
The Benefits of Being Erratic:
Correcting Errors with Noise-Enhanced Gradient Algorithms

Chris Winstead, Tasnuva Tithi (Utah State University)
Emmanuel Boutillon (Lab-STICC, Université de Bretagne Sud)

Fakhreddine Ghaffari (ETIS Lab, Université Cergy-Pontoise)

November 2017



Outline

I Noise enhancement is a recently studied effect in error correction
algorithms, especially low-density parity-check (LDPC) codes.

I We interpret noise as a form of algorithm diversity.

I Noise is analyzable using statistical methods, but. . .
I Noise can be complex to produce;
I Simpler procedures can supply the required diversity.

I New results on diversity approaches:

I Simpler periodic perturbations
I Parity-only bit flipping
I Threshold sequences tailored to dominant trapping sets.



Outline

I Noise enhancement is a recently studied effect in error correction
algorithms, especially low-density parity-check (LDPC) codes.

I We interpret noise as a form of algorithm diversity.
I Noise is analyzable using statistical methods, but. . .

I Noise can be complex to produce;
I Simpler procedures can supply the required diversity.

I New results on diversity approaches:

I Simpler periodic perturbations
I Parity-only bit flipping
I Threshold sequences tailored to dominant trapping sets.



Outline

I Noise enhancement is a recently studied effect in error correction
algorithms, especially low-density parity-check (LDPC) codes.

I We interpret noise as a form of algorithm diversity.
I Noise is analyzable using statistical methods, but. . .
I Noise can be complex to produce;

I Simpler procedures can supply the required diversity.

I New results on diversity approaches:

I Simpler periodic perturbations
I Parity-only bit flipping
I Threshold sequences tailored to dominant trapping sets.



Outline

I Noise enhancement is a recently studied effect in error correction
algorithms, especially low-density parity-check (LDPC) codes.

I We interpret noise as a form of algorithm diversity.
I Noise is analyzable using statistical methods, but. . .
I Noise can be complex to produce;
I Simpler procedures can supply the required diversity.

I New results on diversity approaches:

I Simpler periodic perturbations
I Parity-only bit flipping
I Threshold sequences tailored to dominant trapping sets.



Outline

I Noise enhancement is a recently studied effect in error correction
algorithms, especially low-density parity-check (LDPC) codes.

I We interpret noise as a form of algorithm diversity.
I Noise is analyzable using statistical methods, but. . .
I Noise can be complex to produce;
I Simpler procedures can supply the required diversity.

I New results on diversity approaches:

I Simpler periodic perturbations
I Parity-only bit flipping
I Threshold sequences tailored to dominant trapping sets.



Outline

I Noise enhancement is a recently studied effect in error correction
algorithms, especially low-density parity-check (LDPC) codes.

I We interpret noise as a form of algorithm diversity.
I Noise is analyzable using statistical methods, but. . .
I Noise can be complex to produce;
I Simpler procedures can supply the required diversity.

I New results on diversity approaches:
I Simpler periodic perturbations

I Parity-only bit flipping
I Threshold sequences tailored to dominant trapping sets.



Outline

I Noise enhancement is a recently studied effect in error correction
algorithms, especially low-density parity-check (LDPC) codes.

I We interpret noise as a form of algorithm diversity.
I Noise is analyzable using statistical methods, but. . .
I Noise can be complex to produce;
I Simpler procedures can supply the required diversity.

I New results on diversity approaches:
I Simpler periodic perturbations
I Parity-only bit flipping

I Threshold sequences tailored to dominant trapping sets.



Outline

I Noise enhancement is a recently studied effect in error correction
algorithms, especially low-density parity-check (LDPC) codes.

I We interpret noise as a form of algorithm diversity.
I Noise is analyzable using statistical methods, but. . .
I Noise can be complex to produce;
I Simpler procedures can supply the required diversity.

I New results on diversity approaches:
I Simpler periodic perturbations
I Parity-only bit flipping
I Threshold sequences tailored to dominant trapping sets.



Introduction

LDPC codes are a class of large-frame
error correcting code defined by a constraint
graph or Tanner graph.

The graph’s variables are binary bits in a
data frame.

The graph’s parity-checks constrain even
parity among adjacent bits.

variables

parity-checks



Introduction

LDPC codes are a class of large-frame
error correcting code defined by a constraint
graph or Tanner graph.

The graph’s variables are binary bits in a
data frame.

The graph’s parity-checks constrain even
parity among adjacent bits.

variables

parity-checks



Introduction

LDPC codes are a class of large-frame
error correcting code defined by a constraint
graph or Tanner graph.

The graph’s variables are binary bits in a
data frame.

The graph’s parity-checks constrain even
parity among adjacent bits.

variables

parity-checks



Introduction

The goal of decoding is to obtain the
most probable bit values that satisfy all of
the parity-check constraints.

This problem is usually modeled as a
Bayesian Belief Network, using the Belief
Propagation (BP) algorithm. Probability
calculations can be expensive, and cycles in
the network distort the calculations,
leading to failures.

variables

parity-checks



Introduction

The goal of decoding is to obtain the
most probable bit values that satisfy all of
the parity-check constraints.

This problem is usually modeled as a
Bayesian Belief Network, using the Belief
Propagation (BP) algorithm. Probability
calculations can be expensive, and cycles in
the network distort the calculations,
leading to failures.



Trapping Sets

Trapping sets or Absorbing Sets are
repeated cyclic patterns in the code
graph.

They induce error floors in LDPC
decoders based on BP.

x1

c4x2

c5

x3

c6

c1

c2c3

2 4 6
10−9

10−6

10−3

100

SNR (dB)

F
ra

m
e

E
rr

or
R

at
e



FAIDs & Decoder Diversity

There are many approaches for dealing with
absorbing sets.

The general framework of Finite Alphabet
Iterative Decoders (FAID) describes a class
of decoders by LUTs rather than explicit
Bayesian calculationsa.

Any particular FAID has small error coverage,
but decoder diversity guarantees total cover-
age by alternating between different LUTs.

aPlanjery et al. 2013; Declercq et al. 2013.



Single-Bit Algorithms

Several classes of low-complexity algorithms have been studied. Some
notable algorithms:

I Stochastic Decoding1 – Emulate BP using stochastic arithmetic.

I Maximum Likelihood Single-Bit Message (MLSBM)2 – Similar to
FAID, formal procedure to design LUTs.

I Differential Decoding w/ Binary Message Passing (DD-BMP)3 –
Uses a memory effect inspired by relaxation algorithms.

I Bit-Flipping – Heuristics loosely based on BP or gradient descent.

1Gaudet and Rapley 2003.
2Winstead and Boutillon 2014.
3Mobini and Hemati 2009.



Single-Bit Algorithms

Several classes of low-complexity algorithms have been studied. Some
notable algorithms:

I Stochastic Decoding1 – Emulate BP using stochastic arithmetic.

I Maximum Likelihood Single-Bit Message (MLSBM)2 – Similar to
FAID, formal procedure to design LUTs.

I Differential Decoding w/ Binary Message Passing (DD-BMP)3 –
Uses a memory effect inspired by relaxation algorithms.

I Bit-Flipping – Heuristics loosely based on BP or gradient descent.

1Gaudet and Rapley 2003.
2Winstead and Boutillon 2014.
3Mobini and Hemati 2009.



Single-Bit Algorithms

Several classes of low-complexity algorithms have been studied. Some
notable algorithms:

I Stochastic Decoding1 – Emulate BP using stochastic arithmetic.

I Maximum Likelihood Single-Bit Message (MLSBM)2 – Similar to
FAID, formal procedure to design LUTs.

I Differential Decoding w/ Binary Message Passing (DD-BMP)3 –
Uses a memory effect inspired by relaxation algorithms.

I Bit-Flipping – Heuristics loosely based on BP or gradient descent.

1Gaudet and Rapley 2003.
2Winstead and Boutillon 2014.
3Mobini and Hemati 2009.



Single-Bit Algorithms

Several classes of low-complexity algorithms have been studied. Some
notable algorithms:

I Stochastic Decoding1 – Emulate BP using stochastic arithmetic.

I Maximum Likelihood Single-Bit Message (MLSBM)2 – Similar to
FAID, formal procedure to design LUTs.

I Differential Decoding w/ Binary Message Passing (DD-BMP)3 –
Uses a memory effect inspired by relaxation algorithms.

I Bit-Flipping – Heuristics loosely based on BP or gradient descent.

1Gaudet and Rapley 2003.
2Winstead and Boutillon 2014.
3Mobini and Hemati 2009.



Parallel Bit-Flipping Decoders

A binary alternative, simpler than BP or Stochastic decoders.

Inputs

channel sample yi .
hypothesis xi ∈ {−1, +1}.
parity checks sj ∈ {−1, +1}

Operations

Reliability metric: ∆i (unique to algorithm)
Threshold update: flip xi if ∆i ≤ θ

Then transmit xi to adjacent nodes.

in

xy

s1

s2

s3

out

xy

x

x

x



Example Algorithms

Impr. Diff. Binary (IDB):4 ∆
(t+1)
i = ∆

(t)
i + w

∑
j∈Mi\j si, j − d x

(t)
i

Grad. Desc. BF (GDBF):5 ∆
(t+1)
i = xiyi +

∑
j sj

Noisy GDBF:6 ∆
(t+1)
i = xiyi + w

∑
j sj + q

Probabilistic GDBF:7 If ∆i < θ, flip with probability p.

Traditional rule of thumb: higher complexity = better performance.

4Cushon et al. 2014.
5Wadayama et al. 2008.
6Sundararajan, Winstead, and Boutillon 2014.
7Rasheed, Ivanis, and Vasic 2014.



Motivation: Reduced Complexity

Standard BP-based or FAID algorithm:

message registers

(1 per edge)

Symbol Node

Check Node

4
bits

per
m

es
sa

ge → parity messages

(1 per edge)

← 4 bit per message



Motivation: Reduced Complexity

Stochastic algorithm (successive relaxation):

message registers

(1 per edge)

Symbol Node

Check Node

1
bit

per
m

es
sa

ge →

parity messages

(1 per edge)

← 1 bit per message

Edge

M
em

ory



Motivation: Reduced Complexity

Bit-flipping algorithm:

message registers

(1 per node)

Symbol Node

Check Node

1
bit

per
m

es
sa

ge → parity messages

(1 per node)

← 1 bit per message



Example Node Designs

NGDBF IDB

yi

qi − θ

Σ

Σ1

TFF

s1s2

sdv

..
.

xi

Σ

Σ1

M Reg

..
.

xi

s1

s2

sdv



Performance: Noise Enhancement

3 3.5 4 4.5 5 5.5 6 6.5 7
10−7

10−6

10−5

10−4

10−3

10−2

10−1

GDBF

BP

Signal to Noise Ratio (SNR, dB)

B
it

E
rr

or
R

a
te

(B
E

R
)

IEEE 802.3 LDPC code



Performance: Noise Enhancement

3 3.5 4 4.5 5 5.5 6 6.5 7
10−7

10−6

10−5

10−4

10−3

10−2

10−1

GDBF

BP
noise gain

NGDBF

Signal to Noise Ratio (SNR, dB)

B
it

E
rr

or
R

a
te

(B
E

R
)

IEEE 802.3 LDPC code



PGDBF FER

FAID and PGDBF approach Maximum Likelihood (ML) limit8

0.01 0.02 0.04 0.06

10−9

10−7

10−5

10−3

10−1

Channel Crossover Probability

F
E

R

IPGDBF (108)

FAID

BP

ML

8Declercq et al. 2016.



We know that noise works...

Treating each trapping set as a Markov process, we can predict the error
rate and optimize algorithm parameters:

0.2 0.4 0.6 0.8 1
10−20

10−16

10−12

10−8

10−4

noisescale η

E
rr

or
fl

o
or

w = 1
6

w = 1
5

w = 1
4
, w = 1

3
w = 1

2



What is the bigger picture? Why does
non-determinism enhance these algorithms?



Parrondo’s “paradox”
Parrondo’s paradox considers noise-perturbed particles on various sloped
surfaces. These are “failing” strategies:9

9Parrondo, Harmer, and Abbott 2000.



Parrondo’s “paradox”

But by alternating between losing strategies at the right times, and with
the right amount of noise energy, it’s possible to “win” with high
probability:



Diversity in Parrondo’s Ratchet

I Parrondo’s paradox is an example of algorithmic diversity.

I Noise is important to the demonstration only as another source of
diversity – it could be replaced by additional strategies.

I Bit-flipping algorithms are “losers,” and noise turns them into
“winners” . . .

I But maybe there are other ways to achieve this diversity.



Diversity in Parrondo’s Ratchet

I Parrondo’s paradox is an example of algorithmic diversity.

I Noise is important to the demonstration only as another source of
diversity – it could be replaced by additional strategies.

I Bit-flipping algorithms are “losers,” and noise turns them into
“winners” . . .

I But maybe there are other ways to achieve this diversity.



Diversity in Parrondo’s Ratchet

I Parrondo’s paradox is an example of algorithmic diversity.

I Noise is important to the demonstration only as another source of
diversity – it could be replaced by additional strategies.

I Bit-flipping algorithms are “losers,” and noise turns them into
“winners” . . .

I But maybe there are other ways to achieve this diversity.



Diversity in Parrondo’s Ratchet

I Parrondo’s paradox is an example of algorithmic diversity.

I Noise is important to the demonstration only as another source of
diversity – it could be replaced by additional strategies.

I Bit-flipping algorithms are “losers,” and noise turns them into
“winners” . . .

I But maybe there are other ways to achieve this diversity.



Parity-Only Bit Flipping

When NGDBF fails in the error floor region, it is most likely due to a
single trapping set. We can try to correct it by switching strategies:

NGDBF calculation: Ei = xiyi + w
∑

sij + qi

New strategy: Ei = ��xiyi + w
∑

sij + ��qi

In this strategy, diversity is supplied by a dynamic threshold sequence.

Example

×
S = 1

×
S = 1

×
S = 1 If all symbols are errors, a

threshold of θ = 1 will correct
them all.



Parity-Only Bit Flipping

When NGDBF fails in the error floor region, it is most likely due to a
single trapping set. We can try to correct it by switching strategies:

NGDBF calculation: Ei = xiyi + w
∑

sij + qi

New strategy: Ei = ��xiyi + w
∑

sij + ��qi

In this strategy, diversity is supplied by a dynamic threshold sequence.

Example

×
S = −2

×
S = −2 S = −3 If two are errors, a threshold

of θ = −3 will correct two but
leave one uncorrected error.



Parity-Only Bit Flipping

When NGDBF fails in the error floor region, it is most likely due to a
single trapping set. We can try to correct it by switching strategies:

NGDBF calculation: Ei = xiyi + w
∑

sij + qi

New strategy: Ei = ��xiyi + w
∑

sij + ��qi

In this strategy, diversity is supplied by a dynamic threshold sequence.

Example

×
S = −3

S = −2

S = −2 A threshold of θ = −3 cor-
rects a single error.



Parity-Only Bit Flipping

When NGDBF fails in the error floor region, it is most likely due to a
single trapping set. We can try to correct it by switching strategies:

NGDBF calculation: Ei = xiyi + w
∑

sij + qi

New strategy: Ei = ��xiyi + w
∑

sij + ��qi

In this strategy, diversity is supplied by a dynamic threshold sequence.

Example

×
S = −3

S = −2

S = −2 A dynamic sequence θ =
1, −3, −3 covers all errors for
this trapping set.



Lowering the Error Floor

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
10−12

10−9

10−6

10−3

100

BP (5-bit)

Eb/N0 (dB)

F
ra

m
e

E
rr

or
R

at
e

IEEE 802.3 LDPC, 5-bit AWGN, 600 cyc/frame



Lowering the Error Floor

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
10−12

10−9

10−6

10−3

100

BP (5-bit)

NGDBF

Eb/N0 (dB)

F
ra

m
e

E
rr

or
R

at
e

IEEE 802.3 LDPC, 5-bit AWGN, 600 cyc/frame



Lowering the Error Floor

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
10−12

10−9

10−6

10−3

100

BP (5-bit)

NGDBF

w/ post-processing

Eb/N0 (dB)

F
ra

m
e

E
rr

or
R

at
e

IEEE 802.3 LDPC, 5-bit AWGN, 600 cyc/frame



Lowering the Error Floor

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
10−12

10−9

10−6

10−3

100

BP (5-bit)

NGDBF

w/ post-processing
specialized “noise”

Eb/N0 (dB)

F
ra

m
e

E
rr

or
R

at
e

IEEE 802.3 LDPC, 5-bit AWGN, 600 cyc/frame



Discussion

I The error floor is steadily disappearing. . .

I Each improvement simultaneously reduces implementation
complexity while enhancing performance.

I We now have a basic theory to explain and optimize noise
enhancement.

I Algorithm diversity remains an open frontier.



Discussion

I The error floor is steadily disappearing. . .

I Each improvement simultaneously reduces implementation
complexity while enhancing performance.

I We now have a basic theory to explain and optimize noise
enhancement.

I Algorithm diversity remains an open frontier.



Discussion

I The error floor is steadily disappearing. . .

I Each improvement simultaneously reduces implementation
complexity while enhancing performance.

I We now have a basic theory to explain and optimize noise
enhancement.

I Algorithm diversity remains an open frontier.



Discussion

I The error floor is steadily disappearing. . .

I Each improvement simultaneously reduces implementation
complexity while enhancing performance.

I We now have a basic theory to explain and optimize noise
enhancement.

I Algorithm diversity remains an open frontier.



References I

Planjery, S. K. et al. (2013). “Finite Alphabet Iterative Decoders Part I:
Decoding Beyond Belief Propagation on the Binary Symmetric
Channel”. In: IEEE Trans. Comm. doi:
10.1109/TCOMM.2013.090513.120443.

Declercq, D. et al. (2013). “Finite Alphabet Iterative Decoders Part II:
Towards Guaranteed Error Correction of LDPC Codes via Iterative
Decoder Diversity”. In: IEEE Trans. Comm. doi:
10.1109/TCOMM.2013.090513.120444.

Gaudet and Rapley (2003). “Iterative decoding using stochastic
computation”. In: Electronics Letters.

Winstead and Boutillon (2014). “Decoding LDPC Codes With Locally
Maximum-Likelihood Binary Messages”. In: IEEE Comm. Lett.

Mobini, Banihashemi and Hemati (2009). “A differential binary
message-passing LDPC decoder”. In: IEEE Trans. Comm. doi:
10.1109/TCOMM.2009.09.070617.

https://doi.org/10.1109/TCOMM.2013.090513.120443
https://doi.org/10.1109/TCOMM.2013.090513.120444
https://doi.org/10.1109/TCOMM.2009.09.070617


References II
Cushon, K. et al. (2014). “High-Throughput Energy-Efficient LDPC

Decoders Using Differential Binary Message Passing”. In: Signal
Processing, IEEE Transactions on 62.3, pp. 619–631. issn: 1053-587X.
doi: 10.1109/TSP.2013.2293116.

Wadayama, T. et al. (2008). “Gradient descent bit flipping algorithms for
decoding LDPC codes”. In: Information Theory and Its Applications,
2008. ISITA 2008. International Symposium on, pp. 1 –6. doi:
10.1109/ISITA.2008.4895387.

Sundararajan, Gopalakrishnan, Chris Winstead, and Emmanuel Boutillon
(2014). Noisy Gradient Descent Bit-Flip Decoding for LDPC Codes.
arXiv:1402.2773. url: http://arxiv.org/abs/1402.2773.

Rasheed, O.-A., P. Ivanis, and B. Vasic (2014). “Fault-Tolerant
Probabilistic Gradient-Descent Bit Flipping Decoders”. In: IEEE
Commun. Letters 18.9, pp. 1487 –1490.

Declercq, David et al. (2016). “Noise-aided gradient descent bit-flipping
decoders approaching maximum likelihood decoding”. In: IEEE ISTC.

https://doi.org/10.1109/TSP.2013.2293116
https://doi.org/10.1109/ISITA.2008.4895387
http://arxiv.org/abs/1402.2773


References III
Parrondo, Juan MR, Gregory P Harmer, and Derek Abbott (2000). “New

paradoxical games based on Brownian ratchets”. In: Physical Review
Letters 85.24, p. 5226.


	Introduction

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	0.50: 
	0.51: 
	0.52: 
	0.53: 
	0.54: 
	0.55: 
	0.56: 
	0.57: 
	0.58: 
	0.59: 
	0.60: 
	0.61: 
	0.62: 
	0.63: 
	0.64: 
	0.65: 
	0.66: 
	0.67: 
	0.68: 
	0.69: 
	0.70: 
	0.71: 
	0.72: 
	0.73: 
	0.74: 
	0.75: 
	0.76: 
	0.77: 
	0.78: 
	0.79: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	1.34: 
	1.35: 
	1.36: 
	1.37: 
	1.38: 
	1.39: 
	anm1: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	2.20: 
	2.21: 
	2.22: 
	2.23: 
	2.24: 
	2.25: 
	2.26: 
	2.27: 
	2.28: 
	2.29: 
	2.30: 
	2.31: 
	2.32: 
	2.33: 
	2.34: 
	2.35: 
	2.36: 
	2.37: 
	2.38: 
	2.39: 
	2.40: 
	2.41: 
	2.42: 
	2.43: 
	2.44: 
	2.45: 
	2.46: 
	2.47: 
	2.48: 
	2.49: 
	2.50: 
	2.51: 
	2.52: 
	2.53: 
	2.54: 
	2.55: 
	2.56: 
	2.57: 
	2.58: 
	2.59: 
	2.60: 
	2.61: 
	2.62: 
	2.63: 
	2.64: 
	2.65: 
	2.66: 
	2.67: 
	2.68: 
	2.69: 
	2.70: 
	2.71: 
	2.72: 
	2.73: 
	2.74: 
	2.75: 
	2.76: 
	2.77: 
	2.78: 
	2.79: 
	2.80: 
	2.81: 
	2.82: 
	2.83: 
	2.84: 
	2.85: 
	2.86: 
	2.87: 
	2.88: 
	2.89: 
	2.90: 
	2.91: 
	2.92: 
	2.93: 
	2.94: 
	2.95: 
	2.96: 
	2.97: 
	2.98: 
	2.99: 
	2.100: 
	2.101: 
	2.102: 
	2.103: 
	2.104: 
	2.105: 
	2.106: 
	2.107: 
	2.108: 
	2.109: 
	2.110: 
	2.111: 
	2.112: 
	2.113: 
	2.114: 
	2.115: 
	2.116: 
	2.117: 
	2.118: 
	2.119: 
	2.120: 
	2.121: 
	2.122: 
	2.123: 
	2.124: 
	2.125: 
	2.126: 
	2.127: 
	2.128: 
	2.129: 
	2.130: 
	2.131: 
	2.132: 
	2.133: 
	2.134: 
	2.135: 
	2.136: 
	2.137: 
	2.138: 
	2.139: 
	2.140: 
	2.141: 
	2.142: 
	2.143: 
	2.144: 
	2.145: 
	2.146: 
	2.147: 
	2.148: 
	2.149: 
	2.150: 
	2.151: 
	2.152: 
	2.153: 
	2.154: 
	2.155: 
	2.156: 
	2.157: 
	2.158: 
	2.159: 
	anm2: 


