
SHF: Medium: Back to the Future with Printed, Flexible Electronics –
Design in a Post-CMOS Era when Transistor Counts Matter Again

1 Introduction

Figure 1: Examples of printed, flex-
ible electronics: RFID tags, biomed-
ical monitoring, display and visual
e↵ects, smart wings. Images from
[1,2, 33, 75]

In the early days of the semiconductor industry, designing complex
circuits was an art. Skilled practitioners strove for elegant and e�cient
designs with the highest performance using the fewest possible transis-
tors. By the early 1970’s, with the advent of CMOS integrated circuits,
the era of massive scaling had begun. Carver Mead, a semiconductor
technology guru at Caltech, exhorted designers to “waste transistors.”
He coined the term Moore’s Law based on Gordon Moore’s empirical ob-
servation that the number of transistors on integrated circuits seemed to
be doubling every two years or so. As feature sizes have dropped from
millimeters, to micrometers, to nanometers, the transistor counts of in-
tegrated circuits have increased from thousands, to millions, to billions.
Throughout the history of very large scale integration (VLSI), achievable
clock speed and power consumption have been the dominant metrics of
the technology. With billions of transistors per integrated circuit, Carver
Mead’s advice to waste transistors – or at least ignore transistor counts
as a metric – seems as prescient as ever.

1.1 Promising Technology that Presents Design Challenges

And yet, CMOS technology is not the only type of technology for
making transistors. With remarkable progress in materials science, tran-
sistor circuits are being built in all manner of substrates. These include
flexible, stretchable, conformal and impact-resistant formats [17].
Consider applications such as printed electronics for inexpensive RFID
systems. Or distributed sensors in walls or structural materials. Consider
an application such as a smart skin on an aircraft wing: pressure sensors
detect vortices; actuators respond by deforming the wing in minute ways
to counteract these and keep smooth, laminar flow of air across the wing.
Or consider an application such as electronics printed on paper that per-
forms image processing functions, for instance photocopying – so paper
that can copy paper! Some of these applications are shown in Fig. 1.

Such technologies have transformed the potential application space
for microelectronics, delivering new functional capabilities in radiation detection, health diagnostics, drug-
delivery, distributed sensing, information display, food security, identification tagging, inventory tracking,
robotics, and human-machine interfacing [18,21]. A number of approaches to printing electronics are under
development world-wide. The PIs have extensive experience in aerosol jet printing, for example, and in this
proposal a substantially new, massively parallel and self-aligning process is proposed.

Emerging technologies for flexible electronics have a number of properties that impinge upon design.
Often interfacing with conventional CMOS processors is not feasible. For instance, in a smart skin application
for an aircraft wing, a huge quantity of local information processing is performed by a large, distributed sensor
array. Collecting all the information electronically and transmitting along wires to and from central CPUs
would be impractical. The whole point is to build the processing functionality directly into the substrate.
Compared to CMOS, flexible electronic systems have large system-level footprints, allowing for new
opportunities such as ambient energy harvesting (solar, mechanical) from a large area, as well as larger
area sensing. On the other hand, the devices themselves have large area because of the limited resolution
of current printing technology [21]. Large devices mean that the total device count per unit area is orders
of magnitude lower than traditional CMOS. Currently, even 100 printed transistors per cm

2 is di�cult to
achieve. So, in these applications transistor counts matter.

1.2 A Transformative Design Methodology

This proposal seeks to apply the paradigm of stochastic bit stream computation to the design
challenge of printed electronics. In this paradigm, circuits operate on random bit streams where the signal
value is encoded by the probability of obtaining a one versus a zero. With this approach, complex operations
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can be performed with very simple logic [56]. For instance, multiplication can be performed with a single
AND gate. Because the bit stream representation is uniform, with all bits weighted equally, circuits designed
this way are highly tolerant of soft errors (i.e., bit flips).

!"#$$%"#&'#($)"&*&+,'-

.)/01 !")/#$$2(3&4(25

6#(5"01&70/89)(#

:)&0;;252)(01&<")/#$$2(3

=>=

?'@

'5)/A0$52/&!")/#$$2(3

=>=

?'@

!"#$

!"#$

!"#$

!"#$

Figure 2: A sensor array with stochastic computational
units implemented on a flexible substrate for a robot
foot e-skin. A/SD units are Analog to Stochastic Digi-
tal converters. Data is locally computed by Stochastic
Processing units and the results are sent through a lean
communication backbone to a central processing unit.

The paradigm, advocated in prior work by three
of the PIs, is a proverbial hammer in want of a
nail. The hammer: a method for synthesizing cir-
cuits that compute complex functions with remark-
ably few transistors. The nail: applications where
transistor counts matter. The hammer is certainly
powerful: compared to conventional design methods,
the stochastic paradigm produces designs with sig-
nificant reduction in transistor counts [43]. It suf-
fers from high latency, and so was never compelling
for high-performance, high accuracy computations in
CMOS. However, in the context of novel electronic
substrates where transistor counts matter, it is a po-
tentially transformative approach. The PIs have pub-
lished extensively on the topic [39–48, 53–65, 77]. The
aim of this project is to provide an end-to-end vali-
dation of the paradigm of stochastic bit stream com-
putation, applying it to the promising printed, flexi-
ble electronics technology. Such an end-to-end system
would require improved fabrication methods, develop-
ing quality analog to stochastic digital conversion and
e�cient stochastic processing of time-varying signals.

The proof-of-concept distributed sensing applica-
tion we propose to develop is shown in Fig. 2. The
test platform has a low voltage, flexible pressure sensor array with embedded stochastic computational el-
ements to act as an electronic skin for a robot’s foot. Each pressure sensor feeds an Analog-to-Stochastic
Digital (A/SD) converter, which provides data to stochastic computational units. These perform local com-
putations such as threshold detection and recognition of spatial and temporal correlations in pressure sensed
over an area. The aim is to facilitate a stable walking process as well as to gather data on the terrain (e.g.,
steepness of slope, sharpness of edges). The platform is discussed in more detail in Sec. 3.2.1.

Broadly, the project will develop the following components to realize the complete, end-to-end system:
printing technologies (PI Frisbie); input/output interfacing (PI Harjani); synthesis methodologies (PI Riedel);
and architectures and applications (PIs Bazargan and Lilja). Some specific aims are:

• To deliver the proof-of-concept electronic foot skin (Sec. 3.2.1; PIs Bazargan, Frisbie, Lilja, and Riedel).

• To develop elegant A/D and D/A interfaces via sigma-delta modulation to directly convert analog
signals to stochastic bit streams and back to analog output signals. We propose significant reductions
in the oversampling ratio, which has major ramifications for power consumption of the A/D and D/A
circuits (Sec. 3.3; PI Harjani).

• To develop new low temperature, additive manufacturing approaches to printed electronics that will
decrease device footprints, thereby simultaneously increasing the device count per area and increasing
bandwidth. The goal then will be to manufacture a sophisticated distributed sensor network that high-
lights the advantages of the new computing architecture with improvements in additive manufacturing
of flexible electronic systems (Sec. 3.2.2; PI Frisbie).

• To develop alternate encodings to mitigate latency issues in the stochastic paradigm (Sec. 3.5; PI
Bazargan).

• To explore stochastic filtering of time-varying signals using feedback and time delay elements (Sec. 3.1;
PIs Bazargan and Harjani).
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2 Background
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Figure 3: Stochastic representa-
tion: (a) A stochastic bit stream;
(b) A stochastic wire bundle. A real
value x in the unit interval [0, 1] is
represented as a bit stream or a bun-
dle. For each bit in the bit stream
or the bundle, the probability that
it is one is x.
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Figure 4: Multiplication with
a stochastic representation:
an AND gate. The inputs are
stochastic bit streams A and B

and the output is a stochastic bit
stream C. Here, the probabil-
ity of A is 6/8 and that of B

is 4/8. The probability of C =
6/8⇥ 4/8 = 3/8, as expected.

B

A
MUX
1

0
C

S

a: 1/8

0,1,0,0,0,0,0,0

1,0,1,1,0,1,1,0

0,0,1,0,0,0,0,1

1,0,0,1,0,1,1,0

c: 4/8

b: 5/8

s: 2/8

Figure 5: Scaled addition on
stochastic bit streams, with a multi-
plexer (MUX). Here the inputs are
1/8, 5/8, and 2/8. The output is
2/8 ⇥ 1/8 + (1 � 2/8) ⇥ 5/8 = 4/8,
as expected.

We provide background information on both facets of the project: the
design facet, namely the paradigm of stochastic bit stream computation
(Sec. 2.1); and the technology facet, namely flexible, printed electronics
(Sec. 2.2).

2.1 Logical Computation on Stochastic Bit Streams

Humans are accustomed to counting in a positional number system
– decimal radix. Nearly all computer systems operate on another posi-
tional number system – binary radix. From the standpoint of represen-
tation, such positional systems are compact: given a radix b, one can
represent b

n distinct numbers with n digits. Each choice of the digits
di 2 {0, . . . , b � 1}, i = 0, . . . , n � 1, results in a di↵erent number N in
[0, . . . , bn � 1]: N =

Pn�1
i=0 b

i
di. However, from the standpoint of compu-

tation, positional systems impose a burden: for each operation such as
addition or multiplication, the signal must be “decoded,” with each digit
weighted according to its position. The result must be “re-encoded” back
in positional form. Any student who has designed a binary multiplier in
a course on logic design can appreciate all the complexity that goes into
wiring up such an operation.

Consider instead digital computation that is based on a stochastic
representation of data: each real-valued number x (0  x  1) is repre-
sented by a sequence of random bits, each of which has probability x of
being one and probability 1 � x of being zero. These bits can either be
serial streaming on a single wire or in parallel on a bundle of wires. When
serially streaming, the signals are probabilistic in time, as illustrated in
Fig. 3(a); when in parallel, they are probabilistic in space, as illustrated
in Fig. 3(b). Throughout this proposal, we frame the discussion in terms
of serial bit streams. However, our approach is equally applicable to
parallel wire bundles. Indeed, we have advocated this sort of stochastic
representation for technologies such as nanowire crossbar arrays [54].

Consider the operation of multiplication implemented conventionally
versus stochastically. A conventional design for a 3-bit carry-save mul-
tiplier consists of 30 gates. Fig. 4 shows a stochastic multiplier: it con-
sists of but a single AND gate. The inputs are two independent input
stochastic bit streams A and B. The number represented by the output
stochastic bit stream C is

c = P (C = 1) = P (A = 1 and B = 1)

= P (A = 1)P (B = 1)

= a · b.
(1)

The probability of getting a one at the output, P (C = 1), is equal to
the probability of simultaneously getting ones at the inputs, namely,
P (A = 1) times P (B = 1). So the AND gate multiplies the two values
represented by the stochastic bit streams. In the figure, with bit streams
of length 8, the values have a resolution of 1/8. Multiplication is simple
and e�cient in the stochastic representation precisely because the rep-
resentation is uniform; no decoding and no re-encoding are required to
operate on the values.

Consider the operation of addition implemented stochastically. It is not feasible to add two probability
values directly; this could result in a value greater than one, which cannot be represented as a probability
value. However, we can perform scaled addition. Fig. 5 shows a scaled adder operating on real numbers in
the stochastic representation. It consists of a multiplexer (MUX), a digital construct that selects one of its
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two input values to be the output value, based on a third “selecting” input value. For the multiplexer shown
in Fig. 5, S is the selecting input. When S = 1, the output C = A. Otherwise, when S = 0, the output
C = B. The Boolean function implemented by the multiplexer is C = (A ^ S) _ (B ^ ¬S).

With the assumption that the three input stochastic bit streams A, B, and S are independent, the number
represented by the output stochastic bit stream C is

c = P (C = 1)

= P (S = 1 and A = 1) + P (S = 0 and B = 1)

= P (S = 1)P (A = 1) + P (S = 0)P (B = 1)

= s · a+ (1� s) · b.

(2)

Thus, with this stochastic representation, the computation performed by a multiplexer is the scaled addition
of the two input values a and b, with a scaling factor of s for a and 1� s for b. The discussions above were
based on numbers in the range [0,1]. We should note that a linear mapping of the range [0,1] to the range
[-1,1] allows us to use stochastic logic operating on probabilities, yet compute on signed numbers [44].

AND

1,0,0,1,0,1,1,0

X3
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Y
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0,1,0,0,0,0,1,0

X2

OR

x1: 4/8

4/8
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x2: 8/8 y: 5/8

x3: 2/8

Figure 6: An example of logical computation
on stochastic bit streams, implementing the
arithmetic function y = x1x2 + x3 � x1x2x3.
We see that, with inputs x1 = 1/2, x2 = 1 and
x3 = 1/4, the output is 5/8, as expected.

In prior work, we have proposed a general method for
synthesizing combinational logic operating on stochastic bit
streams [55, 56] (see Fig. 6). We also explored the problem of
synthesizing sequential logic, namely finite-state machines, op-
erating on stochastic bit streams [44,45,47]. We have also con-
sidered the complementary problem of generating probabilistic
signals for stochastic computation. We described methods for
transforming arbitrary sources of randomness into the requisite
probability values, through combinational logic [60], or through
sequential logic [64].

Compared to a binary radix representation, a stochastic
representation is not very compact. With M bits, a binary
radix representation can represent 2M distinct numbers. To
represent real numbers with a resolution of 2�M , i.e., numbers
of the form a

2M for integers a between 0 and 2M , a stochastic representation requires a stream of 2M bits.
The two representations are at opposite ends of the spectrum: conventional binary radix is a maximally
compressed, positional encoding; a stochastic representation is an uncompressed, uniform encoding.

A stochastic representation, although not very compact, has an advantage over binary radix in terms
of error tolerance. Suppose that the environment is noisy: bit flips occur and these a✏ict all the bits with
equal probability. With a binary radix representation, in the worst case, the most significant bit gets flipped,
resulting in a large error. In contrast, with a stochastic representation, all the bits in the stream have equal
weight. A single flip results in a small error. This error tolerance scale to high error rates: multiple bit flips,
on average produce small and uniform deviations from the nominal value.

More compelling than the error tolerance is the simplicity of the designs in the stochastic paradigm.
Above, we saw how multiplication and addition can be implemented with one and three gates, respectively
(three gates to implement the multiplexer for addition). More complex functions such as division, the Taylor
expansion of the exponential function, and the square root function can also be implemented with only a
dozen or so gates each using the stochastic methodology [55, 56]. Although this is a claim that we can
only justify through design examples, we get significant reductions in transistor counts with the stochastic
approach. This holds for a wide range of applications, including dedicated circuits for image and signal
processing [39,40,43].

2.2 Printed Electronics

PI Frisbie has been pursuing research at the forefront of the field of printed electronics. Substantial
progress in fabrication and characterization has been made in his laboratory over the last several years. His
group has specialized in achieving high performance, low voltage complementary circuits through innovative
printing processes.

Transistors and Inverters: Fig. 7 shows a photograph of a printed n-type transistor and the associated
transfer and output characteristics. The TFT exhibits excellent characteristics namely an ON/OFF current
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Figure 7: A printed ZnO TFT; transfer and output characteristics.

Figure 8: (Left) Scheme of complementary inverter made by aerosol jet printing. Red semiconductor is p-type; blue
is n-type. Electronic inks are shown below. (Right) Electrical characterization of the inverter.

Figure 9: Printed circuit on plastic. The circuit consists of a pulse generator, H-bridge driver and integrated
electrochromic pixel. Transistors, capacitors and resistors were all printed by the aerosol jet technique.
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ratio of 106, electron mobility of 1 cm

2
/V s, threshold voltage (VT ) just positive of 0 V, and a large output

current.
Recently, PI Frisbie’s group has demonstrated complementary devices prepared by aerosol jet printing,

Fig. 8. A polymer semiconductor ink (P3HT) was used to form the p-channel and a ZnO precursor solution
was printed to form the n-channel devices. Both the p and n-type transistors have a printed high capacitance
gate insulator that allows low operating voltages. The data in the right panel show excellent inverter behavior
namely trip voltages at 1 V or below and scaling appropriately with VDD, good device gains above 10, low
steady-state power consumption (< 1 nW) and good dynamic switching behavior at 5 kHz. These devices
can operate dynamically for many hours without any signs of degradation. Another variant of this inverter
structure uses printed carbon nanotubes (CNT) as the semiconductor channel. The CNT inverters operate
at 100 kHz, or 10µs stage delays. It is fair to say that for printed electronics, these devices represent the
state of the art.

Circuits: Initial steps have also been taken to make prototype circuits. Fig. 9 shows the layout of a pulse
delay and H-driver circuit integrated with an electrochromic pixel on a plastic substrate. All components
were printed by aerosol jet except the interconnects which were patterned by conventional photolithography.
The circuit contains 25 printed p-type TFTs, 22 printed capacitors and 12 printed resistors and operated
stably for hours (which was as long as it was tested for).

3 Proposed Work

We discuss, in detail, four specific, synergistic aims of the project: to design and implement stochastic
circuitry for image and sensor data processing operations; to design and fabricate a distributed pressure sensor
array with embedded stochastic computational enhancement as a step toward “smart electronic skin”; to
design and fabricate A/D and D/A interfaces via sigma-delta modulation; to design stochastic filtering for
time-varying data; and finally, to explore alternative encodings for lower latency stochastic computation.

3.1 Stochastic Computing Toolkit
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Figure 10: State transition diagram of the FSM im-
plementing the stochastic tanh function.

Among stochastic circuits we have developed over
the past few years, finite-state-machine (FSM) based
designs have shown the most promise in terms of
area. They are powerful in terms of the range of
functions they can approximate, yet they are sim-
ple to implement and require remarkably small area.
Glossing over many technical details, we present the
intuition behind how they work and our future plans
for synthesizing complex functions by decomposing
them into smaller functions that map to FSMs. We first use the hyperbolic tangent (tanh) function as an
example to describe how the FSMs work, and then present an example of functions and constructs one might
find in a stochastic computing toolbox.

Fig. 10 shows the state transition diagram for the linear finite-state machine that implements the tanh
function, first proposed in [13]. Based upon a stochastic input X, the machine either moves to the next
state if X = 1 or to the previous state if X = 0. The machine stays in S0 if X = 0. It stays in SN�1

if X = 1. The output is Y = 0 (dark-colored states in Fig. 10) when the machine is in states S0 through
S(N/2)�1; the output is Y = 1 (light color) when the machine is in states SN/2 through SN�1. Computing
on stochastic bit streams, x is the probability of obtaining a one in the bit stream X and y is the probability
of obtaining a one in the bit stream Y . The result is a very good approximation of the tanh function:
y = (e

N
2 x � e

�N
2 x)/(e

N
2 x + e

�N
2 x).

A simulation of the tanh is shown in the top-right corner of Fig. 11. Intuitively this can be understood as
follows. Suppose that the finite-state machine is in a state below the half-way point, one of {S0, . . . , S(N/2)�1};
it is likely to stay below the half-way point, unless it receives far more 1’s than 0’s. For values of x less than
0.5, it is unlikely to receive far more 1’s than 0’s. Similarly if it is in a state above the half-way point, one
of {SN/2, . . . SN�1}, it is likely to stay there unless it receives far fewer 1’s than 0’s. This is unlikely if x
is greater than 0.5. So the circuit performs thresholding. Extensive analysis of the linear FSM is given
in [43], along with the proof that the structure shown in Fig. 10 indeed approximates the tanh function.
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Figure 11: An example FSM library. Each row corresponds to one
function. The first column shows the name and the schematic symbol,
followed by the state transition diagram (dark states: output=0, light
states: output=1) and the plot of the function showing Y as a function
of input X. As mentioned in Sec. 2.1, a linear transformation can map
the range [-1,1] to probability values [0,1] for stochastic computing.

The basis for the analysis is the fact
that the FSM construct is a reversible
Markov Chain for which we can cal-
culate stationary probabilities, i.e., the
probability ⇧i that the system is in any
given state Si after it has passed the
initial transition period. Given that the
stationary probabilities of the states are
functions of the input X, we can use
an optimization engine to approximate
any arbitrary function f(x) by adding
a subset of the ⇧i(x) functions. Fur-
thermore, if we use the state number
to choose from a fixed set of constant
probability values to route to the out-
put, we can perform weighted addition
of the ⇧i(x) functions, enabling us to
approximate a larger set of functions.

Fig. 11 shows an example library of
such FSM designs. Many more func-
tions can be implemented using the
simple linear FSM construct. Note that
the number of flip-flops needed to im-
plement the state machine is exponen-
tially smaller than the number of states.
Furthermore, in all our experiments an
FSM of size 8 was almost always ade-
quate, rarely requiring a 32-state FSM for high accuracy.

The FSMs discussed above can be used as “gates” in a library to build more complex functions. Fig. 12
shows a number of examples. The Comparator uses a subtractor (MUX with an inverter input) and thresh-
olding (tanh) logic. The subtractor is similar to the adder in Fig. 5, except that one input is inverted. The
combined e↵ect of the subtractor and thresholding is if (PA < PB) then PY ⇡ 0; else PY ⇡ 1, where
PA, PB , and PY are the probabilities of ones in the stochastic bit streams A, B, and Y . The sorter reuses
the comparator circuit to output the smaller of the (A,B) pair on the top output line, and the larger one
on the bottom. The edge detector unit in Fig. 12 uses a stochastic absolute function to implement Robert’s
cross operator [24]: Yi,j = 0.5(|Xi,j � Xi+1,j+1| + |Xi+1,j � Xi,j+1|). The frame di↵erence hardware uses
both the tanh and the absolute functions: its output PY is closer to 1 if the di↵erence between the previous
frame pixel and the current value is above a constant threshold PTH .
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Figure 12: Circuits synthesized using elements of the FSMs library of Fig. 11.

A median filter replaces each pixel with the median of neighboring pixels. It provides excellent noise-
reduction capabilities, with considerably less blurring than linear smoothing filters of similar size [24]. A
hardware implementation of a 3 ⇥ 3 median filter based on a sorting network is shown in Fig. 13. The basic
unit in this construct, shown by vertical lines, is the sorter of Fig. 12. It is implemented by the stochastic
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Figure 14: The two frames of input and the output
image generated by the stochastic frame di↵erence
circuit of Fig. 12.
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Figure 15: Step response of a stochastic second-
order filter (red) compared to that of a real-valued,
conventional filter (blue).

comparator described above. Fig. 14 shows sample input images and the corresponding output generated
by the stochastic frame di↵erence circuit shown in Fig. 12.
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Figure 13: Hardware implementation
of the 3 ⇥ 3 median filter based on
network of sorting units (each vertical
bar is a copy of the circuit “sorter” in
Fig. 12).

Going forward, our plans for building a more powerful stochas-
tic toolbox include developing stochastic filtering circuits that can
work on time-varying signals (e.g., low-pass filter; Sec. 3.2.1). In all
our previous published work, we have assumed that input X does
not change during the course of the computation. Although that as-
sumption was valid for image processing applications in which pixel
values are being read from memory, it no longer holds for applica-
tions involving sensor data and time-varying signals of the physical
world. The step-response of a preliminary second-order filter de-
signed using two FSMs with a feedback loop is shown in Fig. 15.
The blue curve shows a real-valued conventional filter and the red
curve shows the output of the stochastic filter. We also plan to de-
vise a synthesis methodology that can break down a large system
– such as the median filter discussed above – into smaller compo-
nents that are compatible with the FSM library. These e↵orts will
be complemented by investigating methods to cut down on latency
(Sec. 3.5).

3.2 Smart Electronic Skin

As a specific example of the advantages of stochastic computing, the PIs will build a low voltage, flexible
pressure sensor array with integrated stochastic logic to recognize spatial and temporal pressure correlations.
The overall vision and example circuits are discussed in Section 3.2.1, and details of building the sensor array
are presented in Section 3.2.2.

3.2.1 Local Stochastic Processing for the Sensitive Robot Foot Skin

As mentioned in Section 1.2, we envision a pressure sensor array with embedded stochastic computational
elements fitted to the sole of a robot’s foot, as shown in Fig. 2. The foot area is divided into cluster regions
containing a number of pressure sensors, each with an Analog to Stochastic Digital converter (Sec. 3.3). Each
cluster has a stochastic computational unit that performs local computations, and sends the results through
a lean communication backbone to a (traditional) processor for further processing and integration into the
rest of the system, such as navigation, controlling servo motors and choreographing the movement of di↵ernt
parts of the robot. The main advantage of local stochastic computations is savings in the communication
backbone, which would be costly in flexible electronics, as well as o↵-loading part of the computation to the
sensor array itself.
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The sensor data can be used by the robot either to help it walk more stably or to gather data on the
terrain on which it is walking. For a stable walking motion, the robot might need to (1) calculate the slope
or the roughness of the surface, (2) determine if it is standing on the edge of a step or a sharp boundary, (3)
detect if it is tripping over, (4) verify that it is following a “normal” pattern of pressure changes over time
(e.g., the heels show the greatest pressure when they hit the ground first, followed by a wave motion of the
pressure to the front of the foot), (5) filter out high-frequency noise generated by vibrations in the ground
caused by, e.g., passing vehicles, and (6) sense pressure above a certain threshold on any particular cluster,
which might be indicative of stepping on a sharp object with the potential for damaging the e-skin.

The tasks listed above require a number of computational elements, some of which are similar to image
processing kernels we have explored in the past, namely edge detection and thresholding, but great challenges
remain in implementing more complex functions proposed here – especially when dealing with time-varying
signals – and integrating the whole end-to-end system. Edge detection can be used in tasks (1), (2) and
(6), and is shown as an example circuit in Fig. 2. Thresholding can be used for task (6). Task (1) would
require gradiant calculation. Tasks (3) and (4) are challenging as they require calculating temporal and
spatial correlations between sensor outputs. Task (5) requires low-pass filtering.

3.2.2 Flexible Sensor Array

Flexible distributed pressure sensors have been developed by several groups [23, 49, 51, 67, 73] and they
are viewed as a first step to developing an “electronic skin” which could be employed in robotics, for
example. However, to date the flexible sensors have not been very sensitive to pressure (e.g., > kPa whereas
human touch is sensitive to 0.1 Pa) and have required large operating voltages. In addition, they have not
incorporated any kind of computational capability that might “pre-analyze” incoming data, such as spatial,
temporal or pressure correlations. The ability to incorporate simple computation into distributed sensors will
be a powerful approach to enhancing and decentralizing electronic decision making in complex systems like
robots. For example, reporting pressure correlations from a distributed pressure sensor e-skin on the foot of
a robot may be more useful input to a motion controller than simply an X-Y grid of pressure readings. The
point is decentralized information processing from sensors can minimize data overload in a central controller.

Figure 16: Scheme of a pressure
sensor element, which would be part
of an array.

A possible single element of the prototype sensor array is shown in
Fig. 16, where all components will be prepared by printing/additive pro-
cessing on plastic or rubber. Low voltage operation will be achieved by
using high capacitance gate dielectrics developed in Frisbie’s laboratory,
and the pressure transducer will be made of a composite, conductive
rubber material whose resistance is pressure dependent. Fabrication of
the array will be greatly enhanced by the development of new additive
manufacturing approaches. That is, in addition to aerosol jet printing
approaches, in which Frisbie’s group has extensive experience, the PIs
will also pursue a scalable, self-aligning strategy to build thin film tran-
sistors, pressure transducers, capacitors, resistors and diodes on plastic
substrates.

This new process is termed Self-Aligned Capillary Flow Lithogra-
phy (SACFL), and to the PIs knowledge it is a novel approach to
printed/flexible electronics. In SACFL, microchannels and reserviors are
molded into a coated thermoset material on a plastic substrate by imprint lithography. The dimensions of
the channels may range from 100 nm to tens of microns; reservoirs may be hundreds of microns. Electronic
inks are delivered to the reservoirs by “drop on demand” dispensers and the liquids, drawn into and along
the channels by capillarity, fill relief patterns in the thermoset. The process is self-aligned because multiple
inks can be delivered sequentially to the same reservoir, or to di↵erent reservoirs, to produce stacked layers
of dried materials. The process is also highly parallel because a single reservoir can deliver ink to produce
many devices in parallel, and multiple dispensers can be employed to fill multiple reservoirs simultaneously.
SACFL is also an additive method because material is only delivered to regions where it needs to be. Related
work to our proposed SACFL method include studies on nano-scale capillary flow [27,28], using capillary flow
to micro-mold objects [14,36], capillary force lithography [34,74], and using capillaries in the device or final
structure [15,32]. To the PIs knowledge, there is currently no established flexible electronics manufacturing
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Figure 17: Block diagram for a sigma-delta A/D and the resulting noise shaping and decimation.

process that is simultaneously self-aligning, scalable, additive, and parallel. Significantly, SACFL solves
a central challenge in additive manufacturing of printed electronics – perhaps the central chal-
lenge – namely alignment multiple layers of di↵erent materials with micron level tolerances
(or better!). Thus, a key experimental objective of this proposal will be to demonstrate that capillary
flow lithography and electronically functional inks may be combined to produce a distributed sensor array
as described above.

3.3 A/D and D/A Interfaces via Sigma-Delta Modulation

The digital stochastic framework proposed here needs mechanisms to interface to real-world analog signals,
i.e., we need circuits to convert analog signals to a stochastic digital signal and vice versa. The obvious first
technique that comes to mind is to use a conventional analog-to-digital (A/D) converter followed by a multi-
bit digital to single-bit stochastic converter. We propose an alternate, more elegant method that directly
converts analog quantities to stochastic digital (A/SD) and stochastic digital to analog (SD/A). The A/SD
and SD/A converters proposed here are based on single-bit oversampled converters that are often called
sigma-delta (⌃�) converters [22, 29,30,50,66,76].

⌃� (aka sigma-delta or delta-sigma) converters utilize feedback to introduce noise shaping in the fre-
quency domain such that quantization noise, which is inversely proportional to the conversion resolution,
decreases rapidly with increased oversampling (OSR). Fig. 17 shows the block diagram for a 1st-order ⌃�
A/D. In a regular binary digital system, the modulator is usually followed by a low-pass filter and decima-
tion stage. The resulting noise shaping and reduction in the in-band quantization noise is also shown on the
RHS of Fig. 17. In Fig. 18 we have plotted the PDF of the output voltage of the integrator, i.e., before the
quantizer, for a 2nd order ⌃� modulator, for an input voltage equal to 0.277350. The comparator basically
quantizes this signal over time to give a mean value of 0.277340. We note that this voltage ”looks” like a
normally distributed stochastic value. In Fig. 19 we plot the FFT of the 1 bit output of the ⌃� modulator
in dB and log(frequency). We note that the quantization noise is moved to the higher frequencies. The
flattening from 10�4 to 10�2 is due the inclusion of KT/C thermal noise in our model. In any real system
we are likely to encounter this thermal noise. Additionally, the peak at lower frequencies, near DC, is due
to the windowing impact of the DC quantity of 0.277350 at the input.

In our framework we represent values stochastically, i.e., a value of 0.25 is represented by 25% of 1 and
75% of zeros. To represent this value accurately we need to over sample, i.e., operate the 1 bit stochastic value
at a higher rate than our original value being represented. This is exactly what a modulator within a ⌃�
converter does. The ⌃�modulator e↵ectively uses pulse-density modulation, i.e., a value of 0.5 is represented
by an equal number of ones and zeros in the time domain. However, it exploits the frequency domain to
reduce the oversampling ratio (OSR). This reduction in OSR compared to conventional randomization can
significantly reduce the power consumption of the overall system.

We envision a generic stochastic computing system to look as follows: a ⌃� analog-to-digital modulator,
followed by the stochastic engine, which in turn is followed by a ⌃� digital-to-analog modulator. To ensure
that this entire setup is workable we need to ensure that no mathematical manipulation alters the frequency
properties of the signal at the final output so that we are able to use a simple ⌃� digital-to-analog modulator.
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Figure 19: Quantization noise for ⌃�

In comparison to a traditional ⌃� converter there is one unique property that needs to be presented by
any A/SD converter. When two stochastic values represent the same analog or multi-level digital value, their
stochastic representatives need to be uncorrelated. Unlike digital pseudo random generators, analog circuits
have “real noise”, therefore ⌃� modulator outputs for the same value are likely to have some variance.
However, to ensure that the correlation is small, we may be required to add additional randomness to these
converters. There have been many methods proposed over time including dithering and chaos to decorrelate
the quantization noise from the input in ⌃� converters [31,66], including random dither at the input, at the
quantizer, partial positive feedback, etc. We will exploit these techniques to develop novel A/SD and SD/A
converters that provide the correct translation including the additional decorrelation properties.

Part of the research explorations necessary to develop successful A/SD and SD/A converters include
developing low power, low area designs for the ⌃� analog-to-digital and digital-to-analog modulators, un-
derstanding the interplay between the modulators and the mathematical manipulations within the stochastic
framework and developing dithering and chaotic techniques that result in stochastic representations of same
value being su�ciently uncorrelated.

3.4 Computations with Lowered OSR, the ⌃� Paradigm

Sigma-delta converters are clearly able to generate single bit stochastic streams for analog quantities
using the full oversampling ratio (F-OSR), i.e, representing a 10 bit resolution would require 210 = 1024
time slots. However, sigma-delta converters perform noise shaping of the quantization noise where the signals
are maintained at low frequencies and the noise is pushed to high frequencies. Therefore, a 10 bit resolution
can be represented using a 2nd order sigma-delta converter with an oversampling ratio (SD-OSR) of 29, i.e.,
a reduction of 35⇥ from F-OSR (210 = 1024). The savings in oversampling ratio (F-OSR/SD-OSR) increases
with resolution requirements and with the order of the sigma-delta converter. However, the complexity of
the A/SD and SD/A process increases with order of the sigma-delta. For practical reasons, we shall assume
that the order of our implemented sigma-delta module will be limited to two. In Fig. 22 we plot the savings
in oversampling ratio (F-OSR/SD-OSR) as a function of N, the binary equivalent resolution for 1st, 2nd and
3rd order ⌃� converters (blue=1st order, red=2nd order and green=3rd order).

We will be able to exploit the reduced OSR ratio (SD-OSR) of the sigma-delta only if we are able to
perform necessary mathematical functions without destroying the noise shaping properties of the sigma-
delta. That is to say if we perform a mathematical function between two one-bit stochastic streams that
were generated using sigma-deltas the output needs to be a 1 bit stochastic stream and maintain the property
that the quantization noise remains at the high frequencies so that it can be filtered out by the ⌃� digital-to-
analog converter at the end. We propose a method to accomplish this using requantization [66]. We illustrate
this using an addition example in the next sub-section. It is important to note that in our previous digital
stochastic computing work we did not have to consider the frequency domain because we were essentially
operating on time-invariant signals (e.g., by assuming the pixel value did not change during the computation).
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streams in the ⌃� paradigm

3.4.1 Addition in the ⌃� Paradigm

This process is illustrated in Fig. 20 and Fig. 21. The two 1-bit stochastic streams are added using a 2
bit adder and the 2-bit output of this adder is requantized to a 1-bit stochastic stream using an all-digital
sigma-delta process. The requantization process uses 2 adders (2-3 bits each) and a delay block. The 1-bit
truncator looks at the MSB of the value only and does not require additional hardware.

Fig. 23 shows the results of adding two 1-bit streams using the ⌃� paradigm. X1, shown in blue is a
sinewave with a magnitude of 0.0721 full scale (FS), and a frequency of clock/384, X2, shown in red, is a
DC value 0.2774 full scale and the output, Y , shown in green, is the sum of the two. The X-axis on this
plot represents the frequency (log) and the Y-axis represents the value in dBFS. The mean value for X1

= 3.4E-5 (error due to incomplete cycles of the sine wave plus quantization and thermal noise), the mean
value for X2 is 0.2774 and the mean value for Y is 0.2774 as expected. The DC values show up as skirts of
windowing function (Blackman) at the lowest frequency of the plot. We note that the output, Y , contains
both the sinewave as well as the DC input, as expected. We note that the low frequency noise in Y is slightly
larger than in either X1 or X2. This is expected as the noise in the two steams are uncorrelated and add as
powers. We also note that the the quantization noise in Y is higher at higher frequencies. This is also not
unexpected as we are requantizing the 2-bit value (X1 +X2) to a 1-bit quantity, Y , without any additional
oversampling. This process will result in increased quantization noise.

We have illustrated the addition function using the ⌃� paradigm. Part of the proposed research is
to identify all the necessary mathematical functions that can be operated in this paradigm and propose
simple, low power realizations for each function. Additionally, we will identify design tradeo↵s and alternate
realization where appropriate.
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3.5 Binary Stochastic Number System: Exponential Reduction in Latency

In the introduction, we pointed out two major disadvantages of positional number systems compared to
a (unary) stochastic representation: (1) the encoding / decoding overhead and the complexity of operations,
and (2) poor fault tolerance, especially when most significant digits are faulty. The major issue causing the
complexity of operations stems from costly carry propagation operations to convert the results of addition
and multiplication into the canonical representation of the number. Conceptually, issues (1) and (2) are not
tightly intertwined and one could come up with alternative encodings that harness the advantages of both
unary and positional systems.

011001000#

110111011#

010001000#
000001010#

###0#
####.#
(3/9)#x#2,1##

(7/9)#x#2,2##

(2/9)#x#2,3##

(2/9)#x#2,K##

K=4#

L=9#
K=3#

1101…1100#

1001…0001#

0100…1000#

L=18#

(a)$ (b)$

###0#############
####.#############

(10/18)#x#2,1##

(5/18)#x#2,2##

(4/18)#x#2,K##

Figure 24: Binary stochastic representation of 0.43
with a resolution of 2�7 (equivalent to 128 clocks for
unary stochastic) (a) using four binary stochastic wires
results in a latency of 9, (b) using three binary stochas-
tic wires results in a latency of 18.

We propose a hybrid representation called binary
stochastic that addresses a major shortcoming of the
unary system: its poor representation compactness (lin-
ear vs. logarithmic in positional systems). As an ex-
ample, consider number N representing a real number
between 0 and 1 with a resolution of 2�7. To represent
this number, we need 7 binary digits in a positional sys-
tem and 27 = 128 bits to represent it using the unary
system. A hybrid encoding can be built using the follow-
ing encoding: N = p12�1 + p22�2 + · · · pk2�k, where k

is the number of binary stochastic digits, and 0  pi  1
are fractional digits represented using unary bit streams
with a resolution of roughly 2N�K . We can use the
short hand notation N = 0.(p1)(p2)..(pK) to represent
the same number. We will show that as K increases, the length of unary bit streams required for representing
the stochastic fractional digits decreases exponentially. We should note that binary stochastic changes the
range of the numbers to [0..(1 � 2�K)], which is a linear scaling of the numbers. To maintain the same
accuracy as a unary with 2N bits, a binary stochastic should have bit stream lengths of:

L = 2N�K
/(1� 2�K). (3)

Even though the binary stochastic system can be considered positional, given that K ⌧ N , the weight
di↵erence between the most significant fractional digit and the least significant one is exponentially smaller
than that of binary. We can tradeo↵ the level of fault tolerance vs. representation compactness by changing
K.

aKbK$1& cK&aKbK&

0&

…&aKb1&

aK$1bK$1& cK$1&aK$1bK&

0&

…&aK$1b1&

.&.&. & &&&&&.&.&.& &
& &&& &.&.&.&a1bK$1& c1&a1bK&

0&

…&a1b1&

(a)$ (b)$

Figure 25: Binary stochastic multiplication: (a) reducing 2K bits to K

bit outputs (b) the hardware neede for the reduction operation (AND
gates to generate partial product bits are not shown.

Fig. 24 shows two binary stochastic
examples with di↵erent numbers of dig-
its. Compared to unary, which requires
a latency of 128 cycles to represent the
number 0.43, the binary stochastic ex-
amples with K=3 (K=4) require 18 (9)
cycles to represent the scaled version
of the same number wih the same res-
olution (128 points within the range),
based on Eq. 3.

Since our operations are performed
on probabilities, no costly carry propa-
gation operations are required. Scaled
addition in binary stochastic translates
to K independent scaled additions on
bit streams with no carry propagation:

1

2
(X + Y ) =

1

2
[x12

�1 + x22
�2 + · · ·+ y12

�1 + y22
�2 + · · · ] = 1

2
(x1 + y1)2

�1 +
1

2
(x2 + y2)2

�2 + · · · (4)

where the terms 1/2(xi + yi) are equivalent to unary scaled addition on digits xi and yi.
Multiplication can be done using K chains of MUXes each of depth K, as shown in Fig. 25. The figures

show how the example of 0.(c1)(c2) = 0.(a1)(a2) ⇥ 0.(b1)(b2) can be calculated. When the first level of
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partial products are computed, we get four fractional binary stochastic digits as shown in the first row of
the table in the figure. Then a series of reduction operations can be used to pack digits into the two most
significant digits to fill the values of c1 and c2. Part (b) of the figure shows one hardware realization of
the multiplication. The critical path is linear in terms of K (as opposed to K

2 in a conventional binary
multiplication).

As discussed in Section 2, our previous published work relied on multiplexers to perform scaled additions,
which drop half of the incoming bits and only route the other half to the output. Even though such waste of
bits would be acceptable in time invariant values, it would negatively a↵ect the resolution and the range of
frequencies of a stochastic bit stream representing a time-varying signal. Our plan is to investigate methods
that perform binary stochastic multiplication, possibly with delay elements and accumulators, to overcome
this problem (Fig. 20 showed an embodiment of an adder that does this). We have also performed preliminary
studies on applying the binary stochastic encoding idea to more complex computations such as Bernstein
Polynomials [48]. We have successfully demonstrated exponential reduction in bit stream length with a linear
increase in area [81].

Another challenging research question is how to generate time varying independent weighted random
fractional digits Xi that represent an input value X. Unlike a binary system where a value has a canonical
representation, there are many realizations for the same value X with the K fractional digits Xi (e.g.,
0.43 = 0.(0.6)(0.52) = 0.(0.41)(0.9)). Even though one can use trivial cases such as X1 = X2, but to realize
the most potential binary stochastic can o↵er in terms of random fluctuations and fault tolerance, we have
to study the general case. Our e↵orts in this regard will be closely coupled to those in Sec. 3.3, A/SD
interfacing.

4 Broader Impact

In a debate with an alchemist in 1628, the great French mathematician René Descartes denied the
claim that probabilities are as good as certainties in science. Ever since, there has been a lingering stigma
associated with estimations and approximations. Those who can, calculate things exactly. Those who
can’t, simulate and guess. Of course, in many disciplines of science and engineering, probabilistic analysis
has become indispensable. However, it is generally applied as a tool for characterizing uncertainty: one
postulates a definite model and then a�xes uncertainties and error margins. In the physical and biological
sciences, statistical analysis of data is pervasive. However, such analysis generally is applied as a tool for
inference: given noisy experimental data, one attempts to extract information that is beyond the reach of
direct measurements.

This project advocates stochastic methodologies for design. An important goal is to incorporate this
viewpoint into the teaching curriculum in electrical and computer computer engineering. Starting with
our undergraduate classes – computer engineering, logic design, microcontrollers, and electronics – to our
graduate-level classes – VLSI CAD, architecture, analog, and “circuits and biology” – we will teach the
students basic probability and develop stochastic concepts such as fault-tolerance, redundancy, and error-
correction. Specifically, through these courses, we will we develop the broad theme of computing reliably
with unreliable components and computing in terms of statistical distributions.

4.1 Minority Involvement Plan

The PIs will work with the University of Minnesotas College of Science and Engineering Diversity and
Outreach program to involve underrepresented students in research. This program manages the NSF-funded
North Star STEM Alliance–Minnesotas Louis Stokes Alliance for Minority Participation (LSAMP). One of
the core principles of the Diversity and Outreach program is that Mentoring and introduction of research
opportunities early in the undergraduate career is the best practice for retention. Through participation in
the North Star programs, the students will present their research to North Star fellows to demonstrate their
research. They can choose from a selection of outreach events that are provided by the North Star program
including a Kicko↵ Day at the beginning of each year and a spring symposium in the spring semester to
showcase research opportunities at the university. Each student will participate in one of these events during
their fellowship. The undergraduate students attending these presentations are encouraged by North Star
program to seek research positions in labs. North Star also supplies funding for underrepresented students
to attend conferences when mentored by a graduate student to increase the exposure of the students to the
research community beyond the university’s laboratories.
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4.2 Undergraduate Involvement in Research

The University of Minnesota o↵ers many research opportunities for undergraduate research. Undergrad-
uate research is supported by the university through the Undergraduate Research Opportunity Program.
This is a competitive program that requires the students to write a proposal which gets reviewed and scored.
The UROP program funds approximately 80% of the applications providing the students with $1400 stipend
and $300 for lab supplies. These students generally are mentored by a graduate student in the lab. This pro-
vides graduate students the opportunity to learn mentoring skills and to develop interest in their field. The
undergraduates can present their research at the end of the year in an undergraduate research symposium.

4.3 K-12 Outreach Plan

The College of Science Engineering (CSE) o↵ers a summer high school student outreach program, Ex-
ploring Careers in Engineering and Physical Science (ECEPS). This program o↵ers students a handson
introduction to engineering, science and math opportunities on the University of Minnesota Twin Cities
campus by providing the students tours, along with short projects, in di↵erent labs around the campus.
This program is designed to appeal to and reach both girls and underrepresented minorities with an interest
in the STEM disciplines. In particular, two of the four possible one-week sessions are devoted to girls only.

5 Results of Prior NSF Support (One Relevant Grant per PI)

Grant CCF-1241987: “Digital Yet Deliberately Random – Synthesizing Logical Computation on Stochas-
tic Bit Streams”; $299,999; 5/2012 – 4/2014; PIs: Riedel, Bazargan, Harjani, Lilja. Intellectual Merit:
The concept of Stochastic Computing with state machines to implement combinational logic was introduced.
It can significantly reduce hardware cost and allow for trade-o↵s between accuracy and resource usage.
Broader Impact: The stochastic synthesis project has resulted in 8 conference papers [39,40,45–47,63–65]
and three journal papers [43, 44,77]. Currently two PhD students are supported by this grant.

Grant CCF-0541162: “MicroStAT: A Microarchitect’s Statistically-based Analysis Toolkit” $210,000;
6/2006 – 5/2010, PIs Lilja and Resit Sendag. Intellectual merit: The primary intellectual merit of this
project was the development of new statistically-based simulation tools for rapidly searching a microprocessor
design space. Specific results included a detailed study of the speed and accuracy trade-o↵s of microarchitec-
tural simulations [38,79], the development of a new metric for determining program phase transitions [37], an
evaluation of resampling techniques to compute confidence intervals for harmonic mean-based performance
metrics [52], and new approaches for generating and evaluating benchmark subsets [16, 72, 78]. Broader
impacts: This project developed statistical techniques to assist with database parameter tuning [19, 20].
Also it developed a new complementary branch predictor that achieves high prediction accuracies with low
area and power requirements [68]. It supporte research of one Ph.D. student (J. Yi), while providing research
opportunities for several others.

Grant 0845650, CAREER Award: “Computing with Things Small, Wet, and Random – Design Au-
tomation for Digital Computation with Nanoscale Technologies and Biological Processes”; $500,000; 9/2009
–8/2014; PI Riedel. Intellectual merit: This award have established novel and transformative approaches
to design automation guided by physical views of computation. A broad theme is the application of ex-
pertise from an established field, digital circuit design, to new fields, such as nanotechnology and synthetic
biology. Broader impacts: The circuit-design community has unique expertise that can be brought to
bear on the challenging computational problems encountered in synthetic biology. Applications in biology,
in turn, o↵er a wealth of interesting problems in modeling and algorithmic development. With its cross-
disciplinary emphasis, this project will bring new perspectives to both fields. The results have been published
in [3–10,35,54,55,58,59,61,69–71].

Grant ECCS-0925312: “A Sub-2V Printed Flexible Organic RFID System Design for Long Range Com-
munication”; $350,000; 10/2009 - 9/2013; PI Frisbie and Chris Kim. Intellectual Merit: Strategies to
make low voltage, printed organic transistors and prototype circuits were demonstrated. Also, an organic
process design kit was created to facilitate organic circuit design. Broader Impact: Two graduate students
and one postdoctoral fellow were supported and the award resulted in five publications co-authored with
Frisbie [11, 12, 25, 26, 80] with one additional paper currently under review. The organic process design kit
was made available to the public online (http://opdk.umn.edu/). Reference [80] received press coverage in
the EE Times and MIT Technology Reivew.
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