

hour. Because neither Hua nor Mustafa will attend happy hour, John will also not

attend (though he doesn’t seem to care about the group meeting...). In fact, it can

be shown through repeated use of the inference rule of resolution that the constraint:

Gro Mee → ¬(Joh Att ∨ Hua Att ∨Mus Att) can be implied by the conjunction of
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constraints in Figure 1.3. This means that the final constraint: “At least one student

will attend.” cannot be satisfied when there is a group meeting scheduled.

For the majority of this thesis, we use the “Electrical Engineering” notation: addi-

tion (x+ y) denotes disjunction, multiplication (xy), denotes conjunction, a “plus with

a circle” (x ⊕ y) denotes inequivalence (exclusive OR), and an overbar (x̄) or a “dash

with a tail” (¬x) denotes negation. However, in the example above, in the final chapter,

and in some pseudocode, we use the standard mathematical notation: a “∨” denotes

disjunction, a “∧” denotes conjunction, and a “→” denotes implication. We often use

the number 1 to indicate the constant true and the number 0 to indicate the constant

false; although we sometimes explicitly say “true” or “false”. We use the term “Boolean

formula” and “Boolean function” interchangbly. If we are discussing a function that is

not Boolean (either its arguments are not Boolean or its result is not Boolean) it will

be made clear by context.

An appearance of a variable in a Boolean formula, either negated or non-negated,

is refereed to as a literal. A clause or a sum is a disjunction (OR) of literals. A

conjunction (AND) of literals is referred to as a cube or a product. A Boolean formula

is in conjunctive normal form (CNF) if it is a conjunction (AND) of clauses. We will

sometimes refer to a CNF formula as a set of clauses, when it is clear by context.

The vast majority of SAT solvers only operate on CNF formulas. Though there are

some that operate on circuit structures, or a combination of circuit structures and CNF

formulas [2]. Any representation of a Boolean formula can be transformed into a CNF

formula that preserves the satisfiability of the original in linear time by adding additional

variables and constraints. The most common type of transformation, introduced by

Tseitin in [3], is described in subsection 1.2.2.

A CNF formula is said to be satisfiable if there is some assignment of its variables

that causes the formula to evaluate to true. A CNF formula is said to be unsatisfiable

if there is no assignment of its variables that causes the formula to evaluate to true. We

sometimes refer to a CNF formula as a SAT Instance. We will also refer to a logic
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circuit with a single primary output as a SAT instance; the satisfiability of the primary

output can be represented as a CNF formula.

The restriction operation (also known as the cofactor) of a function f with respect

to a variable x,

f |x=v,

refers to the assignment of the constant value v ∈ {0, 1} to x. A function f depends

upon a variable x iff f |x=0 is not identically equal to f |x=1. Call the variables that a

function depends upon its support set.

We use superscripts to denote a function’s ON and OFF sets: for a function f(x0, x1,. . . , xn),

we write f(x0, x1,. . . , xn)1 to denote its ON set (i.e., the set of assignments to variables

x0, x1,. . . , xn where f evaluates to 1); we write f(x0, x1,. . . , xn)0 to denote its OFF set

(i.e., the set of assignments to variables x0, x1,. . . , xn where f evaluates to 0).

A partial assignment of a function’s support variables is a valuation of that func-

tion over a subset of its support variables; the result of a partial assignment is either 0,

1, or ⊥ (the definition of ⊥ is described in Chapter 2). A product is said to cover a

partial assignment if that product evaluates to 1 for that partial assignment. Similarly,

a sum is said to cover a partial assignment if the sum evaluates to 0 for that partial

assignment.

When we assert some implication or bi implication in the text, we are claiming that

the implication or bi implication is a tautology. For example, if we say something like

“the cube c is true because f → a and a ↔ c”, then we are asserting that f → a and

a↔ c are both tautologies.

Given a product p and a function f , we say that “p is a product of f” if p → f .

Likewise, given a sum s and a function f , we say that “s is a sum of f” if f → s.

A prime implicant p of some function f is a product such that p→ f and p is not

covered by any other product q of f (p 6→ q). A prime implicate s of some function

f is a sum such that f → s and s is not covered by any other sum q of f (q 6→ s) [4].
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1.2.2 Tsestin Transformation

In order for CNF-based SAT Solvers to reason about circuit structures, a transla-

tion from a combinational circuit to an equivalent CNF formula must take place. The

most common, and arguably the most simple, type of translation was introduced by

Tsetien [3].

The transformation generates a CNF formula such that the number of clauses and

variables are linear in the size of the circuit. The translation works be converting each

individual logic gate into a set of clauses. These clauses are in terms of variables assigned

to each wire connecting to the logic gate. An example template for a NAND gate is

shown in Figure 1.4

x

y
z

(x+ z)(y + z)(x̄+ ȳ + z̄)

Figure 1.4: Nand Template for Tseitin transformation

While the original circuit expresses a Boolean function in terms a set of primary

input variables, the transformed CNF formula is expressed in terms of not only the

primary input variables but also variables representing the state of each individual wire

in the circuit. Assignments that satisfy the final formula correspond to valid states

of the circuit. For example, consider the circuit and corresponding formula shown in

Figure 1.5.

Using Demorgan’s law, the OR gate can be converted into an AND gate with in-

verters on every input and output. Applying Demorgan’s law, simplifying multiple

inversions, and applying the template given in Figure 1.4 yields the circuit and corre-

sponding Tseitin transformation shown in Figure 1.6



8

a
b

c
d

f

f = ab+ cd

Figure 1.5: A circuit implementing function f = ab+ cd.

a
b

c
d

x

y

f

(a+ x)(b+ x)(ā+ b̄+ x̄)

(c+ ȳ)(d+ ȳ)(c̄+ d̄+ y)

(x+ f)(y + f)(x̄+ ȳ + f̄)

Satisfiable Assignments

a, b, c, d x = ab y = cd f = xy

0 0 0 0 1 0 1
0 0 0 1 1 0 1
0 0 1 0 1 0 1
0 0 1 1 1 1 0
0 1 0 0 1 0 1
0 1 0 1 1 0 1
0 1 1 0 1 0 1
0 1 1 1 1 1 0
1 0 0 0 1 0 1
1 0 0 1 1 0 1
1 0 1 0 1 0 1
1 0 1 1 1 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 0 1 1

Figure 1.6: The circuit in Figure 1.5 expressed in terms of AND gates and inverters.
The Tseitin transformation using the template from Figure 1.4 is shown beneath the
circuit. The table on the right side of the Figure lists all the satisfying assignments of
the SAT instance.
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There are 16 valid states of the circuit in Figure 1.5. Hence there are only 16

assignments that satisfy the clauses in Figure 1.6. These assignments are explicitly

listed on the right hand side of the Figure. It may be somewhat counterintuitive that

the assignments that satisfy the SAT instance in Figure 1.6 do not neccesarily correspond

to those that cause the primary output variable f to evaluate to 1. In order to check

the satisfiability of the circuit in Figure 1.5, the clause containing the single variable f

can be added to the SAT instance in Figure 1.6 to assert that f must be 1 in order to

satisfying the formula.



Chapter 2

Cyclic Circuits and Boolean

Satisfiability

2.1 Introduction

2.1.1 Cyclic Combinational Circuits

A common misconception is that combinational circuits must have acyclic topologies;

that is to say, they must be designed without any loops or feedback paths. Indeed, any

acyclic circuit is clearly combinational: once the current values of the inputs are set,

the signals propagate to the outputs; the outputs are determined regardless of the prior

values on the wires, making them independent of the past sequence of inputs. The idea

that “combinational” and “acyclic” are synonymous terms is so thoroughly ingrained

that many textbooks provide the latter as a definition of the former (e.g., [5], p. 14;

[6], p. 193).

And yet, cyclic circuits can be combinational. Consider the truth table of values

and the functions shown in Figure 2.1. The definition of these functions is cyclic. In

spite of this, the network is combinational: it produces the correct outputs, regardless

10
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of the initial state and independently of all timing assumptions. To see this, consider

specific input values. For instance, with a = 1, b = 0, c = 1, d = 0, the network

simplifies to that shown in Figure 2.2, yielding the correct values for f0, f1 and f2.

With a = 1, b = 1, c = 0, d = 0, the network simplifies to that shown in Figure 2.3,

again yielding the correct values for f0, f1 and f2. The reader may verify that the

network implements the correct output values for all input values.

a, b, c, d f0, f1, f2
0 0 0 0 0 1 1
0 0 0 1 0 1 1
0 0 1 0 1 0 1
0 0 1 1 1 0 1
0 1 0 0 0 1 1
0 1 0 1 0 1 1
0 1 1 0 1 0 1
0 1 1 1 1 0 1
1 0 0 0 0 1 1
1 0 0 1 0 1 1
1 0 1 0 0 1 1
1 0 1 1 0 1 1
1 1 0 0 1 1 0
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1

f0

f2f1

a c

a b

c d

f0 = ab+ f̄1

f1 = c̄+ f2a

f2 = c+ d+ f̄0

Figure 2.1: Example: A cyclic circuit with 4 primary inputs and 3 primary outputs.

Cyclic circuits can be analyzed on a network level, such as the example in Figure 2.1,

or on the level of logic gates mapped to some technology. A cyclic combinational circuit

mapped to two-input AND and OR gates is shown in Figure 2.4. This circuit is also

combinational in the strictest sense: it produces the required output values regardless
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f0 = f̄1 = 0
f1 = f2 = 1
f2 = 1

f0

f2f1

a c

a b

c d

Figure 2.2: Network in Figure 2.1 with a = 1, b = 0, c = 1, d = 0.

f0 = 1
f1 = 1
f2 = f̄0 = 0

f0

f2f1

a c

a b

c d

Figure 2.3: Network in Figure 2.1 with a = 1, b = 1, c = 0, d = 0.

of the prior values on the wires and for any choice of delay parameters. If x = 0 then g1

produces an output of 0, because 0 is a controlling value for an AND gate. If x = 1 then

g4 produces a value of 1, because 1 is a controlling value for an OR gate. In both cases,

the cycle is broken and the circuit produces definite outputs. Since x must assume one

of these two values, we conclude that the circuit always produces definite outputs. In

fact, it implements two functions that both depend on all five variables:

f1 = b(a+ x(d+ c)),

f2 = d+ c(x+ b a)
(2.1)

(+) denotes OR, (·) denotes AND

Note that the computation of the two functions overlaps. If we were to implement these

functions with an acyclic circuit, we would need eight two-input gates. There can be

subtle differences between the behavior of a cyclic circuit defined on the network-level

and it’s gate-level implementation. We discuss these differences towards the end of this

chapter.
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a

b

f
1

x

AND

OR

AND

c

d

f
2

x

OR

AND

OR

g
1

g
2

g
3

g
4

g
5

g
6

Figure 2.4: A cyclic combinational circuit.
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The concept of cycles in combinational circuitry is conceptually similar to that of

false paths. Khrapchenko was the first to recognize that depth and delay in a circuit are

not equivalent concepts: the critical paths of a circuit may all be false, i.e., they might

be blocked by off-path controlling values; as a consequence, the delay of the circuit

might be less than its topological depth [7]. For a cyclic circuit, we can say that it

is combinational if all of its cycles are false; no input assignment ever causes a cyclic

path to be sensitized. Although counterintuitive, cycles can be used to optimize circuits

for delay as well as for area. The extra flexibility of allowing cycles when structuring

functional dependencies makes it possible to move logic off of true critical paths and so

optimize the delay [8].

In previous work, it was shown that combinational circuits can be optimized sig-

nificantly if cycles are introduced [9]. The intuition behind this is that, with feedback,

all nodes can potentially benefit from work done elsewhere; without feedback, nodes at

the top of the hierarchy must be constructed from scratch. The proposed methodology

for synthesizing such circuits demonstrated that significant improvements in area and

in delay could be. Cycles are introduced in the restructuring and minimization phases

of logic synthesis at the level of functional dependencies.

2.1.2 Prior and Related Work

In an earlier era, theoreticians commented on the possibility of having cycles in

combinational logic and conjectured that this might be a useful property [10], [11], [12].

Both McCaw and Rivest presented examples of cyclic circuits with provably fewer gates

than is possible with equivalent acyclic circuits [13], [14].

Stok lamented that EDA tools were rejecting cyclic designs because there was no

way to validate them [15]. In response, Malik discussed analysis techniques for cyclic

combinational circuits [16]. His approach was topological, beginning with a transforma-

tion from a cyclic specification to an equivalent acyclic one. Later Shiple refined and
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formalized Malik’s results and extended the concepts to combinational logic embedded

in sequential circuits [17].

More recently, Neiroukh and Edwards discussed analysis strategies targeting cyclic

circuits that are produced inadvertently during design [18, 19]. Following a strategy

similar to Malik’s, they proposed techniques for transforming valid cyclic circuits into

functionally equivalent acyclic circuits [19]. Their algorithm enumerates partial Boolean

assignments that break the feedback paths in cyclic circuits. The enumeration continues

until enough assignments are found to cover the entire input space. Based on these

partial assignments, acyclic fragments are assembled into a new acyclic circuit. As

a starting point, they presume that the given circuit is combinational and correctly

mapped. The enumeration is explicit and so the algorithm is potentially very slow, as

it searches through an exponentially large space of partial assignments.

Riedel was the first to suggest a method for synthesizing cyclic circuits [9]. The

method was implemented in a package called CYCLIFY, built within the Berkeley SIS

environment [20]. The tool was successful: it reduced the area of benchmark circuits

by as much as 30% and the delay by as much as 25%. However, being based on SIS,

the analysis routines in CYCLIFY used sum-of-products (SOP) and binary decision

diagram (BDD) representations for Boolean functions. These representations limited

the size of the circuits that could be analyzed and optimized effectively.

Admittedly, the task of analyzing cyclic circuits is complex. Yet there is no funda-

mental obstacle to performing tasks such as verification, mapping, and timing analysis

on cyclic circuits. So-called “false-path aware” algorithms for timing analysis take into

account false paths, providing tighter bounds on delay than purely topological meth-

ods [21]. The complexity of this sort of timing analysis is, in fact, the same for cyclic

circuits as for acyclic circuits [22]. Early formulations based on SOPs and BDDs were

never up to the task, but modern SAT-based algorithms are powerful enough to perform

false-path aware analysis.
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2.1.3 SAT-Based Synthesis

This chapter tackles the problem of synthesizing cyclic combinational circuits with

SAT-based techniques. Specifically, we build off of a technique based on Craig interpo-

lation for synthesizing functional dependencies [23]. This technique is geared towards

technologies where the complexity of implementing a function is heavily dependent on

the number of support variables.

This is illustrated conceptually in Figure 2.5. The figure shows three functions:

f(h, c, d, e), g(h, c, d, e), and h(a, b). Both f and g can be represented in terms of the

support variables a, b, c, d, and e. However, if f and g are to be implemented in an

acyclic topology in terms of four input look-up tables, at least one additional look-up

table must be used (in this case h(a, b)).

Whether or not a function can be represented in terms of certain support variables

can be cast as a SAT problem. If the answer is affirmative, Craig interpolation provides

an implementation. Figure 2.6 demonstrates that an alternative representation exists

for f , and g. Craig interpolation can be used to generate the functions f(a, b, c, g) and

g(f, c, d, e), and a SAT solver can verify whether or not this representation behaves

combinationally.

ab

f = ab�cde g = abc�de

c  d  e c  d  e

� � � �
� ���h�cde hc�de

f g
h

a  b

c
d
e

c
d
e

Figure 2.5: Three four-input lookup tables implement functions f = ab ⊕ cde and
g = abc̄⊕ de using an acyclic topology. The circuit’s dependency graph is shown on the
right.
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f = ab�cde g = abc�de

a  b  c c  d  e

ab�cg fc�de f g
a
b
c

c
d
e

Figure 2.6: Two four-input lookup tables implement functions f = ab ⊕ cde and g =
abc̄⊕ de using a cyclic topology. The circuit’s dependency graph is shown on the right.

2.2 Circuit and Network Model

Analysis of an acyclic circuit is transparent. We first evaluate the gates connected

only to primary inputs, and then gates connected to these and primary inputs, and so

on, until we have evaluated all gates. The previous values of the internal signals do not

enter into play.

We adopt a ternary framework for analysis. We assume that, at the outset, all wires

in a circuit have undefined values, which we denote with the symbol ⊥. Here ⊥ captures

both uncertainty as well as possible ambiguity: the signal might be 0 or 1 – but we do

not know which; or it might not even have logical value, i.e., it could be a voltage value

between logical 0 and logical 1. We say that a variable’s value is definite or known if its

value is 0 or 1 and that it is indefinite or ambiguous if it is ⊥. The idea of three-valued

logic for circuit analysis is well established. It was originally proposed for the analysis

of hazards in combinational logic [24]. Bryant popularized its use for verification [25],

and it has been widely adopted for the analysis of asynchronous circuits [26].

Conceptually, when validating a cyclic circuit, we apply definite values to the inputs,

and track the propagation of signal values. Initially, each gate has an output value of

⊥. We ask: is there sufficient information to conclude that the gate output is 0 or 1?

If yes, we assign this value as the output; otherwise, the value ⊥ persists. For instance,

with an AND gate, if the inputs include a 0, then the output is 0, regardless of other
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⊥ inputs. If the inputs consist of 1 and ⊥ values, then the output is ⊥. Only if all

the inputs are 1 is the output 1. This is illustrated in Figure 2.7. Input values that

determine the gate output are called controlling.

0

⊥
0

AND

1

⊥
⊥

AND

1

1

1
AND

Figure 2.7: An AND gate with 0, 1, and ⊥ inputs.

Consider the circuit fragment in Figure 2.8. One might be tempted to reason as

follows: the output of the AND gate g1 is fed in complemented and uncomplemented

form into the OR gate g2. Thus, one of the inputs to the OR gate must be 1, and so its

output must be 1. And yet, by definition, ⊥ designates an unknown, possibly undefined

value. (For instance, in an actual circuit, it could indicate a voltage value exactly half

way between logical 0 and logical 1.) In our analysis, we remain agnostic: the output

of the OR gate is ⊥1 .

1

⊥ ⊥
⊥

OR

g
2

AND

g
1

⊥

⊥

Figure 2.8: An illustration unknown/undefined values ⊥.

In the analysis, we track the propagation of well-defined signal values. Once a

definite value is assigned to an internal wire, this value persists for the duration (so

long as the input values are held constant). For any input assignment, a circuit reaches

a so-called fixed point in the ternary framework: a state where no further updates of

controlling values are possible. This fixed point is unique [26]. We adopt the following

definition.

1 In standard CMOS technologies, it is possible for a gate to output a voltage value between the
noise margin if its inputs are also somewhere between logical 0 and logical 1. Remaining agnostic about
the value of g2 in Figure 2.8 allows us to invalidate circuits where this could be a concern
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A circuit is combinational iff, for every assignment of input values, with all

the wires initially set to ⊥, the circuit reaches a fixed point that does not

contain any ⊥ values.

We illustrate our circuit model with the following example.

Example 1 Consider the circuit shown in Figure 2.9, consisting of an AND gate g1,

an OR gate g2, and an AND gate g3, in a cycle. By inspection, note that if x1 = 0

then f1 assumes value 0; if x2 = 1 then f2 assumes value 1; and if x3 = 0 then f3

assumes value 0. But what happens if x1 = 1, x2 = 0 and x3 = 1? In this case, all the

outputs equal ⊥, as illustrated in Figure 2.10. The outcome for all eight cases is shown

in Figure 2.11. We conclude that the circuit is not combinational.

2.2.1 Gate Level vs. Functional Level Analysis

The algorithms and concepts presented in the begining of this chapter are applicable

to technology-independent synthesis. At this level, a circuit is specified as a network

that computes Boolean functions. Ultimately, such a network gets mapped to gates in a

specific technology. The validity of a cyclic combinational circuit is properly established

in terms of controlling values at the technology level. At the network level, we validate

circuits in terms of functional dependencies. The notion of a function depending on a

variable is similar but not identical to the concept of a Boolean value controlling the

output of a gate. There can be subtle issues when mapping valid network level cyclic

specifications to gate level specifications. This was first demonstrated in [27]

Figure 2.12 demonstrates an example of a function that may behave differently

depending on its gate level mapping. Before the function f(a, b, c) = ab+ cb̄ is mapped

to gates, f(1, b, 1) = b+ b̄ = 1. However, the axiom b+ b̄ ≡ 1 only holds if it is assumed

that the values on the wires are truly Boolean (as demonstrated in Figure 2.8). In

the case were b =⊥, it is possible that b is some value between 1 and 0, and in this
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Figure 2.9: A cyclic circuit that is not combinational.

�
�

�
�

�
�

����� ���

� ��

⊥ ⊥ ⊥

Figure 2.10: The circuit of Figure 2.9 with x1 = 1, x2 = 0 and x3 = 1.

x1 x2 x3 f1 f2 f3

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 ⊥ ⊥ ⊥
1 1 0 0 1 0
1 1 1 1 1 1

Figure 2.11: Analysis of the circuit in Figure 2.9.
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case the mapped circuit shown in Figure 2.12 will evaluate to a different value than the

unmapped function f(a, b, c).

An assignment of a subset of a function’s support variables is said to be a controlling

assignment if the function evaluates to the same value regardless of the assignment of

the other variables in the function’s support set. We sometimes say that a variable

assignment controls a function, if that variable assignment is a controlling assignment

for that function.

In the beginning of this chapter, analysis and synthesis is performed on the level

of Boolean functions. We assume that a function evaluates to definite values for all

controlling assignments to that function’s support variables. Later, we explore methods

of mapping and analyzing cyclic circuits at the level of gates. We prove that any set

of cyclic functions that is deemed combinational can be mapped to a gate-level design.

We provide a constructive method for performing the mapping.

�� �
�� � �� � � � � �� ��� ������ ���

Figure 2.12: The function ab+ cb̄ and a gate level implementation.
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2.3 Functional Dependencies

At the network level, a circuit is specified as a collection of nodes N . Associated with

each node is a node function fi and a corresponding internal variable yi, 0 ≤ i ≤ n− 1.

(We sometimes abuse the notation by using the same name for the function and the

corresponding internal variable, calling them both fi). The node functions can depend

on input variables as well as on other internal variables. In a network’s dependency

graph, a directed edge is drawn from node i to node j iff the node i is in the support

set of node function fj .

The process of multilevel logic synthesis typically consists of an iterative application

of minimization, decomposition, and restructuring operations [28]. An important step

at the technology-independent stage is the task of structuring functional dependencies.

(With SOP representations, this step was called substitution or resubstitution.) In this

step, node functions are expressed or re-expressed in terms of other node functions as

well as the primary inputs.

For each node function, different choices might be available as dependencies yielding

alternative expressions of varying cost. Throughout this chapter, we will focus on sup-

port set size as our cost metric. Given the focus on technology-independent synthesis

algorithms, based on Boolean satisfiability, this metric is appropriate. (If we were using

an SOP representation, we could use literal counts instead.) Consider the functions f1

and f2,

f1 = bcx+ bdx+ ab (2.2)

f2 = abcx̄+ cx+ d. (2.3)

Figure 2.13 shows four different expressions for the functions and the corresponding

dependency graphs. Figure 2.13.a shows expressions for f1 and f2, both in terms of the

primary input variables only. With a support set of {a, b, c, d, x}, the cost of both of

these expressions is 5, so the total cost is 10.
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Figures 2.13.b and 2.13.c show alternate expressions, obtained by introducing func-

tional dependencies. In Figure 2.13.b, f1 is expressed in terms of f2 and {a, b, x}.

Accordingly, the total cost is 9. In Figure 2.13.c, f2 is expressed in terms of f1 and

{c, d, x}. Accordingly, the total cost is also 9.

In existing methodologies, a total ordering is enforced among the functions in this

phase in order to ensure that no cycles occur. In this example, the ordering of f2 v f1

would produce the expressions in Figure 2.13.b; the ordering of f1 v f2 would produce

the expressions in Figure 2.13.c. Insisting upon an ordering means that we would have

to choose one of these two results.

However, if we allow cyclic dependencies, we can find a better solution. Figure 2.13.d

show expressions for f1 and f2 with support sets of {a, b, x, f2} and {c, d, x, f1}, so a total

cost 8. As the dependency graph in Figure 2.13.d illustrates, the functional dependencies

are cyclic. Yet for every assignment of the primary input variables a, b, c, d, and x, the

functions evaluate to definite Boolean values. The functions and dependency graphs for

functions f1 and f2 when x is 0 and x is 1 are shown in Figure 2.14. We see that, for

any assignment of x, the cyclic dependency between f1 and f2 is broken, so the result

is combinational.

Of course, not all choices of cyclic dependencies are valid. Many will result in

networks that are not combinational. Suppose we wish to compute some complicated

function f and its complement f̄ . Saying that

f = f̄ ,

f̄ = f,

is evidently meaningless.
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f1 = bcx+ bdx+ ab

f2 = abcx̄+ cx+ d

f� f�a
b
c
d
x

a
b
c
d
x

(a) f1(a, b, c, d, x) and f2(a, b, c, d, x)

f1 = bxf2 + ab

f2 = abcx̄+ cx+ d

f� f�a
b

x

a
b
c
d
x

(b) f1(a, b, x, f2) and f2(a, b, c, d, x)

f1 = bcx+ bdx+ ab

f2 = cx+ cf1 + d
f� f�a

b
c
d
x

c
d
x

(c) f1(a, b, c, d, x) and f2(c, d, x, f1)

f1 = bxf2 + ab

f2 = cx+ cf1 + d

f� f�a
b

x

c
d
x

(d) f1(a, b, x, f2) and f2(c, d, x, f1)

Figure 2.13: Four different implementations of two functions, f1 and f2, of five variables
a, b, c, d, and x.
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f1 = ab

f2 = cf1 + d

f� f�a
b

x

c
d
x

(a) f1(a, b, 0, f2) and f2(c, d, 0, f1)

f1 = ab+ bf2

f2 = c+ d

f� f�a
b

x

c
d
x

(b) f1(a, b, 1, f2) and f2(c, d, 1, f1)

Figure 2.14: Functions f1(a, b, x, f2) and f2(c, d, x, f1) with x = 0 and x = 1. For both
values of x, the dependency graphs become acyclic.

2.3.1 Functional Dependencies with Craig Interpolation

In a seminal paper, McMillan proposed a SAT-based method for symbolic model

checking based on computing so called Craig interpolants [1]. In [23], the method was

applied to the problem of synthesizing functional dependencies. Broadly, the strategy is

to formulate an instance of Boolean satisfiability (SAT) that asks whether or not a target

function can be implemented with a certain support set. A proof of unsatisfiability,

returned by a SAT solver, is converted into a circuit that computes the target function.

We give a brief review of the method here, noting that in its current form, it is only

applicable to acyclic orderings. In the next section, we generalize the method to cyclic

orderings.

The method constructs a miter, as shown Figure 2.15. Here f0 is the target function.

The satisfiability of the primary output of this circuit indicates whether or not there

exists a dependency function h(f1,f2,f3) that can be used to represent f0 for some
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network. Here f0 Left and f0 Right are two copies of the same network. The primary

inputs x0, x1, . . . , xn (referred to as X) are the primary inputs to f0 Left. The primary

inputs x0*, x1*, . . . , xn* (referred to as X*) are the primary inputs to f0 Right; these

are distinct sets of variables, but in direct correspondence with one another: fi(X) is

equivalent to fi*(X*) where the assignment of X is equal to the assignment of X*.

If the primary output of this circuit is satisfiable, then there exists a pair of input

assignments X and X* such that f0(X) 6= f0*(X*) and f1(X) = f1*(X*), f2(X) =

f2*(X*), f3(X) = f3*(X*). Thus the value of f0 cannot be determined solely from the

values of f1, f2, and f3.

Then this indicates that f0 evaluates to a different value from f0* while functions

f1, f2, and f3 evaluate to the same values of f1*, f2*, f3*, respectively, on each side of

the circuit for some assignment of X and X*. Clearly this indicates that the ON set

f0(f1,f2,f3)1 is not disjoint from the OFF set f0(f1,f2,f3)0. Accordingly, there is no

function h(f1,f2,f3) that is equivalent to f0(X) (or to f0*(X*)).

If the primary output of the circuit is unsatisfiable for all assignments of X and X*,

this indicates that either f0 (or f0*) is a constant 1 or 0, or that the ON set f0(f1,f2,f3)1

is disjoint from the OFF set f0(f1,f2,f3)0. This indicates that there is some function

h(f1,f2,f3) that is functionally equivalent to f0(X).

In [23], a method is proposed for finding the dependency function h using Craig

interpolation. The underlying details of the approach to computing h are not impor-

tant; it is only important that the reader understands that if the ON set of a function

f(f0,f1,. . . ,fn)1 is disjoint from the OFF set f(f0,f1,. . . ,fn)0 then a function h can be

computed by generating an interpolant from a SAT instance that is similar to that in

Figure 2.15.

Using Craig interpolation to generate functional dependencies has proven to be much

more scalable than the previous SOP, and BDD based methods. However, the structure

of the dependencies that are generated are often overly large and redundant. For this

reason, Craig interpolation is generally used for architectures based on lookup tables
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(e.g., FPGAs) where no matter how complex a function is, it can be implemented by a

lookup table as long as its support set size is less than or equal to the size of the lookup

table.

� � ��� �
� � � � � � � �
�� �� �	

� � 
���
� �� � �� � � � � ��
������ �	�

� � �� �� � � �� �� � � �� ����SAT?

� � � � � �
� �

Figure 2.15: A miter that checks to see if f0 can be specified in terms of f1, f2, and f3.

2.3.2 Generating Cyclic Functional Dependencies

A cyclic circuit is not combinational if, for some assignment of the circuit’s primary

inputs, the value of some function in the circuit remains ambiguous. In a sense, deter-

mining whether or not a cyclic circuit is combinational is a similar problem to that of

determining whether or not a target function can be implemented in terms of a specific

support set. In both problems, a negative answer can be proven by comparing pairs of

rows of a function’s truth table. This is illustrated in the following example.
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Figure 5.3 shows the truth tables for two functions f0 and f1. In this implementation,

f0 has support variables a, b, and f1, while f1 has support variables a, c, and f0. Consider

the third and fourth rows of the truth table for function f0 and the first and second rows

of the truth table for function f1. For each pair of rows, the primary input variables

are assigned the same values (a = c = 0, b = 1). However, the output values of f0 and

f1 both toggle between 1 and 0. So, for this assignment, the value of f0 depends on the

value of f1 and the value of f1 depends on the value of f0. A fixed point is reached;

because of the mutual dependence, the values of f0 and f1 are both ⊥ in the fixed point.

Figure 2.17 shows the functions f0 and f1 and the resulting dependency graph under

this assignment.

Informally, a cyclic dependency graph is not combinational if there exists a selection

of pairs of rows from the truth tables for the functions that satisfies three conditions:

1. The primary input variables are the same value in every row

2. If the value of some function is the same for some pair of rows, then the variable

corresponding to this function in every other pair of rows assumes this value (i.e.,

if the value of some function is controlled, then this value propagates to the input

of other functions that contain this function as a support variable).

3. The values of some function toggles between 1 and 0 for some pair.

Finding a selection of pairs of rows that holds these properties is necessary and sufficient

to show that there is a primary input assignment that causes the circuit to reach a fixed

point with a ⊥ value. This is stated more formally with Proposition 1. In Proposition 1,

we consider a function’s truth table to be a set of rows. Each row is an assignment of

the function’s support variables (which can contain primary input variables, or other

internal variables). Each function has a value associated with a row. For example,

consider the truth table for function f0 in Figure 5.3. Let r0 be the first row of this

truth table. The variable assignment associated with r0 is a = b = f1 = 0. The value
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of f0(r0) is 1. It may help the reader to refer to Figure 2.18 and to the example listed

after the proof to help make sense of the constructs in Proposition 1.

Proposition 1 Let G be a cyclic dependency graph and let T = {t0, t1, . . . , tn−1} be the

set of truth tables for the functions F = {f0, f1, . . . , fn−1} in G. Let R1 = {r0 ∈ t0, r1 ∈

t1, . . . , rn−1 ∈ tn−1} and R2 = {r0 ∈ t0, r1 ∈ t1, . . . , rn−1 ∈ tn−1} be sets of rows from

the truth tables in T . G is not combinational if and only if, for some choice of R1 and

R2 (some selection of rows) the following conditions hold.

1. Every row in R1 and R2 has the same values for its primary input variables.

2. Let R1
i and R2

i be the ith row in R1 and R2 respectively. ∀i ∈ {0, 1, . . . , n− 1}, If

the value of fi(R
1
i ) is the same as fi(R

2
i ) then fi is this value in every other row

in R1 and R2. This only for rows that contain fi as a support variable.

3. ∃i ∈ {0, 1, . . . , n− 1} such that the value of fi(R
1
i ) differs from fi(R

2
i ).

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
� �� � � � � � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� �� � � � � � � ��� ��
f0 = āb̄+ ab+ f1b

f1 = f̄0ā+ āc

Figure 2.16: The truth tables for two functions. The cyclic dependency graph containing
these two functions is not combinational.
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f0 = f1 (2.4)

f1 = f̄0 (2.5)

Figure 2.17: The dependency graph for the functions in Figure 5.3 for the assignment:
a = c = 0, b = 1. The dependency graph is not combinational.

Proof 1 The first two conditions force the choice of R1 and R2 to correspond to a fixed

point in G reached by some primary input assignment.

The first condition asserts that the assignment of the primary input variables must be

the same in every row of every element of R1 and R2. If the primary input assignment

is a controlling assignment for some function fi, then that function’s output value will

not differ between the two rows R1
i and R2

i .

The second condition asserts that if the output value of some function fi is the

same between two rows R1
i and R2

i , then the variable corresponding to this function

in other rows of R1 and R2 must also be assigned this value. Essentially this condition

guarantees that if the value of some function is controlled to either 0 or 1, then this value

is propagated to every other function that contains the function as a support variable.

If this value causes another function to be controlled, then the value of that function

propagates to other functions containing that function as a support variable. As was

discussed in Section 2.2, eventually this propagation halts, and the circuit reaches a

unique fixed point.

However, the value of some function might not be controlled by the value of its

support variables. If the output value of some function fi differs between two rows R1
i

and R2
i , this indicates that the output value of the function is ambiguous. In other words,
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if a function’s output value differs between two rows, this corresponds to that function

evaluating to ⊥.

The third condition asserts that one of the functions evaluates to ⊥ in the fixed

point. Our definition of combinationality states that if a ⊥ value persists in a fixed

point reached by some primary input assignment, then the dependency graph is not

combinational. For a network that is not combinational, a choice of R1 and R2 that

corresponds to this fixed point will satisfy all three of these conditions.

Similarly, a combinational dependency graph never contains a ⊥ value in its fixed

point for any assignment of its primary input variables. Therefore these three conditions

can never be satisfied for any choice of R1 and R2 for a network that is combinational.

�

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
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f0 = āb̄+ ab+ f1b

f1 = f̄0ā+ āc

Figure 2.18: The truth tables for two functions. The cyclic dependency graph containing
these two functions is not combinational. This figure also illustrates a specific selection
of rows that proves that the cyclic dependency graph is not combinational.

Because the example in Figure 5.3 is not combinational, there must be some choice

of pairs of rows (R1 and R2) that satisfies the three conditions in Proposition 1. As

stated above, the conditions can be satisfied by selecting the third and fourth rows of
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the truth table for f0 and the first and second rows of the truth table for f1: R1 =

{{a = 0, b = 1, f1 = 0}, {a = 0, c = 0, f0 = 0}} and R2 = {{a = 0, b = 1, f1 = 1}, {a =

0, c = 0, f0 = 1}}. The first condition is satisfied because a = c = 0, b = 1 for every

element of R1 and R2. The second condition is satisfied because f0(R1
0) 6= f0(R2

0) and

f1(R1
1) 6= f1(R2

1) (i.e., f0(0, 1, 0) 6= f0(0, 1, 1) and f1(0, 0, 0) 6= f1(0, 0, 1)). Finally, both

functions f0 and f1 are toggling for this primary input assignment (f0(R1
0) 6= f0(R2

0)

and f1(R1
1) 6= f1(R2

1)), satisfying the third condition. Figure 2.18 illustrates this specific

selection of rows for the example in Figure 5.3.
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Figure 2.19: A SAT instance that verifies whether or not the functions described in
Figure 5.3 are combinational.

Craig interpolation provides an implementation for each target function in a depen-

dency graph [23]. Given this implementation, a SAT instance can be formulated that is
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satisfiable if and only if the three conditions above are met. A circuit whose satisfiability

indicates that these three conditions are met for the functions in Figure 5.3 is shown in

Figure 2.19.

The SAT instance contains two copies of functions f0(a, b, f1) and f1(a, b, f0). In

each copy of these two circuits, the primary input variables are kept the same (satisfying

Condition 1 of Proposition 1). Additional logic is added that computes the OR of the

Exclusive OR of each copy of each function (satisfying Condition 3 of Proposition 1).

Finally, the additional clauses shown in the box on the upper left-hand side of the figure

can be added to the SAT instance to assert that Condition 2 holds. If the SAT instance

is satisfiable, then all three conditions are satisfied and the cyclic dependency between

functions f0(a, b, f1) and f1(a, c, f0) is proven to be non-combinational.

2.3.3 General Method

We sketch the steps to generate the SAT instance that verifies any set of functions

F = {f0, f1, . . ., fn−1} of variables X = {x0, x1, . . ., xm−1} behaves combinationally.

1. Generate an implementation for each target function in terms of its support vari-

ables via Craig interpolation (The same way as discussed in Section 2.3.1). Create

two copies of each of these implementations. Refer to one copy as the left copy and

the other copy as the right copy. We define CNFL
i (X,F ) and CNFR

i (X,F ) to be

the set of clauses representing the logic for the left and right copies respectively,

of function fi. Here X is the set of primary input variables in the support set of

function fi and F is the set of internal variables in the support set of function fi.

2. Share the same primary input variables X between every copy. Share the same

internal variables between every left copy and share the same internal variables



34

between every right copy. Let FL = {fL0 , fL1 , . . ., fLn−1} be the set of left internal

variables and let FR = {fR0 , fR1 , . . ., fRn−1} be the set of right internal variables.

c1 =
∏n−1

i=0 (CNFL
i (X,FL)↔ fi)(CNF

R
i (X,FR)↔ f∗i ) (2.6)

3. Assert the OR of the Exclusive OR of each left and right copy of each function:

c3 =
∑n−1

i=0 (fi ⊕ f∗i ) (2.7)

4. For each function, assert that the corresponding left internal variable is TRUE if

the left and right copies of the function are both TRUE. For each function, assert

that the corresponding left internal variable is FALSE if the left and right copies

of the function are both FALSE. The analogous assertions must also be made for

each right internal variable.

c2 =
∏n−1

i=0 (f̄i + f̄∗i + fLi )(f̄i + f̄∗i + fRi )(fi + f∗i + f̄Li )(fi + f∗i + f̄Ri ) (2.8)

Figure 2.20 shows a graphical representation of the general SAT instance for n func-

tions of m variables2 . Similarly to Figure 2.19, the conditions stated in Proposition 1

are shown in this figure as well.

Proposition 2 Some choice of R1 and R2, for some set of functions satisfies the three

conditions in Proposition 1 if and only if (c1)(c2)(c3) is satisfiable.

Proof 2 Step 1 of the general method creates two copies of every function. The value of

the support variables in each copy corresponds to the value of the variables in each ele-

ment of R1 and R2. The conditions in c1 assert that the primary input variables must be

assigned the same value in every copy of every function. This corresponds to Condition

2 This figure is drawn assuming n > 2
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Figure 2.20: A SAT instance that checks if the set of functions F = {f0, f1, . . ., fn−1}
of variables X = {x0, x1, . . ., xm−1 is combinational.
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1 in Proposition 1. The conditions in c3 assert that some function’s output value differs

between its left and right copies. This corresponds to Condition 3 in Proposition 1.

Finally, c2 asserts that if the value of some function is the same between its left and

right copies, then the support variables corresponding to this function in every other

copy are also assigned this value. This corresponds to Condition 2 of Proposition 1.

If the SAT instance (c1)(c2)(c3) is satisfiable, then all the conditions of 1 can be met

for some choice of R1 and R2. If (c1)(c2)(c3) is unsatisfiable, then the three conditions

from Proposition 1 can never be simultaneously satisfied, and the network is deemed

combinational.

�

2.4 Synthesizing Cyclic Dependencies

Given a choice of functional dependencies, that is to say, a choice for the support

set of each target function, the algorithm in the previous section provides a constructive

method for synthesis: if the answer to the SAT-based query is “unsatisfiable” then,

through Craig interpolation, the algorithm provides the logic that implements the target

functions with the specified support set.

In this section, we describe a synthesis methodology for finding the best choice of

functional dependencies. Our cost metric is the size of the support set of each function.

In the corresponding dependency graphs, this corresponds to the fewest possible edges.

To accomplish this task, we use a branch-and-bound algorithm that searches through

the space of possible dependency graphs.

This algorithm is described with pseudocode in Figure 2.21. The routine “Synthesis”

receives a set of Boolean functions as arguments. It first constructs a list of possible

support sets for each function. Initially, it chooses a dependency graph containing the

smallest possible support set for each function. This solution, as well as the list of

possible support sets for each function, is sent to the “BreakDown” routine.
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The “BreakDown” routine checks to see if the dependency graph that it is given is

combinational. If the graph is not combinational, it iterates over all the functions that

are found to be non-combinational.3 For each of these functions, the current support

set is replaced by the next smallest support set available in the list. If the dependency

graph containing this next smallest solution is smaller than the best current solution,

then a copy of this new dependency graph is sent recursively to the “BreakDown”

routine as a potential new best solution. The “BreakDown” routine returns when it

reaches a combinational solution. The smallest dependency graph is returned to the

“Synthesis” routine and the algorithm terminates.

Given a list of possible support sets, the search begins with the smallest support

set for each function. This is the most compact representation possible. In practice,

the initial solution is usually a very dense ball of dependencies. This initial solution is

almost always not combinational. Generally, as the support sets increase in size, there

are fewer cycles. The algorithm always terminates, because it must eventually hit a

solution containing only the primary inputs in the supports sets for each function. Of

course, in practice it likely finds much better solutions than this and terminates before

this point.

A visual illustration of the synthesis algorithm is shown in Figure 2.22. In this

example there are three functions, f0, f1, and f2, of four primary input variables a,

b, c, and d. In the initial dependency graph, there are primary input assignments

that cause all three functions to evaluate ⊥. The algorithm proceeds to search for

solutions by trying different support sets for all three functions. In this example, three

combinational solutions are found. The smallest combinational solution has two cycles

and a total support set size of 8.

3 This can be accomplished by repeatedly solving a slightly modified version of the SAT instance
described in the previous section. The SAT instance is modified so that the only the function that it
considers is the one included in the OR gate described in Step 3 of the general method. This way, if the
SAT instance is satisfiable, it indicates that there is a primary input assignment where the function we
are considering evaluates to ⊥.
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BreakDown(Functions, DepGraph, SupportSetList):

if DepGraphIsCombinational(DepGraph) then
return DepGraph

else
for i = 0 to |Functions| do

if FunctionIsNotCombinational(Functionsi, DepGraph) then
DepGraphCopy ⇐ DepGraph
DepGraphCopyi ⇐ NextSmallestSupportSet(Functionsi, SupportSetsList)
if SupportSetSize(DepGraphCopy) < SupportSetSize(SmallestDepGraph) then
DepGraphCopy ⇐ BreakDown(Functions,DepGraphCopy, SupportSetsList)
if SupportSetSize(DepGraphCopy) < SupportSetSize(SmallestDepGraph)
then
SmallestDepGraph⇐ DepGraphCopy

end if
end if

end if
end for
return SmallestDepGraph

end if

Synthesis(Functions):

SupportSetsList⇐ ComputeSupportSets(Functions)
SupportSetSize(SmallestDepGraph)⇐∞
for i = 1 to |Functions| do
DepGraphi ⇐ SmallestSupportSet(Functionsi, SupportSetsList)

end for
return BreakDown(Functions,DepGraph, SupportSetsList)

Figure 2.21: Pseudocode for our synthesis algorithm. Magnitude symbols (|magnitude|)
are used to indicate the size of a list. The subscript i, when applied to a list, indicates an
access to the i-th element of the list. The dependency graph variables (e.g., DepGraph,
DepGraphCopy, and SmallestDepGraph) are lists of support sets for each function.
The routine “SmallestSupportSet” returns the smallest support set for a particular
function from a list of support sets. The routine “NextSmallestSupportSet” returns
the next smallest support set from a list of support sets for a particular function. The
routine “SupportSetSize” returns the sum of the size of all the support sets for a given
dependency graph. The routine “DepGraphIsCombinational” performs the SAT-based
analysis described in the previous section; it returns True if the dependency graph is
combinational. The routine “FunctionIsNotCombinational” returns True if there is a
primary input assignment that causes the given function to evaluate to ⊥.
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Figure 2.22: An illustration of the synthesis algorithm on an example consisting of 3
functions and 4 primary input variables. The thin gray arrows indicate cyclic depen-
dencies in the dependency graphs. Some branches are omitted for clarity, as indicated
by “. . .”.
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2.4.1 Finding Support Sets

Our synthesis algorithm requires that a list of possible support sets be provided.

To the best of our knowledge, there has been no research that directly deals with

the problem of quickly finding possible support sets for target functions. Work on cut

enumeration for FPGA mapping is somewhat related, but is heavily biased by the initial

structure of a netlist [29, 30]. For this work, we used a relatively simple algorithm for

parsing the search space of possible support sets for a target function. The algorithm

is described by the psuedocode in Figure 2.23. The algorithm starts with a large list of

possible support variables. It recursively removes variables for this list, finding smaller

support sets that can be used to represent the target function. These smaller support

sets have the property that if any variable was removed, the resulting support set could

not be used to represent the target function. In the experiments run in Table 2.5 of

Section 2.10 we limited the number of possible support sets for each target function to

100. We use incremental SAT solving to improve the speed of subsequent calls to the

SAT solver.

2.5 Implementation and Results

We present two sets of synthesis results on standard benchmarks [31]. In Table I

we report results for cyclic circuits that were first synthesized with our tool CYCLIFY

and then optimized using the Berkeley tool ABC [32]. CYCLIFY is based on an earlier

tool, Berkeley SIS [20], and so uses SOPs and BDDs as the underlying data structures.

Accordingly, the size of the benchmarks that it can tackle is limited. CYCLIFY uses

a similar branch-and-bound algorithm to the one described in Section 2.4. (Instead of

support set size, it uses literal counts as its cost function.) For Table I, we selected

benchmarks where CYCLIFY produced cyclic solutions. Before reading these circuits

into ABC, dummy primary inputs were introduced at the feedback locations (implicitly

removing the cycles). The circuits were then run through 10 iterations of compress2,
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SupportSetsHelper(Function, SupSetV ars, SupSets):

for Set ∈ SupSets do
if Set ⊆ SupSetV ars then

return TRUE
end if

end for
if IsNotV alidSupSet(Function, SupSetV ars) then

return FALSE
end if
for v ∈ SupSetV ars do
PosSupSet⇐ SupSetV ars− {v}
if SupportSetsHelper(Function, PosSupSet, SupSets) then

return TRUE
end if

end for
SupSets⇐ SupSets ∪ SupSetV ars
return TRUE

SupportSets(Function):

SupSets⇐ ∅
SupSetV ars⇐ PossibleSupportV ars()
SupportSetsHelper(Function, SupSetV ars, SupSets)
return SupSets

Figure 2.23: The two functions “SupportSets” and “SupportSetsHelper” are used to
generate a list of valid support sets for a target function. The function “PossibleSup-
portVars” returns a list of variables that could possibly be used as a support variable for
the target function. The “SupportSets” function initializes the list of support sets and
the list of possible support set variables before calling the “SupportSetsHelper” func-
tion. The “SupportSetsHelper” function checks to see if the set of current variables is a
superset of some already found support set. If it is not, the SAT based check discussed
in Section 2.3.1 is performed to determine if the current set of variables can be used to
represent the target function. If they can, then the function is called recursively with
each variable removed once from the set of current support variables. If none of these
support sets can be used to represent the target function, then this indicates that no
subset of the current support set variables can be used to represent the target function.
In this case, the current set of support variables is added to the list of support sets.
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CYCLIFY Results
Benchmark Gates Gates Delay Delay Size Delay Synthesis

Cyclic Acyclic Cyclic Acyclic Ratio Ratio Time (s)
bbsse 90 96 5 8 0.94 0.63 8
bw 110 183 9 9 0.6 1 941
clip 113 181 5 9 0.62 0.56 1
cse 128 152 6 9 0.84 0.67 5
duke2 309 301 11 11 1.03 1 178
ex1 205 210 14 8 0.98 1.75 551
ex6 61 116 8 7 0.53 1.14 6
inc 87 115 6 8 0.76 0.75 4
planet 381 419 7 9 0.91 0.78 10667
planet1 377 433 7 9 0.87 0.78 18559
pma 167 161 5 8 1.03 0.63 270
s1 254 339 6 11 0.75 0.55 214
s298 1806 1823 7 14 0.99 0.50 41679
s386 91 102 5 7 0.89 0.71 8
s510 189 199 5 9 0.95 0.56 5
s526 129 135 9 9 0.96 1 25
s526n 130 117 8 10 1.11 0.80 29
s1488 431 500 9 9 0.86 1 2793
sse 87 102 5 8 0.85 0.63 10
styr 344 380 8 10 0.91 0.80 204
table5 686 639 8 13 1.07 0.62 51010

Table 2.1: Results of circuits synthesized with CYCLIFY and then optimized with ABC.
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a very aggressive optimization script. The original acyclic versions of the circuit were

also run through 10 iterations of compress2.

The “Gates” columns report the number of AND2 gates in ABC’s AND-inverter

graph (AIG) representation. AIGs are the standard representation at the technology-

independent level for most modern synthesis algorithms, including those based on SAT.

The “Size Ratio” column is calculated as “Gates Cyclic / Gates Acyclic.” The “Syn-

thesis Time” is the time it took CYCLIFY to produce the circuits. We note that these

numbers reflect the size of the circuits before they are mapped to some technology,

These numbers are subject to some change after mapping. This holds for the numbers

reported in Table II as well.

The “Delay” columns report the delay for the cyclic and acyclic circuits. We as-

sume that nodes in the AIG (corresponding to AND gates) have unit delay; edges in

the AIG, including those with inversions, have zero delay. The “Delay Ratio” column

is calculated as “Delay Cyclic / Delay Acyclic.” For the cyclic circuits, we use the

algorithm presented in [8], based on symbolic event propagation, to compute the delay.

For the acyclic circuits, we compute the delay as the longest path from the primary

outputs to the primary inputs in the AIG. As Table I demonstrates, introducing cyclic

dependencies yields significant reductions in area as well as delay.4 The runtime of

CYCLIFY is greatly influenced by the size of the circuit (as benchmarks table5 and

s298 demonstrate).

Table II presents synthesis results from SAT-based trials, using support set size as

the cost metric. The algorithm described in Figure 2.21 was implemented in Berkeley

ABC [32]. The SAT solver used was MiniSAT [33]. All the trials were run on a 32-bit

Linux machine with 3.2 GHz AMD Phenom(tm) II X6 1090T Processor. Only one core

was utilized for running the algorithm.

4 Although counterintuitive, cycles can be used to optimize circuits for delay as well as for area.
The extra flexibility of allowing cycles when structuring functional dependencies makes it possible to
move logic off of true critical paths, reducing the delay [8].
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Synthesis Results
Benchmark PIs POs Orig Cycles Acyclic Cyclic Synthesis

AIG Size SS Size SS Size Time (s)
amd 14 25 1625 7 69 69 2

apex3 54 50 1655 1 29 27 19
duke2 22 29 577 4 57 55 10

ex6 8 25 88 1 32 32 < 1
gary 15 11 821 1 33 32 1

Table II lists benchmarks that were run through the synthesis routine described in

Section 2.4. The algorithm generated support sets for each of the benchmarks with

primary output functions expressed in terms of other primary output functions and

primary inputs. (For benchmarks that had less than 40 primary outputs, additional

primary outputs were added to intermediate nodes until the benchmark contained ex-

actly 40. This was done to increase the number of possible dependency graphs.) We

ran the BreakDown procedure described in Section 2.4 until either 40 combinational

solutions were found, or until a total of 200 dependency graphs were explored and none

of these were deemed to be combinational. Table II reports results for the smallest

cyclic and acyclic representations that were found.

The columns “PIs” and “POs” list the number of primary inputs and primary out-

puts, respectively. The column “Orig AIG Size” lists the number of nodes in the AIG

representation. The column “Cyclic SS Size” lists the sum of the number of support

variables in functions that are part of strongly-connected components in cyclic solutions.

The column “Acyclic SS Size” lists the sum of the number of support variables in these

same functions in the acyclic solutions. The column “Cycles” lists the number of cycles

in the corresponding dependency graph. The column “Synthesis Time” lists the time

spent searching through the space of dependency graphs and checking if solutions were

combinational. In all trials, the size of all support sets was limited to 100. For most of

the benchmarks, the smallest combinational solution was found relatively quickly when
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searching through the space of possible dependency graphs. As anyone familiar with

SAT-based methods might have expected, SAT-based synthesis is very efficient.

The new SAT-Based synthesis methodology scales much better with circuit size than

that of CYCLIFY. However, the cost metric for the comparison is different (support

set size vs. AIG size). Modern FPGA mapping algorithms have a similar aim as the

synthesis methodology presented in this chapter; they attempt to reorganize groups of

functions into blocks with a fixed support set size. Currently, the state of the art tools

do not allow cyclic dependencies. The results presented in this work demonstrate that

cyclic dependencies with smaller support set size than their acyclic equivalents can be

found in benchmark circuits, and they can be found in a scalable manner. Modern

synthesis algorithms, such as those targeting FPGAs, can be adapted to consider cyclic

solutions using the method presented in this chapter, increasing the space of possible

solutions that these tools can produce.

2.6 Gate-Level Combinational Analysis Algorithm

2.6.1 Overview

As mentioned in Section 2.2.1, there are subtle differences between analyzing cyclic

circuits on a network-level versus a gate-level. The remainder of this chapter addresses

the problem of analyzing and mapping cyclic circuits to gate-level implementations. The

algorithm, which we refer to as the analysis algorithm from here on out, is described in

detail in Section 2.6. In rough outline, the steps are:

• We find a feedback arc set, that is to say, wires that we can cut to make the circuit

acyclic.

• We introduce new dummy variables at these cut locations.
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• We encode the entire computation of the circuit in terms of ternary-valued logic:

zeros, ones and “undefined” values. These ternary values are encoded with “dual-

rail” binary values: zero is encoded as [0, 0], one as [1, 1], and “undefined” as either

[1, 0] or [0, 1].

• We set up an acyclic circuit that answers the question: given undefined values for

the dummy variables (in the ternary encoding) is there any input assignment that

produces undefined values (again in the ternary encoding) at the output? This

circuit forms the SAT question.

In the case where the circuit in question is indeed combinational, the SAT solver

returns an answer of UNSAT. If some assignment of the circuit’s primary inputs result

in non-combinational behavior, the solver returns an answer of SAT and it also provides

a satisfying assignment. As we discuss in the next section, we can make use of this

satisfying assignment. The flow of this analysis algorithm is illustrated in Figure 2.24.

x y x

SAT-Based 

Analysis

UNSAT: The circuit is 

combinational

x y x

SAT-Based 

Analysis

SAT: The circuit is not 

combinational for 

assignment:

x = 1, y = 0

Figure 2.24: An illustration of how SAT-based analysis works. If the circuit is combina-
tional, the SAT solver returns an answer of UNSAT. If the circuit is not combinational,
it returns an answer of SAT and it provides a satisfying assignment.

The complexity of the analysis is dependent on the runtime of the SAT solver.

Setting up the circuit for the SAT instance is comparatively trivial: it entails but a
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single pass through the circuit to compute a feedback arc set. The circuit for the

SAT question is larger than the original circuit: for every gate in the original circuit,

approximately six gates are needed to formulate the ternary-valued encoding. Given

the efficiency of SAT solvers, this is a winning strategy in spite of the increase in the

circuit’s size. In 2.10, we compare runtimes on benchmark circuits for this method

compared to binary decision diagram (BDD)-based methods.

2.6.2 Analysis Algorithm

Given a cyclic circuit, the objective of the analysis is to produce an acyclic circuit

that computes an output value that is identically zero if and only if the cyclic circuit is

valid. This acyclic circuit will then be fed into a SAT solver; we will refer to it as the

“SAT circuit.”

1. The first step is to find wires that, if cut from the circuit, would break all the

cycles. Such a set can be found through a simple depth-first search [34]. Finding

the smallest set of wires is, of course, difficult: this is the minimum feedback arc

set problem, known to be NP-hard. The fewer wires in the cut set, the fewer

dummy variables that we introduce and hence the smaller the size of the SAT

instance; however, given the efficiency of SAT solvers, spending time finding the

very best cutsets may not be expeditious; the construction will work for any cut

set.

2. The next step is to convert every gate in the circuit into a corresponding module

that operates on the dual-rail encoded ternary logic. In this step, each wire in the

original circuit is replaced by a pair of wires. The four possible values of these

wires code for ternary values 0, 1, and ⊥. We chose the encoding scheme given in

Figure 2.25. In this scheme, two zeros on each wire codes for logic 0, two ones on

each wire codes for logic 1, and the remaining two values code for ⊥. Consider the

encoding for an AND operation on ternary-valued inputs a and b. We use pairs of
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Bit 0 Bit 1 Value

0 0 0

0 1 ⊥
1 0 ⊥
1 1 1

Figure 2.25: Dual-rail encoding scheme for ternary values. The left two columns show
the value for each wire in the dual-rail encoding, and the right most column shows the
corresponding ternary value.

inputs for each value: a0 and a1 corresponding to a, and b0 and b1 corresponding

to b. The outputs are encoded by the functions:

f0 = a0b0 + a1b0b̄1

f1 = a1b1 + a0b1b̄0

Other gates, such as OR, NAND, NOR, etc., can be implemented similarly. The

NOT operation is particularly easy – we simply complement the bit on each rail.

3. Each primary input is simply considered twice to obtain its dual-rail encoding.

This way, if the primary input is assigned logic 1, the value (11) is fed; if it is

assigned logic 0 the value (00) is fed.

4. At every cut location, we introduce a pair of dummy variables feeding into the

corresponding dual-rail module. This allows for the possibility that the value in

the circuit is ⊥, encoded as different values assigned to each of the dummies, (01)

or (10).

5. For every pair of dummy variables, we set up an equivalence checker: this is

a module that evaluates to 1 if and only if the value assigned to dummies agrees

with the value computed by the circuit at the cut location. The circuit may be

computing ⊥, encoded as (01) or (10); in this case, the equivalence checker evalu-

ates to 1 if the dummies have different values. Call the output of the equivalence
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checker xi for each cut location i. For dummy variables d1 and d2 and gate outputs

f1 and f2, the logic for the equivalence checker is

xi = d̄1d̄2f̄1f̄2 + d1d2f1f2 +

d̄1d2f̄1f2 + d̄1d2f1f̄2 +

d1d̄2f̄1f2 + d1d̄2f1f̄2.

6. For every pair of dummy variables, we set up a ⊥-checker5 : this is simply an

exclusive-OR gate on the two dummies; it evaluates to 1 if and only if the dum-

mies are assigned different values (encoding ⊥). Call the output of the ⊥-checker

yi for each cut location i.

Note that rather than introducing dummy variables, equivalence checkers, and

⊥-checkers into the SAT circuit, we could instead append the logically equivalent

clauses to the circuit’s CNF formula representation to produce the same results.

By introducing dummy variables and equivalence gates into the SAT circuit, we are

implicitly adding these clauses to the CNF formula. Many modern SAT techniques

take advantage of circuit structure alongside the circuit’s CNF representation in

order to find a result faster [35]. The latter method would not make use of the

structural information that dummy variables, equivalence checkers and ⊥-checker

add to the circuit.

7. Finally, as illustrated in Figure 2.26, the output of the circuit is the AND of the

AND of the xi’s and the OR of the yi’s.

Consider the circuit in Figure 2.27, consisting of four NAND gates. Note that

there are four cycles. By inserting dummy variables d and e, we obtain the circuit

in Figure 2.28 (This circuit is acyclic). Next, we replace each gate with a dual-rail

5 As discussed in Section 2.2, we are using the stringent definition of combinationality here: all
gates, not only the outputs, must eventually produce definite values. For the less stringent definition,
⊥-checkers only need to be included at the primary outputs of the circuit.
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Figure 2.26: Constructing the SAT instance.

version; we feed in pairs of dummy variables, d0, d1, and e0, e1, corresponding to each

of the previous dummy variables; we double the primary inputs a and b; we add two

equivalence-checkers, producing x0 and x1; we add two ⊥-checkers (i.e., exclusive-OR

gates) producing y0 and y1; and we add three logic gates g1, g2, and g3 to form the final

output.

This circuit, shown in Figure 2.29, forms the SAT instance with six primary input

variables: a, b, d0, d1, e0, and e1. We see that for a primary input assignment of a =

b = 1, d0 = d̄1, and e0 = ē1, ⊥ values remain on each pair of rails on the inputs of the

equivalence checkers, indicating that the inputs to each are equivalent; so x0 and x1

produce outputs of 1; y0 and y1 produce outputs of 1 as well; so the final output is 1.

Therefore, the SAT instance is satisfiable and the circuit is invalid. Indeed, a = b = 1

are non-controlling values for the NAND gates, so this is the outcome that we expect.
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Figure 2.28: The circuit in Figure 2.27 with cycles broken.
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53

2.7 Proof of Correctness of Analysis

Here we prove the correctness of our SAT-Based analysis algorithm for gate-level

cyclic circuits. We first prove the forward direction: Our algorithm always correctly

identifies cyclic circuits which are combinational. We then prove the backwards direc-

tion: Our algorithm always correctly identifies cyclic circuits which are not combina-

tional.

Proposition 3 A SAT circuit that evaluates to 1 never corresponds to a valid cyclic

circuit.

Proof 3 Indeed, if a SAT circuit evaluates to 1, then both the gates g1 and g2 are at

1. If g1 is at 1, then the corresponding values in the cyclic circuit are at a fixed point;

however, if g2 is at 1, then some of the values in the fixed point are ⊥. By definition,

the cyclic circuit is invalid. �

Proposition 4 Every invalid cyclic circuit translates into a SAT circuit that evaluates

to 1 for a specific input assignment.

Proof 4 Indeed, if the circuit is invalid then it has a fixed point with ⊥ values on some

of the wires of the cut set. (A fixed point that contains ⊥ values somewhere must also

have these on the cut set.) In the SAT circuit, consider such an input assignment:

assign the dummy values that correspond to the values from the fixed point; this ensures

that g1 is at 1. Because some of these values are ⊥, g2 is also at 1 and so the SAT

circuit evaluates to 1. �
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2.8 Mapping Cyclic Combinational Circuits

2.8.1 Overview

In our synthesis flow, we introduce cycles at the level of functional dependencies in a

Boolean network. These designs are then mapped to gates from a library. Cyclic designs

must be validated both at the level of functional dependencies and then again after

mapping. This is necessary because mapping sometimes breaks the validity: designs

that are combinational at the functional level get mapped onto designs that are not

combinational at the gate level. This was first observed in [27].

Consider the functions in Figure 2.30. The three functions form a cycle: f depends

on h, h depends on g, and g depends on f . The reader can verify that for all as-

signments of the primary inputs a and b, the functions f , g, and h evaluate to definite

Boolean values, so we consider this specification to be combinational. Figure 2.31 shows

gate-level mappings for the three functions. Since the functional-level specification is

combinational, one might assume that one can simply wire these gate-level mappings

together, as shown in Figure 2.32. But this doesn’t work: trying input combinations,

we see that the assignment a = b = 1 does not result in definite values for the outputs f ,

g, and h. The individual gate mappings for the functions are correct, but the resulting

circuit is not combinational.

The problem arises with the mapping for f . At the functional level, input values of

a = b = 1 result in f = (h)(h̄) = 0. However, at the gate level, the initial values on

internal wires are not only unknown but possibly undefined. (These could have voltage

values that are not unequivocally 0 or 1 but possibly some value in between.) Here the

value of h is undefined, so the value of f is undefined. As we explain in Section 2.2, the

validity of a circuit can be established with ternary-valued simulation.

This chapter presents a technique for modifying the mapping of cyclic circuits to

ensure that they are combinational, based on the results of SAT analysis. The cir-

cuit in Figure 2.32 can be fixed by adding additional logic, as shown in Figure 2.33.
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This additional logic can be generated from a set of input assignments that results in

non-combinational behavior. Our SAT-based analysis provides exactly such satisfying

assignments. For the circuit in Figure 2.32, SAT-based analysis returns the satisfying

assignment a = b = 1. This assignment is used to generate the additional logic in Figure

2.33. The reader can verify that the circuit in this figure is combinational.

f = (ā+ h̄)(b̄+ h)

g = abf

h = a⊕ b+ g

Figure 2.30: A cyclic specification of three Boolean functions, f , g and h. These evaluate
to definite Boolean values for all assignments of the inputs a and b.���� �

f = (ā+ h̄)(b̄+ h)��� �
g = abf�� � �

h = a⊕ b+ g

Figure 2.31: Individual gate mappings for the functions in Figure 2.30.
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Figure 2.32: The circuit obtained by assembling the mappings in Figure 2.31 together.
It is not combinational.

a

b

a

a
bb

h

f

g

a b

f = (ā+ h̄)(b̄+ h)

g = abf

h = a⊕ b+ g

Figure 2.33: The circuit in Figure 2.32 with additional logic. It is combinational.
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2.8.2 Mapping Algorithm

For what follows, define an unmapped circuit to be a functional-level represen-

tation, i.e., a collection of Boolean functions, prior to mapping to gates. Define a

mapped circuit to be a gate-level representation. Suppose that SAT-based analysis is

performed on a mapped circuit and this analysis concludes that the circuit is not com-

binational. There are two possible explanations: either the original unmapped circuit

was not combinational; or the unmapped circuit was combinational and mapping broke

it.

In both cases, SAT-based analysis provides a satisfying assignment. This as-

signment lists the values of the primary inputs and the values of the functions at each

cut location. In this assignment, the primary inputs all have values in {0, 1} while the

functions have values in {0, 1,⊥}. Together, the values of the primary inputs and the

functions describe a state of the mapped circuit that is not combinational: a fixed point

in which some of the functions have value ⊥. With the values in this assignment, one can

go back and evaluate the original unmapped circuit. If the assignment also corresponds

to a state that is not combinational in the unmapped circuit, then no mapping of the

corresponding functions will work. However, if the assignment corresponds to a com-

binational state in the unmapped circuit, then a problem occurred with the mapping.

The satisfying assignment can be used to fix the mapping by introducing additional

logic.

Our method for synthesizing this additional logic is as follows.

1. Consider the functions at the cut locations in the unmapped circuit. For each such

function f , create an empty list of products and an empty list of sums. Map the

circuit to gates. Perform SAT-based analysis to determine if the mapped circuit

is combinational.

2. If the SAT solver returns UNSAT, skip to Step 4. If the SAT solver returns SAT,

proceed to Step 3.
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3. For each function f at a cut location, set the variables in f ’s support set to the

corresponding values in the satisfying assignment. Then:

• Let P be a product with literals corresponding to variables with definite

values in f ’s support set. If f evaluates to 1 in the unmapped circuit, add P

to f ’s list of products.

• Let S be a sum with literals corresponding to the negation of the variables

with definite values in f ’s support set. If f evaluates to 0 in the unmapped

circuit, add S to f ’s list of sums.

Add the following clause to the SAT instance created in Step 1: a clause that

evaluates to 0 for the definite values among the variables in f ’s support set. Solve

the SAT instance again and go back to Step 2.

4. For every function f at a cut location, minimize f ’s list of products and f ’s list

of sums. In the minimization of the products, select a cover of all the partial

assignments that evaluate to 1; in the minimization of the sums, select a cover of

all the partial assignments that evaluate to 0.

5. After performing this minimization:

• For each product P in f ’s list of products, replace the output of f by f + P

in the mapped circuit.

• For each sum S in f ’s list of sums, replace the output of f by (f)(S) in the

mapped circuit.

Analyze the circuit again. If the circuit is not combinational, return to Step 1. If

the circuit is combinational, then the algorithm is complete.

The intuition behind this approach is that logic can be added to the circuit that

controls the output of a function for a specific assignment. The assignment is one that,
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without the additional logic, would result in a value of ⊥ for the function. The logic

added in Step 5 causes the function to evaluate to a definite value for all the partial

assignments found in Step 3. Depending on what type of library gates are available,

the implementation of Step 5 might differ; if n-input AND and n-input OR are not

available, then a balanced tree of ANDs or ORs will have the same effect.

The goal of this mapping algorithm is simply to try to fix circuits that are “close to

correct” by adding a minimal amount of extra logic. Note that there might not be any

unmapped functions that evaluate to a definite value in Step 3. In this case, there is no

additional logic to add in Steps 4 and 5. Here the conclusion is that the mapping cannot

be fixed; the explanation is that the functional-level specification was not combinational

to begin with.

Example 2 Consider again the circuit in Figure 2.32. If SAT-based analysis is per-

formed on this circuit, the solver will return the satisfying assignment: a = b = 1,

f = g = h =⊥. Apply this assignment to the unmapped circuit consisting of f , g,

and h. Observe that, for this assignment, f in the unmapped circuit evaluates to 0. In

the mapped circuit, attach an AND gate to the output of f that evaluates to 0 for the

assignment a = b = 1. This fixes the mapping. The resulting circuit is shown in Figure

2.33.

In Step 4, the logic for fixing the mapping is minimized. This is illustrated in the

following example.

Example 3 Consider a cyclic circuit that has been mapped to gates. Suppose that the

support set of a function f in the circuit is {a, b, c, d}. Suppose that, after analyzing

the circuit, it is found that the value f computed by the mapped circuit is ⊥ for the

following assignments. Suppose that, for each of these assignments, f evaluates to 1 in

the unmapped circuit:
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a b c d Mapped f Unmapped f

0 0 0 ⊥ ⊥ 1

0 0 1 ⊥ ⊥ 1

0 1 0 ⊥ ⊥ 1

0 1 1 ⊥ ⊥ 1

Accordingly, the set of products generated in Step 3 of the algorithm are {āb̄c̄, āb̄c, ābc̄,

āb̄c̄}. In Step 4, these are minimized to ā. In Step 5, the output of f is OR-ed with ā

in the mapped circuit. This fixes the mapping.

In our experience, relatively few satisfying assignments are ever found for a circuit

that needs its mapping fixed. Accordingly, exact methods such as Quine-McCluskey

are a viable option [36]. Of course, heuristic methods or multi-level minimization could

be used [28, 37]. Note, however, that the minimization in Step 4 is not traditional

minimization in a binary context. Rather, the requirement is that terms in the sum

cover the satisfying assignments in a ternary context. This is illustrated in the following

example.

Example 4 Consider a cyclic circuit that has been mapped to gates. Suppose that the

support set of a function f in the circuit is {a, b, c, d, e}. Suppose that, after analyzing

the circuit, it is found that the value of f in the mapped circuit is ⊥ for the follow-

ing assignments. Suppose that, for each of these assignments, f evaluates to 1 in the

unmapped circuit:

a b c d e Mapped f Unmapped f

1 1 ⊥ 1 ⊥ ⊥ 1

0 1 1 1 ⊥ ⊥ 1

1 0 0 1 ⊥ ⊥ 1
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Here the variables a, b, and d, could be primary inputs or they could be other functions.

Clearly, c and e are functions; primary inputs are never assigned ⊥ values. As in the

previous example, these assignments can be minimized to a smaller set. One might

assume that assignments of c and e that are ⊥ can be treated as if they were either 0 or

1 (i.e., treated as don’t cares). Assuming this, the set would be minimized to {ac̄d, bcd}.

This would result in the additional logic shown in Figure 2.36. However, in Figure 2.36,

we see that when a = b = d = 1 and c = e =⊥, the output of f is still ⊥. So the fix did

not work!

In Step 5 of the algorithm, a list of products is OR-ed with the output of a mapped

function f . This set of products is meant to cover the partial assignments provided

by the SAT solver, that cause f to evaluate ⊥ when f should evaluate to 1. Call this

set of partial assignments A. Since the list of products is minimized via two level logic

minimization, it only contains prime implicants [36]. The following proposition intends

to show that minimizing this set of products is necessary for the correctness of the

mapping algorithm.

Proposition 5 (Necessary condition.) For each partial assignment in A: the list of

products in Step 5 must contain a prime implicant that evaluates to 1 in order for the

mapped circuit to be combinational.

Proof 5 Suppose that, for some assignment in A, no product evaluates to 1. The

output of the OR gate added in Step 5 remains ambiguous, that is, it evaluates to ⊥:

the function f evaluates to ⊥ for this assignment in the mapped circuit and every product

fanning into the new OR gate either evaluates to 0 or ⊥. Accordingly, this is a necessary

condition. �

An analogous proposition and proof can be made about the list of sums minimized

in Step 4 and added to the circuit in Step 5.
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We perform two-level minimization applying Proposition 1: instead of the standard

criterion of covering minterms and maxterms, we insist on a choice of prime implicants

and prime implicates that covers all the partial assignments. We revisit the last example,

this time adding logic that fixes the mapping.

Example 5 Consider the set of assignments from Example 4. Applying Proposition 1

during two-level minimization, we obtain the set of products {ac̄d, bcd, abd}. Unlike the

previous example, the product abd is contained in the minimum representation for the

partial assignments. Figure 2.37 shows a mapping when product abd is not removed from

the two level minimization. For all the assignments listed in the table in the previous

example, the newly mapped function behaves correctly in Figure 2.37.

fold

1 a
c

1 d

1 b
c

1 d

┴

┴

fnew

┴

┴

┴
┴

Figure 2.34: Example 4: A mapping fix without a product covering assignment a = b =
d = 1, c = e =⊥.

Example 6 Consider again the the function f from Example 3. Suppose that variable

c is not a primary input but rather a function with the support set: f , g, and h. Where

f is the function described in Example 3 and g and h are primary input variables. This

circuit then implements two functions:

f(c, a, b)

c(f, g, h)
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fold

1 a
c

1 d

1 b
c

1 d

┴

┴
fnew

┴

┴

┴

1 a

1 d
1 b

1

1

Figure 2.35: Example 5: A mapping fix that works.

There exists a cycle between functions f and c. It is possible that, for some assign-

ment of the variables g and h, c may not evaluate to a definite value until the value of

f is definite. If this is the case, then including c in the additional logic will not correct

the circuit’s behavior: the value of c will still be ⊥ on the input of one of the additional

gates. Because the value of c is not definite, the additional logic will not control the

output of f for this assignment of a, b, and c.

Again, if all satisfying assignments from the analysis algorithm are considered and

then optimized, then the values of c and b need not be considered when adding the

additional logic to fix f , as was shown in the previous example. The output of f has

to be OR-ed with the product ā to fix this circuit. OR-ing the output of f with āc and

then OR-ing the output again with āc̄ will not correct the behavior of this circuit. The

additional logic is shown in Figures 2.36 and 2.37. In Figure 2.36, the products āc and

āc̄ are added to the output of f . The circuit does not behave combinationally: when c is

⊥, f does not evaluate to a definite value. In Figure 2.37, the product ā has been added.

When a is 0, the input of the OR gate assumes a controlling value and so f evaluates

to 1. Here the additional logic results in a combinational circuit.
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Figure 2.36: The incorrect fix in Example 4. The function f is not controlled for this
assignment of a and c. � �������� � � �	
�� 
Figure 2.37: The correct fix Example 5. The function f assumes the correct value of 1
when a is 0.

2.9 Proof of Correctness for Mapping

We prove the correctness of our mapping algorithm by demonstrating that 1) it does

no harm: it never causes an output to evaluate to ⊥ that otherwise would not; and 2)

it makes progress: each iteration adds logic that corrects partial assignments that were

causing non-combinational behavior.

Proposition 6 (Does no harm with products.) Each product P that is OR-ed with f

in Step 5 of the mapping algorithm never evaluates to ⊥ when f evaluates to 0.

Proof 6 Each product P is a redundant product in the computation of f : OR-ing

P with f does not expand the set of assignments that causes f to be 1. Consider a

function fnew, where fnew = f + P . Because P is redundant, fnew must be equivalent

to f . Therefore fnew cannot evaluate to ⊥ while f evaluates to 0 (or else fnew and f

would not be equivalent). This implies that P cannot be ⊥ while f is 0. �
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Proposition 7 (Does no harm with sums.) Each sum S that is AND-ed with f in

Step 5 of the mapping algorithm never evaluates to ⊥ when f evaluates to 1.

Proof 7 Each sum S is a redundant sum in the computation of f : AND-ing S with f

does not expand the set of assignments that causes f to be 0. Consider a function fnew,

where fnew = (f)(S). Because S is redundant, fnew must be equivalent to f . Therefore

fnew cannot evaluate to ⊥ while f evaluates to 1 (or else fnew and f would not be

equivalent). This implies that S cannot be ⊥ while f is 1. �

Propositions 2 and 3 show that each product and each sum that is OR-ed or AND-

ed into the mapped circuit never produces non-combinational behavior that was not

there before.

Proposition 8 (Makes progress.) Each product (each sum) that is OR-ed (AND-ed)

with the output of the mapped function f in Step 5 results in in a definite output for

some assignment that otherwise produces ⊥.

Proof 8 Each such product (sum) evaluates to 1 (0) for every partial assignment found

in Step 3. Because each such product (sum) fans into the input of an OR (AND) gate

that is attached to the output of f , the OR (AND) gate is forced to 1 (0) for every

assignment found in Step 3. �

Evidently, this algorithm must eventually halt because there are a finite number of

input assignments. Of course, iterating through all the input assignments would entail

an exponential number of steps. In practice, we have found that initial mappings are

invariably “close to correct.” We have not seen instances where there were more than

10 satisfying assignments that resulted in non-combinational behavior. (Recall that

these are mappings that were produced from cyclic dependencies that were valid at the

functional level.) Furthermore, we use incremental SAT for this step, so successive calls

to the SAT solver return very quickly [38].
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If the number of satisfying assignments in Step 3 becomes exceedingly large, then

a heuristic choice can be made about when to terminate the mapping algorithm and

discard the current circuit as “unfixable.” Following, say a branch-and-bound approach,

the synthesis routine would then try different cyclic configurations for functional depen-

dencies and perform a new mapping [9].

2.10 Implementation and Results

We implemented the algorithms described in Sections 2.6 and 2.8 in the Berkeley

ABC environment [32]. ABC invokes the “MiniSAT” SAT Solver [33]. We performed

trials on cyclic circuits produced by our tool CYCLIFY on benchmark circuits in the

IWLS collection [39]. (For circuits with latches, we extracted the combinational part.)

We ran 10 iterations of the script compress2 on both the cyclic versions produced by

CYCLIFY as well as the original acyclic versions.

In the following tables, the size that is reported is the number of AND2 gates in

an AND-inverter graph (AIG) representation. The runtimes for the new SAT-based

analysis are compared to those of the previous BDD-based approach [8]. Trials were

performed on an AMD Athlon 64 X2 6000+ Processor (@ 3Ghz) with 3.6GB of RAM

running Linux. Only one core was utilized for the trials.

Table 2.2 lists benchmarks that mapped correctly. Table 2.3 lists benchmarks that

needed additional logic to correct the mappings. The numbers reported in Table 2.2

include the time to:

1. convert the circuits into their ternary equivalent,

2. convert the result to a CNF formula,

3. run the SAT solver to solve the formula.

(CYCLIFY provided a feedback arc set, so a depth-first search to find cut locations was

not necessary.)
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The “Gates” columns report the number of AND2 gates in the AIG. The “Size

Ratio” column is calculated as “Gates Cyclic / Gates Acyclic.”

The “Delay” columns report the delay for the cyclic and acyclic circuits. For the

cyclic circuits, we use algorithm presented in [8], based on symbolic event propagation,

to compute the delay. For the acyclic circuits, we compute the delay as the longest path

from the primary outputs to the primary inputs in the AIG. We assume that nodes in the

AIG (corresponding to AND gates) have unit delay; edges in the AIG, including those

with inversions, have zero delay. The “Delay Ratio” column is calculated as “Delay

Cyclic / Delay Acyclic.”

The “Time Ratio” column is calculated as “Time SAT / Time BDD.” As expected,

we see that SAT-based analysis is considerably faster than BDD-based analysis – orders

of magnitude faster for the larger circuits. We note that, for nearly every benchmark,

the cyclic circuits have smaller area and smaller delay than their acyclic counterparts.

Table 2.3 lists benchmarks that needed to have their mappings corrected. The cyclic

version of the circuit table3 was initially larger than its smallest acyclic representation.

For the circuit dk16, we ran both the acyclic and cyclic versions, obtained after remap-

ping, through an additional 10 iterations of compress2. The remapped cyclic circuit

still was slightly larger.

Unfortunately, the set of cyclic benchmarks we have to test is quite limited. All of the

circuits were produced by CYCLIFY, implemented in the Berkeley SIS framework [9].

As we have noted, the size of benchmarks that CYCLIFY can tackle is limited by the

underlying data structures (SOP and BDD representations). This chapter is part of our

effort to develop more scalable techniques for synthesis.

For Table 2.4, we generated random Boolean functions to test our mapping algo-

rithm. For each choice of different numbers of inputs and outputs, we randomly gen-

erated 300 circuits. The column “Cyclic Solutions” lists the number of circuits where

a cyclic solution was found. The columns “Gates Cyclic” and “Gates Acyclic” list the
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average number of gates in the smallest cyclic and acyclic implementations of the cir-

cuit. The “Gates Cyclic” column includes the additional gates that were added to fix

incorrect mappings. “Remapped” lists the number of circuits that needed to have their

mappings fixed. “Vectors” and “Gates Added” list the average number of satisfying

assignments returned from the SAT solver and the average number of gates added to

the mapping. These two fields were only averaged over circuits whose initial mapping

needed to be fixed. Finally, the last column gives the ratio of the average number of

gates in the smallest cyclic and acyclic implementations that were found.

While few of the benchmark circuits required fixes to their mappings, between 10%

and 30% of the randomly generated circuits required such fixes. The size reduction of

the cyclic versions of the random circuits was, in general, not as significant as the size

reduction of the benchmark circuits presented in Table 2.2. Perhaps this was because

we were impatient: we set a relatively small timeout when synthesizing the circuits in

Table 2.4 compared to the timeout when synthesizing the circuits in Tables 2.2 and 2.3.

2.11 Discussion

Early work suggested the possible benefits of cyclic designs, and yet still, combi-

national circuits are not designed with cycles in practice. As early as 1992, Leon Stok

predicted that EDA tools would not readily be coaxed into accepting cyclic circuits [15].

Many of the analysis and verification routines in modern EDA tools balk when given

cyclic designs. (Some check a design compulsively after every transformation to see if

it contains cycles. If it does, the program screeches to a halt.) Significantly, engines for

static timing analysis demand acyclic circuit topologies.

The requisite algorithmic approach is to perform “false-path” aware analysis. Early

formulations based on SOPs and BDDs were never up to the task, but modern SAT-

based algorithms are powerful enough to perform such analysis. In our view, the analysis
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Runtimes (Mapping Initially Correct)

Benchmark Gates Gates Delay Delay Time Time Size Delay Time
Name Cyclic Acyclic Cyclic Acyclic BDD (s) SAT (s) Ratio Ratio Ratio

bbsse 90 96 5 8 0.08 0.01 0.94 0.63 0.13
bw 110 183 9 9 0.02 < .01 0.6 1 -
clip 113 181 5 9 0.02 0.01 0.62 0.56 0.5
cse 128 152 6 9 0.23 0.01 0.84 0.67 0.04
duke2 309 301 11 11 0.49 0.06 1.03 1 0.12
ex1 205 210 14 8 0.26 0.03 0.98 1.75 0.12
ex6 61 116 8 7 < .01 0.01 0.53 1.14 -
inc 87 115 6 8 < .01 < .01 0.76 0.75 1
planet 381 419 7 9 0.25 0.06 0.91 0.78 0.24
planet1 377 433 7 9 0.13 0.05 0.87 0.78 0.38
pma 167 161 5 8 0.17 0.02 1.03 0.63 0.12
s1 254 339 6 11 4.92 0.05 0.75 0.55 0.01
s298 1806 1823 7 14 106.62 2.07 0.99 0.50 0.02
s386 91 102 5 7 0.02 0.01 0.89 0.71 0.5
s510 189 199 5 9 0.03 0.03 0.95 0.56 1
s526 129 135 9 9 0.01 0.02 0.96 1 2
s526n 130 117 8 10 < .01 0.02 1.11 0.80 -
s1488 431 500 9 9 0.34 0.07 0.86 1 0.21
sse 87 102 5 8 0.02 0.01 0.85 0.63 0.5
styr 344 380 8 10 0.59 0.06 0.91 0.80 0.1
table5 686 639 8 13 50.32 0.28 1.07 0.62 0.01

Table 2.2: Runtime comparison for circuits whose initial mapping was combinational

Runtimes (Mapping Fixed)
Benchmark Name Added Delay Delay Gates Gates Size Ratio

Gates Cyclic Acyclic Cyclic Acyclic
5xp1 6 8 8 92 97 .94
table3 26 10 13 833 771 1.06
dk16 17 5 9 208 199 1.04

Table 2.3: Runtime comparison for circuits whose initial mapping was not combina-
tional.



70

Random Circuits
Inputs Outputs Cyclic Gates Gates Remapped Vectors Gates Size

Solutions Cyclic Acyclic Added Ratio
5 9 291 106 108 34 1 8 .98
5 8 300 92 100 66 2 11 .92
5 7 300 84 90 59 3 12 .93
5 6 298 75 78 64 2 8 .96
6 8 300 200 204 84 3 17 .98
6 7 300 180 182 105 3 5 .99
6 6 300 153 160 106 3 15 .96

Table 2.4: Results for randomly generated functions of five variables.

engines of modern EDA tools should be made not only “false-path” aware but also “false-

cycle” aware. Introducing cycles provides significant opportunities for optimization,

both for area and for delay. (Since power is generally correlated with area, we expect

gains in this metric as well.)

The topic of structuring functional dependencies, whether cyclic or acyclic, is one

that has not garnered sufficient attention in the logic synthesis community, in our opin-

ion. Given the remarkable scalability of the approach, Craig interpolation provides the

opportunity to explore large changes in the structure of functional dependencies, early

in the synthesis process. In applications to date, interpolants have been generated di-

rectly from the proofs of unsatisfiability that are provided by SAT solvers. In the next

chapter we propose efficient methods based on incremental SAT solving for modifying

resolution proofs in order to obtain more compact interpolants. This reduces the cost

of the logic that is generated for functional dependencies.



Chapter 3

Reduction of Interpolants for

Logic Synthesis

3.1 Introduction

As we discussed in the previous chapter, Craig Interpolation has been proposed for

synthesizing functional dependencies in combinational logic [23]. For this application,

a SAT instance is created to answer the question of whether a target function can

be implemented with a specified support set or not. If the target function can be

implemented in terms of the specified support set, then the SAT instance is unsatisfiable.

The SAT instance is partitioned into two sets of clauses that only have variables in

the specified support set in common. An interpolant is generated from the proof of

unsatisfiability. The interpolant provides an implementation of the target function in

terms of the support set.

While generating functional dependencies in this manner is quick and scalable, it

generally does not yield optimal (or even very good) results. These methods can work

effectively when mapping to a technology where the complexity of implementing a func-

tion is based on the size of the support set (like FPGAs). However, when mapping to

71
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(a + ¬c + d)(¬a + ¬c + d)(a+ c)(¬a + c)(¬d)(d + ¬c)(a + b)

(c)                (¬c)

( )

Figure 3.1: A resolution proof from an unsatisfiable CNF formula. Clauses of A are
shown in red while clauses of B are shown in blue

(a + ¬c + d)(¬a + ¬c + d)(a+ c)(¬a + c)(¬d)(d + ¬c)(a + b)

(d + ¬c)

( )

(¬c) (c)

Figure 3.2: A different resolution proof from the same unsatisfiable CNF formula.
Clauses of A are shown in red while clauses of B are shown in blue
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primitive gates (ANDs, ORs, NOTs, etc...) the structure of the interpolants can be

overly large and redundant.

The methods to derive interpolants from unsatisfiable SAT instances proposed in [1]

and [40] follow fixed trajectories based on the resolution proof generated by a SAT

solver. However, I is an over-approximation of the variable assignments that cause A

to be true; there may be many different valid implementations for I . Also, there may

be many ways to prove that an unsatisfiable instance of SAT is indeed unsatisfiable.

Consider the two proofs of unsatisfiability shown in Figures 3.1 and 3.2. Both proofs

start with the same original leaf clauses and the same clause partitions A and B . How-

ever, the proofs use a different series of resolutions to derive the empty clause. Different

proofs may result in different interpolants. The size of the interpolant correlates with

the size of the circuit implementation of the target function. Using the interpolant gen-

eration algorithm proposed in [1], the interpolants for the clause partition in Figures

3.1 and 3.2 result in implementations with 4 gates and 8 gates, respectively. Even with

small problem sizes, poorly structured resolution proofs can result in overly complex

interpolants. When synthesizing functional dependencies, large interpolants produce

large circuit implementations.

In [41], the authors proposed a strategy to mitigate against poor-quality solutions.

They did not attempt to reduce the size of interpolants; rather, they suggested repeated

trials of Craig Interpolation with different support sets. They suggested iterating over

different combinations of dependencies, applying interpolation to each, and picking the

one that yields the smallest implementation. After the implementation is chosen, tradi-

tional combinational synthesis algorithms are applied to further optimize its structure.

Our approach is orthogonal to this one.

In this chapter, we explore methods for modifying resolution proofs in order to

obtain more compact interpolants. This, in turn, reduces the amount of logic that is

generated for functional dependencies. We use the concept of Minimum Unsatisfiable

Cores (MUCs) [42]. An MUC is a minimal set of constraints that need to be present



74

in order to prove that a SAT instance is unsatisfiable. We apply incremental SAT

techniques, so our approach is algorithmically efficient.

3.2 Background and Definitions

3.2.1 DPLL Algorithm

Most modern SAT solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL)

backtracking-based search algorithm [43]. On a high level, the algorithm works by mak-

ing a decision about the truth value of an un-assigned variable and then propagating

that decision to all literals in the formula corresponding to that variable. If a clause

becomes unit (containing only one literal) then the value of the corresponding variable

is assigned such that the unit clause is satisfied and the assignment is propagated. If

at some point a conflict occurs (some clause evaluates to false) the search backtracks

to the last decision. If during the search all clauses become satisfied, then the current

state of the variables is a satisfiable assignment to the formula. Otherwise, if the search

backtracks past the first variable decision, the formula is unsatisfiable. The algorithm

is described with pseudocode in Figure 3.3.

DPLL(σ):
if every clause in σ is true

return TRUE

if some clause in σ is false
return FALSE

for each unit clause l
σ = propagate(l, σ)

l = var-decision(σ)
return DPLL(σ ∧ l) or DPLL(σ ∧ l̄)

Figure 3.3: The DPLL algorithm. The “propagate( l, σ)” function assigns “TRUE” to
every instance of l in σ. The “var-decision(σ)” function decides a truth value for an
unassigned variable and returns the corresponding literal.
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Modern SAT solvers use DPLL for the basis for their solving method. Different

heuristics are used for making variable decisions and efficient data structures are lever-

aged to efficiently propagate assignments and discover conflicts.

3.2.2 Clause Learning and Incremental SAT

While the DPLL algorithm described in Figure 3.3 is complete (given an infinite

amount of time it will always terminate for any given formula σ) it lacks an important

mechanism that gives real power to modern SAT Solvers: Clause Learning. Boolean

resolution is an inference rule that states that given two clauses that contain only one

literal differing in polarity (negated in one clause but not in the other) a new clause

is implied. The variable that differs in polarity is known as the pivot variable and

the resolved clause is called the resolvent. The resolvent contains the union of all the

literals in the two clauses except for the pivot variable. The rule is formally stated in

Equation 3.1.

(x1 + . . .+ xj + . . .+ xn), (y1 + . . .+ yk + . . .+ ym), (xj = ȳk)

(x1 + . . .+ xj−1 + xj+1 + . . .+ xn + y1 + . . .+ yk−1 + yk+1 + · · ·+ ym)
(3.1)

If a conflict occurs during DPLL search this implies that the conflicting clause,

the clause containing all FALSE literals, contains only one variable of different polarity

than the last clause where propagation occurred. This indicates that a new clause, the

resolvent of the conflicting clause and the clause where propagation last occurred, is

implied. To illustrate this, consider the SAT instance shown in Figure 3.4.

(x+ y + z)(x+ w̄ + z)(x̄+ y + z)(ȳ + z)(w̄ + z̄)

Figure 3.4: A CNF formula of variables w, x, y, and z.
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Assume that the following variable decisions have been made: y = z = 0. Under

these variable decisions, the first, third, fourth, and fifth clauses become unit clauses.

When the value of the first unit clause (x) is propagated, a conflict occurs with the

third clause (x̄). This indicates that the only variables that differ in polarity between

the first and third clauses is the variable x. The resolvent clause (y + z) can then be

added to the sat instance. After backtracking and changing the variable decision z = 1

a new clause (z) which is the resolvent of (y+ z) and (ȳ+ z) is learned. This new SAT

instances with learned clauses is shown in Figure 3.5.

(x+ y + z)(x+ w̄ + z)(x̄+ y + z)(ȳ + z)(w̄ + z̄)(y + z)(z)

Figure 3.5: The CNF formula shown in Figure 3.4 with additional learned clauses (y+z)
and (z)

These additional clauses serve as a means to restrict the search space of decision

variables. Adding the clause (z) implicitly prevents the search from making any decisions

where z = 0. Without the use of learned clauses the DPLL algorithm may run into the

same conflict where z = 0 an exponential number of times.

Learned clauses may also increase the performance of solvers tremendously when

instances are solved incrementally. In many applications, several similar SAT instances

need to be solved repeatedly. The formulas may be similar in the sense that they

contain many of the same variables and/or clauses. Problems can be cast with a set

of assumption variables. These are extra variables added to the CNF formula that can

implicitly add or remove clauses based on the assumed values of the variables. An

example of the the CNF formula from Figure 3.4 with added assumption variables is

shown in Figure 3.6. The values of variables a1, a2, a3, a4, and a5 can be chosen a priori

to essentially eliminate certain clauses from the SAT instance. The DPLL procedure can

be modified such that the assumption variables are decided during an initialization and
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if the search ever backtracks past an assumption variable, then the instance is deemed

to be “unsatisfiable under the assumptions”.

(a1 + x+ y + z)(a2 + x+ w̄ + z)(a3 + x̄+ y + z)(a4 + ȳ + z)(a5 + w̄ + z̄)

Figure 3.6: A CNF formula from Figure 3.4 with assumption variables a1, a2, a3, a4, a5

If the instance was solved with a1 = a2 = a3 = a4 = a5 = 0 The additional clauses

shown in Figure 3.7 may be learned. Now if the instance is solved again with different

assumptions, say (a1 = a3 = a4 = 0, a2 = a5 = 1), then the solver will not explore

the space of assignments restricted by the learned clauses generated from the previously

solved instance.

(a1 + x+ y + z)(a2 + x+ w̄ + z)(a3 + x̄+ y + z)(a4 + ȳ + z)(a5 + w̄ + z̄)

(a1 + a3 + y + z)(a1 + a3 + a4 + z)

Figure 3.7: A CNF formula from Figure 3.6 with two additional learned clauses

Learned clauses can dramatically improve solver performance, but as more and more

are generated there can be diminishing returns. Modern solvers leverage heuristics for

dropping learned clauses if they are deemed to be not “useful” [44].

3.2.3 Resolution Proofs and Craig Interpolation

Learning not only provides serious performance improvements on top of DPLL,

but it also provides a mechanism for verifying the correctness of SAT solvers. With

some minor book-keeping during the DPLL search the learned clauses can be used to

produce a resolution proof of unsatisfiability [45]. A set of clauses can be proved to be

unsatisfiable through a series of resolutions that lead to an empty clause. This results
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in a directed acyclic graph (DAG): the roots are the original clauses, the intermediate

nodes are clauses proved by resolution, and the single leaf is the empty clause. We will

sometimes use the words “node” and “clause” interchangeably when we are discussing

resolution proofs.

When two clauses c1 and c2 resolve a clause c3, c1 and c2 are said to be the parents

of c3; c3 is said to be a child of c1 and c2. Clauses that are used to resolve c1 or c2

are said to be ancestors of c3. When we say that a node is towards the beginning of a

proof, we are declaring that there are few resolution steps taken from the leaves of the

proof to reach this node. When we say that a node is towards the end of a proof, we are

declaring that there are few resolution steps that need to be taken to reach the empty

clause from this node. An example of resolution proof for the unsatisfiability of a SAT

instance similar to the formula in Figure 3.4 is shown in Figure 3.8.

(y + z)

(z)

(x+ y + z)(x+ w̄ + z)(x̄+ y + z)(ȳ + z)(w̄ + z̄)(w)

(z̄)

()

Figure 3.8: A resolution proof of unsatisfiability

Resolution proofs are not only useful for verifying the results of a SAT solver, but

also for examining certain properties of the underlying formula. Given an unsatisfiable

instance of SAT and a bi-partition of its clauses, set A and set B , Craig’s Interpolation

theorem states that there exists an intermediate formula I , called an interpolant, such

that A → I and I → B . A variable in the SAT instance is said to be a global variable
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if it is present in both clause sets A and B . Likewise, a variable is said to be local

to a clause partition if it is only present in that clause partition. An interpolant only

contains variables that are global to A and B . We say that a set of clauses is satisfied

for some assignment of the set’s variables if every clause in the set evaluates to true.

The algorithm in Figure 3.9, presented in [1], is a procedure for generating a circuit

that implements an interpolant from a resolution proof and a clause partition. It was

adapted from a procedure presented in [40] to find the Boolean value for an interpolant

given a variable assignment. A proof of correctness for the procedure in Figure 3.9 is

provided in [4].

p(c):
if c is a leaf clause

if c is in A

return g(c)
else

return 1

else let v be the pivot variable

if v is local to A

return p(c1) ∨ p(c2)

else

return p(c1) ∧ p(c2)

Figure 3.9: The algorithm proposed in [1] to produce a circuit that implements an
interpolant of a given clause partition, via a proof of unsatisfiability.

The procedure g(c) has a single clause c as its argument. The procedure returns

clause c with only its global literals present. Let c1 and c2 be c’s parent clauses. Proce-

dure p(c) is defined in Figure 3.9. Calling p(c) on the empty clause of a resolution proof

will return a DAG whose nodes represent Boolean functions. In this DAG, the node

with no fanout, corresponding to the empty clause in the resolution proof, computes a

Boolean function in terms of the global variables of A and B . This Boolean function is

an interpolant of the given clause partition. When we refer to the size of an interpolant,

we mean the number of gates that are needed to represent it. It should be clear that
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the size of the interpolant is bounded by the number of nodes in the resolution proof.

Figure 3.10 shows the results of applying this procedure on the resolution proofs in

Figures 3.1 and 3.2.

a  c     ¬a c

¬d

a  ¬c  d  ¬a  ¬c  d  a  c     ¬a c

¬d

Figure 3.10: Two interpolants produced by calling p(c) on the empty clause of a reso-
lution proof. The circuits on the left and right are generated from the proofs in Figures
3.1 and 3.2, respectively

3.3 Proposed Methodology

Whether or not a function is a valid interpolant for a clause partition depends on

the space of Boolean assignments that each clause partition covers. A CNF formula is

a non-canonical representation for a Boolean function so there are many different valid

sets of clauses that cover the same space of Boolean assignments.

Proposition 9 Given a resolution proof of unsatisfiability of clause set A and B, we

can move all nodes that were resolved from only nodes of A and all nodes that were

resolved from only nodes of B into the set of leaves of A and B, respectively. This

action will still preserve the space of Boolean assignments covered by A and B. The
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interpolant generated from this new resolution proof will be a valid interpolant of the

original clause sets A and B.

Proof 9 Consider two leaves n1 and n2 in A (B) and a new node n3 that is the resolvent

of n1 and n2. Since n3 is never false for a variable assignment that causes n1 and n2 to

be true, n3 can be added to the set of leaves of A (B) without reducing or expanding the

space of Boolean assignments that satisfy A (B). Since the space of Boolean assignments

representing A and B does not change – only the clause representation changes – an

interpolant generated by the procedure in Figure 3.9 while considering n3 to be a leaf

clause will still be a valid interpolant of the original clause partition.

�

We can mark nodes resolved from only nodes of A or B as leaves of A or B ,

respectively. In theory this optimization should yield a smaller interpolant for a proof.

The intuition behind this is that we are essentially generating an interpolant on a proof

that has fewer resolutions (since many of the internal nodes can considered as leaves).

However, for most applications this optimization by itself doesn’t yield a significant

improvement in interpolant size.1

Example 7 Let us see how this optimization affects the interpolants of the proofs in

Figures 3.1 and 3.2. In Figure 3.1, we notice that resolvent clause (c) was resolved from

two leaf clauses of A (clauses (a + c) and (ā + c)). This means that we can consider

clause (c) to be a leaf of A. Calling p(c) on this proof with clause (c) marked as a leaf

node will yield the interpolant (c)(d̄).

1 Often, CNF formulas are generated from a Tstein Decomposition of a logic circuit [3]. During
the course of generating this representation, many variables are created. When a clause partition is
made, there are usually very few variables that are common to both partitions (indeed this is the
case for the applications in [23] and [1]). When a proof of unsatisfiability is generated, many of the
resolutions involve variables that are only present in one partition. Performing an optimization that
considers internal nodes as leaf clauses will do very little to improve the overall size of the interpolant
with this kind of proof. This is because p(c), for the most part, will be creating redundant gates. If
we are generating an interpolant using this method on a data structure that doesn’t allow the creation
of redundant logic – such as a structurally hashed AIG [46] – this optimization will likely yield little
benefit to the interpolant size.
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In the proof shown in Figure 3.2, we can see that the empty clause is derived from

implications that only occur from partition A. This means that the empty clause can be

considered as a leaf of A. Calling p(c) on this proof with the empty clause marked as a

leaf of A will yield an interpolant of constant 0 (since the OR of the global literals of

an empty clause is 0).

This optimization allows us to reduce the number of gates needed to implement the

interpolant in Figure 3.1 to 1 gate and the number of gates to implement the proof in

Figure 3.2 to 0 gates.

What may become clear from this observation is that proofs that tend to have few

resolutions between a clause resolved from A and a clause resolved from B will tend to

have smaller interpolants. This is because more of the internal nodes can be considered

as leaves and therefore fewer gates will be created by the p(c) procedure. Abusing

English a little, we will refer to a proof of this kind of structure as being more disjoint

than a proof that has more resolutions that occur between a clause of A and a clause

of B (e.g., the proof in Figure 3.2 is more disjoint then the proof in Figure 3.1).

In [42], a SAT-Based methodology is proposed that attempts to change the order of

resolutions in a proof of unsatisfiability in order to yield a smaller set of leaves that are

involved in the proof. In this work, we attempt to use the same type of methodology

in order to yield a proof that will generate a smaller interpolant using the algorithm in

Figure 3.9.

Consider some node c in a resolution proof of unsatisfiability for a SAT instance.

If we follow the series of resolutions that took place in order to resolve c backwards

(towards the leaves), we eventually arrive at a set of leaves that were used to derive c.

Let R be this set of leaves.

Proposition 10 For all variable assignments that satisfy the set of clauses R, c must

also be satisfied.
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Proof 10 let c1 and c2 be the clauses that resolved c (c’s parent nodes). Every variable

assignment that satisfies both c1 and c2 must also satisfy c (because (c1)(c2) → c).

Likewise, every variable assignment that satisfies both of c1’s parents also satisfies c1

and every variable assignment that satisfies both of c2’s parents also satisfies c2 (and

so on with c1 and c2’s parents). Therefore every variable assignment that satisfies the

ancestor nodes of c must also satisfy c.

�

Since R → c, we know that the SAT instance (R)(c̄) must be unsatisfiable. In [42],

the authors exploit this fact to determine whether or not a clause c can be derived

through resolution from a set of clauses R. They propose a SAT-Based algorithm that

iteratively checks intermediate nodes to see if they can be implied by a smaller set of

leaves. The goal of the algorithm is to find a smaller set of leaf clauses that are needed

to prove that the CNF formula is unsatisfiable.

We propose using this type of SAT instance to check to see whether or not a clause

can be resolved by only leaves of set A or B . We can verify if clause c can be implied

from only clauses of A by checking the satisfiability of (A)(c̄). Likewise we can check to

see if c can be resolved from only clauses of B by checking the satisfiability of (B)(c̄).

If both of these SAT instances are satisfiable, then we know that clauses of both A and

B are required to resolve clause c. If (A)(c̄) is unsatisfiable then we know that c can

be considered to be a leaf of A. If (B)(c̄) is unsatisfiable then we know that c can be

considered to be a leaf of B .

We propose using this observation to prove that some nodes in a resolution proof

can be implied by only nodes of A or only nodes of B and therefore can be considered

as leaves of A or B .

Example 8 Consider the proofs in Figures 3.1 and 3.2 again. The proof in Figure 3.1

involves only one clause of B: (d + c̄). Here we see that clause (c̄) is resolved from a

clause in A and a clause in B. In the other proof we can see that the clause (c̄) can be
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derived from the resolution of clauses (a+ c̄+ d),(ā+ c̄+ d), and (d̄). We can create a

SAT instance to check whether or not (c̄) can be derived from clauses of A. This SAT

instance would be: (a+ c̄+ d)(ā+ c̄+ d)(a+ c)(ā+ c)(d̄)(c). We know this instance will

be unsatisfiable based on the resolution shown in Figure 3.2. This tells us that we can

consider clause (c̄) to be a leaf of partition A. As shown earlier, marking (c̄) as a leaf

of A allows us to generate an interpolant of constant 0 for this proof.

In what follows, we propose a methodology using these observations to modify a

resolution proof in order to yield a smaller interpolant.

1. Mark every node that was resolved from only nodes of A or B as leaves of A or

B respectively. Mark every other node as unvisited.

2. Select a clause c that is not a leaf of A or B and is not marked as visited. Check

the satisfiability of (A)(c̄) and (B)(c̄).

3. Solve the SAT instances created in the previous step. If (A)(c̄) is unsatisfiable,

mark c as a leaf of A. Otherwise, If (B)(c̄) is unsatisfiable, mark c as a leaf of B .

Mark c as visited.

4. If c is now marked as a leaf of either A or B , check to see if its children can

trivially be marked as leaves of A or B and check to see if some of c’s ancestors

can be marked as visited.

5. Repeat steps 2-4 until all nodes are marked as either visited or as leaves leaves of

A or B or until a threshold number of calls to the SAT solver is reached.

The details of steps 2 and 4 are explained in the next section.

3.3.1 Optimizations

The goal of our method is to determine if we can find a more disjoint proof to

generate the interpolant. We can create SAT instances that check to see if nodes that



85

have ancestor nodes of both A and B can be labeled as leaves of either A or B . We will

refer to such nodes as mixed nodes. Since the complexity of the method is dominated

by calls to the SAT solver, we aim to reduce the number of SAT instances that need to

be solved.

Rather than checking every mixed node to see if it can be considered as a leaf, we

can limit ourselves to a fixed or variable number of nodes that we consider based on

the overall size of the proof. For large proofs generated from large CNF formulas, many

nodes may be mixed. At the same time, the size of the SAT instance that needs to be

solved in order to determine if a node can be marked as a leaf increases (because there

will be many clauses in A and B). This can lead to a very long runtime for large CNF

formulas. However, we can halt at anytime and still reduce the size of the interpolant.

In most cases, the nodes toward the bottom of the resolution proof (close to the

empty clause) will tend to be mixed nodes. If we check these nodes first and verify that

a node towards the end of the proof can be considered as a leaf node, then we might

not need to check some of the node’s ancestors.

Proposition 11 Consider some mixed node n which we prove to be a leaf of either A

or B by solving an instance of satisfiability. If an ancestor of n is only involved in

resolutions that lead to n, then we do not need to check whether this node is a leaf node.

Proof 11 The procedure in Figure 3.9 terminates on leaves. If n is marked as a leaf

node then the procedure will not be called on its parents and therefore will never be called

on any of n’s ancestors who are only involved in resolutions leading to n.

�

Example 9 To better illustrate this point, consider the resolution proof shown in Figure

3.11. let us say that nodes 1–5 are mixed nodes in this proof. If we prove that node

1 can be considered to be a leaf of A then we will not have to check node 3 (because

node 3’s only resolvent is node 1). However, node 4 may still need to be checked because
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it is involved in the resolution of node 2. If we prove that both nodes 1 and 2 can be

considered leaves of A (or B) first, then we do not need to check node 4 (since node 4

will not be reached by p(c) when p(c) is called on the empty clause).

This is the condition that we are considering in Step 4 of our methodology when

we say that we should check to see if ancestor nodes can be marked as visited. In this

example, we would mark node 3 as visited, and we would not solve a SAT instance to

see if it can be a leaf node. Showing that a mixed node can be considered leaf may

allow us to check fewer of the node’s ancestors, but it does not imply that its ancestors

can be considered leaf.2

...(       )(       )(       )(       )(       )(       )(       )...

(  3  )    (  4  )      (  5  )

(  1  )       (  2  )

(      )

Figure 3.11: A resolution proof from an unsatisfiable CNF formula. Clauses of A are
shown in red while clauses of B are shown in blue. Nodes 1, 2, 3, 4, and 5 are nodes
somewhere in the proof

Proposition 12 If we prove that two parents of a mixed node can be considered leaves

of the same clause partition, then this implies their child clause can be considered as a

leaf of this partition.

2 Clearly the series of implications that showed the node to be mixed in the original resolution proof
used resolutions that occurred from nodes from both A and B . Unless the leaves involved in the proof
from one partition can be implied from the other, at least one of the ancestor nodes in the proof must
remain mixed.
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Proof 12 This is basically the same condition as Proposition 1. If nodes n1 and n2 are

marked as leaves of A (B), then their resolvent node n3 can be added to the same set

of clauses as n1 and n2 without reducing or expanding the set of variable assignments

that satisfy A (B).

�

Example 10 Once again consider the proof shown in Figure 3.11. If we show that

nodes 3 and 4 can be considered to be leaves of A (or B), then we do not need to create

a SAT instance to see if node 1 can be marked as a leaf of A (B) because it can trivially

be considered a leaf node of one partition since both of its parents are leaves of the same

partition.

This is the condition that we are considering in Step 4 of our methodology when

check to see if a node’s children can be trivially marked as leaves.

By initially checking nodes that are close to the leaves of the proof, we can avoid

unnecessary calls to the SAT solver because we may be able to mark many children

of these nodes as leaves. Also, these nodes are more likely to be converted to leaves

because they are in a sense “closer” to the set of original leaves.

However, if we initially check nodes that are close to the end of the proof (near

the empty clause), we can avoid unnecessary calls to the SAT solver by marking many

ancestor nodes as visited. These nodes are less likely to be proven to be leaves because

they are in a sense “further” from the set of original leaves.

We will refer to the method of checking nodes towards the end of the proof first

as a backward search, and we will refer to the method of checking nodes towards the

beginning of the proof first as a forward search. A forward versus a backward search

changes the order in which we consider nodes in Step 2 of our methodology. Using both

methods may allow us to modify a proof while solving fewer SAT instances. However, if

we check every node (regardless of the order) both methods will yield the same modified
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resolution proof. We determine the ordering of nodes in a resolution proof by the order

in which the clauses were resolved by the SAT solver that produced the resolution proof.

When a SAT solver produces a resolution proof from an unsatisfiable CNF formula,

it also provides an ordering of how each clause is implied [45]. The backward search

checks clauses that were resolved at the end of the SAT solver’s trace first, while the

forward search checks clauses that were resolved at the beginning of the SAT solver’s

trace first.

3.3.2 Incremental Techniques

Since the SAT instances we are solving are all similar, we can implement the SAT

solving portion of Step 2 of our methodology using incremental SAT techniques [38].

To implement these techniques we simply add two new variables into the SAT instance.

For every clause in A we will add literal aoff and for every clause in B we add boff.

When we want to determine if a node can be considered a leaf of A, we set the variable

assumptions to be aoff = 0 and boff = 1. When we want to determine if a node can

be considered a leaf of B we set the variable assumptions to be aoff = 1 and boff = 0.

Setting the assumptions in this way essentially tells the SAT solver to ignore the clauses

of set A or B . After setting aoff and boff, we assume all the literals of the node under

inspection to be zero.

Example 11 Consider again the proof shown in Figure 3.1. Let us say we want to use

incremental techniques to see if clause (d + c̄) could be considered to be a clause of A.

To solve this we check the satisfiability of the following CNF formula:

(a+ c̄+d+aoff)(ā+ c̄+d+aoff)(a+c+aoff)(ā+c+aoff)(d̄+aoff)(d+ c̄+boff)(a+b+boff)

When we solve this SAT instance we assume aoff = 0 and boff = 1. We also assume

d = 0 and c̄ = 0 (this is the same as assuming that clause (d + c̄) is 0). Notice if we

want to check any other mixed node in the resolution proof we can use the same SAT

instance but just change the set of variable assumptions. Since the SAT instance is the
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same for each call to the SAT solver, it can remember information about the state of

previous instances and use this information to make later instances easier to solve [38].

3.4 Results

To test our algorithm, we created different SAT instances that checked for valid

functional dependencies in the benchmarks listed in Tables I through IV. The SAT

instances were generated using the method described in [23]. The support sets that

we considered were for the benchmark’s primary outputs expressed in terms of other

primary outputs and primary inputs. We iterated over many possible support sets

searching for valid sets of a minimal size. Once we verified that certain support sets

could be used to implement primary outputs, we created a resolution proof from the

corresponding CNF formula. We then compared the forward and backward traversals

of the resolution graph checking to see if mixed nodes could be considered to be leaves.

We generated the interpolants from the resolution proofs using the algorithm in Figure

3.9. Here we compare the sizes of the interpolants generated form the algorithm in

Figure 3.9 on modified and unmodified resolution proofs. We chose benchmarks from

the LGSynth05 [31] benchmark suite that had many possible valid target functions.

Tables I and II provide detailed results for a particular benchmark, table3. Tables III

and IV summarized the results for other benchmarks. In Tables III and IV, the numbers

in every column are the average value of the field among all the functional dependencies

that were generated.

The experiments were run on an AMD Athlon 64 X2 6000+ CPU with 3 GB of

RAM. Only one core was utilized by the algorithm. Our code was implemented in

Berkeley ABC [32] using MiniSAT for SAT solving [33].

We limited the number of mixed nodes that we checked in each resolution proof to

2500. (This limit was reached for the larger resolution proofs.) In each check, we solve

two SAT problems (to see if the node can be considered a leaf of A or B). The number
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of mixed nodes that were checked for each resolution proof is indicated in the “# Nodes

Checked” column. The “# Res Nodes” column indicates the number of nodes formed

by resolution in the original proof. The “# Found” column is the number of mixed

nodes that we found to be leaves by proving a SAT instance to be unsatisfiable. The

“Orig. Size” column lists the number of AIG nodes in the interpolant before optimizing

the resolution proof. The “New Size” column lists the number of AIG nodes in the

interpolant after the resolution proof was modified. The “Time” column indicates the

time that it took to search through the nodes of the resolution proof and to check the

SAT instances for the mixed nodes.

After the interpolants were simplified, we ran the compress2 script in ABC on

the original interpolants and the interpolants generated after the forward and backward

searches. The idea is that our method could be used initially to make vast changes to the

overall structure of the interpolant, and then other logic minimization techniques could

be applied to the resulting structure. To show that our algorithm achieves minimization

beyond traditional synthesis techniques, we ran compress2 on interpolants generated

from modified resolution proofs and non-modified proofs and then compared their sizes.

The percent reduction in size is listed in the “% Change Compress2” column in Tables

III and IV. “% Change” was calculated by: (New Size - Old Size) / Old Size. The size

of the original and new interpolants after running compress2 is shown in Tables I and

II under the “Orig. Comp2” and “New Comp2” columns.

We see that modifying the resolution proof often results in substantial improve-

ments in the interpolant size. After the compress2 script is run, the % change in

size between interpolants is less significant, but on average is still better than running

compress2 without modifying the proof. Tables I and II show the results of 10 iter-

ations of compress2. We have noticed that running multiple iterations doesn’t yield

significant differences in terms of % change in size between interpolants generated from

modified and non modified resolution proofs. Accordingly, Tables III and IV show the

results from just one iteration of compress2.
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The time for constructing an interpolant on the modified resolution proof and run-

ning compress2 was negligible compared to the time it takes to simplify the resolution

proof. In general, the backward search method makes more substantial reductions in

size with a smaller number of calls to the SAT solver compared to the forward search

method. Increasing the maximum number of node checks would likely yield better re-

sults at the expense of longer runtimes – particularly for some of the larger benchmarks

where the maximum number of node checks was frequently reached.

For a couple of functions presented in Table I the original and new interpolant sizes

were the same, yet the sizes after running compress2 were different (see functions 1

and 5). This is due to the fact that our implementation gave the AIG nodes different

orderings between the original and new AIGs. This can sometimes change the results

of running compress2.

In many cases, the primary outputs of benchmarks have very small support sets. For

the benchmarks listed in Tables III and IV, we did not report the savings for primary

output functions that contained less that 50 AIG nodes. Also, our techniques performed

much better on dependency functions where the support set contained many primary

output functions and few primary input functions. This is likely due to don’t care

conditions that exist in the circuit that our method implicitly takes advantage of. We

will discuss this in Section 5.5.
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table3 Benchmark: Forward Search

Function # # Res Orig New # Nodes # Found Time (s) Orig New
Nodes Size Size Checked Comp2 Comp2

0 32262 277 267 2500 61 80.85 105 93
1 128654 1254 1254 2500 0 281.31 328 329
2 95042 638 630 2500 283 218.25 248 226
3 71647 682 648 2500 423 157.66 273 215
4 57015 776 743 2500 432 126.26 380 364
5 47285 657 657 2500 0 106.23 251 233
6 43884 268 245 2500 578 94.67 91 104
7 26714 287 271 2500 335 64.37 144 126
8 31715 116 90 2500 48 79.40 55 34
9 13182 43 36 1090 65 17.25 22 18

10 70964 867 850 2500 576 146.85 413 397
11 31772 253 229 2500 67 80.12 86 107
12 45784 376 360 2500 404 98.61 172 184
13 29078 408 373 2500 757 64.73 130 55

Table 3.1: Results of the forward-search method on the table3 benchmark. Each
function is a PO expressed in terms of the PIs and other POs.

table3 Benchmark: Backward Search

Function # # Res Orig New # Nodes # Found Time (s) Orig New
Nodes Size Size Checked Comp2 Comp2

0 32262 277 129 2500 20 85.88 105 58
1 128654 1254 1238 2500 5 287.62 328 346
2 95042 638 574 2500 8 225.37 248 217
3 71647 682 469 2500 45 179.96 273 177
4 57015 776 490 2500 26 144.83 380 193
5 47285 657 611 2500 8 114.33 251 242
6 43884 268 224 2500 8 107.96 91 106
7 26714 287 87 2500 27 76.61 144 51
8 31715 116 76 2500 15 85.23 55 34
9 13182 43 36 1017 3 16.55 22 18

10 70964 867 349 2500 41 179.22 413 192
11 31772 253 191 2500 8 82.38 86 50
12 45784 376 203 2500 34 120.00 172 117
13 29078 408 112 2500 32 84.29 130 37

Table 3.2: Results of the backward-search method on the table3 benchmark. Each
function is a PO expressed in terms of the PIs and other POs.
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Forward Search

Benchmark # Res Nodes # Nodes Checked # Found % Change % Change Time (s)
Compress2

apex1 28279 2413 30 -4.89% -2.73% 69.48
apex3 68585 1494 21 -2.12% -1.47% 140.99
styr 9373 2143 88 -8.71% -5.71% 18.3

s1488 5748 824 29 -9.24% -8.41% 7.62
s1494 10488 1266 21 -6.69% -4.43% 15.51
s641 46416 1886 39 -26.67% -2.33% 97.45
s713 42412 1910 89 -36.00% -3.70% 89.16

table5 35373 2500 252 -13.83% -4.08% 48.05
vda 12951 2011 120 -18.78% -17.33% 27.34
sbc 13951 1094 8 -1.46% -1.08% 19.09

Table 3.3: A table of the averaged results using the forward-search method among
different benchmarks.

Backward Search

Benchmark # Res Nodes # Nodes Checked # Found % Change % Change Time (s)
Compress2

apex1 28279 2384 6 -8.95% -5.84% 72.03
apex3 68585 1485 5 -8.41% -5.24% 145.63
styr 9373 2124 10 -11.57% -10.14% 19.36

s1488 5748 797 5 -9.92% -9.59% 7.98
s1494 10488 1241 7 -6.93% -5.19% 15.83
s641 46416 1820 14 -42.22% -2.78% 95.37
s713 42412 1724 17 -43.90% -6.20% 82.86

table5 35373 2358 7 -26.67% -15.83% 81.16
vda 12951 1850 7 -21.72% -19.72% 27.07
sbc 13951 1087 1 -1.46% -0.92% 19.09

Table 3.4: A table of the averaged results using the backward-search method among
different benchmarks.
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3.5 Discussion

There is still some variability in this method that can be explored. When checking

mixed nodes for eligibility as root nodes, some nodes were shown to be considered as

a clause of either A or B . Depending on which set the node belongs to, more or fewer

nodes in the resolution graph may have to be checked to see if they can be considered

a root node. This idea is illustrated in the following example.

Example 12 Consider the resolution proof in Figure 3.11. Let us say that we prove

that node 4 can be considered as either a root of A or B. At the same time, let us say

we have proved that nodes 3 and 5 are roots of B. We may be better off choosing to label

node 4 as a root of B because then we avoid having to check whether or not nodes 1 and

2 are root nodes (because their parents are roots of B so they are also roots of B).

Furthermore, rather than considering all the nodes of sets A or B we could heuris-

tically restrict ourselves to nodes that are near the mixed node that we are considering

(near in a topological sense). This will reduce the size of the SAT instances that are

iteratively solved and this will likely reduce the overall runtime.

a b           a c

f

g h

Figure 3.12: A circuit with an observability don’t care of g = 1, h = 0

If interpolants are used as a starting point to generate a structure to perform tra-

ditional synthesis, these traditional techniques will perform better. When computing

interpolants in the context of synthesizing functional dependencies, the function that is

generated implicitly takes advantage of don’t care conditions that exist in the circuit.
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Consider the circuit shown in Figure 3.12. We see that function f can be expressed in

terms of functions g and h. If we create a SAT instance to check whether or not f can

be expressed in terms of variables g and h, the instance will be unsatisfiable. We can

then use the resolution proof from this unsatisfiable instance to generate an interpolant

whose function is the implementation of f in terms of g and h. However, we can see

from Figure 3.12 that when g is logic 1, h must also be logic 1 (because of input a).

After the interpolant that implements f is generated, f may be either logic 1 or logic

0 for the assignment g = 1 h = 0 (because the interpolant is an over-approximation

of the on-set of f). If we pass the interpolant to traditional synthesis algorithms to

optimize it, the algorithms will not know about the don’t care condition on f and g.3

However, if we optimize the resolution proof before generating the interpolant, then we

can force the assignment of g = 1 h = 0 to cause f to evaluate to logic 0. Using this

implementation of f as a starting point for traditional multilevel synthesis algorithms

will yield better results.

We discussed the use of incremental SAT-based techniques to modify a resolution

proof to yield a smaller interpolant. We positioned this method as a starting point for

traditional synthesis algorithms. Perhaps this approach is more broadly applicable. In

[23] it was shown that Craig Interpolation can be used to generate implementations

for functions with a given support set. The choice of support set directly effects the

clause partition in the SAT instance. If a larger support set is chosen, then a more

constrained CNF formula is constructed. Using our approach, perhaps we could create

a resolution proof from an unsatisfiable SAT instance (with a large support set) and

perform optimizations on this proof to improve the entire circuit. Unlike modern syn-

thesis algorithms that perform incremental operations on small portions of a network,

working with a resolution proof might allows us to make incremental SAT calls that can

3 Here we are assuming that the function f(g, h) is passed to a synthesis algorithm in isolation
from the rest of the circuit. If the interpolant is not considered in isolation, then traditional synthesis
algorithms may take advantage of the don’t care condition on f . The idea we are trying to present is
that if g and h are many levels away from the primary inputs of the circuit, then local logic optimizations
may not be able to detect this don’t care condition.
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make vast changes to a network’s structure. In the next chapter we discuss thesse ideas

in more detail.



Chapter 4

Resolution Proofs as a Data

Structure For Logic Synthesis

4.1 Introduction

The previous chapter discussed methods for modifying resolution proofs with the

aim of reducing the size of an interpolant generated from the proof. When interpolation

is used to generate functional dependencies, often the goal is to generate dependencies

for multiple target functions. In this case, target functions that are able to share gates

in their transitive fanin are ideal. However, large differences in the resolution proofs

can lead to little logic sharing between interpolants. Consider the example illustrated in

Figures 4.1 and 4.2. Both resolution proofs have many of their root clauses in common.

However, the resolution proofs in Figure 4.1 have few of their intermediate clauses

in common. As a result, after the interpolants are generated for each proof, none of

the gates compute the same Boolean function. In contrast, the resolution proofs in

Figure 4.2 share many of the same intermediate clauses. The interpolants generated for

these proofs share more logic compared to those in Figure 4.1.
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Figure 4.1: A conceptual example of two resolution proofs with very few shared clauses.
The resulting interpolants do not contain any shared logic.
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Figure 4.2: An conceptual example of two resolution proofs that share many of the same
clauses. The resulting interpolants share some of same logic.
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Many modern synthesis tools use And-Inverter Graphs (AIGs) as their underlying

data structure. With AIGs, equivalence between nodes can be asserted with SAT-based

algorithms, combined with structural hashing [47]. When two nodes are proved to be

equivalent, one node can be substituted in place of the other, and any dangling logic

can be removed from the netlist.

A related but more difficult problem is determining whether or not certain nodes can

be expressed as a function of other nodes (sometimes called substitution or resubstitu-

tion [28]). For this task, the application of SAT-based methods is not so straightforward.

In contrast, it can be easily determined if nodes in a resolution proof can be resolved

from a subset of other nodes. Accordingly, Craig Interpolation provides a new approach

to performing substitution in logical synthesis.

In this chapter, we propose an algorithm for merging resolution proofs and then

restructuring them. The structure in the resulting interpolant is then less sparse. This

interpolant can be further minimized with traditional minimization algorithms. Trials

on benchmarks suggest that there is significant potential for restructuring in the proofs

of target function sets encountered in practice.

4.2 Related Work and Context

In [23], a method for generating functional dependencies based on Craig Interpo-

lation was proposed. This method was shown to scale much better with circuit size

than previous methods based on binary decision diagrams (BDDs) [48]. While the pro-

cess of finding and generating the dependencies with this method is efficient, in many

cases, the resulting logic is poor. This is because the interpolant that implements the

dependency function is often large and redundant. The structure of the interpolant is

heavily dependent on the structure of the proof of unsatisfiability generated by the SAT

solver. Generally, solvers strive for speed without regard to the proof structure. Some

methods for reducing the size of interpolants in specific application domains have been
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proposed [41]. Methods for adjusting and reducing the size of resolution proofs have

been discussed [42, 49]. Unfortunately, it is difficult to predict or measure how these

algorithms affect the structure of the interpolants that are generated from the proofs.

In the previous chapter, an algorithm for augmenting a resolution proof with the

goal of reducing the size of the proof’s interpolant was proposed. We showed that

changing the order in which clauses were resolved could greatly reduce the size of the

corresponding interpolant. In this chapter, we expand on this idea by showing how

multiple resolution proofs can be merged into a single, monolithic proof. We show how

this monolithic resolution proof can be restructured in order to increase the amount of

shared logic in the resulting interpolant.

4.3 General Method

Consider using the approach described in the previous section for generating func-

tional dependencies in the case where many of functions contain the same support vari-

ables. Let functions g0, g1, . . . , gn be the target functions and functions x0, x1, . . . , xn be

the variables in the potential support sets for these functions. Then the SAT instance

to verify the existence of the ith functional dependency takes the following form:

A = (gi) ∧ (CNFleft)

B = (x0 ≡ x∗0) ∧ (x1 ≡ x∗1) ∧ · · · ∧ (xn ≡ x∗n) ∧ (CNFright) ∧ (ḡi
∗)

Figure 4.3: A SAT instance that checks the existence of target function gi with support
set x0, x1, . . . , xn.

Here CNFleft and CNFright represent the clauses for the circuit elements in the

left and right halves of the circuit, respectively, as shown in Figure 2.15. The common

variables between sets A and B (x0, x1, . . . , xn) remain the same for each SAT instance.

Also, the only clauses that differ among each of the individual SAT instances are the
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(gi) and (ḡi*) terms. We refer to these terms as the “on” and “off” assertion clauses,

respectively. Such large similarity between SAT instances can be leveraged to create

similarities in the proofs of unsatisfiability. Structural similarities in the resolution

proofs can then lead to structural similarities in the interpolants. Using these properties,

we propose the following general method for creating a circuit structure that contains

shared logic.

1. For each primary output, create a SAT instance verifying that the primary output

can be expressed in terms of the circuit’s primary inputs (Equation 4.3).

2. Generate a proof of unsatisfiability for each SAT instance created in the previous

step.

3. For each node in each proof, color the node black if it has an assertion clause as

an ancestor; otherwise color the node white.

4. Check to see if any black node in any proof can be resolved from any set of white

nodes. If it can, color the node white.

5. Restructure the proofs so that the black nodes that were re-colored in step 4 are

only resolved from white nodes.

6. Generate the interpolant for each proof.

Step 4 of the algorithm is illustrated graphically in Figures 4.4 and 4.5. Figure 4.4

contains two proofs whose interpolants are an implementation of functions g0 and g1,

respectively. Figure 4.5 shows that two black nodes can be resolved from only white

nodes present in both of the proofs.

4.4 Correctness

In this section, we argue the correctness of our method and elucidate it with exam-

ples. First we discuss our mechanism for deciding whether or not a node in a resolution



102

����� �� �� ����� �� ��

Figure 4.4: Two resolution proofs without any shared nodes.
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Figure 4.5: Two resolution proofs with a shared node. An additional white node is
added to the proof, but two black nodes can then be removed. The gray nodes are
nodes that were black but can now be colored white.
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proof can be resolved from other nodes. This mechanism was discussed by Gershman

in [42] and was used to reduce the size of interpolants in [50].

Proposition 13 Let c be some clause and W be some set of clauses. Then c can be

resolved from W if W ∧ c̄ is unsatisfiable

Proof 13 The statement c can be resolved from W iff W → c is a tautology. Therefore,

if there is no assignment of the variables present in W and c such that every clause in

W evaluates to true and c evaluates to false, then c can be resolved from the clauses of

W . �

To perform Step 4 of our algorithm, we can simply repeatedly solve the SAT instance

W ∧ c̄, where W is the set of all the white clauses present in all of the resolution proofs

and c is a black clause whose color we wish to change. If W ∧ c̄ is unsatisfiable, a

resolution proof of unsatisfiability will be returned by the SAT solver. This proof can

then be modified by a procedure known as bubble transformation, described in [42], to

show how c can be resolved by the clauses of W . The bubble transformation can then

used to implement Step 5 of our algorithm.

Example 13 Figure 4.6 shows a portion of a resolution proof. Let clauses (a + b),

(a+ b+ c̄), and (a+ b+ c) be colored black and the remaining clauses be colored white.

In Step 3 of the algorithm we want to determine if clause (a+ b) can be colored white.

Clause (a+ b) can be resolved from clauses (a+ ē+ d̄), (a+ b+ d) and (a+ b+ d̄+ e) iff

(a+ ē+ d̄)(a+ b+ d)(a+ b+ d̄+ e)→ (a+ b) is a tautology. Solving the SAT instance:

(a+ ē+ d̄)(a+ b+d)(a+ b+ d̄+ e)(ā)(b̄) verifies that (a+ b) can indeed be resolved from

only white clauses.

The bubble transformation method described in [42] can then be used to show the

resolution steps needed to resolve (a + b) from the white nodes. These resolution steps

can then be used to restructure the proof as shown in Figure 4.7.
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Figure 4.6: A portion of a resolution proof�� � � � �� �� � � � �� �� � � � �� �� � � � �� �� � � � � � ���� � �� �� � � � ��

Figure 4.7: A portion of a resolution proof that has been restructured. Clause (a + b)
can be resolved from clauses (a+ ē+ d̄), (a+ b+ d) and (a+ b+ d̄+ e). Restructuring
the proof this way adds one clause and removes two others.

After the proofs are restructured, the interpolants are generated by calling the re-

cursive procedure described in Figure 3.9 on each of the empty clauses present in the

resolution proofs. We assert that these interpolants are valid in the sense that they still

fulfill the same properties as interpolants generated from the non-modified resolution

proofs.

Proposition 14 The interpolants generated from the restructured proofs are still valid.

Proof 14 As described in the previous section, the only root clauses that differ among

each resolution proof are the “on” and “off” assertion clauses. Therefore all the white

root clauses are shared between the proofs. Step 5 of our algorithm only restructures the

proof such that a previously black node is resolved from only white clauses. Therefore

any white node present in the restructured proof is resolved from only root clauses that

are common between each of the original proofs. Because the set of root clauses remains

the same between each proof, the clauses present in A and B remain the same. Also,
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for each resolution proof, the common variables of A and B remain the same; therefore

the interpolants generated in Step 6 are valid.

�

4.5 Implementation and Results

We implemented steps 1 through 4 of our method in Berkeley ABC [32]. To test

the potential savings of our algorithm, we performed trials on benchmarks in the IWLS

benchmark collection [39]. Trials were run on a AMD PhenomTM II X6 1090T machine

with 3GB of RAM running 32-bit Linux. Only one core was utilized. In Table I, we

present numbers on how many of the black nodes can be re-expressed in terms of only

white nodes present in the proofs. These numbers allow us to gauge the potential

for restructuring resolution proofs. The column “Original White” lists the number of

white nodes originally present in the proofs. If a white node has an identical set of

literals as another white node, these nodes are merged and counted as only one white

node. The column “Original Black” lists the number of black nodes originally present

in the proofs. The column “Checked” lists the number of black nodes that we checked

to see if they could be considered white. The column “Fixable” lists the number of

nodes that could be colored white out of the number of black nodes that we checked.

The column “Percent Fixable” lists the percentage of the ratios of the “Fixable” to

“Checked” columns. The “Time” column lists the time spent checking to see if black

nodes could be colored white.

The time spent on each benchmark was limited to 200 seconds. In this experiment,

all white nodes present in the proofs were considered when checking to see if a black node

could be colored white (Step 4 of the algorithm). The more white nodes considered, the

larger the SAT instance that needs to be solved in Step 4. Reducing this number to be

a subset of the white nodes present in the proof will reduce the runtime; however this
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may also reduce the number of black nodes that can be colored white. This is a tradeoff

that we plan to investigate in the future.

For most of the benchmarks, the percentage of black nodes that could be colored

white was around 20–30%. The table3 and table5 benchmarks were two exceptions to

this trend. Since trials on both of these benchmarks reached the timeout, only a subset

of nodes were checked. The percentage was calculated as the number of fixable nodes

divided by the number of nodes that were checked. It is likely that if a longer timeout

had been used, then these percentages would be similar to the other benchmarks.

Perhaps the most salient result is that our algorithm scales well with the number of

nodes in the resolution proof. Note that, unlike previous implementations, we are not

applying interpolation to individual functions; rather we are applying it to each circuit

in its entirety. For cases where we reach the computational limit, runtimes could be

improved by applying the algorithm to smaller windows of logic within the circuit.

Number of Black Nodes That Can Be Colored White

Benchmark Original Original Checked Fixable Percent Time (s)
White Black Fixable

dk15 1743 581 581 175 30.12 0.04
5xp1 3203 1636 1636 275 16.81 0.18

sse 3848 2650 2650 563 21.25 0.28
ex6 4055 2731 2731 588 21.53 0.29

s641 6002 5148 5148 2269 44.08 0.46
s510 7851 5092 5092 1155 22.68 0.74
s832 15359 14826 14826 3358 22.65 3.67

planet 40516 43387 43387 10640 24.52 26.39
styr 44079 54128 54128 16578 30.63 33.88
s953 49642 46239 46239 12252 26.50 31.99
bcd 96385 109167 103514 34349 33.18 200.00

table5 137607 288461 69070 27848 40.32 200.00
table3 177410 283066 47279 24454 51.72 200.00

Table 4.1: Results of Steps 1 through 4 of our algorithm applied to a set of benchmarks.
The timeout was set to 200 seconds.
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4.6 Discussion

Given a resolution proof, determining whether or not a given node in the proof

can be resolved from a set of other nodes is an easy task. Given an AIG, determining

whether a given node in the graph can be expressed in terms of other nodes is difficult

task. Accordingly, algorithms like AIG Rewriting and SAT-Sweeping can only make

incremental improvements to small windows within an AIG [46, 47]. In contrast, the

properties of resolution proofs allow for large transformations of the initial structure.

The results presented in this chapter suggest that there is significant potential for clause

sharing among resolution proofs for multiple target functions. Given an abundance of

shared clauses, we expect interpolants with significant structural similarities. Even if

these structures lead to logic that suboptimal, it will be much less sparse than traditional

AIG representations; accordingly, such logic might be a promising starting point for the

application of traditional logic synthesis.



Chapter 5

Using Cubes of Non-state

Variables With Property

Directed Reachability

5.1 Introduction

In the preceding chapters the topics mainly focused on problems in logic synthe-

sis. However, in this final chapter we diverge slightly to consider a problem in formal

verification. Specifically, we discuss a new symbolic model checking algorithm. Model

checking refers the problem of automatically verifying that mathematical model of some

real-world system exhibits a certain property. A system is generally modeled as a state

transition system (a Kripke structure [51])1 . A simple example is shown in Figure 5.1.

This transition system models a simple game of racquetball between two players.

The game can start with either player one (P1) or player two (P2) serving. These initial

states are indicated by the arrows entering the states with no origin states. The player

who is serving is allowed to have one fault. If more than one fault occurs then the other

1 Probabilistic model checking focuses on similar structures except transitions have probabilistic
values and transitions can take either continuous our discrete amounts of time.
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player begins serving. If the player has a successful serve (one or fewer faults) then the

two players begin to volley. If a player makes an error (misses the return), then the

opposite player begins serving.

This is a rather simple model for the game. There are no states to model the players

score, and thus there are no terminating states. However, this simple model is useful

for demonstrating some properties that might be useful to verify about the game. For

example, one might want to verify that no player is allowed to return to the serve state

directly after the fault state. Another important property one could verify is that no

player is allowed to return the ball twice in a row.

These properties are expressed using some type of temporal logic such as LTL,

CTL, or CTL* [52, 53, 54]. The properties expressed by these logics are generally

categorized as either safety or liveness properties. Informally, a safety property asserts

that nothing bad happens while a liveness property asserts that something good will

eventually happen. Most symbolic model checking algorithms compute sets of forward

and backward reachable states. These algorithms can be used to directly verify safety

properties, and they can also be modified to check liveness properties [55].

This model only contains six states, and can easily be verified by explicitly walking

the state graph. However, most real world systems may contain an intractable number of

states. In order to verify properties of these systems, the state transitions are represented

symbolically. Using symbolic techniques, properties have been verified on systems with

over 10120 states [56]. Methods for symbolic model checking originally focused on the use

of Binary Decision Diagrams (BDDs) [57, 58, 59]. These algorithms iteratively compute

the image of a current set of states until a fixed point is reached, or the property is

violated. While BDDs can be used to very quickly verify certain properties, often times

the size of the BDD can explode during image computation. In the following subsections,

we describe the most popular SAT-Based techniques for model checking.
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P1 Serve

P1 Fault

P2 Return P1 Return

P2 Fault

P2 Serve

Figure 5.1: A state transition graph of a two player game of racquetball.

5.2 Background and Definitions

5.2.1 Definitions and Notation

We use magnitude symbols (|c|) to indicate the number of literals in a cube. A

satisfiable assignment of a Boolean formula can be represented as a cube, and we will

sometimes use the words cube and assignment interchangeably. We use the notation

c |= F if cube c is a satisfying assignment to F 2 .

A finite state transition system or finite state machine (FSM) M = {Z,X, I, T}

consists of a set of Boolean primary input variables Z, a set of Boolean state variables

X, a set of initial states I ⊆ {0, 1}X , and a transition relation T ⊆ {0, 1}X×{0, 1}X . The

valuations of variables X (s ∈ {0, 1}X) represent possible states of the FSM; therefore

we sometimes refer to assignments of X as states. We use an apostrophe (x′) to indicate

state variables in the next state of a transition relation. When we apply an apostrophe

to a set (X ′) we are indicating that we are referring to the next state variables of the

set. A set of states that can be reached in i transitions from the initial states are said

to be among the states reachable in the ith time frame of the FSM. A superscript i

2 Note that c may be a partial assignment of the variables of F . In this case, F ∧ c is satisfiable for
some assignment of the variables of F not in c.
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(xi) indicates that we are referring to state variable x in the ith time frame. When we

apply a super script i to a set (Xi) we are indicating that we are referring to the state

variables of the set X in the ith time frame.

An FSM’s transition relation can be encoded as a circuit structure, which can

then be translated into a CNF formula. This transformation can be done in lin-

ear time using the Teistin transformation [3]. After the circuit is transformed into

a CNF formula, the formula contains current state variables (x0, x1, . . . , xn−1), next

state variables (x′0, x
′
1, . . . , x

′
n−1), and variables representing the logic for the gates in T

(g0, g1 . . . , gm−1). We will refer to g0, g1 . . . , gm−1 as intermediate variables or gate vari-

ables. This formula is satisfied only for assignments x, x′ ∈ {0, 1}X such that (x, x′) ∈ T .

We use the notation T (X,X ′) to represent the set of clauses in this formula in terms of

variables X and X ′. Likewise, the set of initial states can be encoded as a CNF formula

that is satisfied only for assignments s ∈ {0, 1}X such that s ∈ I. We use the notation

I(X) to represent the set of clauses in this formula in terms of variables X. We will

refer to a cube of only state variables as a state cube and a cube of gate variables (and

possibly state variables as well) as a gate cube.

5.2.2 Bounded Model Checking

Bounded model checking (BMC) verifies properties up to a finite amount of tran-

sitions from an initial state. For example, given the state transition graph shown in

Figure 5.1, bounded model checking could be used to verify that it is impossible to

reach the P2 Fault state within two transitions of the P1 Serve state. These properties

can be verified by converting the transition system’s transition relation into a SAT in-

stance and then unrolling it based on the number of transitions that the property should

be verified over [60]. An instance of bounded model checking for FSM M = {Z,X, I, T}

is shown in Formula 5.1.

I(X0) ∧ [
∧n

t=1 T (Xt−1, Xt)] ∧ [
∨n

t=0 ¬P (Xt)] (5.1)
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The clauses of P (X) are satisfied only for states that exhibit some sort of property.

The SAT instance in Formula 5.1 is unsatisfiable if all of the states reachable within n

transitions from I satisfy the property P . If it is possible to violate the property within

n transitions, then Formula 5.1 is satisfiable. A satisfying assignment can be deciphered

to determine a sequence of states that is sufficient to violate the property P .

Bounded model checking is arguably the most “straightforward” approach to ver-

ifying P , however it is not complete in the sense that P can only be verified up to

n transitions. In order to verify that the property holds for all states, the number of

transitions n must be at least as large as the longest shortest path from an initial state

to an arbitrary state. A higher upper bound for n is the diameter of the state space of

M3 . This number is in the worst case exponential in the size of X, and is not usually

known for most “real world” systems. This bound on the number of transitions can be

improved for some models through the use of induction.

5.2.3 Induction

Mathematical induction is a common and powerful method used for mathematical

proofs. Induction can be used in conjunction with a SAT solver to prove safety properties

for transition systems. Unlike bounded model checking, induction can be used to prove

properties hold through an infinite number of transitions without knowing the diameter

of the transition system’s state space.

Induction (sometimes called k-induction) is performed using a SAT solver through

a number of subtly different algorithms [61]. These techniques unroll a circuit across

multiple time frames and prove that a property holds over the longest loop-free path.

3 The diameter of a graph is the “longest shortest path” between any two verticies. In the case of
a state transition graph, the diameter is the longest shortest path between any two states.
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Formula 5.2 is unsatisfiable if there is no loop free path within n transitions of FSM

M = {Z,X, I, T}.

Loopfree(X,n) = [
∧n

t=1 T (Xt−1, Xt)] ∧ [
∧

i<j≤n(Xi 6= Xj)] (5.2)

The property P holds for M if there is no loop free path from an initial state

that violates the property. This condition can be determined by increasing n until

Formula 5.3 is unsatisfiable. Alternatively, the property P also holds if there is no loop

free path longer than n states that reaches a state which violates the property. This

condition can be determined by increasing n until Formula 5.4 is unsatisfiable.

I(X0) ∧ Loopfree(X,n) (5.3)

Loopfree(X,n) ∧ ¬P (Xn) (5.4)

The basic induction algorithm works by iteratively solving Formulas 5.1, 5.3, and 5.4

while monotonically increasing n. If at any point Formula 5.1 becomes satisfiable then

a counter example violating the property is extracted. However, if either Formula 5.3

or Formula 5.4 become unsatisfiable, then the property P holds from M .

The longest loop free path may be much longer than the diameter of the state

space. Because the upper bound necessary to prove a property using BMC is indeed

the diameter of the state transition graph, using this method of induction seems to be

computational worse than just performing BMC. However, it is difficult to know what

the diameter of the state space is for many transition systems, and the inductive method

described above provides a means of indicating that indeed a large enough value of n

has been chosen.
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Furthermore, Formula 5.3 can be modified to verify that no initial state is visited

more than once during the path4 . To assert this condition, n can be increased until

Formula 5.5 becomes a tautology5 . Similarly, Formula 5.4 can be adjusted to assert

that if the property holds for every state along the path, then it holds in the next state.

To verify this property, n can be increased until Formula 5.6 becomes a tautology.

¬I(X0)← [
∧n

i=1 ¬I(Xi)] ∧ Loopfree(X,n) (5.5)

Loopfree(X,n) ∧ [
∧n−1

i=0 P (Xi)]→ P (Xn) (5.6)

These modifications can improve the depth bounds for proving properties for some

models, but the upper bound is still the longest loop free path in the model’s state

transition graph. An improvement that reduces this bound to the diameter of the state

space is presented in [61], but this method requires quantifier elimination or the use of

a QBF solver [62, 63].

5.2.4 Interpolation Based Model Checking

In the two preceding chapters we discussed how Craig Interpolation can be leveraged

to generate functional dependencies. In 2003, McMillan proposed a SAT-Based method

for model checking based on Craig’s Interpolation Theorem [1]. In this algorithm,

interpolants are used to compute an over approximation of the set of reachable states.

Consider again the BMC SAT instance given by Formula 5.1. This formula can be

split into two separate formulas referred to as a prefix and a suffix. The prefix of some

FSM M = {Z,X, I, T}, shown in Formula 5.7, includes the constraints starting at the

initial states and up to some transition i. The suffix, shown in Formula 5.8, includes

the constraints starting at some transition i and up to some transition j. The suffix

4 This optimization is useless for models that have only one initial state.
5 The negation of a formula is unsatisfiable if and only if it is a tautology.
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also includes the constraints asserting that the property is not satisfied for some state

si such that i ≤ j.

Pref(I, T, i) = (I(X0) ∧ [
∧i

t=1 T (Xt−1, Xt)] (5.7)

Suff(T, P, i, j) = [
∧j−1

t=i T (Xt, Xt+1)] ∧ [
∨j

t=i ¬P (Xt)] (5.8)

If for some i < j ≤ n Formula 5.9 is satisfiable, then a counter example can be ex-

tracted to show how P is violated. However, if Formula 5.9 is unsatisfiable, then an in-

terpolant R can be created from the proof of unsatisfiability such that Pref(I, T, i)→ R

andR→ ¬Suff(T, P, i, j). The only variables common to Pref(I, T, i) and Suff(T, P, i, j)

are those representing the state variables Xi. Therefore R represents an over approxi-

mation of the states reachable in i transitions of I(X) that are disjoint from states that

may violate the property in j − i transitions.

Pref(I, T, i) ∧ Suff(T, P, i, j) (5.9)

Given this interpolant R, we can again check the satisfiability of Formula 5.9 with

the exception that the set of initial states I is replaced by this Interpolant R. If this

formula is satisfiable then the counter example can be verified by solving Formula 5.1. It

is possible that the counter example is spurious because of the over approximation of the

reachable states given by the interpolant R. However if the formula is unsatisfiable, then

another interpolant R′ can be extracted. If R′ → R is a tautology, then the property

P must hold because no additional states can be reached by transitioning from R, and

every state in R satisfies the property P . This algorithm is described by psuedocode in

Figure 5.2.

Interpolation can solve many instances faster than induction because the maximum

number of transitions needed to prove a property is bounded by the diameter of the state
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FiniteRun(I, T , P , k > 0):

*I, T , and P are formulas
*I is the set of constraints representing the initial states
*T is the set of constraints representing the transition relation
*P is the set of constraints representing the property states
**********************************************************
if I(X) ∧ P (X) is satisfiable then

return true
end if
R := I
while true do
A := Pref(R, T, k)
B := Suff(T, P, 0, k)
if A ∧B is satisfiable then

if R ≡ I then
return false

else
return maybe false

end if
else

* (A ∧B is unsatisfiable)
R′ := interpolant(A,B)
if R′ → R then

return true
end if
R := R ∨R′

end if
end while

Figure 5.2: Pseudocode for the interpolation-based model checking algorithm given by
McMillan [1]. Lines beginning with an asterisk (*) indicate comments. The function
“interpolant(A,B)” returns an interpolant R′ such that A → R′ and R′ → ¬B. The
algorithm returns true if the property holds, false if the property fails, and maybe
false if the property might fail (the counter example might be spurious).



117

space. Furthermore, if the over approximation is a good in the sense that it accurately

describes a set of reachable states, it is possible to prove some properties very quickly.

However, interpolation has the drawback that if a counter example is discovered, it may

be spurious. To block these spurious counter examples, interpolants may need to be

generated from large unrollings of the circuit.

5.2.5 Property Directed Reachability

In 2011, Bradley proposed “Incremental Construction of Inductive Clauses for In-

dubitable Correctness” (IC3), a new SAT-Based method for symbolic model checking

that does not require solving large unrollings, or generating messy abstractions of the

reachable state space [64]. The technique works by iteratively solving a SAT-instance

representing a single time frame of the underlying circuit. States that violate the prop-

erty are recorded in the form of cubes of state variables. These cubes then must be

blocked recursively by previous time frames. The process halts under two conditions;

either a set of cubes extending from the initial state are found to reach a cube that

violates the property, or the set of cubes blocked in one frame are shown to be blocked

inductively in every future frame (proving the property to be invariant).

The IC3 algorithm works well when it is able to produce very small cubes (cover-

ing many states). Others have proposed an improved implementation of the algorithm

referred to as “Property Directed Reachability” (PDR) [65]. One of the main improve-

ments in PDR is the use of ternary valued simulation to reduce the size of state cubes.

Using ternary valued simulation allows cubes to be shortened quickly without putting

an unnecessary burden on the solver.

PDR embraces the benefits of both k-induction and interpolation-based model check-

ing. The algorithm doesn’t need to solve large unrollings, but instead solves different

time frames in isolation from each other. Furthermore, the maximum number of time

frames used for proving a property is bounded by the diameter of the model’s state
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space. Often times properties can be proven with far fewer transitions than the state

space’s diameter.

From this point forward we will abuse some of the previously defined notation for

the sake of readability. Specifically, we will stop explicitly listing the support variables

of a set of constraints. We simply use I to implicitly represent the set of clauses I(X)

and T to represent the set of clauses T (X,X ′). Similarly we use the notation P to

represent the property constraints P (X ′) for the next state transition. This notation

is more convenient because the PDR algorithm only solves instances representing one

transition at a time.

The algorithm operates on sets of clauses, denoted by Fi, called frames. The clauses

in frame Fi symbolically encode an over approximation of the states that are reachable

in the ith time frame of an FSM. In other words, if state s can be reached within i steps

of the initial states, then Fi ∧ s is satisfiable. The collection of these frames is referred

to as the trace. The trace maintains the following properties.

1. The 0th frame only contains the initial states (F0 = I)

2. Every assignment that satisfies the current frame also satisfies the next frame

(Fi → Fi+1)

3. Every state that can be reached in one transition from a state in the current frame,

satisfies the next frame (Fi ∧ T → Fi+1)

4. The property is satisfied in every frame except the last one (Fi → P for every Fi

except Fn)

At the start of the algorithm, there exists just one frame F0 = I. Each major

iteration of the algorithm starts by checking to see if the property can be violated in

one transition from the states in the highest frame. This is done by solving the SAT

instance: Fn ∧ T ∧ P̄ . If this query is satisfiable, a satisfying state cube s |= Fn ∧ T ∧ P̄

is extracted. The algorithm then proceeds to see if this cube can be blocked by the
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previous frame. This is done by solving the SAT instance: Fn−1∧T ∧s′. If this query is

satisfiable, a satisfying state cube is extracted from this SAT instance. The algorithm

continues to try to block cubes in each previous frame. If, eventually, a cube cannot be

blocked by the initial frame, F0, a counter example is provided.

Whenever a cube is successfully blocked in some frame Fi, a clause blocking this

cube is added to every frame Fk where k ≤ i. This maintains property 2 of the trace.

A clever improvement to this algorithm, given in [64], is to a priori add s̄ to the query:

Fn−1 ∧ s̄ ∧ T ∧ s′. This improves the chances of blocking s in Fi and is sound because

F0 → s̄ and Fi → Fi+1.

Once the query: Fn ∧ T ∧ P̄ is unsatisfiable, a new frame Fn+1 is created and the

propagation phase begins. During this part of the algorithm, cubes learned in previous

frames are attempted to be blocked in later frames. This is accomplished by repeatedly

solving Fi ∧ T ∧ c̄′ for each clause c ∈ Fi. If this formula is unsatisfiable, than c can be

added to frame Fi+1. If at any point two frames become identical (contain the same

clauses), then an invariant is proved. Because Fi ≡ Fi+1 and Fi → Fi+1, any clause

present in Fi can be added to all future frames, therefore the property will hold in all

future frames because Fi → P .

5.2.6 Property Directed Reachability Beyond State Variables

In this chapter, we extend the framework of PDR to allow for cubes containing

functions of state variables. This idea is illustrated with an example in Figure 5.3.

Figure 5.3 shows a truth table for an incompletely specified Boolean function for next

state variable x′4 and a circuit level implementation of x′4. Assume that x4 must be

blocked in the next frame. There are four cubes of state variables in the current frame

that need to be blocked to make this so: x̄0∧x̄1∧x̄2∧x̄3, x̄0∧x̄1∧x2∧x3, x̄0∧x1∧x2∧x̄3,

and x0 ∧ x1 ∧ x̄2 ∧ x̄3. In this example, none of these cubes can be simplified to smaller

cubes. However, there are only two cubes in terms of variables g0 and g1 that must be

blocked to prevent the justification of x4 in the next frame: ḡ0 ∧ g1 and g0 ∧ ḡ1. In this
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example, only half as many cubes in terms of intermediate logic variables need to be

added to the current frame in order to block x′4.
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x0, x1, x2, x3 g0, g1 x′4
0 0 0 0 0 1 1
0 0 1 1 0 1 1
0 1 1 0 1 0 1
1 1 0 0 0 1 1

Figure 5.3: An example netlist where fewer cubes in terms of intermediate variables
need to be blocked than cubes in terms of state variables

In this work, we study the affect of extending PDR to allow cubes of intermediate

logic variables. We then present the results of our implementation on the HWMCC ’11

benchmarks [66].

5.3 Extending Cubes To Gate Variables

5.3.1 General Concept

In the previous implementations of the algorithm, states are symbolically encoded

as cubes of state variables [65, 64, 67]. However, as Figure 5.3 demonstrates, there may

be a significant advantage to allowing cubes in terms of intermediate variables. This
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extension does not change the conceptual flow of the algorithm greatly, but some care

does need to be taken when choosing which intermediate variables to allow.

Figure 5.4 shows the transition relation that is used in the standard implementation

of PDR. The logic in the transition relation can be partitioned into two types of logic:

logic that only contains state variables in its transitive fanin (shown in grey) and logic

that contains both state variables and primary input variables in its transitive fanin

(shown in white). Because the grey logic only contains state variables in its transitive

fanin, it is unaffected by valuations of the primary input variables. Consider the gates

that are on the boundary between the grey and white logic. We use the set G =

{g0, g1, . . . , gk−1} to denote these gate variables. Note that some state variables may

fanout directly into “white logic” shown in Figure 5.4. In this case, we consider these

state variables to be among the set of variables G.
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Figure 5.4: A transition relation that is used in a frame for the standard PDR imple-
mentation

Proposition 15 Let S be the set of all cubes of state variables that can reach cube m

in one transition from frame i. Formally: S = {s ∈ {0, 1}X : s |= Fi ∧ T ∧m′}. Let

W be the set of all cubes of the variables in G that can reach m in one transition from
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frame i. Formally: W = {w ∈ {0, 1}G : w |= Fi ∧ T ∧m′}. Then cube m can be blocked

in Frame i+ 1 if and only if all cubes of S are blocked in frame i or all cubes of W are

blocked in frame i. Formally: (m′ 6|= (
∧

s∈S s̄) ∧ Fi ∧ T )↔ (m′ 6|= (
∧

w∈W w̄) ∧ Fi ∧ T ).

Proof 15 Note that for every state variable x ∈ X shown in Figure 5.4, every path from

x to any x′ ∈ X ′ must pass through at least one gate variable in G. This means that there

must be a surjection between the cubes in S and the cubes in W . i.e., every assignment

in S maps to some assignment in W and every assignment in W maps to some subset

of assignments in S. Since this surjection exists every assignment a |= Fi∧T ∧m′ must

satisfy at least one cube in W and S. Likewise, every cube in W and S must satisfy

every assignment a |= Fi ∧ T ∧m′.

�

Proposition 15 allows us to pick a restricted set of gate variables to be used as state

cubes. However, in order to block cubes of state variables, we must modify the transition

relation shown in Figure 5.4 to be of the form shown in Figure 5.5. The transition

relation in Figure 5.5 is a sort of half unrolling of the standard transition relation. The

current state variables (x0, x1, . . . , xn−1) are replaced by outputs of the gate variables G

in the current frame (g0, g1, . . . , gk−1). Also, the next state variables (x′0, x
′
1, . . . , x

′
n−1)

extend to the outputs of the gate variables G in the next frame (g′0, g
′
1, . . . , g

′
k−1).

In the standard transition relation, cubes of variables of X are always extracted

from the satisfying assignment. However, in our implementation we allow for cubes of

variables of G. in order to block these cubes in the next time frame, the transition

relation must be able to justify cubes of variables G′. As Figure 5.5 suggests, this does

not increase the amount of logic in the transition relation, it only changes the placement

of the logic.
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Figure 5.5: A transition relation that is used for blocking cubes of gate variables

5.3.2 Details for Ternary Valued Simulation

The use of ternary valued simulation to reduce state cubes increases the performance

of the algorithm tremendously [65]. The reduction of these state cubes is accomplished

by first finding a satisfying assignment a ∈ {0, 1}X∪Z to the query Fi ∧ T ∧m′. The

transition relation shown in Figure 5.4 is then simulated with the values of a. A cube

s of state variables in the transitive fanin of the variables of m′ is chosen from this

assignment. Then, one by one, the value of each state variable x ∈ s is replaced by

the unknown value ⊥. Each time the value is replaced, the transition relation is re-

simulated. If the values of m′ remain the same through this simulation of the transition

relation, then x is removed from the cube s, and the value of x remains at ⊥ in the

transition relation. If some value in m′ changes, then x is restored to its original value,

and x remains in s.

Ternary valued simulation can also be applied to cubes containing gate variables,

but some care must be taken. The order in which the cube variables are set to ⊥ can

greatly affect the number of variables removed from the cube. This is illustrated in
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Figure 5.6. Consider the cube g0 ∧ g1 ∧ g2 which must be blocked in order to prevent

state m′0 ∧ m′1 ∧ m̄2
′ from being reached. If g0 is set to ⊥, then the ⊥ value reaches

variables m′0 and m′2, so g0 remains in the cube. Likewise if g1 is set to ⊥, then the ⊥

value reaches variables m′1 and m′2. Gate g2 also exhibits the same problem, a ⊥ value

on g2 reaches variable in m′2. Using this simulation order, one would conclude that all

of the variables g0, g1 and g2 must be kept in the cube in order to block m′0 ∧m′1 ∧ m̄2
′.

However, this is clearly not the case. The values of g0 and g1 are enough to resolve

the value of g2. As long as the value of a gate variable is uniquely determined by its

inputs, then this variable can be removed from the cube. To solve this problem we

propose the following ternary simulation algorithm.

1. Sort the variables in s in ascending order by the variable’s logic level in the tran-

sition relation and set i = 0.

2. If i = |s|, then return s. Otherwise, for the ith variable vi in s do the following:

If vi is a state variable, proceed to step 4. Otherwise, proceed to step 3.

3. If the value of vi can be determined to be 1 or 0 (not ⊥) by its fanins, then remove

vi from s and go back to step 2. Otherwise proceed to step 4.

4. Set vi to ⊥ and simulate the transition relation. If no variable in m′ evaluates

to ⊥, then remove vi from s and proceed to step 2. Otherwise, set vi back to

its original value, re-simulate the transition relation, increment i, and proceed to

step 2.

Restricting the cubes to only contain state variables prevents the problem illustrated

in Figure 5.6 because every variable is at logic level 0 in the transition relation. Therefore

the value of one variable does not have any influence on the value of another. By

enumerating the cube variables in order by logic level, we can eliminate variables whose

value is clearly determined by previously simulated variables.
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Figure 5.6: An example used to illustrate subtleties when using ternary valued simula-
tion on cubes of gate variables

5.4 Experiment and Results

5.4.1 Experiment Setup

To test our approach, we modified the version of PDR implemented in Berkeley

ABC [32, 65]. We changed the ternary valued simulation portion of the implementation

in the following way:

• The ternary valued simulation algorithm is run twice, once allowing cubes of gate

variables in the cone-of-influence (COI) of the next state variables and once only

allowing cubes of state variables in the COI of the next state variables.

• In the first pass, the cube containing gate variables is reduced. The order in which

cube variables are set to ⊥ is determined by the logic level of the gate variable

(as discussed in Section 5.3.2) and by a priority assigned to each variable. A

variables priority increases if it is unable to be removed from the cube; otherwise,

it decreases. Variables with higher priority then have a greater chance of being

removed in later rounds of ternary valued simulation.

• In the second pass, a cube containing only state variables is reduced. In this case,

the order in which cube variables are set to ⊥ is determined by a fixed ordering.
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• At the end of both passes, whichever cube is smaller (containing fewer literals) is

returned.

To compare the performance of allowing gate cubes, rather than just state cubes,

we run this version of the algorithm (which we refer to as the gate cube version) on

the HWMCC ’11 benchmarks [66]. We compare the results against a second implemen-

tation, which is the same, except only state cubes are allowed in both passes of the

ternary valued simulation. We refer to this version of the implementation as the state

cube version. This way both implementations have two chances to reduce cubes during

ternary valued simulation, but only one is allowed to return cubes of gate variables. The

runtime differences between the two versions should then be more heavily influenced by

types of cubes, rather than by the priority scheme that we introduced. The transition

relation is converted into a CNF formula using the standard Tseitin transformation [3]

(as opposed to a transformation using variable elimination like in [65, 68]). This was

done for the sake of an easier implementation. There are no conceptual problems with

implementing our solution with other CNF transformations.

All of the benchmarks were run on a 4-core Intel R© CoreTM i7-2600 CPU @ 3.40GHz

with 8GB of RAM. Only one core was utilized for each benchmark.

5.4.2 Results

The results of our experiment are displayed in Tables I and II. Table I lists bench-

marks where the property was proved not to hold (satisfiable benchmarks) and Table II

lists benchmarks where the property does hold (unsatisfiable benchmarks). We omitted

benchmarks that took less than 10 seconds for both of the methods to solve. We set a

timeout of 2 hours (7200 seconds) for all of the benchmarks, and we did not include re-

sults where both methods timed out6 . The “Benchmark” column lists the name of the

benchmarks. The “Time States” column lists how long it took to solve the benchmark

6 We let benchmark cmudme1 run slightly longer. In this case, the state cube version had still not
completed after 3 hours.
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with the state cube version. The “Frames States” column lists how many frames were

needed to solve the benchmark with the state cube version. Likewise, the “Time Gates”

column lists the time it took to solve the benchmark with the gate cube version, and

the “Frames Gates” column lists how many frames were needed to solve the benchmark

with the gate cube version. The column “Time Ratio” lists the ratio between the “Time

Gates” and “Time States” columns; a geometric average of these values is provided at

the bottom of the tables. Benchmarks that timed out were not included in this average.

In Table II, The “Inv. States” and “Inv. Gates” columns list the number of clauses in

the invariant for the state cube and gate cube versions, respectively.

The results demonstrate that for satisfiable benchmarks, allowing cubes of gate

variables seems to have a generally positive affect on the performance of the algorithm.

The best time ratio for the gate cube approach is .31 (which corresponds to a 3.2X

runtime improvement for the benchmark bc57sensorsp3). The average time ratio for

satisfiable benchmarks is .82 (which corresponds to an average speedup of 1.21X). For

the unsatisfiable benchmarks, the performance is not as reliable. The best performance

increase was seen by the benchmark 6s34; which has a time ratio of .26 (a 3.85X

speedup). For some of the benchmarks, the performance was close to the same (e.g.,

bjrb07amba3andenv and nusmvguidancep7). This likely indicates that both versions

of the algorithm frequently chose cubes from the second pass of ternary simulation.

Other benchmarks had large performance differences between the gate cube and state

cube versions of the algorithm. We initially hypothesized that the structure of the

benchmarks circuits would benefit one version of the algorithm over the other. For

example, perhaps benchmarks that are more narrow (many logic levels with very few

gates in each level) might have better performance for the gate cube implementation.

However, this does not seem to be the case. Many of the benchmarks are the same

underlying circuit, but prove different properties. Yet, different properties for the same

circuit can be proved significantly faster using different versions of the algorithm. This

is demonstrated with the bc57sensor and bjrb07amba6andenv benchmarks.
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Satisfiable Benchmarks

Benchmark Time Frames Time Frames Time
States (s) States Gates (s) Gates Ratio

abp4p2ff 12.34 17 6.57 15 0.53
abp4ptimoneg 22.46 18 19.99 17 0.89
bc57sensorsp0 353.59 59 248.85 41 0.70
bc57sensorsp0neg 339.25 62 353.39 55 1.04
bc57sensorsp1 217.01 59 550.17 73 2.53
bc57sensorsp1neg 595.57 63 428.22 47 0.72
bc57sensorsp2 468.53 69 274.03 63 0.59
bc57sensorsp2neg 460.64 79 586.85 71 1.27
bc57sensorsp3 731.42 67 227.82 58 0.31
intel017 — — 4878.43 232 —
intel046 2274.65 68 2191.27 70 0.96
intel045 2101.11 70 1810.71 70 0.86
intel047 1371.72 62 2643.31 69 1.93
irstdme4 68.67 31 21.67 26 0.32
irstdme5 19.46 26 6.46 26 0.33
irstdme6 31.84 29 17.94 28 0.56
nusmvtcasp5n 99.66 24 78.58 24 0.79
nusmvtcastp5 77.46 22 67.15 23 0.87
prodcellp0neg 77.71 60 105.54 78 1.36
prodcellp1 155.62 72 141.58 72 0.90
prodcellp1neg 96.87 64 145.41 63 1.50
prodcellp2 181.08 60 141.76 81 0.78
prodcellp2neg 143.65 82 114.42 62 0.80
prodcellp3 117.70 58 102.05 56 0.87
prodcellp4 146.54 66 143.28 75 0.98
prodcellp4neg 162.73 80 526.80 62 3.23

Geometric Average — — — — .82

Table 5.1: Results of running the state cube and gate cube implementations on satisfi-
able benchmarks
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5.4.3 Other Heuristics We Tried

Here we note a few other things we tried to improve the algorithm’s runtime.

• We introduced a probabilistic scheme for choosing gate variables. The idea was

rather than just considering gates on the boundary between the grey and white

blocks in Figure 5.4, we would probabilistically consider all gates in the grey block.

This generally yielded better results for benchmarks that the gate cube version

performed poorly on, but it also yielded worse results for benchmarks that the

gate cube version performed well on.

• We introduced a kind of simulated annealing [69] style approach, where the prob-

ability scheme mentioned above was used, but the probability decreased geomet-

rically until a new frame was added to the trace. The intuition behind this idea

was that if the algorithm was struggling to prove that the property held up to a

certain frame using cubes of gate variables, it would slowly start considering cubes

of only state variables. The performance of this scheme was similar to that of the

previously mentioned flat probabilistic scheme.

• We tried limiting the height of the logic that was added to cubes. For instance, we

would only include gates in cubes that were of logic level n or lower. This again

yielded similar results as the two previously mentioned heuristics.

5.5 Discussion

The results demonstrate that allowing cubes of gate variables can cause very drastic

performance changes between the benchmarks. In general we find that the gate cube

version of PDR works better for satisfiable benchmarks, but the trend is not as clear

for unsatisfiable benchmarks. The variation in the results indicates that perhaps there

exists a better heuristic for choosing what logic to include in a certain cube. Regardless,
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the results show that the gate cube version of the algorithm does perform much better

in many of the benchmarks.

One disadvantage to using gate cubes is that it can greatly increase the size of the

CNF formula being solved in certain frames. If cubes are expressed only in terms of

state variables, then when solving the query: Fi ∧ T ∧ m′, only the logic of T in the

transitive fanin of the variables of m′ needs to be included in the SAT instance. The

standard implementation periodically cleans up each SAT instance to only include the

relevant logic for the current query [65]. However, when cubes of gate variables are

included in each frame Fi, then the logic corresponding to these gate variables must be

included in every query involving Fi (regardless of whether or not the gate variables in

a cube are in the transitive fanin of m′). This theoretically could make the gate cube

version slower for most of the benchmarks, but empirically this did not seem to have

much of a negative effect.
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Unsatisfiable Benchmarks
Benchmark Time Frames Inv. States Time Frames Inv. Gates Time Ratio

States (s) States Gates (s) Gates
6s2 46.67 13 601 46.35 13 601 0.99
6s34 3984.89 77 2284 1053.82 89 1057 0.26
6s6 19.19 18 1709 21.59 21 1796 1.13
bj08amba2g3f3 1.12 10 44 14.37 10 48 12.83
bjrb07amba10andenv 2081.17 11 204 2024.49 9 246 0.97
bjrb07amba3andenv 10.56 9 103 10.07 8 73 0.95
bjrb07amba4andenv 54.87 7 78 31.60 7 66 0.58
bjrb07amba5andenv 93.45 8 130 79.50 8 109 0.85
bjrb07amba6andenv 277.88 8 160 438.81 8 192 1.58
bjrb07amba7andenv 176.79 11 148 160.12 9 159 0.91
bjrb07amba9andenv 974.83 9 253 1013.88 14 185 1.04
bob05 69.06 18 407 101.86 21 505 1.47
bobcohdoptdcd4 84.73 17 1417 51.61 13 1144 0.61
bobsmi2c 48.03 50 1121 193.33 187 1183 4.03
cmudme1 — — — 7342.07 90 7148 —
cmudme2 4255.06 97 6197 2917.46 99 4746 0.69
eijkbs1512 48.11 176 303 31.36 161 312 0.65
eijks382 28.02 57 368 34.35 69 380 1.23
eijks420 64.07 464 161 67.97 501 161 1.06
eijks444 407.75 62 429 237.49 61 394 0.58
eijks526 142.32 64 509 80.75 62 500 0.57
intel006 23.96 11 543 25.11 13 615 1.05
intel007 243.70 10 1580 193.47 8 1554 0.79
intel026 2262.39 52 6504 2183.98 49 6239 0.97
intel054 239.29 19 1048 305.00 21 1129 1.27
intel055 69.98 17 309 70.03 19 211 1.00
intel056 146.26 23 835 91.82 22 720 0.63
intel057 144.43 22 536 134.20 20 494 0.93
intel059 62.88 18 543 66.52 20 536 1.06
intel062 2095.27 28 4101 2077.67 26 4909 0.99
nusmvguidancep5 23.98 18 292 26.35 18 292 1.10
nusmvguidancep7 77.49 21 628 78.24 21 628 1.01
nusmvguidancep8 19.90 22 155 20.17 22 155 1.01
nusmvguidancep9 21.25 20 154 21.25 20 154 1.00
nusmvreactorp2 1093.58 172 4437 2394.32 7389 7389 2.19
nusmvreactorp6 1416.97 163 4390 1444.97 163 4390 1.02
pdtpmscoherence 68.82 16 1491 44.50 12 1217 0.65
pdtpmsheap 18.72 25 653 11.47 23 503 0.61
pdtpmsretherrtf 278.97 51 2510 48.65 43 925 0.17
pdtpmsvsar 25.64 11 263 12.90 11 260 0.50
pdtswvibs8x8p1 18.20 20 867 13.45 21 813 0.74
pdtswvqis10x6p1 50.05 73 192 35.91 66 208 0.72
pdtswvqis8x8p1 108.93 56 285 187.01 62 339 1.72
pdtswvroz10x6p1 12.84 58 73 12.99 56 73 1.01
pdtswvroz10x6p2 117.03 88 136 105.51 76 166 0.90
pdtswvroz8x8p1 13.54 50 60 12.43 50 64 0.92
pdtswvroz8x8p2 62.52 71 183 90.46 60 135 1.45
pdtswvsam6x8p3 24.84 40 284 24.78 39 311 1.00
pdtswvtma6x4p2 186.35 52 1537 221.31 60 1758 1.19
pdtswvtma6x4p3 1006.19 58 6150 1754.36 64 7837 1.74
pdtswvtma6x6p1 297.39 50 1191 184.71 48 1187 0.62
pdtswvtma6x6p2 1573.62 69 5944 1851.38 69 7054 1.18
pdtswvtms10x8p1 107.81 16 1735 97.07 15 1521 0.90
pdtswvtms12x8p1 70.52 16 1531 201.81 37 1625 2.86
pdtswvtms14x8p1 73.40 16 1362 81.38 23 1353 1.11
pdtvisbakery0 30.29 32 42 32.83 32 42 1.08
pdtvisbakery1 17.68 21 47 32.17 31 46 1.82
pdtvisbakery2 27.42 32 43 25.01 27 47 0.91
pdtvisgoodbakery0 24.07 27 44 26.79 28 40 1.11
pdtvisgoodbakery1 19.64 25 46 38.00 26 55 1.93
pdtvisgoodbakery2 15.28 25 43 26.12 27 47 1.71
pdtvisns3p00 15.51 11 99 23.34 11 111 1.50
pdtvisns3p01 12.55 12 68 12.35 11 82 0.98
pdtvisns3p02 36.21 14 125 18.30 14 99 0.51
pdtvisns3p03 7.14 9 62 15.22 12 87 2.13
pdtvisns3p04 20.97 13 100 16.64 11 97 0.79
pdtvisns3p05 31.82 14 126 13.44 12 82 0.42
pdtvisns3p06 29.23 11 124 20.99 11 90 0.72
pdtvisns3p07 19.04 16 91 10.28 12 84 0.54
pdtvistimeout0 4649.41 35 16496 — — — —
pdtvisrethersqo4 49.12 38 454 31.97 38 450 0.65
pdtvisvending01 54.20 16 1176 58.74 19 1102 1.08
Geometric Average — — — — — — 0.98

Table 5.2: Results of running the state cube and gate cube implementations on unsat-
isfiable benchmarks



Chapter 6

Future Directions

Since the late 1990s the power of SAT solvers has grown tremendously, and even

recently more promising techniques and heuristics have been introduced that make vast

improvements [70, 71, 72]. As the power of SAT solvers increases, more and more hard

problems in logic synthesis and verification will become tractable. In this final chapter

we briefly mention some possible future directions of research in regards to the topics

presented in this thesis.

6.1 Cyclic Combinational Circuits

The algorithms presented in this thesis that perform analysis on cyclic circuits scale

well with the size of the circuit. However, we consider generating a good set of candidate

circuits to analyze an unsolved problem. The algorithm we presented in Section 2.4

generates candidate circuits with a cost related to the size of the support set of the

functions. We mentioned that this method might work well for mapping to a technology

that can represent any function in terms of a fixed number variables (like FPGAs).

The algorithm that we presented wont necessarily translate well to technologies that

implement elementary logic functions (like AND and OR gates).

132
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Currently, one of the best performing synthesis algorithms is DAG-Aware AIG

Rewriting [46]. This algorithm works by enumerating different cuts of a netlist. A

k-feasible cut of a node n in a network is a selection of nodes in the transitive fanin of n

such that the number of leaves of the selection does not exceed k. The enumerated cuts

are replaced by pre-computed functions of k variables, and then a series of balancing

operations are performed on the network to reduce the number of gates. One might

suspect that a similar method could be applied with a series of pre-computed cyclic

cuts, however this is not as straight forward as the acyclic case. One problem is that

analysis would need to be applied after each cut is replaced. This isn’t so much of an

issue because we have discussed how efficient analysis can be performed in Chapter 2.

However, a second issue with this approach is finding cyclic combinational circuits

that implement a single Boolean function (and are smaller than any acyclic equivalent).

DAG-Aware AIG Rewriting makes use of a pre-computed library of compact implemen-

tations for specific functions. It is unclear of whether or not there even exists cyclic

combinational circuits implementing a single Boolean function that are actually smaller

than any acyclic equivalent. All of the arguments about lower bounds for certain classes

of circuits made in Riedel’s dissertation were in reference to circuits implementing mul-

tiple functions [8]. We make the conjecture that such cyclic combinational circuits do

not exist. This intuition strings from the circuit shown in Figure 6.1

Figure 6.1 shows a hypothetical cyclic combinational circuit that contains feedback

at its primary output. However, the feedback that occurs at the output must be useless.

Given some assignment to the primary inputs x0, x1, x2, . . . xn−1, the initial state of f

must be ⊥. Eventually f must evaluate to a definite value of 0 or 1 (we are assuming

that the circuit is combinational). Once this occurs, the value on the wire feeding back

into the circuit is essentially worthless; the output has already reached a stable value.
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x0
x1
x2

xn-1

┴

f...

Figure 6.1: A cyclic combinational circuit that must be larger than some equivalent
acyclic circuit.

This example proves that for circuits containing a single primary output it never

makes sense to have feedback at the output. However, what about single output cir-

cuit containing feedback internally? Such a circuit might look something like the one

described in Figure 6.2.

x0
x1
x2

xn-1

f...

Figure 6.2: A cyclic combinational circuit that might be smaller than all equivalent
acyclic circuits.
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Even if there exists no cyclic combinational circuits with a single primary output

that is smaller than any acyclic equivalent, this doesn’t mean a methodology similar to

DAG-Aware AIG rewriting could not be applied to cyclic structures. It might be the

case that pre-computed functions may need to contain multiple outputs. However, this

would dramatically increase the complexity of both the cut enumeration portion of the

algorithm and the ability to pre-compute the library functions.

6.2 Reducing Interpolants and Resolution Proofs

In Section 5.2.4 we discussed how Interpolation is used in symbolic model checking.

For this application, interpolation can produce messy over-approximations that generate

spurious counter examples. Note that our methods for minimizing interpolant size do

not directly apply to the problem of producing smaller over-approximations. One goal

for future work could be to extend our methodology to this domain. Perhaps the

resolutions can be biased to involve certain variables that could positively influence the

structure of the abstraction provided by interpolation.

Other optimizations that could be investigated include methods for generating better

initial resolution proofs from the SAT solver. We have noticed that changing the order

of variable decisions in the SAT solver can significantly reduce the initial size of the

resolution proof. Much of the current research in SAT solving pertains to heuristics

for making variable decisions that will lead to solving SAT instances faster [33, 71, 73].

Perhaps some of this intuition could be applied to variable decision heuristics that result

in resolution proofs that produce smaller interpolants.

6.3 Property Directed Reachability

The Property Directed Reachability algorithm is a very young; many new applica-

tions and heuristics will be proposed. Some recent research has gone into extending

PDR to other theories [74, 75]. Extensions to some of the work presented in this thesis
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might focus on different heuristics for choosing what logic to include in each cube and

different methods for cube minimization. Other work might focus on how PDR can be

applied to probablistic symbolic model checking problems [76, 77].
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