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Outline

I Noise enhancement is a recently studied effect in error correction
algorithms, especially low-density parity-check (LDPC) codes.

I We interpret noise as a form of algorithm diversity.

I Noise is analyzable using statistical methods, but. . .
I Noise can be complex to produce;
I Simpler procedures can supply the required diversity.

I New results on diversity approaches:

I Simpler periodic perturbations
I Parity-only bit flipping
I Threshold sequences tailored to dominant trapping sets.
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Introduction

LDPC codes are a class of large-frame
error correcting code defined by a constraint
graph or Tanner graph.

The graph’s variables are binary bits in a
data frame.

The graph’s parity-checks constrain even
parity among adjacent bits.
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Introduction

The goal of decoding is to obtain the
most probable bit values that satisfy all of
the parity-check constraints.

This problem is usually modeled as a
Bayesian Belief Network, using the Belief
Propagation (BP) algorithm. Probability
calculations can be expensive, and cycles in
the network distort the calculations,
leading to failures.
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Trapping Sets

Trapping sets or Absorbing Sets are
repeated cyclic patterns in the code
graph.

They induce error floors in LDPC
decoders based on BP.
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FAIDs & Decoder Diversity

There are many approaches for dealing with
absorbing sets.

The general framework of Finite Alphabet
Iterative Decoders (FAID) describes a class
of decoders by LUTs rather than explicit
Bayesian calculationsa.

Any particular FAID has small error coverage,
but decoder diversity guarantees total cover-
age by alternating between different LUTs.

aPlanjery et al. 2013; Declercq et al. 2013.



Single-Bit Algorithms

Several classes of low-complexity algorithms have been studied. Some
notable algorithms:

I Stochastic Decoding1 – Emulate BP using stochastic arithmetic.

I Maximum Likelihood Single-Bit Message (MLSBM)2 – Similar to
FAID, formal procedure to design LUTs.

I Differential Decoding w/ Binary Message Passing (DD-BMP)3 –
Uses a memory effect inspired by relaxation algorithms.

I Bit-Flipping – Heuristics loosely based on BP or gradient descent.

1Gaudet and Rapley 2003.
2Winstead and Boutillon 2014.
3Mobini and Hemati 2009.
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Parallel Bit-Flipping Decoders

A binary alternative, simpler than BP or Stochastic decoders.

Inputs

channel sample yi .
hypothesis xi ∈ {−1, +1}.
parity checks sj ∈ {−1, +1}

Operations

Reliability metric: ∆i (unique to algorithm)
Threshold update: flip xi if ∆i ≤ θ

Then transmit xi to adjacent nodes.
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Example Algorithms

Impr. Diff. Binary (IDB):4 ∆
(t+1)
i = ∆

(t)
i + w

∑
j∈Mi\j si, j − d x

(t)
i

Grad. Desc. BF (GDBF):5 ∆
(t+1)
i = xiyi +

∑
j sj

Noisy GDBF:6 ∆
(t+1)
i = xiyi + w

∑
j sj + q

Probabilistic GDBF:7 If ∆i < θ, flip with probability p.

Traditional rule of thumb: higher complexity = better performance.

4Cushon et al. 2014.
5Wadayama et al. 2008.
6Sundararajan, Winstead, and Boutillon 2014.
7Rasheed, Ivanis, and Vasic 2014.



Motivation: Reduced Complexity

Standard BP-based or FAID algorithm:

message registers

(1 per edge)
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Motivation: Reduced Complexity

Stochastic algorithm (successive relaxation):

message registers
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Motivation: Reduced Complexity

Bit-flipping algorithm:

message registers

(1 per node)

Symbol Node

Check Node

1
bit

per
m

es
sa

ge → parity messages

(1 per node)

← 1 bit per message



Example Node Designs
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Performance: Noise Enhancement
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PGDBF FER

FAID and PGDBF approach Maximum Likelihood (ML) limit8
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8Declercq et al. 2016.



We know that noise works...

Treating each trapping set as a Markov process, we can predict the error
rate and optimize algorithm parameters:
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What is the bigger picture? Why does
non-determinism enhance these algorithms?



Parrondo’s “paradox”
Parrondo’s paradox considers noise-perturbed particles on various sloped
surfaces. These are “failing” strategies:9

9Parrondo, Harmer, and Abbott 2000.



Parrondo’s “paradox”

But by alternating between losing strategies at the right times, and with
the right amount of noise energy, it’s possible to “win” with high
probability:



Diversity in Parrondo’s Ratchet

I Parrondo’s paradox is an example of algorithmic diversity.

I Noise is important to the demonstration only as another source of
diversity – it could be replaced by additional strategies.

I Bit-flipping algorithms are “losers,” and noise turns them into
“winners” . . .

I But maybe there are other ways to achieve this diversity.
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Parity-Only Bit Flipping

When NGDBF fails in the error floor region, it is most likely due to a
single trapping set. We can try to correct it by switching strategies:

NGDBF calculation: Ei = xiyi + w
∑

sij + qi

New strategy: Ei = ��xiyi + w
∑

sij + ��qi

In this strategy, diversity is supplied by a dynamic threshold sequence.

Example

×
S = 1

×
S = 1

×
S = 1 If all symbols are errors, a

threshold of θ = 1 will correct
them all.
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×
S = −2

×
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of θ = −3 will correct two but
leave one uncorrected error.
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S = −2 A threshold of θ = −3 cor-
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Parity-Only Bit Flipping

When NGDBF fails in the error floor region, it is most likely due to a
single trapping set. We can try to correct it by switching strategies:

NGDBF calculation: Ei = xiyi + w
∑

sij + qi

New strategy: Ei = ��xiyi + w
∑

sij + ��qi

In this strategy, diversity is supplied by a dynamic threshold sequence.

Example

×
S = −3

S = −2

S = −2 A dynamic sequence θ =
1, −3, −3 covers all errors for
this trapping set.



Lowering the Error Floor
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Discussion

I The error floor is steadily disappearing. . .

I Each improvement simultaneously reduces implementation
complexity while enhancing performance.

I We now have a basic theory to explain and optimize noise
enhancement.

I Algorithm diversity remains an open frontier.
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