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Abstract—Maintaining the reliability of integrated circuits as
transistor sizes continue to shrink to nanoscale dimensions is
a significant, looming challenge for the industry. Computation
on stochastic bit streams, which could replace conventional
deterministic computation based on a binary radix, allows similar
computation to be performed more reliably and often with
less hardware area. Prior work discussed a variety of specific
stochastic computational elements (SCEs) for applications such
as artificial neural networks and control systems. Recently, very
promising new SCEs have been developed based on finite-state
machines (FSMs). In this paper, we introduce new SCEs based
on FSMs for the task of digital image processing. We present five
digital image processing algorithms as case studies of practical
applications of the technique. We compare the error tolerance,
hardware area, and latency of stochastic implementations to that
of conventional deterministic implementations using binary radix
encoding. We also provide a rigorous analysis of a particular
function, the stochastic linear gain function, which had only been
validated experimentally in prior work.

Index Terms—Fault tolerance, stochastic computing, finite state
machine, digital image processing.

I. INTRODUCTION

Future device technologies, such as nanoscale CMOS tran-
sistors, are expected to become ever more sensitive to system
and environmental noise and to process, voltage, and ther-
mal variations [1], [2]. Conventional design methodologies
typically over-design systems to ensure error-free results. For
example, at the circuit level, transistor sizes and the operational
voltage can be increased in critical circuits to better tolerate
the impacts of noise. At the architecture level, fault tolerant
techniques, such as triple modular redundancy (TMR), can
further enhance system reliability. The trade-off for the fault
tolerance is typically more hardware resources. As device
scaling continues, this overdesign methodology will consume
even more hardware resources, which can limit the advantages
of further scaling.

In the paradigm of computation on stochastic bit streams,
logical computations are performed on values encoded in
randomly streaming bits [3], [4], [S, [6], [7], [8], [9]. The
technique can gracefully tolerate high levels of errors. Fur-
thermore, complex operations can often be performed with
remarkably simple hardware. The images in Fig. [I] illus-
trate the fault tolerance capability of this technique for the
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kernel density estimation (KDE)-based image segmentation
algorithm. A stochastic implementation is compared to both a
conventional deterministic implementation and a TMR-based
implementation [[10]. As the soft error injection rate increases,
the output of the conventional deterministic implementation
rapidly degrades until the image is no longer recognizable. The
TMR-based implementation, shown in the second row of the
figure, can tolerate higher soft error rates, although its output
also degrades until the image is unrecognizable. The last row,
however, shows that the implementation using stochastic bit
streams is able to produce the correct output even at higher
error rates.

The concept of computation on stochastic bit streams was
first introduced in 1960s by Gaines [3]. He discussed basic
stochastic computational elements (SCEs) such as multiplica-
tion and (scaled) addition. These SCEs can be implemented
using very simple combinational logic. For example, mul-
tiplication can be implemented using an AND gate, and
(scaled) addition can be implemented using a multiplexer.
Subsequently, researchers developed SCEs using sequential
logic to implement more sophisticated operations such as
division, the exponentiation function, and the tanh function [4].
These SCEs were used in applications such as artificial neural
networks (ANNSs), control systems, and communication sys-
tems. For example, Brown and Card implemented the soft
competitive learning algorithm Zhang et al. [11]] implemented
a proportional-integral (PI) controller for an induction motor
drive. Low-density parity-check (LDPC) decoders used in
communication systems have been implemented stochasti-
cally [12], [13], [14], [150, [16l], [17]. Recently, novel SCEs
have been proposed based on finite-state machines (FSMs)
for functions such as absolute value, exponentiation on an
absolute value, comparison, and a two-parameter stochastic
linear gain [18]].

In this paper, we discuss the application of such SCEs for
specific digital image processing algorithms as case studies
for the technique. The algorithms are: image edge detection,
median filter-based noise reduction, image contrast stretching,
frame difference-based image segmentation, and KDE-based
image segmentation. We analyze the error tolerate of the
technique and compare it to conventional techniques based
on binary radix encoding. We also analyze and compare
the hardware cost, latency and energy consumption. Another
contribution of the paper is a rigorous analysis of a particular
function, the stochastic linear gain function proposed by
Brown and Card [4]: it had only been validated experimentally
in prior work.
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A comparison of the fault tolerance capabilities of different hardware implementations for the KDE-based image segmentation algorithm. The images

in the top row are generated by a conventional deterministic implementation. The images in the second row are generated by the conventional implementation
with a TMR-based approach. The images in the bottom row are generated using a stochastic implementation [10]. Soft errors are injected at a rate of (a) 0%;

(b) 1%; (c) 2%; (d) 5%; (e) 10%; (f) 15%; (g) 30%.

The remainder of this paper is organized as follows. Sec-
tion M introduces the SCEs. Section demonstrates the
stochastic implementations of the five digital image processing
algorithms. Section describes the experimental methodol-
ogy and measurement results. In that section, we also discuss
the solution to the latency issue and analyze why the stochastic
computing technique is more fault-tolerant. Conclusions are
drawn in Section The proof of the stochastic linear gain
function can be found in the appendix.

II. STOCHASTIC COMPUTATIONAL ELEMENTS

Before we introduce the SCEs, it is necessary to explain
some basic concepts in stochastic computing, including coding
formats and conversion approaches. In stochastic computing,
computation in the deterministic Boolean domain is trans-
formed into probabilistic computation in the real domain [3],
[4]. Gaines [3] proposed both a unipolar coding format and
a bipolar coding format for stochastic computing. These two
coding formats are the same in essence, and can coexist in a
single system. The trade-off between these two coding formats
is that the bipolar format can deal with negative numbers
directly, while given the same bit stream length L, the precision
of the unipolar format is twice that of the bipolar format.

In the unipolar coding format, a real number x in the unit
interval (i.e., 0 < x < 1) corresponds to a bit stream X. The
probability that each bit in the stream is a one is P(X = 1) =
z. For example, the value x = 0.3 would be represented by
a random stream of bits such as 0100010100, where 30% of
the bits are “1” and the remainder are “0.”

In the bipolar coding format, the range of a real number x
is extended to —1 < o < 1, however, the probability that each
bit in the stream is a one is P(X = 1) = L. For example,
the same random stream of bits used above, 0100010100, will
represent * = —0.4 in the bipolar coding format.

Some interface circuits, such as the digital to stochastic
converter proposed by Brown and Card [4] and the randomizer
unit proposed by Qian et al. [19], can be used to convert a
digital value x to a stochastic bit stream X. A counter, which

counts the number of “1” bits in the stochastic bit stream,
can be used to convert the stochastic bit stream back to the
corresponding digital value [4]], [19].

With stochastic computing, some basic arithmetic operations
can be very simply implemented using combinational logic,
such as multiplication, scaled addition, and scaled subtraction.
More complex arithmetic operations can be implemented using
sequential logic, such as the exponentiation and tanh functions.
We will introduce each of these SCEs as follows.

A. Multiplication

Multiplication can be implemented using an AND gate
for the unipolar coding format or an XNOR gate for the
bipolar coding format, which had been explained by Brown
and Card [4].

B. Scaled Addition and Subtraction

In stochastic computing, we cannot compute general addi-
tion or subtraction, because these operations can result a value
greater than 1 or less than 0, which cannot be represented as
a probability value. Instead, we perform scaled addition and
subtraction. As shown in Fig. we can implement scaled
addition using a multiplexer (MUX) for both the unipolar and
the bipolar coding formats, and scaled subtraction using a
NOT gate and a MUX. In Fig. 2(a), with the unipolar coding
format, the values represented by the stream A, B, S, and C'
are a = P(A=1),b=PB =1), s = P(S =1), and
¢ = P(C =1). Based on the logic function of the MUX,

c=P(C=1)
P(S=1land A=1)+P(S=0and B=1)
P(S=1)-P(A=1)+P(S=0)-P(B=1)

s-a+(1—s)-0.

Thus, with the unipolar coding format, the computation per-
formed by a MUX is the scaled addition of the two inputs a
and b, with a scaling factor of s for a and 1 — s for b.
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(a) Scaled Addition (Unipolar coding)

Fig. 2.

(b) Scaled Addition (Bipolar coding)

(c) Scaled Subtraction (Bipolar coding)

Scaled addition and subtraction. (a) Scaled addition with the unipolar coding. Here the inputs are a = 1/8 and b = 5/8. The scaling factor is

s = 2/8. The output is 2/8 x 1/8 + (1 — 2/8) x 5/8 = 4/8, as expected. (b) Scaled addition with the bipolar coding. Here the inputs are a = —6/8 and

b = 2/8. The scaling factor is s = 2/8. The output is 2/8 x (—6/8) 4+ (1 —
Here the inputs are a = —4/8 and b = 0. The scaling factor is s = 4/8. The

In Fig. Ekb), the values of the stochastic bit streams A, B,
and C' are encoded with the bipolar coding format. However,
the value of the stochastic bit stream S is encoded with the
unipolar coding format. Thus, we have a = 2P(A =1) — 1,
b=2P(B=1)—1,and ¢ =2P(C = 1) — 1. Note that we
still have s = P(S = 1). Based on the logic function of the
MUX, we have

P(C=1)=P(S=1)-PA=1)
+P(S=0)-P(B=1),
Le- c+1 a+1 b+1

Thus, we still have c=s-a+ (1 —s) - b.

The scaled subtraction can be implemented with a MUX and
a NOT gate, as shown in Fig. [JJc). However, it only works for
bipolar coding because subtraction can result negative output
value and the unipolar coding format cannot represent negative
values. Similar to the case of scaled addition with the bipolar
coding, the stochastic bit streams A, B, and C' use the bipolar
coding format and the stochastic bit stream .S uses the unipolar
coding format. Based on the logic function of the circuit,

P(C=1)=P(S=1)-P(A=1)
+P(S=0)-P(B=0),

Le- c+1 a+1 1-b
5 =5 5 —l—(l—s)~T.

Thus, we have ¢ = s-a—(1—s)-b. It can be seen that, with the
bipolar coding format, the computation performed by a MUX
and a NOT gate is the scaled subtraction with a scaling factor
of s for @ and 1 — s for b.

C. Stochastic Exponentiation Function

The stochastic exponentiation function was developed by
Brown and Card [4]]. The state transition diagram of the FSM
implementing this function is shown in Fig. [3] It has totally N
states, which are Sy, S1, - -+, and Sy_1. X is the input of this
state machine. The output Y of this state machine only depends
on the current state S; 0 < i< N -1 Ifi<N-G-1
(G <K N),Y =1;else Y = 0. Assume that the input X is
a Bernoulli sequence. Define the probability that each bit in
the input stream X is one to be Px, and the probability that

2/8) x 2/8 = 0, as expected. (c) Scaled subtraction with the bipolar coding.
output is 4/8 x (—4/8) + (1 — 4/8) x 0 = —2/8, as expected.

each bit in the corresponding output stream Y is one to be Py-.
Define x to be the bipolar coding of the bit stream X, and y
to be the unipolar coding of the bit stream Y, i.e.,

QJ‘ZZPX_L y:Py
A A
X, X X NK N K e X, N K,
s ) | | I ’
X X X X X? e X’ X
| Y=1 1 I Y=0 1
Fig. 3. State transition diagram of the FSM implementing the stochastic

exponentiation function.

Brown and Card proposed that,
672G1:,

L,

0<ax <1,

1
1<z <0. M

Yy =
The corresponding proof can be found in [18].

D. Stochastic Exponentiation on an Absolute Value

X’
N
XX X' X X X
Y=0 Y=1

Fig. 4. State transition diagram of the FSM implementing the stochastic
exponentiation on an absolute value.

Based on the stochastic exponentiation function proposed by
Brown and Card [4], Li and Lilja [10] developed a stochastic
exponentiation function on an absolute value, i.e.,

where x is the bipolar coding of the bit stream X, and y is
the unipolar coding of the bit stream Y. The state transition
diagram of the FSM is shown in Fig. @] Note that G < N.
The proof of this function can be found in [10].

y=e

E. Stochastic Tanh Function

The stochastic tanh function was also developed by Brown
and Card [4]. The state transition diagram of the FSM imple-
menting this function is shown in Fig. ] If = and y are the
bipolar coding of the bit streams X and Y, respectively, i.e.,
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r =2Px —1 and y = 2Py — 1, Brown and Card proposed
that the relationship between x and y was,

N N
e2? —e 2"
Y=~ N 3)
ez? +e 27
X X
- @ ...... X X X e X@X A
Dy — G — \——>
Or0 D0 en
,_‘,' X X X T X X
I Y=0 1 I Y=1 1

Fig. 5. State transition diagram of the FSM implementing the stochastic tanh
function.

The corresponding proof can be found in [18]. In addition,
Li and Lilja [18] proposed to use this function to implement
a stochastic comparator. Indeed, the stochastic tanh function
approximates a threshold function if N approaches infinity,

0, 0<Pyx<0.5,

0.5, Px =0.5,
1, 0.5 < Px <1.

lim Py =
N—oc0

Stochastic
tanh function

'
'
]

\d

S (P,=0.5)

Fig. 6. The stochastic comparator.

The stochastic comparator is built based on the stochastic
tanh function and the scaled subtraction as shown in Fig. [
Ps = 0.5 in the selection bit S of the MUX denotes a
stochastic bit stream in which half of its bits are ones. Note
that the input of the stochastic tanh function is the output of
the scaled subtraction. Based on this relationship, the function
of the circuit shown in Fig. [f] is:

if (Pa < Pp) then Py = 0;else Py ~ 1,

where P4, Pp, and Py are the probabilities of ones in the
stochastic bit streams A, B, and Y, respectively.

FE. Stochastic Linear Gain Function

% G g X

| ry‘K\_} X
()
=

Fig. 7. State transition diagram of the FSM implementing the stochastic
linear gain function.

Brown and Card also introduced another FSM-based SCE
to compute the linear gain function [4]. The state transition
diagram of this FSM is shown in Fig.[/| Note that this FSM has
two inputs, X and K. The input K, which is also a stochastic
bit stream, is used to control the linear gain. Brown and Card
only empirically demonstrated that the configuration in Fig.
performs the linear gain function stochastically. However, if
we define Py as the probability that each bit in the stream
K is one, the relationship between Py and the value of the
linear gain was not provided in their previous work. Li and
Lilja [18] showed that (without proof) the configuration in
Fig. [/] performs the following function,

0, 0< Px < {5,
— ! +Pg _ _Pk _Pk _1
PY— 1— Py PX 1— Py 1+ P SPX S 1+ P’ (4)
1
L e SPx sl

In this paper, we give the corresponding proof in the appendix.
G. Two-Parameter Stochastic Linear Gain Function

The original stochastic
inear gain function.
'

S (Ps=0.5)

Fig. 8. A two-parameter stochastic linear gain function.

Based on the stochastic linear gain function proposed by
Brown and Card [4], Li and Lilja [18] developed a two-
parameter linear gain function, which can control both the

slope and the position of the linear gain. The circuit is shown
in Fig. [§ If we define

1— Pg
qi mam{ 3 C 1+PK},

1- Pk
r = ‘ ]-7 P, ;
gr = min{ C+1+PK}

where P and Pk are the probabilities of ones in the stochastic
bit streams C' and K, the circuit in Fig. [§] performs the
following function,

0, 0< Px <y,
Py =q% 15 (Px—Po)+3, @< Px<g,
17 gr<PX§1,

where Py and Py are the probabilities of ones in the stochas-
tic bit streams X and Y. In Fig. [§] note that the input of
the original stochastic linear gain function is the output of the
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scaled subtraction. Thus, the above equation can be proved
based on this relationship. It can be seen that the center of
this two-parameter stochastic linear gain function is moved to
Pc. However, the new gain changes to one half of the original
gain: in the original stochastic linear gain function, the gain

i 1+Pg . ihie 1 14+Pk
is {755 in the new one, the gain is 5 - ;5.

H. Stochastic Absolute Value Function

Li and Lilja [[18] also developed a stochastic absolute value
function. The state transition diagram is shown in Fig. [0 The
output Y of this state machine is only determined by the
current state S; (0 < ¢ < N—1). If 0 < i < N/2 and 4
is even, or N/2 < i < N —1and i is odd, Y = 1; else
Y = 0. The approximate function is,

y = |zl (5)

where z and y are the bipolar coding of Px and Py . The
proof of this function can be found in Li and Lilja [18].

OxOx

Y=1

Fig. 9. State transition diagram of the FSM implementing the stochastic
absolute value function.

III. STOCHASTIC IMPLEMENTATIONS OF IMAGE
PROCESSING ALGORITHMS

In this section, we use five digital image processing algo-
rithms as case studies to demonstrate how to apply the SCEs
introduced in the previous section in practical applications.
These algorithms are image edge detection, median filter-based
noise reduction, image contrast stretching, frame difference-
based image segmentation, and KDE-based image segmenta-
tion [20], [21]. We use a 16-state finite-state machine (FSM)
to compute the absolute value, and 32-state FSMs to compute
the tanh function, the exponentiation function, and the linear
gain function in all the five algorithms.

A. Edge Detection

Classical methods of edge detection involve convolving the
image with an operator (a 2-D filter), which is constructed to
be sensitive to large gradients in the image while returning
values of zero in uniform regions [20]. There are a large
number of edge detection operators available, each designed to
be sensitive to certain types of edges. Most of these operators
can be efficiently implemented by the SCEs introduced in this
paper. Here we consider only Robert’s cross operator as shown
in Fig. [I0] as an example [20].

This operator consists of a pair of 2x2 convolution kernels.
One kernel is simply the other rotated by 90°. An approximate
magnitude is computed using: G = |G x| + |Gy|, i.e.,

1

sij = 5(rig = rivrgral + lrigen = rivagl),

where 7; ; is the pixel value at location (4, j) of the original
image and s;; is the pixel value at location (4,j) of the

+1| 0 0 |+1

0|-1 1|0
Gy Gy

Fig. 10. Robert’s cross operator for edge detection.

processed image. Note that the coefficient % is used to scale
34,5 to [0, 255], which is the range of the grayscale pixel value.
The conventional implementation of this algorithm is shown

in Fig. [TT](a).

N ey Pty Tije Prij  Prigja Prig  Prija
I Subtractor | I Subtractor |
[ absixi | [ absixi |

(b) Stochastic Implementation

(a) Conventional Implementation

Fig. 11. The conventional implementation and the stochastic implementation
of the Robert’s cross operator based edge detection.

The stochastic implementation of this algorithm is shown
in Fig. [[T[b), in which P, ; is the probability of ones in the
stochastic bit stream which is converted from r; ;, i.e., PTw =
Ti,j
seg-Soare P, ., P .., ,and P, . . Suppose that under
the bipolar encoding, the values represented by the stochastic
bit streams Py, ., Pr, > Pri 05 Prioyy 40> and Py, o are ay,
and as; ;> respectively. Then, based

Ariprg> Orijprs Origajprs
on the circuit, we have

a’si,j = 7(|a’7"i,j - a‘Ti+1,j+1| + |a’Ti,j+1 - a‘Ti+1,j D
4

= 2P;,, —land a,,;, = 2P, — 1 (a,

éi,j
are defined in the same way), we have

Because as, | i1

Arijr1s Arigq i

1 1

Ps,;,j = 4 (|P7“7:‘j - Pri+1,j+1’ + |P?”7i,.7‘+1 - Pri+1,.7‘ |) + 9
_ Sig 1
512 2

Thus, by counting the number of ones in the output bit stream,
we can convert it back to s; ;.

B. Noise Reduction Based on The Median Filter

The median filter replaces each pixel with the median of
neighboring pixels. It is quite popular because, for certain
types of random noise (such as salt-and-pepper noise), it pro-
vides excellent noise-reduction capabilities, with considerably
less blurring than the linear smoothing filters of a similar
size [20]. A hardware implementation of a 3 x 3 median filter
based on a sorting network is shown in Fig. [I2] Its basic unit
and the corresponding conventional implementation are shown
in Fig. [I3] which is used to sort two inputs in ascending order.
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Fig. 12. Hardware implementation of the 3 X 3 median filter based on a
sorting network.

A S
B max(A, B)

(a) Basic Sorting Unit

max(A, B)

(b) Conventional Implementation

Fig. 13. Basic unit and the corresponding conventional implementation in
the sorting network.

The stochastic version of this basic unit is shown in Fig. [14
which is implemented by the stochastic comparator introduced
in Section with a few modifications. In Fig. if
P4 > Pp, Ps = 1, the probability of ones in the output of
“MUX1” is Pg, which is the minimum of (P4, Pg), and the
probability of ones in the output of “MUX?2” is P4, which
is the maximum of (P4, Pg); if P4 < Pp, Ps =~ 0, the
probability of ones in the output of “MUX1” is P4, which
is the minimum of (P4, Pg), and the probability of ones in
the output of “MUX2” is Pp, which is the maximum of
(P, Pp); if P4 = Pp, Ps =~ 0.5, both the probabilities of
ones in the outputs of MUX1 and MU X2 should be very
close to w = P4, = Pp. Based on this circuit, we can
implement the sorting network shown in Fig. [12|stochastically.

C. Contrast Stretching

Image contrast stretching, or normalization, is used to
increase the dynamic range of the gray levels in an image.
One of the typical transformations used for contrast stretching
and the corresponding conventional implementation are shown
in Fig. [13]

It can be seen that a closed-form expression of the piecewise
linear gain function shown in Fig. [I5|a) is,

Pa 3
min(Pa, Pg)

max(Pa, Pg)
Pg

Fig. 14. The stochastic implementation of the basic sorting unit.

Subtractor
Multiplier

255

a b 255 r i

(a) Piecewise linear gain function (b) Conventional Implementation

Fig. 15. A piecewise linear gain function used in image contrast stretching
and its conventlonal 1m;2)lementat10n In the conventional implementation, we

set d = fa and ¢ = —a based on equation
0, 0<r<a,
s = %~(r—0.5-(a+b))+128, a<r<hb, (6)
955, b <r < 255

The conventional implementation of the above function is
shown in Fig. [I5(b), which includes some complex arithmetic
circuits such as subtractor and multiplier. However, this func-
tion can be efficiently implemented stochastically using the
two-parameter stochastic linear gain function introduced in
Fig[§] of Section In that circuit, we set

e r _510—|—a—b _a+b
X K T 50—atb ¢ 510
then,
07 OSPXS%’
Pr= "=+ o 255
1, S < Py <1

It can be seen that Py = 5. Thus, by counting the number
of ones in the output bit stream, we can convert it back to s.

D. Frame Difference-Based Image Segmentation

If we define the value of a pixel at the current frame as
X;, and the value of a pixel at the same location of the
previous frame as X;_;, the frame difference-based image
segmentation uses the difference between X; and X;_; to
see if it is greater than a predefined threshold Th. If yes, the
pixel at the current frame is set to the foreground; otherwise,
it is set to the background.

The stochastic implementation and the conventional im-
plementation of this algorithm are shown in Fig. In the
stochastic implementation, we set

Xy X Th 1
Py, —%,th,l = 955 Th_m—i_ia
then the probability (Pp) of the ones in the output bit stream
of the stochastic absolute value function is,

| X — Xy

Pp = iy
b 510 2
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Absolute Value

0.5

Stochastic Scaled
Adders

Stochastic

Comparator Prpr(xt)

Pry

Fig. 16.

(a) Stochastic Implementation

(b) Conventional Implementation

Fig. 17. The stochastic implementation and the conventional implementation
of frame difference based image segmentation.

Notice that we convert the bipolar encodings into the prob-
abilities of ones in the bit stream. The bit stream Py is
the output of the stochastic comparator with inputs Pp and
Pry. Based on the function of the stochastic comparator, if
|X: — Xy—1| < Th, Py = 0, which means the current pixel
belongs to the background; else Py = 1, which means the
current pixel belongs to the foreground.

E. KDE-Based Image Segmentation

KDE is another image segmentation algorithm which is nor-
mally used for object recognition, surveillance, and tracking.
The basic approach of this algorithm is to build a background
model to capture the very recent information about a sequence
of images while continuously updating this information to
capture fast changes in the scene. This can be used to extract

0.5

The stochastic implementation of the KDE-based image segmentation algorithm.

changes in a video stream in real-time, for instance. Since the
intensity distribution of a pixel can change quickly, the density
function of this distribution must be estimated at any moment
of time given only the very recent history information. Let (X,
Xi—1, X¢—9, ..., Xi—n) be a recent sample of intensity values
of a pixel. Using this sample of values, the probability density
function (PDF) describing the distribution of intensity values
that this pixel will have at time t can be non-parametrically
estimated using the kernel estimator K,

PDF(X,)

1 n
— K(X: — Xi—9).

The kernel K should be a symmetric function. For example,
if we choose our kernel estimator K to be e~41*!, then the

PDF can be estimated as:

1 n
PDF(X;) = — 3 e e,
i=1

(7

Using this probability estimator, a pixel is considered a back-
ground pixel if PDF(X}) is less than a predefined threshold
Th. Both the conventional implementation and the stochastic
implementation of this algorithm are mapped from equation
(7). For example, Fig. [T6 shows the stochastic implementation
of this algorithm based on 32 frame parameters (i.e., n = 32
in equation (7)). Similar to the previous four algorithms, we
can get the conventional implementation of this algorithm
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by mapping the SCEs to the corresponding conventional
computing elements. The block diagram of the conventional
implementation is omitted due to space limitation.

In the stochastic implementation shown in FiglT6 the first
part is 32 “Stochastic Scaled Subtracters,” which are used
to compute 0.5 - (Px; — Px(—;)); the second part is 32
“Stochastic Exponentiation Functions on an Absolute Value,”
which is used to implement the kernel estimator and has been
introduced in Section the third part of this circuit is
31 “Stochastic Scaled Adders,” which computes Pppp(Xt);
and the last part of this circuit is a “Stochastic Comparator,”
which is used to produce the final segmentation output. Based
on the circuit shown in Fig. if PDF(X;) <Th, Py =0,
which means the current pixel belongs to the background;
else Py = 1, which means the current pixel belongs to the
foreground.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the
stochastic and conventional implementations of the five digital
image processing algorithms discussed in Section The ex-
periments include comparisons in terms of fault-tolerance and
hardware resources. We use the Xilinx System Generator [22]]
to estimate hardware costs since the systems built by this tool
are very close to the real hardware, and can be easily verified
using an FPGA.

A. Simulation Results

We use 1024 bits to represent a pixel value in stochastic
computing. The simulation results of the KDE-based image
segmentation have been shown in Fig. [I] The others are shown
in Fig. [T8] It can be seen that the simulation results generated
by the stochastic implementations are almost the same as the
ones generated by the conventional implementations based
on binary radix. In fact, computation based on stochastic
bit streams does have some errors compared to computation
based on a binary radix. For applications such as image/audio
processing and artificial neural networks, however, these errors
can be ignored because humans can hardly see such small
differences.

B. Hardware Resources Comparison

In Section we introduced circuit structures of both the
stochastic and conventional implementations of the five digital
image processing algorithms. The hardware cost of these
implementations in terms of the equivalent two-input NAND
gates is shown in Table [l It can be seen that the stochastic
implementation uses substantially fewer hardware resources
than the conventional implementation especially when the
algorithm needs many computational elements. This is mainly
because SCEs take much less hardware than the ones based
on the binary radix encoding used in the conventional imple-
mentation. For example, multiplication can be implemented
using a single AND gate stochastically, and the exponentiation
function can be implemented stochastically using an FSM.

Note that in our hardware evaluation, we did not consider
the hardware cost of the interface circuitry, i.e., the hardware

cost of encoding values by random bit streams and decoding
random bit streams into other representations. In our current
implementations, the interface circuitry is designed based on
the linear feedback shift register (LFSR) because it is easy
to implement and simulate. However, LFSR-based interface
circuitry is expensive. In future work, we are going to design
the interface circuitry based on a sigma-delta analog to digital
conversion technique. The hardware cost for this technique is
much less than the LFSR-based technique, and the random bit
streams can be generated almost for free.

TABLE I
HARDWARE RESOURCES COMPARISON IN TERMS OF THE EQUIVALENT
TWO-INPUT NAND GATES.

H Conventional H Stochastic H Ratio (conv. vs. stoc.)
Edge Detection 776 110 7.05
Frame Difference 486 107 4.54
Noise Reduction 7.2K 1.25K 5.76
Contrast Stretching 896 54 16.6
KDE 400K 1.5K 267

C. Fault-Tolerance Comparison

We test the fault-tolerance of both implementations by
randomly injecting soft errors into the internal circuits, and
measuring the corresponding average output error for each
implementation. The soft errors are injected as shown in
Fig. [I9] To inject soft errors into a computational element,
such as a MUX shown in Fig. [[9(a), we insert XOR gates
into all of its inputs and output. For each XOR gate, one of
its inputs is connected to the original signal of the MUX and
the other is connected to a global random soft error source,
which is implemented using a linear feedback shift register
(LFSR) and a comparator [19]. Note that if the output of the
computational element is connected to the input of another
computational element, we do not inject the error twice on
the intermediate line.

Register
Error C
Comp
Error A XOR
&) IFsR _”—:[>E.
Comp
Error B XOR
s s
LFSR
comp
ErrorS XOR
(a) (b)
Fig. 19.  Soft error injection approach for a scaled addition (MUX) in

stochastic computing. (a) The original circuit. (b) The circuit for simulating
injected soft errors. A, B, C, and S are the original signals. Error A,
Error B, Error C, and Error S are the soft error signals generated by
the random soft error source. A’, B/, C’, and S’ are the signals corrupted
by the soft errors.

If the error signal (Error A, Error B, Error S, or Error C
in Fig. [I9(b)) equals one, its corresponding original signal
(A, B, S, or C in Fig. [I9(b)) will be flipped due to the XOR
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Original Image

Conventional Stochastic
Implementation Implementation

4 n

Edge Detection

Noise Reduction

Contrast Stretching

Frame Difference

Fig. 18. Simulation results of the conventional and the stochastic implementations of the image processing algorithms. The simulation results of the KDE-based

image segmentation algorithm were shown previously in Fig. m

TABLE 11
FAULT TOLERANCE TEST RESULTS.

The average output error E of
stochastic implementations conventional implementations

Noise 0% [ 1% [ 2% [ 5% | 10% [ 15% [ 30% 0% | 1% | 2% | 5% | 10% 15% 30%
Edge Detection 205% | 1.97% | 2.10% | 2.10% | 2.09% | 2.10% | 2.54% 0.00% | 137% | 1.73% | 3.22% 6.42% 9.92% 20.50%
Frame Difference 0.31% 0.40% 1.17% 0.38% 0.34% 0.49% 0.74% 0.00% 0.82% 2.24% 6.67% 13.71% 20.56% 38.36%
Noise Reduction 1.02% 1.04% 1.05% 1.10% 1.22% 1.34% 1.73% 0.00% 0.07% 0.20% 0.57% 1.13% 1.65% 3.06%
Contrast Stretching 2.55% 2.43% 2.33% 2.27% 2.70% 3.56% 6.88% 0.00% 0.66% 1.93% 5.56% 10.89% 15.49% 25.49%
KDE 0.89% 0.91% 0.91% 0.93% 0.96% 0.99% 1.11% 0.00% 0.54% 1.20% 3.20% 6.60% 9.71% 19.02%

gate. If the error signal equals zero, it has no influence on
its corresponding original signal. The Register shown in Fig.
[T9(b) is used to control the soft error injection rate. If we use
a k-bit LFSR and want to generate p% soft errors, we can
set the register’s value to 2¥ - p%. For example, in Fig. b),
assuming that we use a 10-bit LFSR and want to generate
an error rate of 30%, we should set the register’s value to
210 % 30% = 307. Note that the LFSR has a parameter called
the initial value. By setting different initial values for each
of the LFSRs, we can guarantee that the random soft errors
generated by them are independent of each other. In addition,
at each clock cycle, we only enable one LFSR to generate the
soft error.

We apply this approach to each basic computational el-
ement in a circuit, such as comparator, adder, subtractor,
and multiplier in the conventional implementations; and NOT
gate, AND gate, XNOR gate, MUX, stochastic absolute value
function, stochastic comparator, and stochastic linear gain
function in the stochastic implementations. Fig. [I] uses the

KDE-based image segmentation as an example to visualize
the effect. We summarize the average output error of the two
implementations under different soft error injection rates for
all of the five algorithms in Table [l We define the height of
the image to be H and the width to be W, and calculate the
average output error £ in Table [[I] as follows,

L L T — Sigl
- 255 H - W ’
where S is the output image of the conventional implementa-
tion of an algorithm without any injected soft errors, and 7T is
the output image of the implementation of the same algorithm
with injected soft errors. We define the soft error injection rate
to be R, and use a linear regression model [23],

E ®)

E=a+b-R, 9)

to analyze the relationship between R and E based on the
data in Table [l For the stochastic implementations, we get
a < 5% and b ~ 0 for all the five algorithms. This analysis
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means that the stochastic implementations are not sensitive
to the error injection rate R because the slope of the fitted
line is b =~ 0. However, it does have small errors even
though we do not inject any soft errors in the circuit. These
errors are due to approximation, quantization, and random
fluctuations [[19], and can be quantified by the parameter a
in (9). For the conventional implementations (except the noise
reduction algorithm), we get a =~ 0 and b > 50%. This means
that the conventional implementations are very sensitive to the
soft error injection rate R because the slope of the fitted line
b > 50%.

D. Fault-Tolerance Analysis

In this section, we explain why the stochastic computing
technique can tolerate more errors than the conventional
computing technique based on a binary radix. Assume that
the binary radix number has M bits. Consider a binary radix
number

p= m12_1 + x22_2 + -+ mM2_M

Assume that each bit x; (1 < ¢ < M) has probability € being
flipped. Since bit flips happen independently, we can use M
independent random Boolean variable Ry, ..., Ry to indicate
the bit flips. Specifically, if R; = 1, then bit x; is flipped;
otherwise, bit x; is not flipped. We have P(R;, = 1) =

Now we can model the overall error with random variables
Ry,..., Ry If the i-th bit is flipped, then the bit value
becomes 1 — x;; otherwise, it is still x;. Therefore, with bit
flips randomly occurring, the value of the ¢-th bit is also a
random variable, which can be represented as

Xi=1—-z)Ri +x;(1 - Ry)

It can be easily seen that

P(X;=1-a)=¢ P(Xi=a;)=1—c

Now with independent random bit flips occurring at each
bit, the binary radix number is

q=X127" + X272+ 4 X2 M

M .
= Z[(l — xR + (1 — Ry)]27".

The error is

—Z [(1—2)R; +z;(1-R

which is also a random variable.
Now we consider the mean of the error ¢ and the variance
of the error e. Since Rj,...,R)s are independent, from

equation (10, we have

M )
Ele] = 2(1 —21;)27 B[R]
z:lM
Varle] = > (1 - 22;)*2 > Var[R|]

For each R;, it can be easily shown that
E[R;] =€, Var[R;]=e¢(1—e).
Therefore
M
Z (1 —2x;)2
=1

M

Zz—l—zzxz &
1=1

Notice that x; is either 0 or 1. Thus (1 — 2z;)? = 1.
Therefore,

(1 —2pe

M

Varle] = Z(l —21;)%27 % (1 — €)

i=1
M

= 22_2’6(1
i=1

Now we consider the stochastic encoding of the same value
p as in the binary radix case. We need a bit stream of length
N = 2™ Suppose that the bit stream is y1y> . . . ynv. We have

1
= NZ;I%
1=

Similarly, we use the random Boolean variable .S; to indicate
whether bit y; is flipped or not. If S; = 1, bit y; is flipped
to 1 — y;; otherwise, it stays the same. Assume that the bit
flip rate for the stochastic encoding is the same as that for the
binary radix encoding, then we have P(S; = 1) =e.

With bit flips randomly occurring, the value of the i-th bit
is also a random variable, which can be represented as

e(1—e).

c,o\»—*

Yi=(1—-v)Si+vy(1-25,).

Now with independent random bit flips occurring at each
bit, the actual value represented by the stream is

Fyv-

The error is

N

¥l

i=1

—¥i)Si +yi(1 = S;)].

e =

)

I
2| =
= =

s
Il
—

[(1 - yz)s + yz(l -

Zyz

(1 —2y)S;

I
=zl
M-

«
Il
-
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Now we evaluate Ee] and Var[e]. We apply the indepen-
dence and obtain

Blel = 5 Y01 - 2)Blsi

N
1
=~ Z(l —2y;)e = (1 — 2p)e.
and

N
Varle] = Z 7(1 — 2yi)2Var

1
2 e [Si] = Ne(l —€).

It can be seen that bit flips cause errors in both the binary
radix encoding and the stochastic encoding. With the same
bit flip rate, both the binary radix and the stochastic encoding
have the same average error. However, in terms of the variation
of the error, they are different. The variation of the error for
the binary radix encoding is a constant independent of the
number of bits. The variation of the error for the stochastic
encoding is inversely proportional to the length of the bit
stream. Increasing the length reduces the variation of error.

Now consider error distributions. The error distribution of
the binary radix encoding and that of the stochastic encoding
essentially have the same center, since they have the same
mean value. However, the error distribution of the binary radix
encoding is much wider than that of the stochastic encoding,
since the former’s variance is larger than the latter’s. Thus, we
have a large chance to obtain a large error by sampling the
error distribution of the binary radix encoding. For example,
in the KDE-based image segmentation experiment shown in
Fig.[I] we can consider it a sample from the error distribution.
Thus, in the experimental results, we observe large errors for
the binary radix encoding.

Note that the introduction of the finite-state machine com-
puting elements adds interdependence between bits in stochas-
tic computing. The analysis presented above does not con-
sider this, and instead assuming independence among the bit
streams. Compared to the error in the combinational logic-
based stochastic computing elements, the error due to the
effect of soft errors affecting multiple bits in the finite-state
machine computing elements is affected by two additional
factors: the number of states of the finite-state machine and
the relative location of the multiple bit flips. More states cause
fewer errors, and adjacent multiple bit flips cause more errors.
Based on our experiments, if the finite-state machine has more
than 8§ states, the adjacent multiple bit flips will not contribute
too many errors (less than 1%) in the final results. We plan
to make a detailed analysis of the errors in the finite-state
machine-based stochastic computing elements in our future
work.

E. Dealing with Long Latencies

The main issue of the stochastic computing technique is
the long latency, because a pixel value is represented using a
long bit stream. But this issue can be solved using a higher
operational frequency or a parallel processing approach. We
can use a higher operational frequency because the stochastic

computing circuitry is very simple and has a shorter critical
path than the corresponding conventional implementation. The
parallel processing approach can be used to further reduce
the latency by trading off hardware area with time. Assume
we use L bits to represent a pixel value stochastically. Under
the same operational frequency, the latency of the stochastic
implementation without parallel processing is L times longer
than the conventional implementation. However, many image
processing applications exhibit data parallelism, that is, mul-
tiple pixels can be processed simultaneously. Thus, we can
make multiple copies of a single stochastic implementation to
process multiple pixels in parallel. We list the hardware cost in
terms of equivalent two-input gates for the single stochastic
implementation and the single conventional implementation
for the five algorithms in Table [Il Assume that n pixels are
processed in parallel in the stochastic implementation. If we
keep the area of the parallel stochastic implementation to be
smaller than a single copy of conventional implementation,
then the fourth column ‘‘Ratio” of Table [I] will be the maxi-
mum value of n for the corresponding algorithms. However, if
a pixel value is represented using L bits, the parallel stochastic
implementation will still be % times slower than the sequential
conventional implementation.

F. Energy Consumption Comparison

Although the stochastic implementations of digital image
processing algorithms have lower hardware cost and can toler-
ate more errors, they might consume more energy. It depends
on how complex the algorithms are and how many bits are
used to represent a pixel value stochastically. If we use L-bit
to represent a pixel value stochastically, the processing time of
the stochastic implementation will be L times slower than the
corresponding conventional implementation. We evaluate the
energy consumption using the product of the hardware cost
(shown in Table |I) and the corresponding processing time.
Specifically, for each algorithm,

ECO’I’L’U _
Egioen  Areasioen, Timestoch L

Areacony  Timecons Area Ratio

b

where Area Ratio is shown in the fourth column of Table III.
We show the comparison results in Table [[1l} It can be seen that
for a simple algorithm, such as the image edge detection, the
stochastic implementation consumes more energy even if L >
7. For a complex algorithm, though, such as the KDE-based
image segmentation, the stochastic implementation consumes
less energy than the conventional implementation if L < 256.

TABLE III
ENERGY CONSUMPTION COMPARISON.

H Conventional vs. Stochastic

Edge Detection 7.05: L
Frame Difference 454 L
Noise Reduction 576 : L
Contrast Stretching 16.6 : L
KDE 267 : L

We also compare the area-delay product for different imple-
mentations, and the results are shown in Table[ITV] The area has
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been given in Table [} The delay is evaluated using the number
of gates in the critical path of different implementations.
Note that the delay of the stochastic implementations are
multiplied by 2'0, because we represent the pixel value using
1024 bits in the current experiments. The data in Table
conclude the same results as the ones in Table [[II} the area-
delay products of different implementations depend on the
the algorithm complexity. For a simple algorithm, such as the
image edge detection, the area-delay product of the convention
implementation is smaller. For a complex algorithm, though,
such as the KDE-based image segmentation, the area-delay
product of the stochastic implementation is smaller.

TABLE IV
AREA-DELAY PRODUCT COMPARISON.

delay area-delay product
i
conv. stoc. conyv. stoc. ratio
Edge Detection 48 4. 210 37248 450560 0.08
Frame Difference 37 5.210 17982 547840 0.03
Noise Reduction 85 5.210 612000 6400000 || 0.10
Contrast Stretching 48 5. 210 43008 276480 0.16
KDE 85 5.210 34000000 | 7680000 4.43

V. CONCLUSION AND FUTURE WORK

In this paper, we first introduced a collection of stochas-
tic computing elements (SCEs). Then, as case studies, we
demonstrated the stochastic implementations of five digital
image processing algorithms based on these SCEs. Our ex-
perimental results show that stochastic implementations are
remarkably tolerant of soft errors and have very low hardware
cost. However, due to the nature of the encoding, stochastic
implementations introduce some variance. Accordingly, this
technique in those applications that mandate high reliable but
do not require high precision and can tolerate some variance.
For such applications, representing a value by a 1024-bit
stochastic bit stream will guarantee a sufficiently accurate
result [19]. The most significant trade-off with a stochastic
implementation is that it generally entails a high latency.
However, as we discussed, this issue can be mitigated by
using a higher operational frequency or by using parallel
processing. In future work, we plan to investigate novel coding
schemes which limit the bit stream length while preserving
good randomness or pseudo-randomness. We also plan to
analyze the errors in the finite-state machine-based stochastic
computing elements in more detail.
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APPENDIX

In the appendix, we prove the stochastic linear gain function
proposed by Brown and Card [4]. Based on the state transition
diagram shown in Fig. [/} if the inputs X and K are stochastic
bit streams with fixed probabilities, then the random state
transition shown in Fig. [7| will eventually reach an equilibrium
state, where the probability of transitioning from state S; to
its adjacent state S;11 equals the probability of transitioning
from state S;;; to state S;. Thus, we have

P;-Px =Py -(1-Px) Pg, 0<i<i -2
(1n

P;-Px-Px =Py (1-Px), §S<i<N-2

where P; is the probability that the current state is S; in the
equilibrium state, Px is the probability of ones in the input
bit stream X, and Py is the probability of ones in the input
bit stream K. Note that 0 < Py < 1 and 0 < Px < 1. When
Px (or Pg) =0 or 1, we cannot use equation (TI)) to analyze
the state transition diagram shown in Fig. [/} However, in these
cases, it is easy to prove the results in equation based on
the state transition diagram shown in Fig.

Because the individual state probabilities, P;, must sum to
unity over all S;, giving

N-—-1
ZPZ-:L

(12)
i=0
We define t = %, and A and B as follows,
N-1 ' -1 _
A=>"tP N B=Y P (13)
=N 1=0
2
Based on (TI) and (12), we have
tt. Pt . N
A+}é ) O S 1 S 9 1;
P = (14)
i pitl-N N )
Sy, ¥<i<N-1

Based on the state transition diagram shown in Fig. [/} we can
represent Py, the probability of ones in the output bit stream
Y, in terms of P; as follows,

2

-1

Py =

(]

P, (15)

~.
I
vz

If we substitute P; from (14), we can rewrite (I3) as Py =
M%' the that based on equation we can compute A
and B using the formula of the sum of geometric sequence as
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follows,
N 1N N
t2.P,. 2. (1-t2.-P;2)
K [y K s t PK > 1,
A=qF PN, t-Pg=1, (16)
Y op Y
l—t-II(?K , t-Pg <1,
1-t2-P, 2
1-t-Pt ' Px > 1,
B=(N to_q (17)
2’ PK 4
1 t
1—t-Pct? P <1

Next we prove equation (@) based on different intervals of Py.

Y

2)

0< Px < Pre

1+Px
Because
P

U, S
1—- Px

we have

t

Py — —
X T 1+t

Since Px < 1+P , we have

b P
14+t~ 1+ Pk’
e, p-<l,andt-Px = p—- Py < Pi <1
Thus based on equation @ and ( .
:t%-Pll{_%
1—t- Pg
N t
2 pikfls
B:
1 t
1—t-Pt’ ﬁ<1
A Pr—t t\*F
IfA <1, lim = =% .lim (-] =o0.
SN B T 1o P o P)
A 2Py
If L =1, lim = =——% __ g
Px NgnooB (lft'PK)N
Th 1 Py = lim —————— .
e NE)noofTaCAB-i-l 0
1+P <PX<1+P
Because < PX, we have 5~ > 1.

TP
Because Px < 1+P , we have t PK < 1.

Thus,

¥ op %
g l-t% Py
1—t-Pg’ 1—t- Pt

3)

B Am )Tl R
lim — =
N—oo A lim (L)% t — Px
N—oo Pg
11—t Pk
- t—Pg
Thus,
1 1
lim Py = lim T
t— Py
1+ Px Pg
=—— Py — ——.
1— Pg 1— Pg
1+P <Px<l1

In this case, we have ¢t - P > 1, and > PK > 1.
Thus,

F T a¥ o)
1=t P s t~PK>1,
A:
-N
.pN, t-Pg=1
_1—t2 P
1—t- Pyt
Ift-Px>1,
by B_1-1- Pk 1 (#0)%
m — =
N—ooo A Px —1t N-ooo (]__(tPK)%) (ﬁ)%
1—t-P
= K. 0=0
Py —t
Ift- P =1,
B PN —(t-Pg)*
lim — = lim —f -~ %o
Nosoo A Nooo (PK*t)'j
Py —1
= lim —& — _ ~ = 0.
N—oo (PK_t)?
Thus,
1
lim Py = lim 7:1.

Based on the above discussion, equatlon @) has been
proved. The simulation result can be found in [4].
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