
Parallel Pairwise Operations on Data
Stored in DNA: Sorting, Shifting and

Searching
Tonglin Chen, Arnav Solanki, Marc Riedel

CS 101: Sorting, Searching, Shifting

Sorting
Applications: string processing, genomics, combinatorics, …
Binary data: majority operations, thresholding operations in
neural networks.

Searching
Applications: genomics, data mining, …
Binary data: pattern matching, ...

Shifting
Applications: image processing, …
Binary data: multiplying/dividing, scaling,
activation functions in neural networks.

Agenda

➢ Background
○ DNA Storage via Nicks.
○ “In-Memory” Computation: SIMD operations.

➢ Technical Details
○ Encoding binary data.
○ Transforming bits, pairwise, in parallel.

➢ Applications
○ Parallel Binary Sorting
○ Parallel Searching
○ Parallel Shifting (omitted)

➢ Summary

Nucleotides:

DNA: string of nucleotides

Data Storage: Conventional Approach

Our storage modality: “Nicks”

PfAgo

5

Simplest form: a cut represents a 1;
absence of a cut a 0.

Gene editing with CRISPR/Cas9 or PfAgo

Our storage modality: “Nicks”

PfAgo

6

Gene editing with CRISPR/Cas9 or PfAgo

Encode data by a pattern of cuts, followed by heating.

1 2 3 4 5 1 2 4 53Heat Up

0

1

0

0

0

1

0

0

1

1

0

1

0

1

1

0

1

1

0

0

1

0

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

1

0

1

1

0

0

1

0

0

1

• Single-instruction applied to multiple data (SIMD).
• A single common “instruction” can initiate a

sequence of computation on many (currently 10s, in
the future millions) of “registers”.

• Instruction is a single synthesized strand. Registers
are copies of identical DNA nicked to encode
different values (so a vector or a matrix.)

Parallelism with Nick-Based
Displacement

0

1

0

0

0

1

0

0

1

1

0

1

0

1

1

0

1

1

0

0

1

0

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

1

0

1

1

0

0

1

0

0

1

Two levels of parallelism:

1. Bit-level Parallelism: instructions applied to all
bits in array at once.

2. Data-level Parallelism: same instructions can be
applied to different data in different arrays at
once.

Parallelism with Nick-Based
Displacement

0

0

0

0

0

0

1

1

0

0

0

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

0

0

0

1

1

1

1

1

0

0

0

0

1

1

1

1

Two levels of parallelism:

1. Bit-level Parallelism: instructions applied to all
bits in array at once.

2. Data-level Parallelism: same instructions can be
applied to different data in different arrays at
once.

Wang, Boya, Cameron Chalk, and David Soloveichik. "SIMD|| DNA: single instruction, multiple data computation with DNA strand
displacement cascades." International Conference on DNA Computing and Molecular Programming. Springer, Cham, 2019.

Parallelism with Nick-Based
Displacement

Encoding
➔ How do we represent bits in DNA cells?

➔ Example: register with 5 cells (1,1,0,0,1)

Example: From (1,0) to (0,1)
Original: we have pair (1, 0) here.

Example: From (1,0) to (0,1)
Step 1: Add strand S1 that covers domains 6 7 1 2 3. Strands (6 7) and (2 3) are
displaced

Instruction

Example: From (1,0) to (0,1)
Step 1: Add strand S1 that covers domains 6 7 1 2 3. Strands (6 7) and (2 3) are
displaced

Waste

Example: From (1,0) to (0,1)
Step 2: Extract S1 with S1* (complementary strand). S1 and S1* forms a waste
complex.

Instruction

Example: From (1,0) to (0,1)
Step 2: Extract S1 with S1* (complementary strand). S1 and S1* forms a waste
complex.

Waste

Example: From (1,0) to (0,1)
Step 3: “protect” second cell (in this case bit 0). Then we can focus on rewriting
first cell.

Instruction

Example: From (1,0) to (0,1)
Step 4: Cover domains 2-7.

Instruction

Example: From (1,0) to (0,1)
Step 4: Cover domains 2-7.

Waste

Example: From (1,0) to (0,1)
Step 5: remove cover strand.

Instruction

Example: From (1,0) to (0,1)
Step 5: remove cover strand.

Waste

Example: From (1,0) to (0,1)
Step 6: write bit 0.

Instruction

Example: From (1,0) to (0,1)
Step 6: write bit 0.

Waste

Example: From (1,0) to (0,1)
Step 7: release the protection on the second cell.

Instruction

Example: From (1,0) to (0,1)
Step 7: release the protection on second cell.

Waste

Example: From (1,0) to (0,1)
Step 8: cover domains 2-7.

Instruction

Example: From (1,0) to (0,1)
Step 8: cover domains 2-7.

Waste

Example: From (1,0) to (0,1)
Step 9: release the cover.

Instruction

Example: From (1,0) to (0,1)
Step 9: release the cover

Waste

Example: From (1,0) to (0,1)
Step 10: write bit 1.

Instruction

Example: From (1,0) to (0,1)
Step 10: write bit 1 .

Waste

Pairwise Parallel Operations
➔ Common instructions that operate on a specific pair of bits in a register.

◆ 4 possible pairs - (0,0), (0,1), (1,0), and (1,1).
◆ Example 1 - identify all cells containing 0 that are followed by cells containing 1 -

identify (0,1)
◆ Example 2 - convert all pairs (1,0) into (1,1)
◆ Must be careful about using random access memory -- are the domain sequences

unique or not? Unique sequence allows for specific pair targeting, but requires more
instruction strands

Binary Bubble Sorting
➔ One of the most basic computing tasks: rearrange a list of items into

ascending/descending order.
➔ Serial sorting algorithms take approximately steps to sort n items.
➔ Parallel sorting algorithms take approximately n parallel steps to sort n

items.

0 1 1 0 0 1 0 1 0 1 1 0 1 0 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Binary Bubble Sorting
Repeat n times

For every pair of bits (overlapping)

If pair is (1, 0), swap to (0, 1)

swap

1 0

0 1

Binary Bubble Sorting

0 1 1 0 0 1 0 1 0 1 1 0 1 0 1

Starting list

Binary Bubble Sorting

0 1 1 0 0 1 0 1 0 1 1 0 1 0 1

Locate all (1,0) pairs

Binary Bubble Sorting

0 1 0 1 0 0 1 0 1 1 0 1 0 1 1

Swap to (0,1) pairs

Binary Bubble Sorting

0 1 0 1 0 0 1 0 1 1 0 1 0 1 1

Locate all (1,0) pairs

Binary Bubble Sorting

0 0 1 0 1 0 0 1 1 0 1 0 1 1 1

Swap to (0,1) pairs

Binary Bubble Sorting

0 0 1 0 1 0 0 1 1 0 1 0 1 1 1

Locate all (1,0) pairs

Binary Bubble Sorting

0 0 0 1 0 1 0 1 0 1 0 1 1 1 1

Swap to (0,1) pairs

Binary Bubble Sorting

0 0 0 1 0 1 0 1 0 1 0 1 1 1 1

Locate all (1,0) pairs

Binary Bubble Sorting

0 0 0 0 1 0 1 0 1 0 1 1 1 1 1

Swap to (0,1) pairs

Binary Bubble Sorting

0 0 0 0 1 0 1 0 1 0 1 1 1 1 1

Locate all (1,0) pairs

Binary Bubble Sorting

0 0 0 0 0 1 0 1 0 1 1 1 1 1 1

Swap to (0,1) pairs

Binary Bubble Sorting

0 0 0 0 0 1 0 1 0 1 1 1 1 1 1

Locate all (1,0) pairs

Binary Bubble Sorting

0 0 0 0 0 0 1 0 1 1 1 1 1 1 1

Swap to (0,1) pairs

Binary Bubble Sorting

0 0 0 0 0 0 1 0 1 1 1 1 1 1 1

Locate all (1,0) pairs

Binary Bubble Sorting

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Swap to (0,1) pairs, fully sorted

Other Pairwise operations - (1,1) and (0,0)

Other Pairwise operations - (1,1) and (0,0)

Other Pairwise operations - (1,1) and (0,0)

Other Pairwise operations - (1,1) and (0,0)

Other Pairwise operations - (1,1) and (0,0)

Other Pairwise operations - (1,1) and (0,0)

Other Pairwise operations - (1,1) and (0,0)

Other Pairwise operations - (0,1)

Parallel Searching - Example 1
Query = 1101, String = 10101010110110100011110101000100

First level: a = 00, b = 01, c = 10, d = 11

Parallel Searching - Example 1
Query = 1101, String = 10101010110110100011110101000100

First level: a = 00, b = 01, c = 10, d = 11
Second level: e = cc, f = db, g = ad, h = ba

Parallel Searching - Example 1
Query = 1101, String = 10101010110110100011110101000100

First level: a = 00, b = 01, c = 10, d = 11
Second level: e = cc, f = db, g = ad, h = ba
Note that query = 1101 = db = f.

Parallel Searching - Example 2
Substring does not always start on multiples of query length!

Query = 1011, String = 10101010110110100011110101000100
Solution: Create copies, each with 0 to N-1 bits truncated at the start

First level: a = 00, b = 01, c = 10, d = 11

Parallel Searching - Example 2
Substring does not always start on multiples of query length!

Query = 1011, String = 10101010110110100011110101000100
Solution: Create copies, each with 0 to N-1 bits truncated at the start

First level: a = 00, b = 01, c = 10, d = 11
Second level: e = cc, f = db, g = ad, h = ba, i = cd, j = bc, k = ca, l = dd, m = bb, n = ab

Parallel Searching - Example 2
Substring does not always start on multiples of query length!

Query = 1011, String = 10101010110110100011110101000100
Solution: Create copies, each with 0 to N-1 bits truncated at the start

First level: a = 00, b = 01, c = 10, d = 11
Second level: e = cc, f = db, g = ad, h = ba, i = cd, j = bc, k = ca, l = dd, m = bb, n = ab
Found the query with i

Parallel Searching - Example in DNA

Complexity of Search

➔ Number of levels: O(logN)
➔ Number of sequential steps: O(N)

◆ At level i:
● at most pairs of symbols
● at most distinct pairs

◆ first two levels requires fewer steps

N: length of query string.
M: length data string.

Nick-based In-Memory Computing
Objectives:
• Leverage the high-density of storage with

effective computation.
• Perform “computation in memory” to reduce

I/O operations.
• Integrate storage with data-intensive

algorithms, such as machine learning.

Motivation:

• Techniques such as data aggregation and could
reduce the I/O requirements.

• The paradigm might be most effective for
applications that generate large volumes of
static data.

• Perform SQL-like, Database-like queries on
large volumes of data.

200
Petabytes

from Physics
Experiment

Query: Does
Pattern Exist?

In-Memory
Computation: Matrix
Multiplies, Sorting,

Thresholding

Answer: Yes or No

A schematic illustration of the in-memory computing algorithm.
Neural Computations are performed directly on data stored in

memory. Credit: IBM Research

“Random dimension”

Multidimensional Data Storage with DNA

66

Concentration
dimension

Sequence dimension

Topological
dimension

Acknowledgement

Q & A

