
Carving a Niche in the Intersection
of Computer Engineering and

Molecular Biology

a dissertation submitted to the faculty of the

University of Minnesota by

Arnav Solanki

In partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

Marc Riedel

May 2023

© Arnav Solanki

ALL RIGHTS RESERVED

Acknowledgements

I would like to thank Marc Riedel for his support, guidance, and encourage-

ment, George Vasmatzis and James Cornette for co-advising me through my

degree, Chad Myers and Honghong Tinn for reviewing my numerous exams,

and Murti Salapaka for offering sound advice. I would also like to thank

the numerous instructors who motivated me through my research: these in-

clude Jeongsik Yong, Aaron Goldstrohm, Dan Knights, Romas Kazlauskas,

R. Scott McIvor, Martina Cardone, Demoz Gebre-Egziabher, Andrew Lam-

perski, Kia Bazargan, and the late James Parker.

Finally, I express my gratitude to my parents, my sister, and my grand-

mother for their patience.

To Daisy, woof woof.

i

Abstract

Research at the intersection of Molecular Biology and Computer Science

is evolving at a rapid pace. With newer tools like CRISPR-Cas9 making

biotechnology more accessible and computational demands scaling to smaller

sizes, DNA has become an ideal substrate for molecular computing. Here, a

parallelized model of computing using Single input, multiple data DNA is ex-

plored. Numerous algorithms such as binary sorting, shifting, searching, and

XOR are developed. An additional approach to computing through chemical

reaction networks is proposed, one that allows for computing stochastically

using DNA concatemers. With improvements in computing power and large

data volumes being generated in bioinformatics, machine learning has taken

the forefront in problems such as protein-peptide modeling. For fields such

as computational immunology, reducing erroneous predictions from machine

learning based tools is vital. Here the vulnerability of such tools not uti-

lizing biochemical attributes such as hydrophobicity in their predictions is

outlined. This would increase their impact in applications such as vaccine

design, Furthermore, these tools were used to investigate the evolution of

SARS-CoV-2 virus and its impact on Human T cell immunity. A novel ap-

proach to designing experimental controls was used to validate the preserva-

tion of T Cell epitopes in the various SARS-CoV-2 variants. These results

suggest that T Cell immunity mounts a strong defense against COVID-19.

ii

Contents

Acknowledgements i

Abstract ii

List of Figures vii

List of Tables x

List of Abbreviations xii

1 Introduction 1

I DNA Computing 3

2 Overview 4

2.1 Toehold Mediated Strand Displacement 5

3 Parallelized Computing on Data Stored in DNA 8

3.1 Parallel computation using SIMD 9

3.2 Design of Encoding System 11

3.2.1 Identifying Bit Pairs 12

3.2.2 Rewriting a cell . 14

3.3 Parallel Binary Bubble Sorting 14

3.3.1 Implementation . 16

3.4 Parallel Exclusive OR . 17

iii

3.4.1 Implementation . 19

3.5 Parallel Left Shifting . 20

3.6 Parallel Search Algorithm . 21

3.6.1 Parallel search procedure 22

3.6.2 Search procedure with offset 22

3.6.3 Implementation . 23

3.7 Discussion . 26

3.7.1 Initializing data on cells sharing the same sequences . 26

3.7.2 Ability to compute any non-conflicting pairwise oper-

ation . 27

3.7.3 Converting to Different Encoding Schemes 28

3.7.4 Time Complexity of Parallel Search 29

3.8 Conclusion . 30

4 Stochastic Computing on Data Stored in DNA 31

4.1 Background . 34

4.2 Chemical Reaction Networks 34

4.3 Digital Logic . 35

4.4 Stochastic Logic . 35

4.5 Implementing Stochastic Logic with Chemical Reactions . . . 39

4.5.1 Fractional Representation in Solution 40

4.5.2 Building a Chemical Reaction Network from a Truth

Table . 40

4.6 Proof for the correctness of CRNs implementing truth tables 41

4.6.1 A demonstrative example 47

4.7 Error Analysis . 49

4.7.1 Trials for Error Analysis 51

4.8 Implementation using DNA 54

4.8.1 DNA Concatemers . 54

4.8.2 Procedure . 55

4.9 Conclusion . 58

5 Discussion 60

iv

II Bioinformatics 62

6 Overview 63

6.1 Major Histocompatibility Complex 63

7 Investigating False Positives and False Negatives in Machine

Learning Predictions 66

7.1 Methods . 67

7.1.1 Data Mining . 68

7.1.2 Hydrophobicity . 70

7.2 Results . 71

7.3 Conclusion . 82

8 Investigating T Cell Immune Responses to the various SARS-

CoV-2 variants 85

8.1 Methods . 87

8.1.1 SARS-CoV-2 Spike Protein and Variants 87

8.1.2 MHC-Peptide Binding Affinity Prediction 90

8.1.3 Generating Evaders as Positive Controls 91

8.1.4 Statistics and Ranking 92

8.2 Results . 96

8.2.1 MHC Class I . 96

8.2.2 MHC Class II . 99

8.3 Conclusion . 105

9 Discussion 106

Bibliography 107

10 Appendix 122

10.1 Supplementary Material for Chapter 3 122

10.1.1 Instructions for Converting to Another Scheme 122

10.1.2 Detailed Implementation of Each Step for Parallel Sort-

ing . 122

v

10.1.3 Detailed Implementation of Each Step for Parallel Ex-

clusive OR . 126

10.1.4 Detailed Implementation of Each Step for Parallel Left

Shift cell . 128

10.1.5 Detailed Implementation of the Second Level in Par-

allel Search . 131

10.1.6 Example of Parallel Bubble Sort on an arbitrary bit-

string . 134

10.1.7 Gibson Assembly of a 2 bit register 135

10.2 Supplementary Material for Chapter 4 138

10.2.1 ArcTan Function . 138

10.2.2 Exponential Function 140

10.2.3 Bessel Function . 142

10.2.4 Sinc Function . 144

10.3 Supplementary Material for Chapter 7 148

10.4 Supplementary Material for Chapter 8 159

vi

List of Figures

2.1 The steps of toehold-mediated strand displacement [89]. Each

stage of the reaction is shown as a dashed bubble. The re-

action starts in the upper left with molecules A and B, goes

down to molecule C through reaction X, goes right to D

through reaction Y , and finally produces E and F after

reaction Z. 6

3.1 Outline of SIMD DNA Computations 10

3.2 Bit representation in the encoding scheme 11

3.3 Identifying Bit Pairs . 13

3.4 Example of Rewriting in Three Steps 14

3.5 Outline of the SIMD DNA parallel binary sorting algorithm. 16

3.6 Outline of the SIMD DNA parallel left shift operations. The

initial sequence S is 11001 and the result sequence T is

10011. The operation shifts each bit to the left one po-

sition (T[5:1]=S[4:0]), while keeping the Least Significant

Bit unchanged. 20

3.7 Example implementation of search algorithm on target se-

quence 1011 . 24

3.8 One strand can be used to differentiate two bits 28

4.1 Stochastic values as bitstreams 36

4.2 Error Cubes for the 3-input XOR 52

4.3 DNA Concatemers for CRNs 56

vii

7.1 Score distributions for pMHC A2 training data 73

7.2 Score distributions for pMHC B27 training data 74

7.3 Score distributions for pMHC B8 training data 75

7.4 Violin plots for pMHC A2 testing data 77

7.5 Violin plots for pMHC B27 testing data 78

7.6 Violin plots for pMHC B8 testing data 79

8.1 MHC Class I strong binders from the spike protein 95

8.2 MHC Class I antigens preserved from the spike protein . . . 95

8.3 MHC Class 1 strong binders from the evaders 96

8.4 Class I evaders vs. spike protein variants 99

8.5 MHC Class I strong binders from the spike protein 100

8.6 MHC Class I antigens preserved from the spike protein . . . 101

8.7 MHC Class 1 strong binders from the evaders 102

8.8 Class II evaders vs. spike protein variants 104

10.1 Current coding scheme can be converted to another coding

scheme . 123

10.2 Instructions for Parallel Sorting 124

10.3 Instructions for the Exclusive OR. The first iteration con-

verts 11101 to 00011. 127

10.4 Instructions for the Exclusive OR. The second iteration con-

verts 00011 to 00000. 129

10.5 Instructions for the Left Shift cell 130

10.6 Instructions for a search operation of target sequence 1011 . 132

10.7 Instructions for the cleanup process for a failed searching.

These instructions won’t affect the result of a successful search.133

10.8 Using Gibson Assembly to construct a register storing 01

from cells with the same sequence. 136

10.9 Score distributions for pMHC A2 testing data 149

10.10 Score distributions for pMHC B27 testing data 150

10.11 Score distributions for pMHC B8 testing data 150

10.12 Violin plots for pMHC A2 training data 151

viii

10.13 Violin plots for pMHC B27 training data 152

10.14 Violin plots for pMHC B8 training data 153

10.15 Violin plots for A2 BA vs. EL 154

10.16 Violin plots for B27 BA vs. EL 154

10.17 Violin plots for B8 BA vs. EL 155

10.18 ROC Curves for A2 . 156

10.19 ROC Curves for B27 . 157

10.20 ROC Curves for B8 . 158

ix

List of Tables

4.1 Stochastic Function Implemented by Basic Logic Gates . . . 37

4.2 Truth table for a combinational circuit, and the corresponding

probability of each row. 38

4.3 Chemical Reaction Networks for Basic Logic Gates. Note that

the indices of molecules match the truth table implementing

the logic gate. 42

7.1 Various binary classification metrics on the training data anal-

ysis for NetMHC-4.0. 72

7.2 Various binary classification metrics on the training data anal-

ysis for NetMHCpan-4.1. 72

8.1 Anchor Residue positions identified from strong binding pep-

tides for all investigated HLAs. The amino acids that were

restricted from these positions (when creating evaders) are

also listed. 93

8.2 P-values for the Wilcoxon rank-sum test for multi-HLA met-

rics in Class I. 100

8.3 P-values for the Wilcoxon rank-sum test for multi-HLA met-

rics in Class II. 104

10.1 Confusion matrices for the training data analysis for NetMHC-

4.0. The abbreviations used are: True Negatives (TN), False

Positives (FP), False Negatives (FN), and True Positives (TP).148

x

10.2 Confusion matrices for the training data analysis for NetMHCpan-

4.1. The abbreviations used are: True Negatives (TN), False

Positives (FP), False Negatives (FN), and True Positives (TP).149

10.3 Sizes, Means, and Standard Deviations of the hydrophobicity

of the sets of peptides reported in the Training Data Analy-

sis. The abbreviations used here are: NetMHC-4.0 predicted

Strong Binders (N-4.0 SB), and NetMHCpan-4.1 predicted

Strong Binders (NP-4.1 SB). 151

10.4 Sizes, Means, and Standard Deviations of the hydrophobicity

of the sets of peptides reported in the Human Proteome Anal-

ysis. The abbreviations used here are: NetMHC-4.0 predicted

Strong Binders (N-4.0 SB), and NetMHCpan-4.1 predicted

Strong Binders (NP-4.1 SB). 152

10.5 P-values for the Wilcoxon rank-sum test for individual HLAs

in Class I. The lower the p-value, the more “separated” the

two sets being compared. 159

10.6 P-values for the Wilcoxon rank-sum test for individual HLAs

in Class II. 160

10.7 Antigens predicted by NetMHCpan-4.1 for the vaccine and

new Omicron subvariant spikes. The vaccine labels are BNT

(BNT162b2), Ad26 (Ad26.COV2.S), and NVX (NVX-CoV2373).160

10.8 Class I Antigens conserved from the Original Spike Protein

in the vaccine and new Omicron subvariant spikes. The vac-

cine labels are BNT (BNT162b2), Ad26 (Ad26.COV2.S), and

NVX (NVX-CoV2373). 161

10.9 Antigens predicted by NetMHCiipan-4.0 for the vaccine and

new Omicron subvariant spikes. The vaccine labels are BNT

(BNT162b2), Ad26 (Ad26.COV2.S), and NVX (NVX-CoV2373).161

10.10Class II Antigens conserved from the Original Spike Protein

in the vaccine and new Omicron subvariant spikes. The vac-

cine labels are BNT (BNT162b2), Ad26 (Ad26.COV2.S), and

NVX (NVX-CoV2373). 162

xi

List of Abbreviations

AUC: Area under the curve

BA: Binding affinity

CRN: Chemical reaction network

DNA: Deoxyribonucleic acid

dsDNA: Double stranded DNA

EL: Eluted ligand

FP: False positives

FN: False negatives

GPU: Graphical processing unit

HLA: Human leukocyte antigens

MHC: Major histocompatibility complex

MIMD: Multiple input, multiple data

ML: Machine learning

RNA: Ribonucleic acid

ROC: Receiver operating characteristic

SIMD: Single instruction, multiple data

ssDNA: Single stranded DNA

TP: True positives

TN: True negatives

xii

Chapter 1

Introduction

Initially, the fields of molecular biology and molecular computing might seem

incredibly similar. After all, both deal with the manipulation and analysis of

molecular information. Yet they exist as distinct research spheres. Molecu-

lar biology focuses on the study of small molecules such as Deoxyribonucleic

acid (DNA) and proteins and the roles they play in shaping life. In contrast,

molecular computing aims to develop means to store and process data on

molecules. The difference in goals – the biologists seeking to explain how

life works, while the computer scientists questioning how to develop and

improve their computational models – leaves the fields disparate. Further-

more, neither field is limited enough to be overtaken by the other in terms

of research volume or significance in applications.

All these differences make it straightforward for researchers to remain

oblivious of each other’s works. This dissertation stands against this notion:

despite the distance between them, progression of technology and knowl-

edge is best driven at the intersection of these fields. For instance, the tools

used by both domains are shared – DNA strands, enzymes, and synthetic

molecules are just as important for understanding how to treat cancer as

developing a suitable DNA computing model, or machine learning pipelines

and efficient computer algorithms play a role in efficient bioinformatics data

processing or optimizing data storage. DNA computing cannot be truly uti-

lized without an intimate understanding of the various mechanisms nature

1

has evolved to store, repair, process, and replicate DNA. Similarly, bioin-

formatics studies cannot be reliably concluded without a fine perception of

how different computational methods can influence the validation of their

hypothesis. This intersection of these fields carves a niche in research; small

as it is, has the potential to contribute to medicine, biotechnology, and

computing.

This dissertation documents various studies conducted within this afore-

mentioned niche. Given the disparate goals of these studies, they have been

compiled into 2 parts: Part I with an emphasis on developing DNA com-

puting models, and Part II discussing the use of machine learning in spe-

cific bioinformatics problems. Each part start off with a brief introduction

(Chapters 5 and 9) motivating the research and providing the necessary

background to understand the studies. Each part also concludes with a dis-

cussion (Chapters 5 and 9) highlighting the extent of the work conducted in

these studies and their potential.

The studies in Part I are Chapter 3, a deep dive into building a parallel

computing model using “single input, multiple data” (SIMD) DNA, and

Chapter 4, an exploration of utilizing DNA chemical reaction networks to

achieve true stochastic computing. The studies in Part II are Chapter 7,

an analysis of the vulnerabilities of machine learning tools when modelling

complex biochemsitry, and Chapter 8, a bioinformatics driven approach to

investigating the lack of T cell immune evasion in later SARS-CoV-2 variants

such as omicron.

2

Part I

DNA Computing

3

Chapter 2

Overview

Beginning with the seminal work of Adelman, who discussed solutions to

combinatorial problems such as Boolean satisfiability and Hamiltonian paths

with DNA a quarter-century ago [1], DNA computing has promised the ben-

efits of massive parallelism in operations. More recently, there has been

considerable interest in DNA storage [7, 11] and then performing compu-

tation in vitro [91, 108]. Instead of storing data in just the sequence of

nucleotides in DNA, a particularly promising approach here has been to

encode data by “nicking” DNA with editing enzymes such as PfAgo and

CRISPR-Cas9 [47, 94]. This approach yields long DNA strands that store

data, but also contain single stranded regions of DNA called “toeholds” that

can be used to design reactions between DNA molecules [89].

This dissertation features two studies in developing models of computa-

tion using DNA as a substrate. The first study investigates parallel com-

puting through the use of “SIMD” DNA. The study details how data can

be encoded and transformed into other useful encoding schemes. It shows

how data can be initialized on long strands in an easy to scale manner. Fur-

thermore, several algorithms that can be ran on the data stored in DNA

in vitro are presented. These algorithms include binary bubble sorting, left

shifting, bitwise exclusive OR, and searching. Sorting runs in only N par-

allel steps, where N was the number of bits to be sorted. Shifting finishs

in a single parallel step. The searching takes between log(n) and n steps to

4

complete, where n is the length of the query string. At most N steps are

needed to compute the XOR of N bits. All of these algorithms are massively

parallelized and can be operated on large quantities of DNA. They are of

immediate practical interest, as many forms of computation on stored data

entail some form of sorting, XOR, shifting, and searching. Finally, the study

includes discussions on the time complexity of these methods and limitations

to overcome for future development.

The second study explores the theoretical framework of a chemical reac-

tion network and how it could be implemented in vitro. It presents another

data encoding scheme using DNA as a substrate, one that lends itself to the

paradigm of stochastic computing. This scheme allows for the translation

of any combinational logic function into a stochastic function. A simple

method for transforming truth tables in to chemical reaction networks is

presented, and its correctness is proven. Several examples are used to illus-

trate how powerful this form of computing is. Lastly, an implementation of

this computational model using DNA concatemers is introduced.

2.1 Toehold Mediated Strand Displacement

Deoxyribonucleic Acid (DNA) is a polymerized macromolecule that stores

genetic information in nearly all living things in a directed sequence of

adenines (A), cytosines (C), guanines (G), and thymines (T). DNA primarily

exists as an antiparallel double stranded molecule forming a double helical

ladder structure, in which the rungs of the ladder are nucleotide pairs (A

binds to T, C to G and vice versa) while the side rails are the phosphodiester

backbones [105, 79].

In synthetic storage system, smaller single stranded DNA sequence units,

called domains, are concatenated to form longer strands. All domains are

restricted to less than 30 nucleotides in length. Each domain binds with its

complement. In Figure 2.1, domain 1 is shown in pink, domain 2 is shown

in blue, and domain 3 is shown in yellow. The complementary domains are

1∗, 2∗, and 3∗, respectively. All domains are assumed to be orthogonal in

sequence to each other, i.e. strands from different domains exhibit negligible

5

binding to each other. Orthogonality can be achieved by maximizing the

Hamming distance for every pair of domains [56].

Figure 2.1: The steps of toehold-mediated strand displacement [89]. Each
stage of the reaction is shown as a dashed bubble. The reaction starts in
the upper left with molecules A and B, goes down to molecule C through
reaction X, goes right to D through reaction Y , and finally produces E and
F after reaction Z.

A toehold is an exposed domain, generally 10 nucleotides in length, on

one of the strands in a double-stranded DNA (dsDNA) complex. Toeholds

can be created with DNA nicking enzymes such as CRISPR-Cas9 [87] as

in Figure ??. With two separate applications of guided CRISPR-Cas9, the

backbone of the dsDNA can be nicked before and after the toehold. At this

point the strand covering the toehold can be released by mild denaturing

and elution [67]. For this process, the dsDNA is held in solution by the

use of magnetic beads attached to the DNA backbone. A magnetic field is

applied during the washing process [55, 29].

Toehold-mediated strand displacement (TMSD) is a particular class of in

vitro reactions that allows for rate-controlled reactions of DNA molecules

with toeholds [110, 92, 97]. A single-stranded DNA (ssDNA) containing

the complementary sequence to a toehold can bind at that location. If the

6

ssDNA is longer than the toehold there will be an overhanging flap. This

flap can displace the adjacent domains in the dsDNA through a process

termed branch migration. The original ssDNA can completely displace the

originally bound portion of the dsDNA releasing a new ssDNA. This new

ssDNA can then participate in further displacement reactions, creating a

cascade of displacement reactions.

Figure 2.1 illustrates the different steps involved in TMSD: the dsDNA

B has 3 domains, of which 1∗ is a toehold. The ssDNA A contains domain

1 and can bind to B in reaction X, resulting in molecule C containing an

overhanging flap from A. Through branch migration, shown in reaction Y ,

the A flap can fully bind and displace the original strand to produce D.

Eventually this strand can be displaced off entirely in reaction Z to produce

ssDNA E and dsDNA F , which now has a new toehold in 3∗. The ssDNA E

can also participate in TMSD reactions through domains 2 or 3. The rates

and directions for all reactions X,Y , and Z can be controlled by factors such

as the length of domains (the binding of longer domains is favorable), the C-

G percentage of domains (C-G bonds consist of 3 hydrogen bonds compared

to the 2 in A-T bonds and thus favors binding), temperature (denaturing is

favorable at higher temperatures), elution and magnetic purification (reduc-

ing product concentration drives a reaction forward), and through enzymes

(DNAse can degrade DNA to reduce product concentration).

7

Chapter 3

Parallelized Computing on

Data Stored in DNA

This study proposed an encoding system for SIMD DNA computation, suit-

able for general pairwise operations [8]. The first was a binary bubble sorting

algorithm (equivalent to rule 184 with elementary cellular automata [42, 45]).

We showed that sorting could be performed in only N parallel steps, where

N was the number of bits to be sorted. The second application was a

left-shifting operation (equivalent to rule 170 with elementary cellular au-

tomata), performed in a single parallel step. The third application was a

parallel search algorithm that checked if a query substring was present in a

target string. In principle, the algorithm could return an answer in log(n)

steps, but our implementation required between log(n) and n steps to com-

plete, where n was the length of the query string. This paper expands upon

this encoding system with a new application, a parallel Exclusive OR calcu-

lation. This XOR operation requires at most N steps to compute the XOR

of N bits. All 4 of these applications are of immediate practical interest,

as many forms of computation on stored data entail some form of sorting,

XOR, shifting, and searching.

This work was funded by DARPA grant #W911NF-18-2-0032.

8

3.1 Parallel computation using SIMD

SIMD is a computer engineering acronym for Single Instruction, Multiple

Data [19], a form of computation in which multiple processing elements per-

form the same operation on multiple data points simultaneously. It contrasts

with the more general class of parallel computation called MIMD (Multiple

Instructions, Multiple Data), where multiple processing elements can per-

form completely different operations on multiple data points simultaneously.

While general MIMD parallelism might be desirable, it is often not practical.

Much of the modern progress in electronic computing power has come by

scaling up SIMD computation with platforms such as graphical processing

units (GPUs).

SIMD implemented on DNA is intriguing. It provides a means to trans-

form stored data, perhaps large amounts of it, with a single parallel instruc-

tion [103]. Computation using SIMD DNA is predicated on the encoding

scheme for data. Data is stored in the form of bits on long strands of double-

stranded DNA constructed using “domains” as defined in Section 2.1. A

sequence of several (typically 5 to 7) domains maps to a “cell” storing one

binary bit. Whether a cell stores a 0 or a 1 depends upon topological vari-

ations, specifically the location of nicks, i.e., breaks in the DNA backbone.

The nicks always occur on one strand of a double-stranded complex (gener-

ally the top strand in most examples); the other remains untouched.

The computation is carried out by a sequence of “instructions”, where

each instruction implements DNA strand displacement reactions on cells.

Instructions are initiated by single-stranded “instruction strands” added to

the solution. After the strand displacement cascades complete, all freely

floating fragments in the solution are washed away; the original strand is

kept and separated via a magnetic bead. After a sequence of instructions,

the data is transformed to its final state. The readout can be performed via

fluorescence or with Oxford nanopore devices [4], [47].

This study’s approach to computation is summarized as follows and il-

lustrated in Figure 3.1.

9

1. Design
Encoding
Scheme

2. Encode
Data

3. Perform
Computation

4. Read out

Nanopores

1 2 3 4 5 6 7

Toehold ToeholdNick Nick

Bit 0 Bit 1

1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 3.1: General Outline of SIMD DNA Computations. Stage 1 shows
the encoding of binary bits 0 and 1 across the 7 domains per bit. Stage
2 shows an example of encoding the bits 010. Stage 3 illustrates the step
in which computation is performed with strand displacement, in a general
sense. Details of this step will be provided for specific algorithms in later
sections. Note that, in this generic example, the location of nick in the sec-
ond cell has changed at the end of stage 3. Stage 4 illustrates how nanopore
sequencing could be used to perform readout.

10

1 2 3 4 5 6 7

Toehold ToeholdNick Nick

Bit 0 Bit 1

1 2 3 4 5 6 7

Figure 3.2: Bit representation in the encoding scheme. Horizontal lines
represent DNA strands. Integers represent “domains”: specific sequences
of nucleotides. Arrow heads represent nicked positions: places where the
phosphodiester bond in the backbone of the DNA strand has been broken,
via gene-editing techniques. Cells store binary values. Each cell consists of
7 domains. Domain 1 is always exposed, forming a toehold.

1. Design an encoding structure that best suits the algorithm.

2. Encode the data at specific locations, using enzymes to nick corre-

sponding targets.

3. Gently denature the DNA, allowing segments between adjacent nicks

to detach, exposing toeholds.

4. Execute instructions, implemented as strand-displacement operations.

5. Finally, read out data using fluorescence or with nanopores.

3.2 Design of Encoding System

Several schemes for encoding binary data were proposed in prior work [103],

each chosen to minimize the number of operations for a specific algorithm.

This study proposed a new encoding scheme that worked well for the broad

class of algorithms that consist of parallel operations on pairs of bits. A

requirement for running these algorithms was that the encoding scheme

allowed the algorithm to read bits adjacent to each other. This specification

came at the expense of more complexity for some algorithms, i.e., more

operations per step than possible with a customized encoding.

The encoding scheme is shown in Figure 3.2. Each cell stores a single

binary value (a “bit”). Each cell consists of 7 domains. The actual nucleotide

sequence of the domains is not specified here for simplicity. While preparing

11

this cell, the top DNA strand must be nicked before and after domain 1. This

strand can then be displaced by denaturing, creating an exposed toehold.

Domain 1 is always exposed as a toehold in this representation. Domains

2 through 7 are covered. When storing a bit 0, the top strand will be

nicked between domains 3 and 4; when storing a bit 1, the nick will be

between domains 5 and 6. There are four possible pairings for two adjacent

cells. Each will be detected using different domain combinations: for (0, 0),

domains 1, 2 and 3; for (0, 1), domain 1 only; for (1, 0), domains 6 through

3 with wrapping at domain 7 and 1; and for (1, 1), domains 6, 7 and 1.

Before delving into the various algorithms possible with this encoding,

some general algorithmic steps are presented first.

3.2.1 Identifying Bit Pairs

A common task in the algorithms in this study was “identifying” pairs of

adjacent bits, i.e., recognizing the specific pair of cells at a location of inter-

est. The fact that domain 1 was always exposed was exploited to identify

these specific pairs. Figure 3.3 illustrates the approach on the string 11001,

which contains all 4 possible adjacent pairs: 00, 01, 10 and 11.

Identification was performed with three instructions. In instruction 1,

the strands (S1 6 7 1 2 3) were issued to all pairs of bits. S1 first bound at the

toehold of domain 1, between each pair. If this preceding bit had a value of

1, there would have been a nick between domains 5 and 6. Through branch

migration, the left side of S1 (i.e., the (S1 6 7) part) would have displaced

the original strand covering domains 6 and 7 of the preceding bit. This is

shown in Figure 3.3, instructions 1 and 2. If the value of the following bit

were 0, there would have been a nick between domains 3 and 4. Through

branch migration, the right side of S1 (i.e., the (S1 2 3) part) would displace

the original strand covering domains 2 and 3. This is shown in Figure 3.3,

instructions 1 and 2. Only if the preceding bit was 1 and the following bit

was 0 would S1 displace both these strands. For the pair (1, 1), domains 2

and 3 of S1 would be left overhanging. For the pair (0, 0), domains 6 and

7 of S1 would be left overhanging. For the pair (0, 1) S1 would not bind at

12

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 6 7 1 2 3 S1 6 7 1 2 3 S1 6 7 1 2 3 S1 6 7 1 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 S1 S1

6* 7* 1* 2* 3* 6* 7* 1* 2* 3* 6* 7* 1* 2* 3* 6* 7* 1* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1
S2 6 7 1

S3 1 2 3

S2 6 7 1

S3 1 2 3

S2 6 7 1

S3 1 2 3

S2 6 7 1

S3 1 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 S3S2

Original: 11001

Ins 1: Identifying pair (1, 0)

Ins 2: Detaching S1 on all other pairs

Ins 3: Identifying pair (0, 0) and (1, 1)

Result

Figure 3.3: Example of Identifying Different Pairs of Adjacent Bits.

all, since the only exposed toehold was domain 1. This is how the algorithm

identified the pair (1, 0).

In instruction 2, using the complementary strands (6* 7* 1* 2* 3*), the

strand S1 that attached to the pairs (0, 0) and (1, 1) was pulled out. This

was done through the open domains 2 and 3 in the pair (0, 0) and the open

domains 6 and 7 in the pair (1, 1) on strand S1. After this instruction, strand

S1 remained only for the pair (1, 0).

In instruction 3, two instruction strands were issued at the same time:

(S2 6 7 1) and (S3 1 2 3). Here (S2 6 7 1) would bind to the pair (1, 1) and

(S3 1 2 3) would bind to the pair (0, 0). They would not bind with any other

pairs since the only exposed toehold for binding would be domain 1; they

would prefer the locations with more exposed domains.

The result was that the adjacent bit pairs (1, 1), (1, 0) and (0, 0) were

each labeled with strands S2, S1 and S3 respectively. Pairs (0, 1) were labeled

with an exposed toehold at domain 1. This toehold could be replaced by a

strand (Sx 4 5 6 7 1) or a strand (Sx 1 2 3 4 5); the choice would be made

13

S 2 3 4 5 6 7 S* 2* 3* 4* 5* 6* 7*

1 2 3 4 5 6 7

S 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 3.4: Example of Rewriting in Three Steps

depending on the use case.

3.2.2 Rewriting a cell

By exposing toeholds across domains 2 through 7 in a cell, one can rewrite

the content of that cell – so change a 1 to 0 or a 0 to 1 – with three

instructions. The idea is that since there are exposed domains, the content

of the cell can be displaced with a single strand covering all these domains.

Then that covering strand would be removed through the exposed “tag”

domain (S in Figure 3.4) using a complementary strand. This would leave

the cell completely exposed. A new bit value could then be written into

it by hybridizing the strands according to a new encoding scheme, leaving

domain 1 as a toehold and placing the nick at the desired location.

3.3 Parallel Binary Bubble Sorting

Sorting is a simple yet fundamental operation in computer science. This

study focuses on sorting binary values. Sorting can be used to determine

the “weight” of a vector of 0’s and 1’s: the count of the number of 1’s

relative to the length of the vector. It can also be used to compute the

majority function: whether there are more 1’s than 0’s or not in the input set.

Majority is a fundamental operation for many machine-learning algorithms.

This SIMD DNA implementation performed parallel bubble sorting on

binary bits [13]. It was expressed as a pairwise operation in the form of

f(a, b) = (c, d), where (a, b) was the value of the input bit pair, and (c, d),

the output pair. f represented the action taken on a given bit pair – to

rewrite or to leave it as it is. The kinds of pairwise operations that could

be performed with our encoding are discussed in Section 3.7.2.

14

The sorting operation was expressed in the following pairwise operation,

f(0, 0) = (0, 0), f(0, 1) = (0, 1), f(1, 0) = (0, 1), f(1, 1) = (1, 1).

Note that only the third input pair (1, 0) required rewritting to (0, 1). The

rest of the bit pairs did not need to be changed.

The following “bit swapping” explains how the sorting is performed:

• If the current bit is 1, it changes it to 0 if and only if its right neighbor

is 0.

• If the current bit is 0, it changes it to 1 if and only if its left neighbor

is 1.

Repeatedly performing such bit-swapping sorts the entire sequence of binary

values. An example is provided in Section 10.1.6.

Lemma 1. The f(1, 0) = (0, 1) pairwise operation can only occur once in

any sequence of three bits.

Proof. It is impossible to have two consecutive, overlapping pairs (1, 0) span-

ning three bits. Therefore, the f(1, 0) = (0, 1) pairwise operation (i.e., the

bit-swap step) can only occur once in any sequence of three bits. Conse-

quently, the bubble sort algorithm only performs non-conflicting pairwise

operations. (Please see Section 3.7.2 for more details.)

Accordingly, bubble sorting binary values in parallel did not require an

odd and even index addressing scheme, as did bubble sorting arbitrary val-

ues.

Lemma 2. Sorting completes in at most N − 1 parallel steps where N is

the total number of bits.

Proof. Suppose a sequence of binary bits of lengthN , in which all bits except

the first are 0. When applying the algorithm, the 1 located at the start will

be pushed back one position at a time with the f(1, 0) = (0, 1) bit swap

15

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(a) Initial Sequence 0110

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1

(b) After Recognizing (1, 0)

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2

(c) Protection on Bit 0

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(d) Flipped third bit to 0, Protection Removed

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(e) Flipped fourth bit to 1, Result 0101

Figure 3.5: Outline of the SIMD DNA parallel binary sorting algorithm.

operation. Fully sorting the sequence, i.e., moving the 1 to the last position,

requires N − 1 total swaps. Now suppose an arbitrary bit sequence being

sorted. After N − 1 swaps, all the 1’s will be at the end of the sequence. To

see why, note that an f(1, 0) = (0, 1) operation moves a 1 forward, while an

f(1, 1) = (1, 1) operation does not affect adjacent 1’s. Thus, in N − 1 steps,

all 1’s will have moved to the end of the sequence.

3.3.1 Implementation

Here is the instruction set for performing parallel binary bubble sort with

SIMD DNA, using the encoding in Figure 3.2. It consisted of 12 individual

instructions. These are summarized as follows:

1. Label pairs (1, 0).

16

2. Uncover these, leaving domains 6 and 7 for the bits 1 and domains 2

and 3 for the bits 0 open in these pairs.

3. Protect the bits 0 of these pairs by covering the corresponding toehold

at domains 2 and 3.

4. Flip the bits 1 to 0 in these pairs.

5. Release the protective covers; flip the bits 0 to 1 in these pairs.

For the initialization, the first two instructions described in Section 3.2.1

were used, with an additional instruction to fix open domains for bits that

did not change. The rewriting method described in Section 3.2.2 was then

used to flip the bits. A full description of the implementation of sorting is

provided in Section 10.1.2.

3.4 Parallel Exclusive OR

The Exclusive OR operation, shortened to XOR, is a useful bit operation

with many applications, including in error correction. Simply put, a multi-

input XOR operation checks if there are an odd number of 1’s in the input

bits. With this SIMD DNA implementation, it was possible to compute the

XOR of all bits on a strand. This was achieved with the following pairwise

operations per step of the algorithm:

f(0, 0) = (0, 0), f(0, 1) = (0, 1), f(1, 0) = (0, 1), f(1, 1) = (0, 0).

These pairwise operations were mostly similar to the ones for the parallel

bubble sorting, in particular with the f(1, 0) = (0, 1) that sorted all 1’s

and pushed them to the right. However, the f(1, 1) = (0, 0) modification

ensured that any contiguous pair of cells both containing 1 were overwritten

to 0. This meant that after every individual step of the XOR algorithm,

the parity of 1’s was preserved, and all 1’s were shifted one bit towards the

right. After a certain number of steps, the last bit on the strand stored the

XOR output. One issue that had to be addressed with this algorithm was

17

how cells were paired per step. For example, if the triplet of cells (1,1,1) was

recognized as two pairs of (1, 1), then the overwriting step would change all

three 1’s to 0 and break the parity of the sequence. To avoid this, all DNA

strand instructions identifying (1,1) pairs were run on non-overlapping pairs

of cells at each step. For example, the first step operated on pairs of cells i

and i+ 1 where i was an even number, and then the next step operated on

pairs i and i+ 1 where i was an odd number. However, the f(1, 0) = (0, 1)

operation could still be run on overlapping pairs.

To perform such operations, i.e., one iteration on only even-to-odd pair-

ings and the next iteration on only odd-to-even pairings, the cells had unique

sequences. The even and odd cells had different DNA base sequences – all

even cells were based on one sequence, and all odd cells were based on an-

other, distinct sequence. The nicking architecture, shown in Figure 3.2, ap-

plied despite the different base sequences. Changing the sequences ensured

that instruction strands coudl be synthesized to bind to the appropriate i

and i+ 1 cells discussed above.

Each iteration of the XOR algorithm is thus as follows:

• Determine a pairing that is offset by 1 cell compared to the previous

iteration’s pairing.

• Detect all non-overlapping pairs of (1,1) and convert them to (0,0).

• Detect all pairs of (1,0) and convert them to (0,1). For this writing

process, pairs can be overlapping.

Each of these iterations pushes all 1’s to the end of the strand while also

overwriting any adjacent (non-overlapping) pairs of 1’s. Therefore, after a

sufficient number of iterations, all bits in the strand are 0’s except for the

last bit – that bit will only be 1 if there were an odd number of 1’s to begin

with. Therefore, the algorithm computes the XOR function.

The parallel exclusive OR completes in at most N parallel steps where

N is the total number of bits.

18

Proof. Consider the worst case of an array of N bits with two 1’s, one at

the start and one at the end. For the correct XOR computation, the first 1

must be moved to the end of the array, which requires at most N − 1 steps.

Then f(1, 1) = (0, 0) requires one final step for the proper XOR output.

Now any extra 1’s added to the array occurr between the start and end.

These will be moved to an adjacent position in those N − 1 steps. The

f(1, 1) = (0, 0) operation for these two 1’s in the middle of the array does

not impede sorting the first 1 in the array. Thus computing the XOR of N

bits requires at most 1 step more than the worst-case parallel sorting time.

Therefore, any arbitrary array of N bits requires (N − 1) + 1 = N steps for

a correct XOR computation.

3.4.1 Implementation

The implementation of one step of the parallel exclusive OR with SIMD

DNA consisted of 20 individual instructions. The gist of these instructions

is summarized as follows.

1. Label non-overlapping pairs (1, 1).

2. Cover all other pairs.

3. Uncover the identified (1, 1) pairs and expose both bits in this pair.

4. Rewrite all uncovered bits to 0.

5. Now label all pairs of (1, 0).

6. Uncover the (1, 0) pairs.

7. Protect the bits 0 of these pairs by covering the corresponding toehold

at domains 2 and 3.

8. Flip the bits 1 to 0 in these pairs.

9. Release the protective covers; flip the bits 0 to 1 in these pairs.

19

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(a) Initial Sequence 11001

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 S3S2 S4

(b) After identifying all pairs

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4S5

(c) Release S1 from Pair (1, 0)

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4

(d) Rewrite bit 1 in the previous pair with 0

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(e) Release S2, S3 and S4 then write 1, Result 10011

Figure 3.6: Outline of the SIMD DNA parallel left shift operations. The
initial sequence S is 11001 and the result sequence T is 10011. The operation
shifts each bit to the left one position (T[5:1]=S[4:0]), while keeping the
Least Significant Bit unchanged.

Please note that in each step, the non-overlapping pairing were offset

by one cell compared to the preceding step to ensure all (1,1) pairs were

overwritten. A full description of the implementation of the XOR is provided

in Section 10.1.3.

3.5 Parallel Left Shifting

Shifting left corresponds to multiplying a binary number by 2; shifting right

corresponds to dividing it by 2. It is a useful operation in general for aligning

data in a variety of algorithms [13]. Here is presented a left shift algorithm

that shifts all N binary bits one position to the left, with the Least Signifi-

cant Bit (LSB) remaining unchanged. This operation is, of course, a parallel

left shift, moving all bits simultaneously in lockstep. The implementation

20

required 11 instructions per shift. Note that unlike usual arithmetic or a

logical left shifts that insert a bit 0 to the LSB, the left shift operation de-

scribed here keeps the original LSB, thereby duplicating the LSB. The usual

left shift could be implemented by adding instructions rewriting the LSB to

0 after the instructions.

The shift operation using the following pairwise operation is as follows:

f(0, 0) = (0, X), f(0, 1) = (1, X), f(1, 0) = (0, X), f(1, 1) = (1, X).

Here X is a “don’t care” bit value (to use the parlance of digital design).

When computing on a specific input bit pair, the output for the X bit is

not impacted by that input pair (for example, in left shifting, X is actually

calculated from the bit pair to the right since that bit will be shifted to the

left). For each bit pair, the operation writes the value of the right bit to the

left bit. Since only the value of the left bit is changed in each bit pair, the

operation is non-overlapping and can be implemented using the encoding

scheme we propose. This is illustrated with the example of shifting 11001

to 10011 in Figure 3.6.

1. Label all the bit pairs. Cover the toeholds for the pairs (0, 0) and

(1, 1).

2. For the pairs (1, 0), flip the bits 1 to 0.

3. For the pairs (0, 1), flip the bits 0 to 1.

4. Finally, uncover all the toeholds for the pairs (0, 0) and (1, 1).

A full description of the implementation of shifting is given in Section 10.1.4.

3.6 Parallel Search Algorithm

Searching is fundamental to all branches of computer science that involve

data storage and retrieval. The specific type of search focused on in this

study was the problem of identifying whether a given substring existed in a

21

stored string of bits. a general algorithm that returns an answer to such a

question in log(n) parallel steps, where n is the substring length, is presented

here. Note that a requirement of this algorithm is that the length of the

query string is a power of 2. Furthermore due to practical constraints,

the SIMD DNA implementation time complexity was not O(log(n)); it was

closer to O(n). Details on this algorithm are discussed in Section 3.7.4.

The pseudocode for the search algorithm can be found in [8]. Here the

algorithm will be explained through the use of the following examples.

3.6.1 Parallel search procedure

Consider searching for a query string Q = 1101 in the following target string

A:

A0 = 10101010110110100011110101000100

A1 = a2a2a2a2a3a1a2a2a0a3a3a1a1a0a1a0

A2 = b0b0b1b0b2b1b3b3

(3.1)

The original string is A0. In each step, two consecutive symbols are read and

replaced with a single symbol. Here a0 = 00, a1 = 01, a2 = 10, a3 = 11, b0 =

a2a2, b1 = a3a1, b2 = a0a3, b3 = a1a0. Note that Q = 1101 = a3a1 = b1.

After three steps, the query string can be found in the target string since

there are two matches in the string A2.

3.6.2 Search procedure with offset

It is possible that the query string does not align with divisions of length n

in the target string. Thus, the operation needs repetitions with offsets. The

following example illustrates the operation with an offset of 2 bits.

A0 = 10101011010110000011110001000100

A1 = 10a2a2a3a1a1a2a0a0a3a3a0a1a0a1a0

A2 = 10b0b1b2b3b4b5b5a0

(3.2)

22

Here, the replacement is given by the aggregated pairs a0 = 00, a1 = 01, a2 =

10, a3 = 11, b0 = a2a2, b1 = a3a1, b2 = a1a2, b3 = a0a0, b4 = a3a3, b5 = a0a1.

Again, an instance of the query string is found in the target string.

Searching for a query string with a given offset requires at most log(n)

steps. In general, for an arbitrary query string of a length n (a power of 2),

the search must be performed n times with offsets ranging from 0 to n− 1.

In principle, all of these searches could be performed in parallel, as none

would interfere with any other. Accordingly, the parallel implementation of

searching completes in log(n) steps.

Note that the number of aggregated pair identifiers needed – the a’s

and b’s in the example above – grows exponentially with the length of the

target string. For example, to search for all possible queries of length 2, 4

identifiers are needed. For all queries of length 4, 16+ 4 = 20 identifiers are

needed. The total number of identifiers needed for queries of length n can

be formulated as:
log(n)∑
i=1

22
i
.

This number grows very quickly as n increases (so for longer query strings).

This would seem to be a serious limitation of the search algorithm. However,

this calculation assumes the search for all possible query strings. If the

search is for a specific query string, then the number of identifiers required

drops considerably. This is because the search only needs to identify pairs

in this specific string. The maximum number of identifiers needed is:

log(n)∑
i=1

2i = n− 1,

a much more manageable number.

3.6.3 Implementation

To implement the algorithm in SIMD DNA, instruction strands were not

issued to all pairs of overlapping bits. Instead, the query was broken up

in discrete pairs. In the example shown in Figure 3.7, for the bit sequence

23

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(a) Initial Sequence 1011

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3A2

(b) Identifier A2 captures first pair 10, A3 captures second pair 11

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3A2'

(c) covering the domain 1 between the two bit pairs

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3'A2'

(d) Rewrite the content in the pair so that new identifiers are close to the
middle

B11

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(e) Two identifier strands replaced by a single identifier if there is a perfect
match

B11

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A0

(f) Initial sequence is 0011. It will result in an open domain 4 in the cell
left of the identifier

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

B11 A1

(g) Initial sequence is 1010. It will result in an overhanging domain 4 on
the identifier strand itself

Figure 3.7: Example implementation of search algorithm on target sequence
1011

24

1011, operations on bit pair 10 and 11 were considered, but not on bit pair

01.

Figure 3.7 shows the critical steps when searching a target sequence 1011.

It provides an example of a successful search and also the potential outcome

of two failed searches. To implement the search operation with an offset,

one can simply skip the number of bits according to the offset. Assume the

word symbol represents the consecutive cells that are searchd for on a certain

level. For example, in the first level, the symbols are 10 and 11. The bit-

identifying steps described in Section 3.2.1 can be used to recognize these

symbols. Now identifiers A0 = 00, A1 = 01, A2 = 10, A3 = 11 can be used

to represent symbols in this level. Moving on to the next level, searching for

consecutive symbols A2A3 corresponds to the target string 1011.

In the first step of the second level, first rewrite the topological structure

at symbols that appear to be a query result. In this example, A2 should

be found as the left symbol, and A3 should be found as the second symbol.

Identifier A2 is pulled out from every odd symbol (only look at the first,

third, fifth, etc.) and the entire symbol is rewritten with the technique

described in Section 3.2.2. After rewriting, the identifier A′
2 covers domains

(5 6 7) in the right most cell, as seen in Figure 3.7c. For the second symbol

A3, the step described above is repeated, except the identifier isn pulled out

from every even symbol and the new identifier A′
3 covers domains (2 3 4)

in the left most cell. Through these steps, the identifier of the matching

symbols has essentially been moved to the middle. In the final step, the new

identifier strand (B11 5 6 7 1 2 3 4) is issued to the location between every

two symbols. It will result in a perfect binding only if there is a match at the

current symbol level. Figure 3.7e shows the example of a matching result.

Figures 3.7f and 3.7g show two potential examples of imperfect binding,

indicating a non-matching result. They can be pulled out through the open

domains either on the identifier itself or a nearby open domain on the base

strand. Therefore, the presence of the identifier B11 indicates a successful

match.

The process detailed above can be repeated to recognize multiple symbols

at the same level. When moving to the next level l+ 1, the identifiers from

25

the level l can be used as a starting point for rewriting. To identify a symbol

Sl+1,c = Sl,aSl,b at level l + 1, identifiers for Sl,a at odd symbols and Sl,b

at even symbols at level l are pulled. Then the identifier are moved to the

middle. Finally, identifiers for Sl+1,c are given to the middle of each pair to

identify the symbol.

A possible weakness of this implementation was that the strand used for

rewriting could potentially be very long. The longer the query string, the

longer this strand. The longer the strand, the longer strand displacement

would take [77]. The time required would become prohibitive. Another issue

was that our search algorithm rewrote, so destroyed, the data on the target

strand. While it would be possible to reverse the process, thus restoring

the original data, this process would be cumbersome and require multiple

steps (see, for example, Figure 10.7). Another limitation was that the al-

gorithm could not readily handle multiple overlapping queries within the

target string.

3.7 Discussion

3.7.1 Initializing data on cells sharing the same sequences

Two of the algorithms, namely XOR and searching, relied on different cells

having different underlying DNA sequences. This allowed the algorithms to

perform pairwise operations that targeted specific cells, leaving others un-

touched. The other two algorithms, namely sorting and left-shifting, did not

have this requirement. As a result, sorting and left-shifting required much

smaller libraries of DNA strands. Sorting and left-shifting were true “sin-

gle instruction multiple data” (SIMD) algorithms while XOR and searching

were not. In order to exploit the SIMD aspect of sorting and left-shifting,

the underlying DNA sequences had to be identical for all cells. The chal-

lenge was that any nicking operation performed on one cell would apply to

other cells as well, so one could not readily initialize the base strand with

different bit values in different cells.

One approach to overcome this was to utilize Gibson Assembly, a proce-

26

dure for concatenating small DNA molecules into larger DNA molecules [44].

The small DNA molecules were synthesized with complementary “sticky”

single-stranded ends. When these small DNA molecules were mixed in a so-

lution, these sticky ends hybridized, yielding a longer DNA molecule. This

approach was used to initialize data in DNA strands where all cells shared

the same sequence. Molecules containing only one cell were nicked separately

to store either 0 or 1. These molecules were then orderly concatenated to

build strands containing multiple cells. Please refer to Section 10.1.7 for a

more detailed outline on constructing a register storing two bits.

3.7.2 Ability to compute any non-conflicting pairwise oper-

ation

Sections 3.3 and 3.5 presented examples of algorithms that performed pair-

wise operations respectively. Given the ability to identify pairs of bits and

a universal way to rewrite a cell, one can readily implement any algorithm

that performs non-conflicting pairwise operations. Such operations only en-

tail rewriting pairs of adjacent bits. The result of the operation on a specific

sequence would always be the same, irrespective of the execution order. To

illustrate, consider the following operation:

f(0, 0) = (X,X), f(0, 1) = (X, 1), f(1, 0) = (X,X), f(1, 1) = (0, X).

Here X indicates a “don’t care” bit value – the function f for a specific

input pair does not compute the output X. The operation provided above

is conflicting. To see why, consider its effect on the sequence 011. The

second bit should change to 1 when the operation is applied to the first pair

(0, 1). However, this bit should change to 0 when the operation is applied

to the second pair (1, 1). Depending on the order of execution, the final

result is different. To ensure an operation is non-conflicting, for every three

adjacent bits that two operations are performed on, the middle bit should

be set to the same value.

27

S1 1 2 3

Bit 0 Bit 1

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 3.8: One strand can be used to differentiate two bits

Non-conflicting operations can be performed in parallel on all bit pairs.

The first step identifies the four bit pairs described in Section 3.2.1. After

this step, strands with four labels are supplied to cover the four bit pairs.

Then, strands with specific labels are released one at a time to obtain write

access to specific bit pairs. (Write access refers to a domain being exposed.)

These cells are then rewritten with the operation described in Section 3.2.2.

The full operation requires rewriting all four bit pairs.

This study’s encoding scheme and design method are generally applicable

to parallel bitwise algorithms, provided that they can be expressed in terms

of such non-conflicted pairwise operations.

3.7.3 Converting to Different Encoding Schemes

A benefit of the proposed encoding scheme was that it could easily be con-

verted to any other similar scheme since each cell always had an exposed

domain 1. In the original SIMD DNA scheme proposed in [103], the authors

designed two specific encoding schemes for the two applications proposed

(rule 110 and a binary counter). This study’s encoding scheme could be

used as an intermediate form when converting to other encoding schemes,

designed for particular algorithms. Figure 3.8 illustrates how a single strand

(S1 1 2 3) was used to differentiate bit values of 0 from bit values of 1. Tech-

nique discussed in Section 3.2.2 could then be used to re-write the data

with a different encoding scheme, so long as the scheme also encoded each

bit with 7 domains. Complete instructions for performing such encoding

changes are given in Section 10.1.1.

28

3.7.4 Time Complexity of Parallel Search

While the time complexity of the proposed parallel search was O(log(n)) in

principle, where n was the query substring length, the time complexity of

the SIMD DNA implementation was somewhat worse. While the abstract

search algorithm found the query in the reference string by pairing indi-

vidual characters in parallel, and thus completed in O(log(n)) steps, the

DNA implementation searched for and identified distinct symbols sequen-

tially, that is to say, it first searched for a specific symbol across all possible

locations at once, then it searched for the next symbol across all locations

at once, and so on.

The abstract algorithm assumed all symbols were identified in one pass

to allow for further pairing. Considering all the different symbols in a query

string, counting repeated symbols, n
2i

symbols must be searched sequentially

at level i in the SIMD DNA implementation. Accordingly, the total number

of sequential search steps was as high as O(n). However, at each level, all the

occurrences of a specific symbol were identified simultaneously. At level i,

each symbol represented a binary string with a length of 2i, so there were at

most 22
i
distinct symbols at level i. For example, in the first level, instead

of searching for n
2 symbols, only four distinct symbols were searched for.

In the second level, there are only 16 distinct symbols. Since only distinct

symbols were searched, the number of steps in the first few levels was greatly

reduced.

The parallel search algorithm only worked on query strings with a length

that is a power of two. However, the implementation could be modified

to allow for arbitrary-length query strings. Though the details were not

provided in this study, they can be summarized as below.

Note that, in parallel search, the query string is searched reductively:

at each level, two symbols are reduced to one symbol. When working with

query strings having any arbitrary length, there might be an odd number of

symbols in the current level. In this case, a method to identify the trailing

odd symbol at the current level can be added. It can then be replaced in the

next level. The reduction can still be completed in a logarithmic number of

29

levels.

3.8 Conclusion

30

Chapter 4

Stochastic Computing on

Data Stored in DNA

This study explores a link between the stochastic logic and molecular com-

puting. Specifically, it presents a strategy for computing mathematical func-

tions with molecular reactions by applying concepts from stochastic logic.

Consider the following example: Suppose a chemical reaction network (de-

fined in Section 4.2) that computes the function

f(a, b) = 1− a− b+ ab,

where a and b are real-valued variables. The corresponding digital function

for stochastic logic can be obtained using the methods discussed in ??. In

this case, it is f(a, b) = NOR(a, b), expressed in the following truth table:

a b NOR(a, b)

0 0 1

0 1 0

1 0 0

1 1 0

To represent a stochastic variable x that ranges from [0, 1] in a molecular

format, a pair of chemical species X0 and X1 is used. As will be discussed

31

in ??, we use a fractional representation:

x =
[X1]

[X0] + [X1]
. (4.1)

Here [X1] denotes the concentration of the molecular species X1. Using this

representation, we obtain a chemical reaction network (CRN) from the truth

table above:
A0 +B0 → C1

A0 +B1 → C0

A1 +B0 → C0

A1 +B1 → C0

(4.2)

Note that the subscripts of the species match the entries of the truth table

above. This CRN computes the target function, c = 1 − a − b + ab, in

terms of the fractional variables a, b and c. Each of these corresponds to a

pair of chemical species, {A0, A1}, {B0, B1} and {C0, C1}, respectively. The
central result of this paper, presented in Section 4.6, is a proof that we can

implement any polynomial function, specified by a truth table, with a CRN

matching its truth table template.

This study builds upon prior work, both generalizing and simplifying

it.The same formalism, namely a fractional representation of values, is used

in this paper as was used in [83, 82].

• [83] proposed a technique for computing functions based on a decom-

position with Bernstein polynomials [6]. The technique implemented

a broad class of functions, namely all univariate polynomials, but was

quite abstruse. A target polynomial was first repackaged in Bernstein

form [75]. This form was implemented in a logic circuit using a form of

generalized multiplexing [73]. Finally, the logic circuit was translated

into a CRN.

• [82] proposed an alternative technique based on factoring of polyno-

mials with Horner’s rule. The factored form was implemented with

a cascade of 2-input logic gates. Finally, the logic gate circuit aws

32

translated into a CRN. Although conceptually simpler than working

with Bernstein polynomials, this approach was not quite so general:

only a small subset of polynomials can be decomposed in the requisite

way with Horner’s rule.

A significant limitation of both prior approaches is the complexity of the

mathematical formulation.

The approach in this paper is conceptually much simpler and cleaner. As

with the NOR function example above, a target polynomial function is first

mapped to a truth table. This can be done using fairly standard techniques

– at least for people familiar with the theory of stochastic logic – and the

results are intuitive. Then a CRN is constructed that matches the template

of the truth table.

This approach is also more general. Whereas the method in [83] is lim-

ited to univariate polynomials, the method in this paper can implement any

multivariate polynomial. Stochastic logic operates on functions where the

domain and codomain are in the interval [0, 1], i.e., the inputs and the out-

put are probabilities. Common transcendental functions can be computed

via polynomial approximations. In Supplementary Information S1, we pro-

vide CRNs for stochastic functions such as arctan, exponential, Bessel, and

sinc to demonstrate our approach in detail. These functions have practical

applications in fields such as machine learning, signal processing, and im-

age processing. We discuss the implementation of these abstract chemical

reaction networks with DNA strand displacement, with units called DNA

concatemers.

This study is organized as follows. ?? presents background information

on chemical reaction networks and stochastic logic. Section 4.5 describes

our methodology for translating any function computed by a stochastic logic

circuit into a set of chemical reactions. Section 4.6 provides a proof that

the proposed methodology is mathematically sound, based on an analysis

of the chemical kinetics. Section 4.7 analyzes sources of error stemming

from differences in reaction rates in one particular case. Section 4.8 dis-

cusses the implementation with DNA strand displacement through DNA

33

“concatemers”. These concatemers implement the generic chemical reac-

tion networks presented in the early sections. Finally, Section 4.9 provides

concluding remarks and discusses future research directions.

4.1 Background

4.2 Chemical Reaction Networks

A chemical reaction network (CRN) consists of a set of reactions operat-

ing on a set of molecules. When a reaction fires, reactant molecules are

transformed into product molecules. For instance, consider the reaction:

X1 +X2
k−→ X3.

Here one molecule of reactant X1 combines with one molecule of reactant

X2, resulting in one molecule of the product X3. The parameter k is called

the rate constant. A CRN consists of multiple reactions occurring simul-

taneously. Consider the following example of a CRN with three reactions

operating on the molecule species set {X1,X2,X3,X4}:

X1 +X2 → X3,

X2 +X3 → 2X4,

3X3 +X4 → X1.

Assume that all three reactions have the same rate constant, k, an arbi-

trary value. To quantify the changes in concentration of all the molecular

species involved in a CRN over time, the theory of mass-action kinetics [33]

is applied: reaction rates are proportional to both the concentrations of

the reactants and their rate constants. Given a CRN, a set of nonlinear

differential equations for the concentrations of all molecular species can be

derived. For instance, for the first reaction above, the rate of change of the

34

concentrations of X1, X2 and X3 is

−d[X1]

dt
= −d[X2]

dt
=

d[X3]

dt
= k[X1][X2], (4.3)

where [X] denotes the concentration of the chemical species X. Given the

initial concentration of the different molecular species, one can predict the

behavior of the CRN by simulating the differential equations.

4.3 Digital Logic

The smallest unit of storage in digital logic is a bit. Bits store Boolean values

– either 0 or a 1. The following definitions are pertinent when discussing

digital logic:

Definition 1. An n-input combinational logic function is a function

F (X1, X2, . . . , Xn) = Y,

where all inputs and outputs are Boolean values. That is, ∀ 1 ≤ i ≤ n,Xi ∈
{0, 1}, Y ∈ {0, 1}.

Definition 2. The truth table of a combinational logic function lists all the

possible combinations of its Boolean inputs and the corresponding outputs.

Each combination of inputs is called a minterm.

Table 4.2 gives an example of the truth table of a combinational logic

function.

4.4 Stochastic Logic

Stochastic logic is an active topic of research in digital design, with applica-

tions to emerging technologies [21, 73, 68]. In this paradigm, computation

is performed with familiar digital constructs, such as AND, OR, and NOT

gates. However, instead of having specific Boolean values of 0 and 1, the

inputs are random bitstreams. A number x (0 ≤ x ≤ 1) corresponds to a

35

sequence of random bits. Each bit has probability x of being one and proba-

bility 1−x of being zero, as illustrated in Figure 4.1. Computation is recast

in terms of the probabilities observed in these streams.

(a) (b)

x = 3/8

x = 3/8

0, 1, 0, 1, 0, 0, 1, 0

0

1
0
1
0
0
1
0

Figure 4.1: Stochastic representation: A random bitstream. A value x ∈
[0, 1], in this case 3/8, is represented as a bitstream. The probability that a
randomly sampled bit in the stream is one is x = 3/8; the probability that
it is zero is 1 − x = 5/8. The bits in the streams are separated temporally
(a) or spatially (b).

Consider basic logic gates. Given a stochastic input x, a NOT gate

implements the function

NOT(x) = 1− x.

This means that while an individual input of 1 results in an output of 0 for

the NOT gate (and vice versa), statistically, for a random bitstream that

encodes the stochastic value x, the NOT gate output is a new bitstream

that encodes 1− x.

The output of an AND gate is 1 only if all the inputs are simultaneously

1. The probability of the output being 1 is thus the probability of all the

inputs being 1. Therefore, an AND gate implements the stochastic function:

AND(x, y) = xy,

that is to say, multiplication. Similarly, the output of an OR gate is 0 only

if all the inputs are 0. Therefore, an OR gate implements the stochastic

36

function:

OR(x, y) = 1− (1− x)(1− y) = x+ y − xy. (4.4)

The XOR, NAND, NOR, and XNOR gates can be derived by compos-

ing the AND, OR, and XOR gates each with a NOT gate, respectively.

Please refer to Table 4.3 for a full list of the algebraic expressions of these

gates. An important assumption in stochastic computation is that all inputs

are independent of each other, i.e., the random bitstreams are uncorrelated.

Table 4.1: Stochastic Function Implemented by Basic Logic Gates

Gate Inputs Function

NOT x 1− x
AND x, y xy
OR x, y x+ y − xy

NAND x, y 1− xy
NOR x, y 1− x− y + xy
XOR x, y x+ y − 2xy

XNOR x, y 1− x− y + 2xy

Definition 3. An n-input stochastic logic function y = f(x1, x2, . . . , xn),

where ∀xi ∈ [0, 1] and y ∈ [0, 1], is obtained from a combinational logic

function Y = F (X1, X2, . . . , Xn), by setting corresponding inputs to be in-

dependent random variables Xi with Pr(Xi = 1) = xi.

For a given Boolean circuit, its stochastic function can be computed as

follows [74].

Theorem 1. Given input sequences generated by independent Bernoulli ran-

dom variables, the output of a stochastic logic function will also be a sequence

generated by a Bernoulli random variable. The probability of the output of

a stochastic logic function f being 1 is the sum of all the probabilities of the

minterms that evaluate to 1 in the corresponding combination logic function

F . That is,

Pr(Y = 1) =
∑
J∈S

(
n∏

h=1

[Pr(Xh = jh)]

)
(4.5)

37

where J = (j1, j2, . . . , jn), ji ∈ {0, 1} is a minterm, and S = {J |F (J) = 1}
is the set of minterms that evaluate to 1.

For example, consider a combinational circuit computing a function

F (X1, X2, X3) with the truth table shown in Table 4.2. Let f(x1, x2, x3)

be the stochastic function computed by this circuit, with real-valued inputs

x1, x2, x3 ∈ [0, 1]. Assuming each input is independent of the others, set

[Pr(X1) = 1] = x1,

[Pr(X2) = 1] = x2,

[Pr(X3) = 1] = x3.

Table 4.2: Truth table for a combinational circuit, and the corresponding
probability of each row.

X1 X2 X3 F (X1, X2, X3) Probability of row

0 0 0 0 (1− x1) · (1− x2) · (1− x3)
0 0 1 1 (1− x1) · (1− x2) · x3
0 1 0 0 (1− x1) · x2 · (1− x3)
0 1 1 1 (1− x1) · x2 · x3
1 0 0 0 x1 · (1− x2) · (1− x3)
1 0 1 1 x1 · (1− x2) · x3
1 1 0 1 x1 · x2 · (1− x3)
1 1 1 1 x1 · x2 · x3

The probability that the function f evaluates to 1 is equal to the sum of

the probabilities of occurrence of each row that evaluates to 1. The proba-

bility of occurrence of each row, in turn, is obtained from the assignments

to the variables, as shown in Table 4.2: xi if the corresponding variable

Xi is 1 and (1 − xi) if it is 0. Now upon selecting the rows in Table 4.2

where F (X1, X2, X3) = 1 and adding their probabilities together to obtain

the expression for the stochastic function:

38

f(x1, x2, x3) =(1− x1)(1− x2)x3 +

(1− x1)x2x3 +

x1(1− x2)x3 +

x1x2(1− x3) +

x1x2x3

=(1− x2)x3 + x2x3 + x1x2(1− x3).

(4.6)

The procedure shown for this example can be generalized to any combi-

national circuit to evaluate its stochastic function. Such probabilistic anal-

ysis of networks of logic gates is not new. As early as 1975, the circuit

testing community had begun analyzing errors in a similar way [69, 84].

Similar techniques have also been applied to tasks such as timing and power

analysis [46, 51]. However, characterizing the outputs of the computation

this way, as probabilistic functions, is specific to the field of stochastic logic.

[75] proved that any multivariate polynomial function with its domain and

codomain in the unit interval [0, 1] can be implemented using stochastic

logic. [73] provided an efficient and general synthesis procedure for stochas-

tic logic, the first in the field. [76] provided a method for transforming

probabilities values with digital logic. Finally, [36, 59] demonstrated how

stochastic computation can be performed deterministically.

4.5 Implementing Stochastic Logic with Chemical

Reactions

In the introduction, we gave a brief example of translating a simple poly-

nomial function, the NOR function, into a CRN. In this section, we step

through the details of this process.

39

4.5.1 Fractional Representation in Solution

Two distinct molecular species X0 and X1 are used to represent a stochastic

value x in a chemical system.

x =
[X1]

[X0] + [X1]
. (4.7)

Here the notation [X] refers to the concentration of a molecular species X.

This fractional representation in prior work [83, 82]: the value x equals the

ratio of the concentration of X1 to the total concentration of X0 and X1. As

with probabilities in stochastic logic, such a fractional value can represent

any real number in the unit interval [0, 1].

4.5.2 Building a Chemical Reaction Network from a Truth

Table

Using the fractional representational discussed in Section 4.5.1, any truth

table for a combinational logic function can be transformed into a CRN. Each

row of the truth table is used as a reaction, where the reactants represent

a minterm, and the product represents the output of the logic function for

that minterm. For example, consider the truth table for the Boolean AND

operation:

A B C =AND(A,B)

0 0 0

0 1 0

1 0 0

1 1 1

Now the corresponding CRN for this truth table is generated by transform-

ing each row into its own reaction using the fractional notation discussed

in Section 4.5.1. Given the fractional representation described above, let us

design a CRN that performs multiplication with an AND operation on two

stochastic inputs a and b, producing an output c. The network consists of

40

the following reactions:

A0 +B0
k−→ C0,

A0 +B1
k−→ C0,

A1 +B0
k−→ C0,

A1 +B1
k−→ C1.

(4.8)

Here A0 and A1 represent stochastic value a, and so on for b and c. k is the

rate constant and is required to be equal for all the reactions. Notice that

there is a one-to-one mapping from the Boolean truth table of the AND

gate to the indices of the chemical species. Note that, given the two inputs

a and b in the fractional encoding,

a =
[A1]

[A0] + [A1]
and b =

[B1]

[B0] + [B1]
. (4.9)

Simulating this CRN yields the output

c =
[C1]

[C0] + [C1]
= a× b. (4.10)

That is, the output value is the product of the two input values.

This strategy for implementing stochastic functions with CRN works for

an arbitrary number of inputs, provided the reaction rates are the same for

all reactions. This assertion is justified in Section 4.6. More examples of

constructing CRNs out truth tables are listed out in Table 4.3.

4.6 Proof for the correctness of CRNs implement-

ing truth tables

Theorem 2. Assume an n-input stochastic function y = f(x1, x2, . . . , xn) is

implemented by a combinational Boolean function Y = F (X1, X2, . . . , Xn).

The stochastic function can then be implemented with a CRN with 2n + 2

different molecular species, in which pairs of molecular species store the input

41

Table 4.3: Chemical Reaction Networks for Basic Logic Gates. Note that
the indices of molecules match the truth table implementing the logic gate.

Gate Inputs Function CRN

NOT a b = 1− a
A0 → B1

A1 → B0

AND a, b c = ab

A0 +B0 → C0

A0 +B1 → C0

A1 +B0 → C0

A1 +B1 → C1

OR a, b c = a+ b− ab

A0 +B0 → C0

A0 +B1 → C1

A1 +B0 → C1

A1 +B1 → C1

NAND a, b c = 1− ab

A0 +B0 → C1

A0 +B1 → C1

A1 +B0 → C1

A1 +B1 → C0

NOR a, b c = 1− a− b+ ab

A0 +B0 → C1

A0 +B1 → C0

A1 +B0 → C0

A1 +B1 → C0

XOR a, b c = a+ b− 2ab

A0 +B0 → C0

A0 +B1 → C1

A1 +B0 → C1

A1 +B1 → C0

XNOR a, b c = 1− a− b+ 2ab

A0 +B0 → C1

A0 +B1 → C0

A1 +B0 → C0

A1 +B1 → C1

42

values x1, x2, . . . , xn as well as the output value y, according to the fractional

representation in Equation (4.7). The CRN consists of 2n reactions, each

of the form,

X1,v1 +X2,v2 + · · ·+Xn,vn
k−→ YF (V), (4.11)

where v1, v2, . . . , vn : F (V) is a row of the truth table for the combi-

national function F , and V = (v1, v2, . . . vn) denotes a minterm for the

function. Note that the rate constants for all reactions are equal to k, an

arbitrary value.

Let S1 be the set of all minterms V such that F (V) = 1, and let S0 be

the set of all minterms V such that F (V) = 0. Also, ci,j is denoted as

ci,j = Pr(Xi = j) =

{
1− xi if j = 0

xi if j = 1
(4.12)

where xi is a stochastic input, and i is the index of the input xi in function

y = f(x1, x2, . . . , xn).

Proving the theorem requires demonstrating that for the given initial

values of the stochastic value xi at time t = 0,

xi =
[Xi,1]

[Xi,0] + [Xi,1]

∣∣∣∣
t=0

, (4.13)

the output of the CRN matchs the output of the stochastic function stated

in Theorem 1,

lim
t→∞

y = lim
t→∞

[Y1]

[Y0] + [Y1]
=
∑
V ∈S1

(
n∏

h=1

ch,vh

)
. (4.14)

The proof provides an even stronger result – the limit t → ∞ in Equa-

tion (4.14) is not necessary; in fact at any t > 0

y =
[Y1]

[Y0] + [Y1]
. (4.15)

Here the proof for Theorem 2 begins.

43

Given the CRN described in ??, the rate equations for each input are

d[Xi,j]

dt
= −k · [Xi,j] ·

n∏
h=1,h̸=i

([Xh,0] + [Xh,1]) , j ∈ {0, 1} (4.16)

= −k · [Xi,j]

[Xi,0] + [Xi,1]
·

n∏
h=1

([Xh,0] + [Xh,1]) . (4.17)

Note that k, an arbitrary value, is the rate constant for each reaction. The

rate equations for the output species are,

d[Yj]

dt
= k

∑
V ∈Sj

(
n∏

h=1

[Xh,vh]

)
, j ∈ {0, 1}. (4.18)

The following new variables are now defined,

pi =
[Xi,1]

[Xi,0] + [Xi,1]
(4.19)

qi = [Xi,0] + [Xi,1] (4.20)

ri,j =

{
1− pi if j = 0

pi if j = 1
(4.21)

Substituting these variables into the expressions for the concentrations:

[Xi,0] = qi(1− pi), (4.22)

[Xi,1] = qipi, (4.23)

∴ [Xi,j] = qiri,j . (4.24)

These substitutions are introduced into Section 4.6 and Equation (4.18):

d[Xi,j]

dt
= −k · ri,j

n∏
h=1

qh, (4.25)

d[Yj]

dt
= k

(
n∏

h=1

qh

) ∑
V ∈Sj

(
n∏

h=1

rh,vh

)
. (4.26)

As the concentrations [Xi,j] are functions of time, all p, q, and r are also

44

functions of time. Consider the following two expressions derived from Sec-

tion 4.6,

d[Xi,0]

dt
= −k(1− pi)

n∏
h=1

qh (4.27)

d[Xi,1]

dt
= −k · pi

n∏
h=1

qh. (4.28)

∴
dqi
dt

=
d[Xi,0]

dt
+

d[Xi,1]

dt
= −k

n∏
h=1

qh. (4.29)

Furthermore

[Xi,1] = pi · qi (4.30)

∴
d[Xi,1]

dt
= pi

dqi
dt

+ qi
dpi
dt

(4.31)

= pi

(
−k

n∏
h=1

qi

)
+ qi

dpi
dt

(4.32)

=
d[Xi,1]

dt
+ qi

dpi
dt

. (4.33)

As qi ̸= 0,
dpi
dt

= 0, (4.34)

that is, pi is invariant to time. Consequently, ri,j is also invariant to time.

This means that the stochastic value encoded by each pair of input species

remains the same throughout the reaction. Therefore, for t > 0

pi = xi (4.35)

ri,j = ci,j (4.36)

45

Consider the new variable

l =

(
n∏

h=1

qi

)
(4.37)

∴
d[Yj]

dt
= k · l

∑
V ∈Sj

(
n∏

h=1

rh,vh

)
. (4.38)

Finally, we can calculate the stochastic output y as

y =

∫ t

0

d[Y1]

dt
dt∫ t

0

d[Y0]

dt
dt+

∫ t

0

d[Y1]

dt
dt

(4.39)

=

∑
V ∈S1

(
n∏

h=1

rh,vh

)∫ t

0
k · l · dt

∑
V ∈S0

(
n∏

h=1

rh,vh

)∫ t

0
k · l · dt+

∑
V ∈S1

(
n∏

h=1

rh,vh

)∫ t

0
k · l · dt

(4.40)

=

∑
V ∈S1

(
n∏

h=1

rh,vh

)
∑
V ∈S0

(
n∏

h=1

rh,vh

)
+
∑
V ∈S1

(
n∏

h=1

rh,vh

) (4.41)

=
∑
V ∈S1

(
n∏

h=1

rh,vh

)
. (4.42)

The numerator in Section 4.6 corresponds to the sum of the minterms of

all rows of the truth table F that evaluate 1, while the denominator corre-

sponds to the sum of all minterms. As ri,j is only dependent on the initial

input value, the denominator must sum up to 1 since it includes all the

minterms. Therefore, a CRN constructed this way, corresponding to an ar-

bitrary Boolean truth table F , will implement the stochastic function f of

that truth table. The only requirement is that the rate constants of all the

reactions must be equal.

46

4.6.1 A demonstrative example

This section provides a helpful example demonstrating the proof in Sec-

tion 4.6 in action. Consider the two-input AND gate from Section 4.5.

A0 +B0
k−→ C0

A0 +B1
k−→ C0

A1 +B0
k−→ C0

A1 +B1
k−→ C1

(4.43)

The rate equations for the input and output species are:

d[A0]

dt
= −k[A0]([B0] + [B1])

d[A1]

dt
= −k[A1]([B0] + [B1])

d[B0]

dt
= −k[B0]([A0] + [A1])

d[B1]

dt
= −k[B1]([A0] + [A1])

d[C0]

dt
= k([A0][B0] + [A0][B1] + [A1][B0])

d[C1]

dt
= k[A1][B1].

(4.44)

Assume the previously discussed encoding to represent the stochastic values,

a =
[A1]

[A0] + [A1]
, b =

[B1]

[B0] + [B1]
, c =

[C1]

[C0] + [C1]
,

as well as the sum of concentrations of each pair of input species,

[A0] + [A1] = qa, [B0][B1] = qb.

47

With these variables, Equation (4.44) becomes:

d[A0]

dt
= −kqaqb · (1− a)

d[A1]

dt
= −kqaqb · a

d[B0]

dt
= −kqaqb · (1− b)

d[B1]

dt
= −kqaqb · b

d[C0]

dt
= kqaqb · [(1− a)(1− b) + (1− a)b+ a(1− b)]

d[C1]

dt
= kqaqb · ab.

(4.45)

Consider the time invariance of a and b. [A1] can be expressed as a · qa,
therefore according to the chain rule for derivatives,

d[A1]

dt
= qa

da

dt
+ a

dqa
dt

. (4.46)

According to Equation (4.45),

dqa
dt

=
d[A1]

dt
+

d[A1]

dt
= −kqaqb. (4.47)

From Equations (4.45) to (4.47)

qa
da

dt
= 0. (4.48)

As qa is not a constant equal to 0 during the reaction, da
dt = 0. This proves

the time invariance of a, i.e. during the reaction, the fractional value a

encoded by [A0] and [A1] remains constant. Similarly, b can be proven to

be time-invariant.

Now c must be calculated for t > 0. Assume the initial concentration of

48

[C0] and [C1] are 0, then

c =
[C1]

[C0] + [C1]

=

∫ t

0

d[C1]

dt
dt∫ t

0

d[C0]

dt
dt+

∫ t

0

d[C1]

dt
dt

=

∫ t

0
kqaqb · ab · dt∫ t

0
kqaqbdt

=

ab

∫ t

0
kqaqbdt∫ t

0
kqaqbdt

(since a, b are constant)

= ab.

(4.49)

This proves that an AND gate implements multiplication.

4.7 Error Analysis

Clearly a CRN implementing a truth table with all reaction rates set equal

computes the corresponding stochastic function correctly. What would hap-

pen if this rate condition were broken? This section details simulations that

were performed to test the robustness of CRNs implementing stochastic

functions with the program Mathematica [106]. Differential equations cor-

responding to the reaction kinetics for CRNs were generated to investigate

the impact of varying reaction rates. A detailed analysis for a specific CRN

for a 3-input Exclusive-OR (XOR) is provided. The function for XOR is

f(x, y, z) = x+ y + z − 2xy − 2xz − 2yz + 4xyz. (4.50)

This function was deliberately chosen for error analysis because the truth

49

table for XOR was balanced in terms of the number of 0’s and 1’s. Accord-

ingly, it was the most sensitive to random variations in reaction rates. In

contrast, for unbalanced functions such as AND or OR, errors could read-

ily be masked: computing more 0’s for AND or more 1’s for OR would not

show up statistically.

This polynomial for this function is generated by the following truth

table:

x y z f(x, y, z)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

To see this, take the sum of the expressions for the minterms, i.e., the

rows that evaluate to one. Recall that the expression for each row is formed

by multiplying together factors corresponding to the input variables: x if

the variable x is equal to 1 or 1− x if the variable x is equal to 0:

f(x, y, z) = (1− x)(1− y)z +

(1− x)y(1− z) +

(1− x)y(1− z) +

x(1− y)(1− z) +

xyz

= x+ y + z − 2xy − 2xz − 2yz + 4xyz. (4.51)

According to the method discussed in Section 4.5, this can be translated

50

into the following CRN:

X0 +Y0 + Z0
k1−→ F0 (4.52)

X0 +Y0 + Z1
k2−→ F1

X0 +Y1 + Z0
k3−→ F1

X0 +Y1 + Z1
k4−→ F0

X1 +Y0 + Z0
k5−→ F1

X1 +Y0 + Z1
k6−→ F0

X1 +Y1 + Z0
k7−→ F0

X1 +Y1 + Z1
k8−→ F1

Since the consequences of non-uniform rate constants were explored, note

that the eight reactions have unique rate constants: k1, k2, . . . k8, respec-

tively.

The following stochastic variables are defined:

x =
[X1]

[X0] + [X1]
, y =

[Y1]

[Y0] + [Y1]
, z =

[Z1]

[Z0] + [Z1]
, f =

[F1]

[F0] + [F1]
.

(4.53)

The procedure NDSolveValue in Mathematica was used to simulate the

differential equations corresponding to CRN in Section 4.7. The rate con-

stants were varied as well as the initial concentrations.The value of f com-

puted by the CRN in terms of [F0], [F1], was compared to the expected value

of f from Equation (4.50). Here is a summary of the trials:

4.7.1 Trials for Error Analysis

The error was calculated as the absolute difference between the value com-

puted by the CRN simulation and the expected value of f from Equa-

tion (4.50).

1. With all ki = 100 except for k1 = 1000, i.e., one rate constant being an

order of magnitude higher than the others: the highest error observed

51

Figure 4.2: The error cubes for the six trials listed in Section 4.7.1. The three
dimensions in the plots span the inputs x, y, and z, each in the interval [0, 1],
with a step size 0.1. The color of each point corresponds to the absolute
difference between the value computed by the CRN and the expected value of
f from Equation (4.50). A legend is provided for each cube. The trials were
performed with theNDSolveValue function in software tool Mathematica.52

was 0.31, with 38.1% of the input combinations having an error greater

than 0.1.

2. With all ki = 100 except for k1 = 10, i.e., one rate constant being an

order of magnitude lower than the others: the highest error observed

was 0.12, with 15.7% of the input combinations having an error greater

than 0.1.

3. With all ki = 100 except for k1 = 10000, i.e., one rate constant being

two orders of magnitude higher than the others: the highest error

observed was 0.45, with 45.8% of the input combinations having an

error greater than 0.1.

4. With all ki = 100 except for k1 = 1, i.e., one rate being two orders of

magnitude lower than the others: the highest error recorded was 0.12,

with 22.7% of the input combinations having an error greater than

0.1.

5. With all ki randomly generated, from a normal distribution with a

mean of 100 and a low standard deviation of 10: the highest error

recorded was 0.06, with no input combinations having an error greater

than 0.1.

6. With all ki randomly generated, from a normal distribution with a

mean of 100 and a high standard deviation of 70 (negative values were

not allowed): the highest error recorded was 0.25, with 14.4% of the

input combinations having an error greater than 0.1.

The absolute difference between the output value of f , calculated with Equa-

tion (4.53), compared to the expected value of f from Equation (4.50) was

calculated for a wide range of input concentrations. These are graphed in

Figure 4.2. The inputs x, y, and z, calculated with Equation (4.53), were set

to values in the interval [0, 1] forming a cube mesh input. All input chemical

species were initialized such that [X0] + [X1] = 100. The maximum error

difference and the number of input combinations for which the error differ-

ential exceeded 0.1 were recorded. The purpose of this simulation was not

53

to account for all possible values of the rate constants, but rather to under-

stand the design constraints and the error margins. The key observations

from the simulations are:

1. In a network with many reactions, one rate constant being slower than

the others by an order of magnitude or two has a lower impact on error

than if it were faster by a similar amount.

2. Error rates are low if all the rate constants are within the same or-

der of magnitude and are distributed normally with a small standard

deviation.

3. Error rates are also low when some of the fractional inputs are close to 0

or to 1. This translates to very slow or very fast reactions, respectively.

4. Even when the rate constants differ by orders of magnitude, not all

inputs result in high errors.

4.8 Implementation using DNA

4.8.1 DNA Concatemers

DNA Concatemers are long strands of DNA that contain repeated base-pair

sequences. These are formed when a single smaller DNA unit is capable of

hybridizing with other copies of itself. Specifically, to form a DNA strand of

the form ABABAB . . . , the 1-mer unit must have the following 3 regions:

1. A leading sticky end (single-stranded region) on the 1st strand with

the sequence A.

2. A middle double-stranded section with the sequence B.

3. A trailing sticky end on the 2nd strand with the complement sequence

A′ such that it can bind to a leading sticky end for A.

This study proposed designing molecules for fractional representation

as DNA concatemers [93] that could interact via strand displacement, as

54

detailed in the next subsection. For a fractional variable a, the molecules

A0 and A1 needed for the reaction network could be designed as concatemer

units such that the double-stranded section for each unit was distinct, but

the sticky ends for both of them were the same. This allowed the two species

to cross-polymerize and formed a linear chain of DNA of randomly arranged

A0 and A1 units. This was similar to the randomized digital bitstreams

used in stochastic computing in which a random stream of 0’s and 1’s forms

the basic data unit [21, 73]: A0 and A1 correspond to 0 and 1, respectively.

Thus a single fractional variable wa be stored as a long DNA strand that

could be amplified to improve readout [85]. This long strand could also

be broken up using artificial restriction enzymes – or natural restriction

enzymes, if the sticky ends are designed purposefully. Furthermore, this

concatemer design allowed the use of RNA-seq [104] in the readout process

to measure the fractional value stored by a DNA strand. For this purpose, a

long DNA concatemer would be broken into its constituent monomers using

a restriction enzyme, and then these smaller DNA units would be used

instead of the standard complementary DNA in RNA-seq to determine the

expression level of each unit. From this quantitative readout, the relative

amount of A1 to A0 +A1 could be determined [112].

4.8.2 Procedure

Figure 4.3 illustrates the reaction Ai + Bj → Ck implemented with DNA

strand displacement and cleaving enzymes. Two species of concatemer units

are transformed into another concatemer unit. The implementation consists

of three stages:

1. Extracting single strands: Consider the two input concatemers Ai

and Bj shown in the figure. The concatemers are designed in such

a way that the sticky ends of a concatemer unit can act like open

toeholds in DNA strand displacement. As a result, a single strand

can be extracted from a concatemer. For example, concatemer Ai is

formed with two single strands [Ti, Ai], [A∗
i , T

∗
1]. By adding strand

[Ai, T1], strand [T1, Ai] is displaced. Similarly, strand [T2, Bj , T3] can

55

1. Extract Single Strand

+

+

+

+

2. Reaction Step

3. Cleave

+

+

+

+

+

⇌

Input Concatemers

Figure 4.3: An example illustrating strand displacement reactions, imple-
mented using concatemers. The figure is divided into an example sequence
of concatemers, and three reaction steps: 1) extracting a single strand from
concatemers; 2) a reaction step that consumes two single strands and out-
puts a complex; and 3) cleaving.

56

be extracted from concatemer Bj with strand [Bj , T3, T2].

2. This is the strand displacement reaction that implements the main

reaction. It receives two single-strand DNA molecules, [T1, Ai] and

[T2, Bj , T3] as reactants. The product is a complex containing the

output concatemer. The reaction is divided into two parts. In the

first part, strand [T1, Ai] displaces strand [Ai, T2] from the auxiliary

complex G1 and forms G2 through a reversible reaction. Then the

strand [T2, Bj , T3] displaces the output complex which is formed by

strand [Bj , T3, Ck] and [C∗
k , T

∗
3]. This step is irreversible since the

output complex cannot bind to the resulting auxiliary complex G3

after this step.

3. Cleaving. The output complex from the previous step contains the

domain Bj in addition to the part that could form concatemerCk. The

domain Bj is cleaved from the complex. This step yields a concatemer

Ck with T3 sticky end. Cleaving can be achieved by using DNA editing

enzymes such as CRISPR-Cas9 and PfAgo [94].

It is assumed that the concentration of the initial auxiliary complexG1 is

much larger than the concentration of the concatemers. With this assump-

tion, the concentration of the auxiliary complex can be treated invariant

through the reaction. Thus, the reaction rate only depends on the concen-

tration of the single strands extracted from the concatemers. As there are

four reactions to implement the two-input network shown in this example,

four species of the auxiliary complex representing each reaction should be

used. This ensures that the mixture of different species of A0 and A1, or

B0 and B1, can react competitively. During the cleaving step, each reactant

participates in only one reaction. Therefore, it should not affect the reaction

rate or the fractional encoding of the output by the two product species.

The reaction itself can be extended to a multimolecular reaction by ex-

tending the chain of toehold exchange reactions. Suppose, for example, a

new stochastic value d with molecules Dl and sticky ends T4 were also the

input alongside a and b. In the complex G1, domains [T4, Dl] and their

57

complementary domains would be added between the domains Bj and T3.

That is, a new G1 that would react with single strands of sequence Dl and

toehold T4 would be used. In this way, G1 would be capable of receiving

an additional strand [T4, Dl] before displacing the final product. Therefore

multiple input values can be computed upon in our CRNs.

When computing with digital circuits, the length of the bitstream dic-

tates the precision of the computation. The length of the bitstream can be

chosen by the user based on their specifications. The more precision that

they require, the longer the bitstream that they should use. In this DNA

implementation, the concentration of DNA concatemers corresponds to the

length of the bitstreams for the stochastic functions. So the limitation is

experimental: how precisely the user can set and measure the input and

output concentrations, respectively.

4.9 Conclusion

This paper proposed a strategy for computing mathematical functions with

molecular systems based on a fractional representation, using a pair of molec-

ular species to represent each mathematical variable. With this representa-

tion, one can apply the theory of stochastic logic design chemical reaction

networks for computing functions. In particular, the translation from truth

tables for stochastic functions into chemical reaction networks was shown

and verified. An implementation in DNA strand displacement was provided.

Stochastic logic is an intriguing paradigm for digital computation. In-

stead of computing definite outputs from definite inputs – say Boolean values

from Boolean values, or integers from integers – it entails computing prob-

abilities from probabilities. There is randomness and yet the computation

is robust. The computation is effected by transforming the statistical distri-

bution of random bitstreams. The paradigm has been applied in a variety

of domains, particularly for emerging technologies [100, 37, 86, 60]. It has

been most successful for applications that entail computing mathematical

functions: for instance, arctan for nonlinear activation functions in machine

learning; Bessel functions for differential system models; and the sinc func-

58

tion for image and signal processing. Examples of CRN implementations of

these functions are given in Chapter 10.

59

Chapter 5

Discussion

The previous studies demonstrate the potential for computing on a molecular

level. The SIMD model allows for parallelism in DNA computing. There

are, in fact, two layers of parallelism possible:

1. Bit-level Parallelism: instructions applied to all bits in an array at

once.

2. Data-level Parallelism: the same instructions applied tomultiple arrays

at once.

While operations on DNA are slow and error-prone, with these levels of

parallelism, perhaps DNA computation could scale to a truly impressive

regime.

Over the past two decades, computing has moved from desktops and

data centers into the wild. Embedded microchips – found in our gadgets,

our tools, our buildings, our soils and even our bodies – are transforming

our lives. And yet, there are limits to where silicon can go and where it can

compute effectively. It operates based on voltage and so requires a power

source. Even miniaturized to the microscale or smaller, an electronic system

is often a foreign object inserted into a material, substrate, or environment.

The sorts of computation discussed in these studies could find application in

a novel class of computing system that is not foreign, but rather an integral

part of its physical and chemical environment: a system that computes with

60

its constituent molecules. In such a system, sensing, computing, and actu-

ating occur at the molecular level, with no interfacing at all with external

electronics.

The topic of stochastic logic has been advertised as a possible design

paradigm for emerging technologies that promise scaling beyond comple-

mentary metal–oxide–semiconductor (CMOS), as well as the basis of non-

von Neumann architectures [101, 86]. The main appeal of stochastic logic is

that a wide variety of functions can be computed with simple structures. For

instance, multiplication can be implemented with a single AND gate. DNA

lends itself as an ideal substrate for implmenting true stochastic logic. It

allows for decreasing computational complexity due to an increase in com-

putational capacity, with no loss of run time as would be the case with

bitstreams in digital computing.

The field of DNA computing is still relatively new and developing. It

has the potential to revolutionize computing by offering a massively parallel

computing architecture that is compact and stable. This could enable rapid

and efficient processing of large amounts of data [88]. DNA computing is also

energy-efficient and compares favorably to silicon based computing in terms

of heat dissipation and power consumption [71]. Already DNA computing

as been featured in research in a number of areas such as cryptography [107],

data storage, machine learning, microfluidics [28], and drug discovery [18].

The studies in this dissertation provide a framework for a computational

model from the ground up – starting with small systems that can be cascaded

and built up to compute more complex problems. Challenges still lie ahead

– DNA synthesis remains prohibitively expensive. It is yet to overtaking

silicon based computing.

61

Part II

Bioinformatics

62

Chapter 6

Overview

Bioinformatics is a research field formed through the intersection of com-

puter science and biology. With the ever growing understanding of biological

systems, the large scale of biological data being generated, and the various

demanding applications in medicine and the environment, this field is con-

tinuously expanding.

Data from various sources such as genomics and transcriptomics [34],

protein structures [80], ecological [40] and environmental [20] studies have

been the emphasis of bioinformatics research. The interest of this disserta-

tion is in computational immunology: the application of bioinformatics in

immunology. The particular focus of this section is Human T Cell Immunity

and the MHC antigen presentation pathways.

6.1 Major Histocompatibility Complex

The Human Leukocyte Antigen (HLA) gene system encodes cell-surface pro-

teins that play a key role in the immune system. In it, the MHC Class I and

Class II pathways allow cells to present antigens derived from endogenous

and exogenous proteins respectively [63]. These antigens are small peptides

that are broken apart from a source protein and then strongly bound by the

MHC Class I or Class II proteins. MHC Class I proteins bind peptides 8-11

amino acids long from proteins inside the cell, while MHC Class II proteins

63

bind longer peptides (13-17 amino acids) derived from proteins outside the

cell. Whenever a MHC protein binds a peptide, the resulting peptide-MHC

complex is transported to the cell exterior such that the peptide can then

be presented to other cells for immune surveillance. This antigen presen-

tation allows for CD8+ and CD4+ T cells to identify any cells presenting

pathogenic antigens and to consequently kill those infected cells. Clearly

the MHC presentation pathways play a crucial role in immunity.

The mechanics of peptide binding are specific to a given MHC variant.

The HLA genes are among the most diverse in the human population [26].

Thus the set of all antigens presented by a person’s MHCs, labelled as their

immunopeptidome, is unique and determines the capacity of their immune

system. Since the immune response of a person to a viral infection like

COVID-19, for instance, is dependent on whether the foreign antigens pre-

sented by their MHCs are distinguishable from self-peptides, understanding

and predicting pMHC binding is an important topic.

In a peptide bound to a MHC protein, the starting and ending amino

acids on the chain are tucked into the MHC’s binding pockets. The remain-

ing peptide chain rests along a groove exposed on MHC surface, or bulges

out if it is longer than can fit in the groove. Clearly, not every residue

on the peptide contributes to its binding affinity with the MHC molecule.

These certain positions on a strong binding peptide that play a crucial role

in binding affinity are called anchor residues. When observing the bind-

ing motif of a particular HLA, i.e. the consensus sequence of all its strong

binding peptides, anchor residues exhibit higher specificity for certain amino

acids than the remaining positions do. Furthermore, different HLA types

have different anchor residue preferences, due to biochemical factors such

hydrophobicity, electrostatic interactions, and shape conformity that play a

role in each HLA’s unique binding pocket. For example, HLA-A02:01 prefers

binding 9-mers with hydrophobic residues (L,V,M, and I) on positions 2 and

9, while HLA-B27:05 prefers binding 9-mers with a simple R on position 2.

Given the large variation in MHC alleles, and their unique binding mo-

tifs, several bioinformatics tools have been developed to predict the bind-

ing of antigens by MHC proteins. While approaches such as molecular

64

docking or other forms of structural based predictions are powerful, they

are overtaken by machine learning approaches due to the large amounts

of non-structural data and their slower computing times. Of the numer-

ous machine learning tools, the state-of-the-art have certainly been the two

neural network based NetMHC-4.0 [3] and NetMHCpan-4.1 [78]. Both soft-

ware tools have been applied in predicting cancer immune escape mecha-

nisms [53], checkpoint blockade immunotherapy for tumors [49], and identi-

fying COVID-19 T-cell response targets [27].

This part of the dissertation features two studies based on these machine

learning tools used for peptide-MHC binding predictions. The first study

explores how neural networks can be liable to false positives or negatives if

the underlying biochemistry is not accounted for in their training. Specif-

ically, the focus of this study is hydrophobicity, and how integral it is in

peptide-MHC binding predictions. It exposes how NetMHCpan-4.1 outper-

forms NetMHC-4.0 and this distinction is evident when hydrophobicity is

used as a metric for evaluation.

The second study focuses on the use of peptide-MHC predictions in un-

derstanding T cell immune response to COVID-19. The evolution of SARS-

CoV-2 over the course of the COVID-19 pandemic has produced several

variants, each evading the previous variant’s antibodies used for treatments.

However, MHC antigens were observed to be preserved across the variants

in experimental studies. This study details how antigenic sites in variants

such as Omicron were mostly preserved from the original SARS-CoV-2 virus.

The implication of this preservation of antigens is explored through the use

of controls. Artificial variants of the COVID-19 spike protein were designed

to evade T cell immunity, proving that the natural evolution of SARS-CoV-

2 did not lead to a notable reduction in T cell immune responses. The

significance of this study is that it showcases how the MHC presentation

pathways provide a strong line of defense against viral diseases and should

be an important emphasis in vaccine design.

65

Chapter 7

Investigating False Positives

and False Negatives in

Machine Learning

Predictions

While these tools provide valuable pMHC predictions, they do not model

pMHC binding at the molecular level or capture the entire antigen pre-

sentation pathway’s effects. Hydrophobicity is a measure of how repulsive

a molecule is to water, often a consequence of nonpolarity. It plays a vi-

tal role in protein binding – for example, the MHC molecule HLA-A*0201

(A2) contains hydrophobic binding pockets that bind to correspondingly

hydrophobic amino acids [16]. In contrast, the MHC HLA-B*2705 (B27)

prefers to bind peptides with a hydrophilic amino acid in one of its pockets

[35]. Historically, immunopeptidomes have been predicted by modelling the

interaction of the MHC binding pocket and peptide, particularly focusing on

biochemical attributes such as sidechain conformations, solvation energies,

electrostatic interactions, and hydrophobicity [109, 99]. However with im-

proved computing power, larger datasets, and the need for interpolation due

This research was funded by the NSF Grant 2036064.

66

to the high polymorphism in MHC Class I alleles [64], artificial intelligence

based methods have become popular over such mechanistic means of predic-

tion. As NetMHC-4.0 and NetMHCpan-4.1 are trained with sequence data

and binding scores only, they lack the means of modelling these biochemical

attributes. Other software tools such as ANN-Hydro [10] have utilized hy-

drophobicity in their immunogenic predictions, but do not predict binding

affinity and are outperformed by NetMHCpan [54]. In our use of NetMHC-

4.0 we had observed a prevalence of highly hydrophobic peptides in the

predicted A2 immunopeptidome. We had found this contrary to our expec-

tations, since peptides in which all amino acids are hydrophobes would not

dissolve in the aqueous cytosol within the cell and would thus likely not be

available for binding with the MHC. We had therefore sought to investigate

the possibility that these tools were over-estimating binding scores for such

hydrophobic peptides. In a previous study [90], we had tested these tools’

predictions on A2 and observed hydrophobic biases that suggested a false

positive problem in NetMHC-4.0. Here, we expanded that study to look at

multiple HLAs with different binding preferences in more detail. Once again,

we conducted two analyses on both NetMHC-4.0 and NetMHCpan-4.1, one

using training data and the other using a sample of the human proteome, to

investigate the correlation of predicted strong binders and hydrophobicity.

We present our results and highlight the unintended bias within NetMHC-

4.0 for predicting hydrophobic peptides as strong binders, and for predicting

hydrophilic peptides as non-binders.

7.1 Methods

NetMHC-4.0 and NetMHCpan-4.1 allow users to input a list of peptides

or whole proteins, and test the binding of all peptides with a chosen MHC

molecule. Both tools return an adjusted score between 0 (for non-binders)

and 1 (for strong binders) for all peptides. A notable distinction between

the two is that NetMHC is limited to predicting binding for MHC variants

it is trained on, i.e. curated MHCs. In contrast, NetMHCpan is capable

of interpolating predictions for uncurated MHCs if users provide the MHC

67

amino acid sequence. This is achieved through the integration of MHC se-

quence as a data feature in training, and by a larger training dataset gener-

ated using a sophisticated machine learning method called NNAlign MA [2].

NetMHCpan-4.1 consists of an ensemble of 50 neural networks, each with

hidden layers containing 55 and 66 neurons, that were trained using 5-fold

cross validation. NetMHC-4.0 consists of 20 neural networks, each with a

single hidden layer of 5 neurons, that were trained using a nested 5-fold cross

validation approach [3].

7.1.1 Data Mining

NetMHC-4.0 was trained on CD8+ epitope binding affinity (BA) data from

the Immune Epitope Database. This data provided binding scores for pep-

tides to single allele MHCs, with a score that was scaled between 0 and

1 that measured how strongly the peptide bound. NetMHCpan-4.1 was

trained on BA data and additional eluted ligand (EL) data from mass spec-

trometry experiments from multiple sources [78]. The EL data included

multi-allele information that was deconvoluted into single allele datapoints

using NNAlign MA. EL score was binary (either 0 or 1) since it checked if

a peptide was present in a MHC’s immunopeptidome. The combined BA

and EL dataset contained more than 13 million pMHC data points spread

across numerous HLAs. For this study, only peptides of length 9, i.e. 9-

mers, were focused upon since they are the most frequent length of antigens

in human immunopeptidomes. Also, the 3 MHC molecules HLA-A02:01

(A2), HLA-B27:05 (B27), and HLA-B08:01 (B8) were prioritized. These

HLAs were picked because they were highly represented in the training set

(A2 ranked 1st, B27 ranked 11th, and B8 ranked 8th based on number of

training datapoints), they were HLA supertypes (they represented the be-

havior of numerous less frequent HLA types), and they had different binding

motifs (discussed in Section 7.1.2).

The training data analysis was the first analysis. For each HLA, all

its 9-mers that were reported in the training dataset were collected. A2

had 52569 9-mers, B27 had 17422, and B8 had 19448. The distributions

68

of the experimentally obtained training scores for these HLAs are shown in

Figures 7.1 to 7.3. NetMHC-4.0 and NetMHCpan-4.1 were run on these

9-mers to gather each neural network’s predicted binding scores with the

corresponding HLAs. These scores are shown in Figures 7.1 to 7.3. Further-

more, 9-mers with large enough predicted binding scores (using a 0.5% rank

to be precise) were classified as strong binders for a tested HLA by both

tools. These classification thresholds were measured by finding the lowest

predicted binding score for a strong binder identified by these tools. These

measured thresholds are also shown in Figures 7.1 to 7.3.

Given the training data scores, confusion matrices (i.e. the number

of positives and negatives, both true and false) for both neural network

tools were calculated. Actual strong binders and non-binders in the context

of each neural network tool were identified using the previously measured

strong binding thresholds on the actual training scores for each 9-mer. For

example, in Figures 7.1 to 7.3, all 9-mers on the blue plot above the red

dashed line were classified as actual strong binders when testing NetMHC-

4.0. The results of the confusion matrices are shown in Tables 10.1 and 10.2.

The receiver operating characteristic (ROC) curve for each neural network

tool for all 3 HLAs were plotted, as shown in Figures 10.18 to 10.20. The

accuracy, precision, recall, and F1 score were also computed from the con-

fusion matrices [72].

While the training data analysis was useful for identifying prediction bi-

ases, it alone was not a sufficient means for comparing NetMHC-4.0 and

NetMHCpan-4.1. As NetMHC-4.0 was only trained on BA data while

NetMHCpan-4.1 was trained on BA and EL data, NetMHCpan-4.1 had an

advantage of having “seen” the EL peptides in its training oveThe protein

sequences for all reviewed human proteins from Uniprot [12] were gathered.

A 100 of them were randomly sampled, and fragmented to create a set of

50804 9-mers. These peptides were also passed through NetMHC-4.0 and

NetMHCpan-4.1 for all 3 HLAs to gather their predicted scores. These

scores are shown in Figures 10.9 to 10.11. Since no experimentally obtained

binding scores were available for these peptides, the Pearson correlations

and the confusion matrices were not calculated.

69

7.1.2 Hydrophobicity

As noted in Section 7.1.1, one of the reasons A2, B27, and B8 were chosen

for analysis was their different binding motifs [5]. A2 has a strong affinity for

9-mers with hydrophobic amino acids such as L, V, M, and I in positions 2

and 9. B27, on the other hand, binds 9-mers with hydrophilic R at position

2. In between these two, B8 prefers to bind 9-mers with both hydrophobic

amino acids L, V, M, and I at position 2 and 9, but also hydrophilic amino

acids R and K at position 3 and 5. Clearly hydrophobicity plays a crucial

role in distinguishing the binding preferences of different HLAs. This study

focused on the role of hydrophobicity in NetMHC-4.0’s and NetMHCpan-

4.1’s predictions.

Hydrophobicity scales assign hydrophobicity values to single amino acids.

They are designed so the hydrophobicity of long peptides or protein chains

can be estimated by simply linearly adding up the scores of their constituent

amino acids. Scales such as Kyte-Doolittle [43], Cornette [14], and Hopp-

Woods [32] are commonly used. However, the Moon scale [58] was the most

appropriate for calculating hydrophobicity in this study since it specifically

focuses on the sidechain hydrophobicity and polarity of single amino acids.

Unlike the other scales, which are well suited for protein folding problems

that do not correlate with sidechain hydrophobicity [57], the Moon scale

is more representative of how small peptides would behave in an aqueous

solution. The scale ranks the 20 amino acids in decreasing order of hy-

drophobicity as follows: F (1.43), L (1.26), I (1.15), P (1.13), Y (0.94), V

(0.80), M (0.79), W (0.63), A (0.46), C (0.24), E (-0.27), G (-0.30), T (-0.33),

S (-0.35), D (-0.85), Q (-0.88), N (-1.08), R (-1.19), H (-1.65), K (-1.93).

For any given 9-mer, its total hydrophobicity was calculated by adding

up the Moon scale values for each of its 9 amino acids. For any given set

of peptides, the mean and standard deviation of the hydrophobicity scores

of all peptides in it were measured. Furthermore, any given peptide was

clustered into 1 of 3 classes: Hydrophobic (total hydrophobicity greater

than 3), Hydrophilic (total hydrophobicity less than -3), or Balanced (total

hydrophobicity between -3 and 3). This classification distinguished peptides

70

based on their net hydrophobicity, and allowed for investigating the impact

of hydrophobicity on the differential prediction of MHC binding for different

classes of peptides. These categories were added added in Figures 10.18

to 10.20 and ???? to highlight any prominent trends specific to a peptide

category.

It was possible the smaller BA training dataset for NetMHC-4.0 was

biased or unrepresentative of the numerous possible binding peptides. This

bias could also be caused due to the binding affinity assays used to obtain BA

scores, since these experiments only measure MHC-peptide affinity and do

not account for the rest of the antigen presentation pathway or physiological

conditions. Therefore, the hydrophobicities of the set of BA training data

points (i.e. peptides NetMHC-4.0 was trained on) were compared to the set

of EL training data points (i.e. more than 80% of the peptides NetMHCpan-

4.1 was trained on) for all 3 HLAs.

7.2 Results

From the scores shown in Figures 7.1 to 7.3, it was clear that the pMHC

binding data fit a mostly binary data classification problem, since only 15%

of the analyzed peptides had a training score not equal to 0 or to 1. This

was mostly due to the addition of EL data which provided a binary “yes”

or “no” answer to whether a given peptide was found attached to our cho-

sen HLAs through mass spectroscopy. NetMHC-4.0’s predicted scores were

dispersed smoothly between 0 and 1. In contrast, NetMHCpan-4.1 had

more lopsided predictions with more non-binders assigned a binding score

of 0. However, neither neural network tool predicted a definitive score of

1 to strong binders and instead used their thresholds to identify binders.

NetMHCpan-4.1 predicted more strong binders than NetMHC-4.0 in all 3

cases.

These results of NetMHC-4.0 and NetMHCpan-4.1 on the sample human

proteome are shown in Figures 10.9 to 10.11. Note that no experimental

binding data was available for these peptides, and that the same set of these

peptides was used for each HLA’s predictions when comparing Figures 10.9

71

Table 7.1: Various binary classification metrics on the training data analysis
for NetMHC-4.0.

HLA Peptide Case Accuracy Precision Recall F1 score

A2

All 0.918 0.882 0.618 0.727
Hydrophobic only 0.875 0.861 0.745 0.745
Hydrophilic only 0.986 0.786 0.134 0.229
Balanced only 0.924 0.909 0.514 0.657

B27

All 0.909 0.914 0.460 0.612
Hydrophobic only 0.926 0.954 0.535 0.685
Hydrophilic only 0.916 0.793 0.362 0.497
Balanced only 0.903 0.918 0.454 0.608

B8

All 0.927 0.925 0.625 0.746
Hydrophobic only 0.915 0.910 0.571 0.702
Hydrophilic only 0.960 0.921 0.728 0.813
Balanced only 0.924 0.930 0.627 0.749

Table 7.2: Various binary classification metrics on the training data analysis
for NetMHCpan-4.1.

HLA Peptide Case Accuracy Precision Recall F1 score

A2

All 0.936 0.918 0.756 0.829
Hydrophobic only 0.871 0.922 0.735 0.818
Hydrophilic only 0.991 0.826 0.613 0.704
Balanced only 0.952 0.915 0.776 0.840

B27

All 0.965 0.917 0.865 0.890
Hydrophobic only 0.969 0.964 0.832 0.893
Hydrophilic only 0.957 0.832 0.814 0.823
Balanced only 0.966 0.919 0.878 0.898

B8

All 0.951 0.915 0.818 0.864
Hydrophobic only 0.935 0.930 0.728 0.816
Hydrophilic only 0.965 0.892 0.832 0.861
Balanced only 0.953 0.914 0.840 0.876

72

0 10000 20000 30000 40000 50000
Number of 9-mers

0.00

0.25

0.50

0.75

1.00

Bi
nd

in
g

Sc
or

e

Sorted Scores for all Training A2 9-mers
Training scores
NetMHC-4.0 scores
NetMHCpan-4.1 scores

Figure 7.1: The cumulative distribution of the experimental training scores
(blue), NetMHC-4.0 predicted scores (red), and NetMHCpan-4.1 predicted
scores (yellow) for peptides in the training dataset for HLA A2. The
strong binder thresholds for NetMHC-4.0 and NetMHCpan-4.1 are shown
as dashed lines of the corresponding colors. For A2, the NetMHC-4.0 and
NetMHCpan-4.1 thresholds were 0.659 and 0.419 respectively. Each plot of
scores was independently sorted. Consequently, the order of peptides is not
conserved across the 3 plots.

73

0 2500 5000 7500 10000 12500 15000 17500
Number of 9-mers

0.00

0.25

0.50

0.75

1.00

Bi
nd

in
g

Sc
or

e

Sorted Scores for all Training B27 9-mers
Training scores
NetMHC-4.0 scores
NetMHCpan-4.1 scores

Figure 7.2: The cumulative distribution of the experimental training scores
(blue), NetMHC-4.0 predicted scores (red), and NetMHCpan-4.1 predicted
scores (yellow) for peptides in the training dataset for HLA B27. The
strong binder thresholds for NetMHC-4.0 and NetMHCpan-4.1 are shown
as dashed lines of the corresponding colors. For B27, the NetMHC-4.0 and
NetMHCpan-4.1 thresholds were 0.551 and 0.478 respectively. Each plot of
scores was independently sorted. Consequently, the order of peptides is not
conserved across the 3 plots.

74

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of 9-mers

0.00

0.25

0.50

0.75

1.00

Bi
nd

in
g

Sc
or

e

Sorted Scores for all Training B8 9-mers
Training scores
NetMHC-4.0 scores
NetMHCpan-4.1 scores

Figure 7.3: The cumulative distribution of the experimental training scores
(blue), NetMHC-4.0 predicted scores (red), and NetMHCpan-4.1 predicted
scores (yellow) for peptides in the training dataset for HLA B8. The strong
binder thresholds for NetMHC-4.0 and NetMHCpan-4.1 are shown as dashed
lines of the corresponding colors.For B8 the NetMHC-4.0 and NetMHCpan-
4.1 thresholds were 0.495 and 0.301 respectively. Each plot of scores was
independently sorted. Consequently, the order of peptides is not conserved
across the 3 plots.

75

to 10.11 with Figures 7.1 to 7.3. Again, NetMHCpan-4.1 seemed more strin-

gent in predicting non-zero binding scores. NetMHCpan-4.1 also predicted

slightly more strong binders than NetMHC-4.0 for all 3 HLAs.

The performances of NetMHC-4.0 and NetMHCpan-4.1 as binary classi-

fiers are shown in Figures 10.18 to 10.20 as ROC curves. The figure also in-

cludes the area under the curve (AUC) for each classifier. It breaks down the

performance across all training peptides and even the 3 peptide categories

defined in Section 7.1.2. For A2 and B27, NetMHC-4.0 and NetMHCpan-4.1

had similar AUC values (no more than 1% apart), while for B8 NetMHC-

4.0 under-performed by 3%. Across all HLAs, both tools reported AUC

values higher than 95%. The different peptide categories did not highlight

any notable trends on the ROC plots. It is interesting to note that both

tools had different performances across the 3 peptide cases in each HLA. To

investigate this observation in detail, violin plots were used to visualize the

predicted immunopeptidomes.

The distributions of the hydrophobicity scores of 9-mers in the training

data analysis are shown in Figures 10.12 to 10.14, and those in the human

proteome data analysis in Figures 7.4 to 7.6. For both analyses, the 2

sample t-test was used to compare the immunopeptidomes predicted by

NetMHC-4.0 and NetMHCpan-4.1, and to identify any discrepancies in their

predictions on the basis of hydrophobicity (all values used in the t-tests are

listed in Tables 10.3 and 10.4).

Strong binders to A2 were expected to have two hydrophobic amino

acids (L, V, M, or I) at positions 2 and 9, and thus the expected A2 im-

munopeptidome would be more hydrophobic than the training or sampled

data (expected to be approximately centered about a Moon score of 2).

In both analyses, NetMHCpan-4.1 predicted strong binders with a closer

hydrophobicity score to our expected value than NetMHC-4.0 did. This dif-

ference in predictions was extremely statistically significant in both analyses

(p-values less than 0.0001). That is, NetMHC-4.0’s predicted strong binders

for A2 were more hydrophobic than NetMHCpan-4.1’s.

Strong binders to B27 were expected to have one hydrophilic amino acid

(R) at position 2, and thus the expected B27 immunopeptidome would be

76

12 9 6 3 0 3 6 9 12
Hydrophobicity

All Sampled
Peptides

NetMHC-4.0
predicted
antigens

NetMHCpan-4.1
predicted
antigens

Distributions of 9-mers for A2

Figure 7.4: Violin plots of the hydrophobicity of the sets of strong binders
predicted by NetMHC-4.0 and NetMHCpan-4.1 on the human proteome
dataset for A2. The x-axis represents the hydrophobicity of a 9-mer, and
the y-axis represents the frequency. The distributions of all sampled peptides
(blue), strong binders predicted by NetMHC-4.0 (red), and those predicted
by NetMHCpan-4.1 (yellow) are shown. The mean and two quartiles are
also depicted in each distribution.

77

12 9 6 3 0 3 6 9 12
Hydrophobicity

All Sampled
Peptides

NetMHC-4.0
predicted
antigens

NetMHCpan-4.1
predicted
antigens

Distributions of 9-mers for B27

Figure 7.5: Violin plots of the hydrophobicity of the sets of strong binders
predicted by NetMHC-4.0 and NetMHCpan-4.1 on the human proteome
dataset for B27. The x-axis represents the hydrophobicity of a 9-mer, and
the y-axis represents the frequency. The distributions of all sampled peptides
(blue), strong binders predicted by NetMHC-4.0 (red), and those predicted
by NetMHCpan-4.1 (yellow) are shown. The mean and two quartiles are
also depicted in each distribution.

78

12 9 6 3 0 3 6 9 12
Hydrophobicity

All Sampled
Peptides

NetMHC-4.0
predicted
antigens

NetMHCpan-4.1
predicted
antigens

Distributions of 9-mers for B8

Figure 7.6: Violin plots of the hydrophobicity of the sets of strong binders
predicted by NetMHC-4.0 and NetMHCpan-4.1 on the human proteome
dataset for B8. The x-axis represents the hydrophobicity of a 9-mer, and
the y-axis represents the frequency. The distributions of all sampled peptides
(blue), strong binders predicted by NetMHC-4.0 (red), and those predicted
by NetMHCpan-4.1 (yellow) are shown. The mean and two quartiles are
also depicted in each distribution.

79

slightly more hydrophilic than the training or sampled data (expected to be

approximately centered about a Moon score of -1). Neither tool exhibited

this hydrophilic shift in its predictions on the training dataset, but with

the human proteome, NetMHCpan-4.1 did predict strong binders centered

at a hydrophobicity score of -0.775; NetMHC-4.0’s mean was -0.155. The

difference in predictions was statistically significant in both analyses (p-

values no larger than 0.002). Again, NetMHC-4.0’s predicted strong binders

for B27 were more hydrophobic than NetMHCpan-4.1’s.

Strong binders to B8 were expected to have two hydrophobic amino

acids (L, V, M, or I) at positions 2 and 9, and two hydrophilic amino acids

(R or K) at positions 3 and 5. Consequently, no major shift in hydropho-

bicity expected in the B8 immunopeptidomes predicted by either neural

network tool. This was indeed the result observed in both analyses, and

no significant difference was observed between the predictions of NetMHC-

4.0 and NetMHCpan-4.1 (p-values were 0.716 and 0.425 for the training

dataset analysis and the human proteome analysis respectively). In this

case, NetMHC-4.0’s predicted set of binders for B8 were not distinguishable

from NetMHCpan-4.1’s in terms of hydrophobicity.

Overall, the trend observed from these violin plots seemed to be that

NetMHC-4.0 was incorrectly accounting for hydrophobicity when predicting

strong binders for A2 and B27. In contrast, NetMHCpan-4.1 was predicting

less hydrophobic strong binders for all HLAs in the human proteome analy-

sis. As NetMHCpan-4.1 more closely matched the expectations for A2 and

B27, its predictions were reasoned to be more accurate. Since NetMHCpan-

4.1 also predicted more strong binders, the new strong binders gained in

NetMHCpan-4.1’s immunopeptidome were hypothesized to be slightly hy-

drophilic (with respect to NetMHC-4.0’s immunopeptidome) and therefore

skew the mean hydrophobicity lower. Each neural network tool’s perfor-

mance was tracked in Tables 7.1 and 7.2 to investigate this. In particular,

the performances of these tools in our 3 specific peptide cases was broken

down using 4 different classification metrics discussed below:

• The Accuracy metric tracks the number of true negatives and true

80

positives identified by a classifier relative to all the tested data points.

Across all HLAs, both neural network tools maintained high accuracy,

though NetMHCpan-4.1 performed slightly better (by roughly 2%).

For B27 in particular, NetMHCpan-4.1 had a notably higher accuracy

(by about 6%) in all peptides cases. No specific improvement was

observed in any individual peptide category.

• The Precision metric inversely measures the number of false positives

identified by a classifier. NetMHCpan-4.1 exhibited higher precision

for A2 (by 3%), roughly equivalent precision for B27, and slightly lower

precision for B8 (by about 2%) in all peptide cases. The highlight

here was that NetMHC-4.0 had low precision (lower than 80%) when

dealing with hydrophilic peptides for A2 and B27.

• The Recall metric inversely represents the number of false negatives

not identified by a classifier. NetMHCpan-4.1 showed significant im-

provement (consistently higher than 10%) in recall for all HLAs. For

A2, these improvements were observed in classifying hydrophilic and

balanced peptides. For B27 and B8, these improvements were observed

in all peptide categories.

• The F1 score is a combination of precision and recall, and tracks over-

all performance of a classifier. For all HLAs, NetMHCpan-4.1 outper-

formed NetMHC-4.0 (by atleast 10%) when considering all peptides

categories.

The observations from these data, in particular the accuracy and F1

score, supported the initial assumption that NetMHCpan-4.1 had stronger

predictions than NetMHC-4.0 when focusing on hydrophobicity. The pre-

cision and recall scores elucidated the reasons behind this improvement:

NetMHCpan-4.1 predicted fewer false positives, and much fewer false neg-

atives for all HLAs. The sources of these false positives and negatives in

NetMHC-4.0’s predictions varied across the different HLAs. For A2, most

false positives were found in non-balanced (hydrophobic and hydrophilic)

peptides cases, while the majority of false negatives came from non-hydrophobic

81

peptides. For B27, a few false positives were observed in the hydrophilic

peptides, but most notably numerous false negatives were found across all

types of peptides. For B8, false negatives in all peptides cases lowered the

performance of NetMHC-4.0.

It was also important to acknowledge that NetMHCpan-4.1 had an un-

fair advantage over NetMHC-4.0 – the newer tool was trained on a much

larger dataset. Furthermore, NetMHC-4.0 was trained on only peptide-

MHC binding affinity data, while NetMHCpan-4.1 was trained on eluted

ligand data that was representative of the entire antigen presentation path-

ways. The possibility of the small BA data in the training dataset being

biased towards being hydrophobic was investigated. These values were con-

trasted to the mean hydrophobicity values of the EL dataset in Figures 10.12

to 10.14. In each case, the BA training data was more hydrophobic than the

EL training data set. This bias was the most prominent in the A2 peptides,

and least prominent in B27. This discrepancy in training data could be

one of the causes for why NetMHC-4.0’s predicted strong binders contained

many hydrophilic false negatives.

7.3 Conclusion

A previous study by our team had identified a significant preference for

hydrophobic peptides in NetMHC-4.0’s predicted immunopeptidome for A2

[90]. It had argued that highly hydrophobic peptides were being classified

by NetMHC-4.0 as false positives. It had suggested that highly hydrophobic

peptides would never be trafficked in the aqueous cytosol of cells and were

therefore obvious false positives.

This study expanded that previous research to focus on more HLA types

– i.e. A2, B27, and B8. These HLAs prefer to bind hydrophobic, hydrophilic,

and balanced (neither hydrophobic nor hydrophilic) peptides respectively.

By comparing the predictions by NetMHC-4.0 and NetMHCpan-4.1 on both

the training dataset (see Figures 10.12 to 10.14) and the sampled human

proteome (see Figures 7.4 to 7.6), NetMHC-4.0’s hydrophobicity bias for

A2 and B27 was confirmed. In these cases, NetMHC-4.0’s predicted im-

82

munopeptidome was much more hydrophobic than NetMHCpan-4.1’s pre-

dictions. This hydrophobic bias was not statistically significant in the B8

immunopeptidome. These results suggested that NetMHC-4.0 struggled to

predict strong binders correctly in HLAs with strong hydrophobic or hy-

drophilic binding motifs.

This study had used several machine learning metrics, such as accuracy,

and recall, on the training dataset analysis (see Tables 7.1 and 7.2). From

these results, the improvement in NetMHC-4.0’s predictions (over NetMHC-

4.0’s) was discovered to stem from fewer false negatives in the non-balanced

peptide cases, and fewer false positives in general. In particular, the biased

immunopeptidome predicted by NetMHC-4.0 was not just a consequence of

overestimating the binding of hydrophobic peptides, but also due to over-

looking binders that were hydrophilic.

A key takeway of our analyses is that this hydrophobicity bias could

only be discovered and expounded upon by focusing on hydrophobicity of

peptides as a core factor in pMHC binding. Merely using machine learning

metrics without accounting for such biochemical attributes would have been

insufficient in capturing this bias. This is evident from how both neural

network tools had similar performances across all 3 HLAs in Figures 10.18

to 10.20. Just as understanding the erroneous predictions from NetMHC-4.0

required the use of hydrophobicity as a metric, we believe that mechanisti-

cally modelling the biochemistry (to some extent) improves upon a purely

data-driven artificial intelligence’s prediction.

In conclusion, NetMHCpan-4.1 was the more reliable of the two neural

network tools. It had stronger results across the various metrics, and the

hydrophobicity of its predicted immunopeptidome matched the expected

hydrophobicity values. In contrast, NetMHC-4.0 struggled to predict all

strong binders for HLAs that had notable hydrophobic or hydrophilic pref-

erences. There could be several reasons why NetMHCpan-4.1 outperformed

NetMHC-4.0. NetMHCpan-4.1 had a larger training set. BA data alone

could not model the effects of the entire antigen presentation pathway as

EL data could have. For example, the binary values of EL data might have

trained NetMHCpan-4.1 to be more decisive in its predictions. Tracking

83

the MHC sequence could have allowed NetMHCpan-4.1 to model binding

mechanics of MHC binding pockets. EL data might have set NetMHCpan

to capture aspects of the entire antigen presentation pathway instead of

estimating pMHC binding strength alone. The generation of negative train-

ing data [2] for NetMHCpan-4.1 could have resolved false positives that

NetMHC-4.0 was vulnerable to.

84

Chapter 8

Investigating T Cell Immune

Responses to the various

SARS-CoV-2 variants

The Omicron variant of SARS-CoV-2 caused the largest wave of COVID-19

infections from November 2021 to February 2022 [66]. Since then, Omicron

has been responsible for more than 95% of all recorded cases of COVID-

19 according to GISAID [41]. It was observed to have a higher infectivity

rate and a lower disease severity than the original COVID-19 variant [17].

Notably, Omicron could reinfect patients who had already recovered from

COVID-19 and infect people who had received double-doses of COVID-19

vaccines [17]. These factors had selected for its spread over other SARS-

CoV-2 variants.

COVID-19 vaccines allowed treated people to develop immunity against

COVID-19 [81, 25]. The vaccines developed by BioNTech-Pfizer and Moderna-

NIAID employed new mRNA vaccine technology, while those developed by

Janseen-Johnson & Johnson, and Novavax featured previously established

methods such as viral vectors and protein adjuvants. All of these vaccines

utilized the novel Spike Glycoprotein of SARS-CoV-2 to activate a treated

This research was funded by the NSF Grant 2036064.

85

person’s immune system [62, 38]. They trained the immune system to rec-

ognize the spike protein and develop antibodies to neutralize it. This meant

that upon COVID-19 infection, a vaccinated individual’s immune system

could mount a stronger and faster defense. Vaccines also allowed the body

to produce T cells that kill COVID-19 infected cells through the Major

Histocompatibility Complex (MHC) presentation pathways.

MHC proteins of different alleles prefer binding different peptides [5]. For

example, HLA-A*0201 prefers binding peptides with hydrophobic residues

while HLA-B*2705 prefers binding peptides with hydrophilic residues. MHC

Class I proteins also prefer binding peptides 9 amino acids long while Class II

proteins prefer binding peptides of length 15. Furthermore, the MHC genes

are among the most polymorphic genes in the human genome [26]. Due to

all these reasons, the antigens presented from the SARS-CoV-2 spike protein

by the MHC proteins can differ vastly from person to person. Individuals

presenting a higher number of antigens elicit a stronger T Cell response to

COVID-19 infection. Previous studies have concluded that the Omicron

Variant is resistant to numerous monoclonal antibodies used in COVID-

19 therapy, and evades antibodies from infected or vaccinated individuals as

well [48, 31, 95]. However, T Cell responses to Omicron are mostly preserved

in these individuals, suggesting that most T Cell epitopes from the original

SARS-CoV-2 spike proteins are conserved in Omicron [15, 39, 9, 23, 61, 96].

These observations motivate the importance of T Cell immunity in COVID-

19 cases, as this class of immunity has not been strongly evaded by the

SARS-CoV-2 virus with its new variants.

This study sought to investigate the cause of this lack of evasion of T Cell

Immunity by the Omicron variants. NetMHCpan-4.1 and NetMHCiipan-4.0

were used to predict MHC Class I and MHC Class II antigens respectively

from various spike protein variants [78]. These state-of-the-art tools that

had previously been used in vaccine design and neoantigen identification

[70, 53, 49]. The predictions of these tools were used to investigate the anti-

gens derived from the numerous SARS-CoV-2 Variants of Concern across

various MHC alleles with high frequencies in human populations. These

predictions estimated the different T-Cell responses elicited by the variants

86

in most humans, and confirmed no significant loss of T-Cell epitopes in the

Omicron spike protein. An original form of positive control was devised

by targeting the various epitopes identified in the spike protein, and de-

liberately mutating these regions of the protein to cause a loss of antigens

binding to MHC proteins. These mutant “evading” spike proteins did lose

T Cell epitopes across numerous HLAs when tested using NetMHCpan-4.1

and NetMHCiipan-4.0, unlike Omicron. These results proved that the Omi-

cron spike protein lacked mutations that would lead to evasion of T Cell

Immunity. This implied that other stronger selective factors (such as higher

infectivity rate, stronger ACE2 binding, and antibody evasion) had played

a role in the evolution of the Omicron variant. The results of this study

reassure that T Cell immunity forms a strong bastion against SARS-CoV-2,

and should remain the focus of COVID-19 therapy.

8.1 Methods

8.1.1 SARS-CoV-2 Spike Protein and Variants

The spike protein in the original SARS-CoV-2 virus is a 1273 amino acid

long protein [111, 65], and features a receptor binding domain which allows

the virus to infect human cells through the angiotensin-converting enzyme

2 (ACE2) receptor [102]. Over the course of the COVID-19 pandemic from

2019 to 2022, the various Variants of Concern (VOCs) of SARS-Cov-2 re-

ported by WHO evolved their own mutant spike proteins, with most muta-

tions either stabilizing their spike protein or increasing its binding affinity

with the ACE2 receptor. Clearly, the SARS-CoV-2 spike protein played a

key role in the COVID-19 viral infection, and consequently it had been the

focus of numerous studies and clinical therapies. Notably, the most widely

used COVID-19 vaccines in the United States (such as those manufactured

by Pfizer, and Moderna) encoded RNA transcripts for this spike protein,

with minor stabilizing mutations. This study sought to assess the various

T-Cell antigens produced from spike protein variants from VOCs and com-

mon vaccines.

87

To begin, all the key mutations with respect to the original spike protein

in the different variants were identified. For each of the SARS-CoV-2 vari-

ants, the deletions and point mutations that had a frequency of greater than

33% in all the spike protein samples for that variant in the GISAID database

were recorded . This was achieved through the use of the mutation tracker

on outbreak.info [22, 98] and the list of shared mutations on the covariants

website [30]. The mutations that were observed across the different variants

were (in order of position along the spike protein):

1. B.1.1.7 (Alpha variant): H69del, V70del, Y144del, N501Y, A570D,

D614G, P681H, T716I, S982A, and D1118H. There were 3 deletions

and 7 point mutations.

2. B.1.351 (Beta variant): L18F, D80A, D215G, L241del, L242del, A243del,

K417N, E484K, N501Y, D614G, and A701V. There were 3 deletions

and 8 point mutations. Mutation L18F was not listed on the covariants

website.

3. P.1 (Gamma variant): L18F, T20N, P26S, D138Y, R190S, K417T,

E484K, N501Y, D614G, H655Y, T1027I, and V1176F. There were 0

deletions and 12 point mutations.

4. B.1.617.2 (Delta variant): T19R, T95I, G142D, E156G, F157del, R158del,

L452R, T478K, D614G, P681R, and D950N. There were 2 deletions

and 9 point mutations. Mutations T95I and G142D were not listed on

the covariants website.

5. BA.1 (Omicron variant): A67V, H69del, V70del, T95I, G142D, V143del,

Y144del, Y145del, N211I, L212del, G339D, S371L, S373P, S375F, K417N,

N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y,

Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K,

Q954H, N969K, and L981F. There were 6 deletions and 30 point mu-

tations.

I gratefully acknowledge all data contributors, i.e., the Authors and their Originating
laboratories responsible for obtaining the specimens, and their Submitting laboratories
for generating the genetic sequence and metadata and sharing via the GISAID Initiative,
on which this research is based.

88

https://outbreak.info/compare-lineages?gene=S&threshold=33&nthresh=1&sub=false&dark=false
https://outbreak.info/compare-lineages?gene=S&threshold=33&nthresh=1&sub=false&dark=false
https://covariants.org/shared-mutations
https://covariants.org/shared-mutations

6. BA.2 (“Stealth” Omicron variant): T19I, L24S, P25del, P26del, A27del,

G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S,

K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H,

D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, and N969K.

There were 3 deletions and 28 point mutations.

The mutations in the newest variants of concern of 2022, i.e. BA.2.75

and BA.5, were also identified in a follow-up study. The majority of the mu-

tations reported in these Omicron subvariants were shared by BA.2. These

were:

1. BA.2.75: T19I, L24S, P25del, P26del, A27del, G142D, K147E, W152R,

F157L, I210V, V213G, G257S, G339H, S371F, S373P, S375F, T376A,

D405N, R408S, K417N, N440K, G446S, S477N, T478K, E484A, Q498R,

N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H,

and N969K. There were 3 deletions and 33 point mutations.

2. BA.5: T19I, L24S, P25del, P26del, A27del, H69del, V70del, G142D,

V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N,

N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H,

D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, and N969K.

There were 5 deletions and 29 point mutations.

The synthetic mutations in the common COVID-19 vaccines used in the

United States were tracked as well. The vaccines investigated in this study

were:

1. BNT162b2 (Manufactured by BioNTech-Pfizer) and mRNA-1273 (Man-

ufactured by Moderna-NIAID): These feature the mutations K986P

and V987P.

2. Ad26.COV2.S (Manufactured by Janssen-Johnson & Johnson): This

features the mutations R682S, R685G, K986P, and V987P.

3. NVX-CoV2373 (Manufactured by Novavax): This features the muta-

tions R682Q, R683Q, R685Q, K986P, and V987P.

89

With these key mutations compiled, a consensus spike protein sequence

for each variant was generated by performing the corresponding single amino

acid deletions or substitutions on the original spike protein. This statistics-

based approach allowed for investigating the impact of the core, defining

mutations in a variant without relying on an individual reported sample to

incompletely represent that variant. However this approach did not track

amino acid insertions. For example, several BA.1 variant samples reported

small insertions in the N-Terminal Domain [24] but these could not be found

in the mutation reporting data. Given this specific observation, the 3 a.a.

sequence EPE was inserted at position 214 in the BA.1 representative spike

protein. This was the only insertion performed in our analysis.

8.1.2 MHC-Peptide Binding Affinity Prediction

NetMHCpan-4.1 and NetMHCiipan-4.0 were used to investigate MHC Class

I and Class II antigens respectively. Both of these tools predicted the binding

probability of a peptide with a given MHC molecule on a continuous scale

of 0 to 1 – 0 meant no affinity, and 1 meant the strongest binding possible.

Both these tools classified strong binding peptides to a MHC molecule using

a 0.5 percentile threshold with respect to the training data for that MHC.

For the MHC Class I analysis, the following HLA serotypes were short-

listed: HLA-A*0101 (A1), HLA-A*0201 (A2), HLA-A*0301 (A3), HLA-

A*2402 (A24), HLA-A*2601 (A26), HLA-A*3001 (A30), HLA-B*1501 (B15),

HLA-B*3501 (B35), HLA-B*4001 (B40), HLA-B*4402 (B44), and HLA-

B*5101 (B51). For the MHC Class II predictions, HLA-DRB1*0101 (DR1),

HLA-DRB1*0301 (DR3), HLA-DRB1*0401 (DR4), HLA-DRB1*0701 (DR7),

HLA-DRB1*0801 (DR8), HLA-DRB1*1101 (DR11), DRB1*1201 (DR12),

HLA-DRB1*1301 (DR13), HLA-DRB1*1302 (DR1302), and HLA-DRB1*1501

(DR15) were selected. These HLA supertypes were chosen for this study be-

cause they were amongst the most frequent alleles while also representing

a broad and diverse sample of the human population’s HLA types in the

United States [50].

For each of the spike protein variants, the fasta-file sequence of the pro-

90

tein was put through both prediction tools, and the binding data for all the

aforementioned MHC molecules was gathered. For MHC Class I predictions,

only 9-mers – contiguous sequences of 9 amino acids generated from the pro-

tein – were analyzed as they bound the strongest to MHC Class I molecules

compared to all other peptide lengths. For the same reason, 15-mers were

the focus for MHC Class II molecules. The binding scores gathered from

this prediction data allowed for identifying the antigens presented by various

MHC molecules from each spike protein.

8.1.3 Generating Evaders as Positive Controls

As highlighted in Section 8.1.2, some form of control was needed to assess

the significance of the number of predicted antigens being consistent across

different variants. The approach chosen to resolve this was to design new

spike protein variants as a form of positive control. These spike proteins

featured the same number of mutations as the most mutated SARS-CoV-2

variant. However, these spike proteins were specifically engineered to knock

down the number of antigens across multiple HLA types. Such spike proteins

acted as positive controls since they would reflect the strongest MHC path-

way knock down relative to all our tested variants. These engineered spike

proteins were labelled as “evaders”. Two sets of evaders were engineered –

one for the MHC Class I pathway, and the other for Class II.

To design a Class I evader spike protein, sites on the original spike pro-

tein that were critical for deriving antigens had to be identified. The location

of all strong binding peptides from the original spike protein for each MHC

Class I HLA along the 1273 amino acid sequence was mapped on to the pro-

tein sequence. This highlighted regions of antigenicity – positions from the

original spike protein that constituted peptides that were presented as anti-

gens in the MHC Class I pathway. From here, the anchor residues in these

regions of antigenicity were singled out. This information was compiled into

a set of 11 lists – each list corresponding to an HLA type, and the numbers

in each list representing the position of anchor residues for that HLA in

the original spike protein. These anchor residues were mutated to generate

91

the best evader proteins. A limit of 36 mutations (30 point mutations and

6 deletions, which were the number of mutations of BA.1) was used. The

number of mutations allocated to evade an HLA was also scaled according

to the number of antigens predicted for that HLA by NetMHCpan-4.1 (see

Section 8.2.1). Therefore 3, 3, 4, 3, 4, 4, 4, 5, 2, 2, and 2 positions (a total

sum of 36) were sampled randomly from the 11 lists respectively. These

positions were then mutated. For each point mutation, the new substitute

amino acid was randomly chosen from a set of amino acids that were antag-

onistic to the HLA that was anchored by that site. For example, a residue

chosen for mutation that was originally an anchor residue for A2 binding

was only allowed to mutate to amino acids besides V, L, M, and I. With this

procedure a 100 Class I evader proteins were generated. The full details on

the mutations protocol are discussed in Table 8.1.

To design a Class II evader spike protein,the same procedure to identify

anchor residues was followed. In this case there were 10 lists and 6, 2, 3,

5, 2, 2, 3, 2, 6, and 5 numbers (again adding up to 36) were sampled from

each respectively. The same mutation protocol was repeated to engineer a

100 Class II evaders.

The procedure discussed in Section 8.1.2 was repeated on the designed

evaders to investigate the antigens predicted from them. Only the NetMHCpan-

4.1 predictions for the Class I evaders, and NetMHCiipan-4.0 predictions for

the Class II evaders were tested.

8.1.4 Statistics and Ranking

For each of the 100 Class I evader proteins, the number of strong binders

predicted by NetMHCpan-4.1 was tracked across all the 11 aforementioned

HLAs. Here the goal was to analyze whether the 10 nonrandom variants (i.e.

the original spike, the natural variants, and the vaccine variants) exhibited

a different antigen profile compared to the evader proteins. The Wilcoxon

rank-sum test from the SciPy library was used to analyze whether any two

sets of spike proteins possessed the same distribution of antigens. For each of

the 11 HLAs, the number of nonrandom variants’ predicted binders with the

92

Table 8.1: Anchor Residue positions identified from strong binding peptides
for all investigated HLAs. The amino acids that were restricted from these
positions (when creating evaders) are also listed.

HLA Anchor Residues Restricted Amino Acids

A1 8 Y
A2 1, 8 L, M, I, V
A3 8 K, R
A24 1 Y, F, W,L
A26 8 Y, F, M
A30 0,2, 8 R, K, V
B15 8 Y, F
B35 1, 8 P, A, Y, F, M
B40 1 E
B44 1 E
B51 1 P, A

DR1 0, 3, 5, 8 F, Y, L, G, A, V, I
DR3 3 D
DR4 0 F, Y, I, L
DR7 0, 3 F, Y, I , L, S, T, V
DR8 5, 8 K, R, D, E
DR11 5 K, R
DR12 0, 3 I, L, V
DR13 5 R, K
DR1302 0, 3 I, F, L, N, D
DR15 3 Y, F

93

evasive variants’ predicted binders were compared. Furthermore, the BA.1

Omicron variant was compared to both the nonrandom set and the evasive

set of proteins. The aim of Wilcoxon test was to highlight that the set of

nonrandom variants reported a different distribution of number of antigens

for an individual HLA than the evasive proteins. Simply phrased, would the

evasive variants reported a different number of antigens across the various

HLAs?

Before delving into this query, it had to be noted that the test could only

focus on an individual HLA each time. Therefore 3 different multi-HLA

metrics were utilized to understand the significance across all the HLAs.

The first metric was a simple sum – for each variantall the antigens across

different HLAs were added up to track the total number of antigens. This

metric was useful for visualizing how many antigens were being lost over

different evaders (the larger the total, the more the antigens), but was mostly

determined by the few HLAs that presented many more antigens than others.

So, the cartesian distance between a variant and the original spike was used

as the second metric. Each variant was treated as a data point with each

HLA as a coordinate, and the root of the sum of the squares of its difference

from the original spike was calculated. The larger the cartesian distance,

the more the antigen profile of a variant was different from the original

spike. This metric did not scale down different HLAs with greater antigen

variance, so a third rank metric to merge the multidimensional HLA data

was devised. For each individual HLA, all the spike proteins (from the 110

total nonrandom and evasive variants) were ranked based on the number of

predicted antigens for that HLA in ascending order. Proteins that shared

the same number of binders were assigned the same average rank. With

all 110 proteins being ranked across all 11 HLAs, the various ranks (for

each HLA) for a single protein were added up into a single sum of ranks

score. The Wilcoxon rank-sum test was repeated on all 3 of these metrics

to identify if the antigen profiles of the nonrandom and evasive variants

were distinguishable when considering all HLAs. Again, Omicron BA.1 was

compared to see which set of proteins it matched better with.

he analysis discussed above was repeated for the 100 Class II evader

94

A1 A2 A3 A24 A26 A30 B15 B35 B40 B44 B51
HLA

0

5

10

15

20

25

Nu
m

be
r

Antigens predicted by NetMHCpan-4.1

Variants
Original
B.1.1.7
B.1.351
P.1
B.1.617.2
BA.1
BA.2

Figure 8.1: MHC Class I antigens predicted from the multiple SARS-CoV-2
variant proteins by NetMHCpan-4.1. The x-axis tracks the various common
Class I HLA types while the y-axis reports the number of antigens. The re-
sults for different variants (from the original spike to both omicron variants)
are shown in different colored bins for each HLA.

A1 A2 A3 A24 A26 A30 B15 B35 B40 B44 B51
HLA

0

5

10

15

20

25

Nu
m

be
r

Antigens conserved from the Original Spike Protein

Variants
B.1.1.7
B.1.351
P.1
B.1.617.2
BA.1
BA.2

Figure 8.2: MHC Class I antigens from the original spike that were preserved
in each variant spike according to NetMHCpan-4.1. For each HLA on the
x-axis, the dashed line represents the number of antigens predicted from
the original spike. The different variants are represented by the different
colored bins. Each bin measures how many of the original spike antigens
were conserved in a variant’s predicted set of antigens.

95

proteins across the 10 Class II HLAs as well.

8.2 Results

8.2.1 MHC Class I

NetMHCpan-4.1 Results on Spike Protein Variants

0 25 50 75 100
Evader

4

7

10

13

Nu
m

be
r

A1

0 25 50 75 100
Evader

10

13

16

19

Nu
m

be
r

A2

0 25 50 75 100
Evader

7

11

15

19

Nu
m

be
r

A3

0 25 50 75 100
Evader

12
14
16
18
20

Nu
m

be
r

A24

0 25 50 75 100
Evader

11
14
17
20
23

Nu
m

be
r

A26

0 25 50 75 100
Evader

8
11
14
17

Nu
m

be
r

A30

0 25 50 75 100
Evader

11
13
15
17
19

Nu
m

be
r

B15

0 25 50 75 100
Evader

13

17

21

25

Nu
m

be
r

B35

0 25 50 75 100
Evader

4

6

8

10

Nu
m

be
r

B40

0 25 50 75 100
Evader

2
4
6
8

Nu
m

be
r

B44

0 25 50 75 100
Evader

6
8

10
12
14

Nu
m

be
r

B51

Antigens predicted by NetMHCpan-4.1 for Class I Evaders

Figure 8.3: The number of strong binding peptides from each Class I evader
protein predicted by NetMHCpan-4.1 for all target HLAs. The x-axis repre-
sents all 100 evaders and the y-axis represents the number of antigens. The
evader predictions are shown in the blue line plot, with the mean number
of antigens for all evaders in dotted blue. The number of predicted binders
from the original spike is shown in solid yellow, and the number from Omi-
cron BA.1 is shown in dashed red.

96

For each of the constructed spike protein variants, the number of antigens

predicted by NetMHCpan-4.1 is shown in Figure 8.1. The results for the

vaccines and the newer Omicron subvariants are presented in Table 10.7.

For each of the 11 Class I molecules, these numbers of antigens were mostly

unchanged across the different spike variants (the largest drop was observed

for A26 between the original spike protein and BA.1 – a loss of 3 binders from

the original 22, which represents a 13% drop in number of antigens). That

is, no particular variant exhibited a significant knockout of predicted Class

I antigens compared to the original spike protein’s antigens. In particular,

the two Omicron variants did not exhibit a drop in total number of antigens

for molecules A1, A2, A3, A24, A30, and B44. In some cases (namely for

A26, B35, and B51) the Alpha, Beta, and Gamma variants even gained more

predicted antigens over the original spike protein. This suggested that the

number of antigens derived from the different spike proteins for an individual

Class I HLA’s predictions is relatively consistent. The mutations present in

newer variants, including Omicron, did not lower the number of antigens

presented by the Class I pathway.

The number of original SARS-CoV-2 peptides that were preserved in

the newer variants was also investigated. That is, for each spike variant,

the antigens that were also present in the original spike were counted up.

These results are shown in Figure 8.2 and Table 10.8. The two Omicron

variants show a drop in the number of antigens across all HLAs. This meant

that certain mutations in these variants occured in regions of antigenicity

of the spike protein. However, since the total number of antigens from

these variants was equivalent to the original spike protein’s antigens (see

Figure 8.1), these mutations did not knockout the antigenicity of the spike

protein. Instead, they merely altered the antigen footprint of the spike

protein variants without actually impacting their net antigenicity.

NetMHCpan-4.1 Results on Evaders

The numbers of Class I antigens that were predicted by NetMHCpan-4.1

from the set of a 100 Class I evader proteins are shown in Figure 8.3. For

97

each HLA, the number of antigens counted in both the original spike and

the omicron BA.1 spike are reported. Furthermore, the mean numbers of

antigens from the evaders are also shown. Clearly for all HLAs, the set of

evaders reported a consistently lower number of antigens compared to both

natural spike proteins. These results suggested that the targeted random

mutations used to construct the evaders effectively knocked down the anti-

genicity of the evader spikes across multiple HLAs. Note that since the 36

targeted mutations in an evader protein were distributed to lower antigenic-

ity across all HLAs, no complete knockout of antigens was observed for a

single HLA. Instead, a notable (but not complete) knockdown was observed

for all HLAs. In summary, the mutations sampled contributed to successful

MHC Class I evasion by the evader proteins.

Statistical Significance

The Wilcoxon rank-sum test was used to measure how successful the evaders

were in lowering antigenicity of their spike proteins. The results for the

single HLA tests are shown in Table 10.5. For all 11 HLAs, the set of evader

proteins and the set of nonrandom proteins (natural variants and vaccines)

formed statistically different distributions. This suggested that the evaders

significantly knocked down antigenicity of the spike protein for each HLA.

Furthermore, for each case the omicron variant compared more favorably

with the nonrandom set than the evader set.

The 3 different multi-HLA metrics (as discussed in Section 8.1.4) were

also tested to ensure that the observations for single HLAs applied to the

entire catalogue of MHC Class I molecules. The distribution of these metrics

for all evaders and nonrandom proteins is shown in Figure 8.4. The first plot

shows that the total antigens count, i.e. the sum of antigens from all tested

HLAs, of all the evaders were lower than all nonrandom proteins. The

second plot shows that all evaders had a higher cartesian distance from the

original spike protein’s antigen profile in comparison to the other nonrandom

variants. Lastly, the third plot depicts that all evaders possessed a lower

sum of ranks score than the nonrandom proteins. All three of these metrics

98

Total
Antigens

120

140

160

180

Cartesian
Distance

0
5

10
15
20

Sum of
Ranks

300
500
700
900

1100

Multi-HLA Metrics on Class I Evaders

Natural Vaccine Evader

Figure 8.4: The distribution of the spike protein variants using the total
antigens, cartesian distance, and sum of ranks metrics respectively. All Class
I evaders are shown in blue, all natural SARS-CoV-2 are shown in yellow,
and all vaccine spikes are shown in red. For each metric, the distributions of
the evader proteins and the nonrandom (natural plus vaccine) are notably
disparate.

therefore confirmed that the evaders knocked down antigenicity of the spike

protein across all tested HLAs simultaneously. The Wilcoxon rank-sum test

reported the same conclusion as the single HLA tests, as shown in Table 8.2.

That is, the Class I evaders bore mutations that consistently knocked down

the antigenicity of the spike protein across a whole catalogue of Class I

MHCs. In fact, these evaders achieved these results while possessing the

same number of mutations (36) as Omicron BA.1. Therefore the mutations

seen in Omicron (and all other natural variants discussed in the paper) did

not contribute to evasion of the MHC Class I pathway in one or many HLA

alleles.

8.2.2 MHC Class II

NetMHCiipan-4.0 Results on Spike Protein Variants

The prediction results of NetMHCiipan-4.0 for all variants are shown in

Figure 8.5. Again, the number of predicted strong binders across different

variants was relatively equivalent for each HLA allele (the largest drop was

99

Table 8.2: P-values for the Wilcoxon rank-sum test for multi-HLA metrics
in Class I.

Metric
Nonrandom vs.

Evasive
Omicron vs.
Nonrandom

Omicron vs.
Evasive

Total Antigens 2.0× 10−7 4.2× 10−1 8.6× 10−2

Cartesian Distance 2.0× 10−7 1.5× 10−1 8.6× 10−2

Sum of Ranks 2.0× 10−7 4.2× 10−1 8.6× 10−2

DR1 DR3 DR4 DR7 DR8 DR11 DR12 DR13 DR-
1302

DR15

HLA

0

5

10

15

20

25

Nu
m

be
r

Antigens predicted by NetMHCiipan-4.0

Variants
Original
B.1.1.7
B.1.351
P.1
B.1.617.2
BA.1
BA.2

Figure 8.5: MHC Class II antigens predicted from the multiple SARS-CoV-2
variant proteins by NetMHCiipan-4.0. The x-axis tracks the various com-
mon Class II HLA types while the y-axis reports the number of antigens.
The results for different variants are shown in different colored bins for each
HLA.

100

DR1 DR3 DR4 DR7 DR8 DR11 DR12 DR13 DR-
1302

DR15

HLA

0

5

10

15

20

25

Nu
m

be
r

Antigens conserved from the Original Spike Protein

Variants
B.1.1.7
B.1.351
P.1
B.1.617.2
BA.1
BA.2

Figure 8.6: MHC Class II antigens from the original spike that were pre-
served in each variant spike according to NetMHCpan-4.1. For each HLA on
the x-axis, the dashed line represents the number of antigens predicted from
the original spike. The different variants are represented by the different
colored bins. Each bin measures how many of the original spike antigens
were conserved in a variant’s predicted set of antigens.

observed for DR4 between the original spike protein and B.1.1.7 – a loss

of 5 binders from the original 19, which represents a 26% drop in number

of antigens). For DR1, DR8, DR11, DR12, DR13, and DR1302, the two

Omicron variants did not lead to a loss in number of antigens compared

to the original spike protein. In the case of DR11, which bound the least

number of antigens from the original spike at 2, all natural variants (i.e.

Alpha through both Omicrons) did not yield fewer antigens. Thus similar

to the Class I predictions, the Class II predictions suggested that the muta-

tions occurring in the natural SARS-CoV-2 variants did not lead to loss of

presented antigens compared to the original spike protein.

Again, the antigens from the original spike that were preserved in the

newer variants were also traced. These results are shown in Figure 8.6.

As was observed in the Class I results, the newer variants, in particular

omicron, had fewer of the original antigens in several HLAs (such as DR4,

DR7 and DR15). However, the net antigenicity of each variant was relatively

101

equivalent as seen in Figure 8.5. This meant that the mutations they carried

merely altered the antigens that were presented and did not lower overall

antigenicity.

NetMHCiipan-4.0 Results on Evaders

0 25 50 75 100
Evader

2
5
8

11

Nu
m

be
r

DR1

0 25 50 75 100
Evader

3
6
9

12
15

Nu
m

be
r

DR3

0 25 50 75 100
Evader

5
9

13
17

Nu
m

be
r

DR4

0 25 50 75 100
Evader

5
10
15
20
25

Nu
m

be
r

DR7

0 25 50 75 100
Evader

3
6
9

12

Nu
m

be
r

DR8

0 25 50 75 100
Evader

2
4
6
8

Nu
m

be
r

DR11

0 25 50 75 100
Evader

4
8

12
16

Nu
m

be
r

DR12

0 25 50 75 100
Evader

2
4
6
8

Nu
m

be
r

DR13

0 25 50 75 100
Evader

3
6
9

12

Nu
m

be
r

DR1302

0 25 50 75 100
Evader

10

15

20

25

Nu
m

be
r

DR15

Antigens predicted by NetMHCiipan-4.0 for Class II Evaders

Figure 8.7: The number of strong binding peptides from each Class II evader
protein predicted by NetMHCiipan-4.0 for all target HLAs. The x-axis rep-
resents all 100 evaders and the y-axis represents the number of antigens. The
evader predictions are shown in the blue line plot, with the mean across all
evaders in dotted blue. The number of predicted binders from the original
spike is shown in solid yellow, and the number from Omicron BA.1 is shown
in dashed red.

NetMHCiipan-4.0’s prediction results on our 100 class II evaders are

102

shown in Figure 8.7. Again, the number of predicted antigens is shown

alongside the mean for all evaders and compared with the number of antigens

from the original spike and the Omicron variant. For all HLAs except DR11,

the sets of evaders reported a lower number of antigens than the Omicron

variant. Interestingly, for DR7 and DR13 several of the evaders possessed

more antigens than Omicron (for DR13, this could be because there were

so few antigens already that it was easier to mutate new DR13 antigens

from other HLA mutation sites in the evaders). Nonetheless, these results

pointed out that the 36 mutations applied in most evaders led to a drop in

antigenicity across all HLAs. Some HLAs, such as DR1, DR11, and DR13

even reported a complete knockout of antigens in many evaders.

Statistical Significance

The Wilcoxon rank-sum test results for the single class II HLA tests are

shown in Table 10.6. Similarly to the class I results, the set of class II evader

proteins and the set of nonrandom proteins formed statistically different

distributions. The only outlier here was DR11 – possibly due to the low

number of antigens for DR11 by Omicron. For all the other HLAs, this

suggested that the evaders significantly knocked down antigenicity of the

spike protein. For these cases the omicron variant compared more favorably

with the nonrandom set than the evader set as well.

Again, the 3 different multi-HLA metrics were calculated. The distri-

butions of these metrics for all evaders and nonrandom proteins is shown

in Figure 8.8. The first plot shows that the total antigens count of all the

evaders were lower than all nonrandom proteins. The second plot shows that

all evaders had a higher cartesian distance from the original spike protein’s

antigen profile in comparison to the other nonrandom variants. Lastly, the

third plot depicts that all evaders possessed a lower sum of ranks score than

the nonrandom proteins. Again, all three metrics confirmed the antigenicity

knockdown across a catalogue of Class II MHc molecules by the evaders.

The Wilcoxon rank-sum test on these metrics, as shown in Table 8.3, led to

the same conclusion as the single HLA tests. The Class II evaders, with just

103

Total
Antigens

40
60
80

100
120

Cartesian
Distance

0
5

10
15
20
25

Sum of
Ranks

300
500
700
900

1100

Multi-HLA Metrics on Class II Evaders

Natural Vaccine Evader

Figure 8.8: The distribution of the protein variants using the total anti-
gens, cartesian distance, and sum of ranks metrics respectively. All Class
II evaders are shown in blue, all natural SARS-CoV-2 are shown in yellow,
and all vaccine spikes are shown in red. For each metric, the distributions of
the evader proteins and the nonrandom (natural plus vaccine) are notably
disparate.

Table 8.3: P-values for the Wilcoxon rank-sum test for multi-HLA metrics
in Class II.

Metric
Nonrandom vs.

Evasive
Omicron vs.
Nonrandom

Omicron vs.
Evasive

Total Antigens 2.0× 10−7 1.5× 10−1 8.6× 10−2

Cartesian Distance 2.0× 10−7 1.5× 10−1 8.6× 10−2

Sum of Ranks 2.0× 10−7 1.5× 10−1 8.6× 10−2

36 mutations from the original spike, were able to evade the MHC Class II

pathway in numerous HLAs. Even in the case of DR11, the one outlier, the

evaders were able to knockout antigens in several instances. These results

suggested that the mutations reported in Omicron did not allow for Class

II evasion.

104

8.3 Conclusion

T Cells play a vital role in immunity to viral infections. The MHC antigen

presentation pathway allows for identifying more antigens, in particular pep-

tides from the inside of a viral protein, than antibodies allow. Furthermore,

T Cell levels have also been noted to last longer than antibodies levels for

COVID-19 vaccine immunization [?]. As previous studies and our analy-

sis have shown, T Cell immunity is particularly resilient to the numerous

variants of concern for SARS-CoV-2 [39]. In particular, the two Omicron

variants (BA.1 and BA.2) generated equivalent numbers of antigens in com-

parison to the original Wuhan spike protein according to MHC Class I and

Class II antigen prediction models. Despite many peptide antigens from the

original spike being lost in the newer variants, the mutations in these vari-

ants did not decrease the number of antigens across several common HLA

types.

These observations were further corroborated by deliberately knocking

out T Cell antigens out of the spike protein through targeted mutations. The

engineered evasive spike protein variants, despite being limited to the same

number of mutations as Omicron BA.1, successfully lowered the number of

antigens across numerous highly frequent HLAs. These results suggested

that the mutations in the Omicron spike variant were not selected for T

Cell immunity evasion, and were probably more impactful in spike protein

stability or ACE2 receptor binding affinity. This explained why despite the

Omicron variant being capable of neutralizing several pharmaceutical anti-

bodies and infecting vaccinated patients, it did not evade T Cell immunity

obtained by the common COVID-19 vaccines. Lastly, the protocol for en-

gineering evader proteins devised in this study opens up the possibility of

using experimental control in silica. This will be beneficial for quickly un-

derstanding the evasion of T Cell immunity by future SARS-CoV-2 variants.

105

Chapter 9

Discussion

Prediction of the binding of peptides to MHC Class I and II proteins is

important because it presents insight into how the human immune system

recognizes and responds to diseases such as COVID-19 and cancer. In the

latter study, simple machine learning tools such as NetMHCpan were capable

of explaining why T cell immune responses to SARS-CoV-2 were preserved.

The drawbacks of machine learning tools, including the lack of interpretable

results, can be mitigated with stronger training practices such as accounting

for the complex biochemistry underlying problems such as peptide-MHC

binding. Such improvements can only be achieved in bioinformatics when

knowledge from both computer science and biology are merged.

The gold standard of peptide-MHC modelling is, of course, structural

data. However, the cost and infrastructure needed for generating such ex-

perimental data is a limiting factor. This, alongside the explosion of data

gathered from simpler, more accessible experiments such as binding affin-

ity assays and mass spectrometry, has carved a niche for machine learning

tools in bioinformatics. Though tools such as PANDORA [52] might provide

more reliable predictions through their efficient energy minimization simu-

lations, the future lies in hybrid technologies that offer the same accuracy

but staggering speed of machine learning.

106

Bibliography

[1] Adleman, L. M. Molecular computation of solutions to combinato-

rial problems. Science (1994), 1021–1024.

[2] Alvarez, B., Reynisson, B., Barra, C., Buus, S., Ter-

nette, N., Connelley, T., Andreatta, M., and Nielsen, M.

NNAlign MA; MHC peptidome deconvolution for accurate MHC bind-

ing motif characterization and improved T-cell epitope predictions.

Molecular & Cellular Proteomics 18, 12 (2019), 2459–2477.

[3] Andreatta, M., and Nielsen, M. Gapped sequence alignment

using artificial neural networks: application to the MHC class I system.

Bioinformatics 32, 4 (2016), 511–517.

[4] Athreya, N., Milenkovic, O., and Leburton, J.-P. Detection

and mapping of dsDNA breaks using graphene nanopore transistor.

Biophysical Journal 116, 3 (2019), 292a.

[5] Bassani-Sternberg, M., Chong, C., Guillaume, P., Solleder,

M., Pak, H., Gannon, P. O., Kandalaft, L. E., Coukos, G.,

and Gfeller, D. Deciphering HLA-I motifs across HLA peptidomes

improves neo-antigen predictions and identifies allostery regulating

HLA specificity. PLoS computational biology 13, 8 (2017), e1005725.

[6] Bernstein, S. N. Démonstration du théorème de Weierstrass fondée

sur le calcul des probabilités. Communications of the Kharkov Math-

ematical Society 13 (1912), 1–2.

107

[7] Ceze, L., Nivala, J., and Strauss, K. Molecular digital data

storage using DNA. Nature Reviews Genetics 20, 8 (Aug 2019), 456–

466.

[8] Chen, T., Solanki, A., and Riedel, M. Parallel pairwise opera-

tions on data stored in DNA: Sorting, shifting, and searching. In 27th

International Conference on DNA Computing and Molecular Program-

ming (DNA 27) (2021), Schloss Dagstuhl-Leibniz-Zentrum für Infor-

matik.

[9] Choi, S. J., Kim, D.-U., Noh, J. Y., Kim, S., Park, S.-H.,

Jeong, H. W., and Shin, E.-C. T cell epitopes in SARS-CoV-2

proteins are substantially conserved in the omicron variant. Cellular

& molecular immunology 19, 3 (2022), 447–448.

[10] Chowell, D., Krishna, S., Becker, P. D., Cocita, C., Shu,

J., Tan, X., Greenberg, P. D., Klavinskis, L. S., Blattman,

J. N., and Anderson, K. S. TCR contact residue hydrophobicity

is a hallmark of immunogenic CD8+ T cell epitopes. Proceedings of

the National Academy of Sciences 112, 14 (2015), E1754–E1762.

[11] Church, G., Gao, Y., and Kosuri, S. Next-generation digital

information storage in DNA. Science (New York, N.Y.) 337 (08 2012),

1628.

[12] Consortium, U. UniProt: a worldwide hub of protein knowledge.

Nucleic acids research 47, D1 (2019), D506–D515.

[13] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.

Introduction to Algorithms, Third Edition, 3rd ed. The MIT Press,

2009.

[14] Cornette, J. L., Cease, K. B., Margalit, H., Spouge, J. L.,

Berzofsky, J. A., and DeLisi, C. Hydrophobicity scales and com-

putational techniques for detecting amphipathic structures in proteins.

Journal of molecular biology 195, 3 (1987), 659–685.

108

[15] Cox, R. J., and Brokstad, K. A. Not just antibodies: B cells and

T cells mediate immunity to COVID-19. Nature Reviews Immunology

20, 10 (2020), 581–582.

[16] Doytchinova, I. A., and Flower, D. R. A comparative molecular

similarity index analysis (comsia) study identifies an hla-a2 binding

supermotif. Journal of computer-aided molecular design 16, 8 (2002),

535–544.

[17] Fan, Y., Li, X., Zhang, L., Wan, S., Zhang, L., and Zhou,

F. SARS-CoV-2 omicron variant: recent progress and future perspec-

tives. Signal Transduction and Targeted Therapy 7, 1 (2022), 1–11.

[18] Fitzgerald, P. R., and Paegel, B. M. Dna-encoded chemistry:

drug discovery from a few good reactions. Chemical reviews 121, 12

(2020), 7155–7177.

[19] Flynn, M. J. Some computer organizations and their effectiveness.

IEEE Transactions on Computers C-21, 9 (1972), 948–960.

[20] Fulekar, M. Bioinformatics in Life and Environmental Sciences.

Springer, 2009.

[21] Gaines, B. Stochastic computing systems. In Advances in Informa-

tion Systems Science, vol. 2. Plenum Press, 1969, ch. 2, pp. 37–172.

[22] Gangavarapu, K., Latif, A. A., Mullen, J. L., Alkuzweny,

M., Hufbauer, E., Tsueng, G., Haag, E., Zeller, M., Aceves,

C. M., Zaiets, K., et al. Outbreak.info genomic reports: scalable

and dynamic surveillance of SARS-CoV-2 variants and mutations. Re-

search square (2022).

[23] Gao, Y., Cai, C., Grifoni, A., Müller, T. R., Niessl, J.,

Olofsson, A., Humbert, M., Hansson, L., Österborg, A.,

Bergman, P., et al. Ancestral SARS-CoV-2-specific T cells cross-

recognize the omicron variant. Nature medicine 28, 3 (2022), 472–476.

109

[24] Gerdol, M., Dishnica, K., and Giorgetti, A. Emergence of a

recurrent insertion in the N-terminal domain of the SARS-CoV-2 spike

glycoprotein. Virus research 310 (2022), 198674.

[25] GeurtsvanKessel, C. H., Geers, D., Schmitz, K. S., Myky-

tyn, A. Z., Lamers, M. M., Bogers, S., Scherbeijn, S., Gom-

mers, L., Sablerolles, R. S., Nieuwkoop, N. N., et al. Diver-

gent SARS-CoV-2 omicron–reactive T and B cell responses in COVID-

19 vaccine recipients. Science immunology 7, 69 (2022), eabo2202.

[26] Gourraud, P.-A., Khankhanian, P., Cereb, N., Yang, S. Y.,

Feolo, M., Maiers, M., D. Rioux, J., Hauser, S., and Oksen-

berg, J. HLA diversity in the 1000 genomes dataset. PloS one 9, 7

(2014), e97282.

[27] Grifoni, A., Weiskopf, D., Ramirez, S. I., Mateus, J., Dan,

J. M., Moderbacher, C. R., Rawlings, S. A., Sutherland, A.,

Premkumar, L., Jadi, R. S., et al. Targets of T cell responses

to SARS-CoV-2 coronavirus in humans with COVID-19 disease and

unexposed individuals. Cell 181, 7 (2020), 1489–1501.

[28] Grover, W. H., and Mathies, R. A. An integrated microfluidic

processor for single nucleotide polymorphism-based dna computing.

Lab on a Chip 5, 10 (2005), 1033–1040.

[29] Haber, C., and Wirtz, D. Magnetic tweezers for DNA microma-

nipulation. Review of Scientific instruments 71, 12 (2000), 4561–4570.

[30] Hodcroft, E. B. CoVariants: SARS-CoV-2 mutations and variants

of interest, 2021.

[31] Hoffmann, M., Krüger, N., Schulz, S., Cossmann, A., Rocha,

C., Kempf, A., Nehlmeier, I., Graichen, L., Moldenhauer,

A.-S., Winkler, M. S., et al. The omicron variant is highly resis-

tant against antibody-mediated neutralization: Implications for con-

trol of the COVID-19 pandemic. Cell 185, 3 (2022), 447–456.

110

[32] Hopp, T. P., and Woods, K. R. A computer program for predicting

protein antigenic determinants. Molecular immunology 20, 4 (1983),

483–489.

[33] Horn, F., and Jackson, R. General mass action kinetics. Archive

for rational mechanics and analysis 47, 2 (1972), 81–116.

[34] Horner, D. S., Pavesi, G., Castrignano, T., De Meo, P. D.,

Liuni, S., Sammeth, M., Picardi, E., and Pesole, G. Bioin-

formatics approaches for genomics and post genomics applications of

next-generation sequencing. Briefings in bioinformatics 11, 2 (2010),

181–197.

[35] Jardetzky, T., Lane, W., Robinson, R., Madden, D., and

Wiley, D. Identification of self peptides bound to purified hla-b27.

Nature 353, 6342 (1991), 326–329.

[36] Jenson, D., and Riedel, M. A deterministic approach to stochas-

tic computation. In 2016 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD) (2016), pp. 1–8.

[37] Jia, X., Wang, Y., Huang, Z., Zhang, Y., Yang, J., Qu, Y.,

Cockburn, B., Han, J., and ZHAO, W. Spintronic Solutions for

Stochastic Computing. 02 2019, pp. 165–183.

[38] Kashte, S., Gulbake, A., El-Amin III, S. F., and Gupta, A.

Covid-19 vaccines: rapid development, implications, challenges and

future prospects. Human cell 34, 3 (2021), 711–733.

[39] Keeton, R., Tincho, M. B., Ngomti, A., Baguma, R., Benede,

N., Suzuki, A., Khan, K., Cele, S., Bernstein, M., Karim, F.,

et al. SARS-CoV-2 spike T cell responses induced upon vaccination

or infection remain robust against omicron. MedRxiv (2021).

[40] Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell,

W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., and

111

Webb, C. O. Picante: R tools for integrating phylogenies and ecology.

Bioinformatics 26, 11 (2010), 1463–1464.

[41] Khare, S., Gurry, C., Freitas, L., Schultz, M. B., Bach,

G., Diallo, A., Akite, N., Ho, J., Lee, R. T., Yeo, W., et al.

GISAID’s role in pandemic response. China CDC Weekly 3, 49 (2021),

1049.

[42] Krug, J., and Spohn, H. Universality classes for deterministic sur-

face growth. Physical Review A 38, 8 (1988), 4271.

[43] Kyte, J., and Doolittle, R. F. A simple method for displaying

the hydropathic character of a protein. Journal of molecular biology

157, 1 (1982), 105–132.

[44] Li, L., Jiang, W., and Lu, Y. A modified gibson assembly method

for cloning large DNA fragments with high gc contents. Synthetic

Metabolic Pathways: Methods and Protocols (2018), 203–209.

[45] Li, W. Power spectra of regular languages and cellular automata.

Complex Systems 1, 1 (1987), 107–130.

[46] Liou, J.-J., Cheng, K.-T., Kundu, S., and Krstic, A. Fast sta-

tistical timing analysis by probabilistic event propagation. In Design

Automation Conference (2001), pp. 661–666.

[47] Liu, K., Pan, C., Kuhn, A., Nievergelt, A. P., Fantner, G. E.,

Milenkovic, O., and Radenovic, A. Detecting topological varia-

tions of DNA at single-molecule level. Nature communications 10, 1

(2019), 1–9.

[48] Liu, L., Iketani, S., Guo, Y., Chan, J. F.-W., Wang, M., Liu,

L., Luo, Y., Chu, H., Huang, Y., Nair, M. S., et al. Striking

antibody evasion manifested by the omicron variant of SARS-CoV-2.

Nature 602, 7898 (2022), 676–681.

112

[49] Luksza, M., Riaz, N., Makarov, V., Balachandran, V. P.,

Hellmann, M. D., Solovyov, A., Rizvi, N. A., Merghoub, T.,

Levine, A. J., Chan, T. A., et al. A neoantigen fitness model pre-

dicts tumour response to checkpoint blockade immunotherapy. Nature

551, 7681 (2017), 517–520.

[50] Maiers, M., Gragert, L., and Klitz, W. High-resolution HLA

alleles and haplotypes in the united states population. Human im-

munology 68, 9 (2007), 779–788.

[51] Marculescu, R., Marculescu, D., and Pedram, M. Logic level

power estimation considering spatiotemporal correlations. In Interna-

tional Conference on Computer-Aided Design (1994), pp. 294–299.

[52] Marzella, D. F., Parizi, F. M., Van Tilborg, D., Renaud,

N., Sybrandi, D., Buzatu, R., Rademaker, D. T., AC‘t Hoen,

P., and Xue, L. C. Pandora: a fast, anchor-restrained modelling

protocol for peptide: Mhc complexes. Frontiers in Immunology 13

(2022).

[53] McGranahan, N., Rosenthal, R., Hiley, C. T., Rowan, A. J.,

Watkins, T. B., Wilson, G. A., Birkbak, N. J., Veeriah, S.,

Van Loo, P., Herrero, J., et al. Allele-specific HLA loss and

immune escape in lung cancer evolution. Cell 171, 6 (2017), 1259–

1271.

[54] Mei, S., Li, F., Leier, A., Marquez-Lago, T. T., Giam, K.,

Croft, N. P., Akutsu, T., Smith, A. I., Li, J., Rossjohn, J.,

et al. A comprehensive review and performance evaluation of bioin-

formatics tools for HLA class I peptide-binding prediction. Briefings

in bioinformatics 21, 4 (2020), 1119–1135.

[55] Miller, M., Sheehan, P., Edelstein, R., Tamanaha, C.,

Zhong, L., Bounnak, S., Whitman, L., and Colton, R. A

DNA array sensor utilizing magnetic microbeads and magnetoelec-

113

tronic detection. Journal of Magnetism and Magnetic Materials 225,

1-2 (2001), 138–144.

[56] Mohammadi-Kambs, M., Hölz, K., Somoza, M. M., and Ott,

A. Hamming distance as a concept in DNA molecular recognition.

ACS omega 2, 4 (2017), 1302–1308.

[57] Monera, O. D., Sereda, T. J., Zhou, N. E., Kay, C. M., and

Hodges, R. S. Relationship of sidechain hydrophobicity and α-helical

propensity on the stability of the single-stranded amphipathic α-helix.

Journal of peptide science: an official publication of the European Pep-

tide Society 1, 5 (1995), 319–329.

[58] Moon, C. P., and Fleming, K. G. Side-chain hydrophobicity scale

derived from transmembrane protein folding into lipid bilayers. Pro-

ceedings of the National Academy of Sciences 108, 25 (2011), 10174–

10177.

[59] Najafi, M. H., Jenson, D., Lilja, D. J., and Riedel, M. D.

Performing stochastic computation deterministically. IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems 27, 12 (2019),

2925–2938.

[60] Najafi, M. H., and Lilja, D. J. High-speed stochastic circuits

using synchronous analog pulses. In ASP-DAC 2017, 22nd Asia and

South Pacific Design Automation Conference (2017).

[61] Naranbhai, V., Nathan, A., Kaseke, C., Berrios, C., Kha-

tri, A., Choi, S., Getz, M. A., Tano-Menka, R., Ofoman, O.,

Gayton, A., et al. T cell reactivity to the SARS-CoV-2 omicron

variant is preserved in most but not all individuals. Cell 185, 6 (2022),

1041–1051.

[62] Ndwandwe, D., and Wiysonge, C. S. Covid-19 vaccines. Current

opinion in immunology 71 (2021), 111–116.

114

[63] Neefjes, J., Jongsma, M. L., Paul, P., and Bakke, O. To-

wards a systems understanding of mhc class i and mhc class ii antigen

presentation. Nature reviews immunology 11, 12 (2011), 823–836.

[64] Nielsen, M., Andreatta, M., Peters, B., and Buus, S. Im-

munoinformatics: predicting peptide–MHC binding. Annual Review

of Biomedical Data Science 3 (2020), 191–215.

[65] Okada, P., Phuygun, S., Thanadachakul, T., Parnmen, S.,

Wongboot, W., Waicharoen, S., Wacharapluesadee, S., Ut-

tayamakul, S., Vachiraphan, A., Chittaganpitch, M., et al.

Early transmission patterns of coronavirus disease 2019 (COVID-19)

in travellers from Wuhan to Thailand, January 2020. Eurosurveillance

25, 8 (2020), 2000097.

[66] Organization, W. H., et al. COVID-19 weekly epidemiological

update, edition 110, 21 september 2022.

[67] Pan, L., Wang, Z., Li, Y., Xu, F., Zhang, Q., and Zhang, C.

Nicking enzyme-controlled toehold regulation for DNA logic circuits.

Nanoscale 9, 46 (2017), 18223–18228.

[68] Parhi, M., Riedel, M. D., and Parhi, K. K. Effect of bit-level

correlation in stochastic computing. In 2015 IEEE International Con-

ference on Digital Signal Processing (DSP) (2015), IEEE, pp. 463–467.

[69] Parker, K. P., and McCluskey, E. J. Probabilistic treatment

of general combinational networks. IEEE Transactions on Computers

24, 6 (1975), 668–670.

[70] Paul, S., Grifoni, A., Peters, B., and Sette, A. Major his-

tocompatibility complex binding, eluted ligands, and immunogenic-

ity: benchmark testing and predictions. Frontiers in immunology 10

(2020), 3151.

[71] Perumal, A. S., Wang, Z., Ippoliti, G., van Delft, F. C.,

Kari, L., and Nicolau, D. V. As good as it gets: a scaling com-

115

parison of dna computing, network biocomputing, and electronic com-

puting approaches to an np-complete problem. New Journal of Physics

23, 12 (2021), 125001.

[72] Powers, D. M. Evaluation: from precision, recall and f-measure

to roc, informedness, markedness and correlation. arXiv preprint

arXiv:2010.16061 (2020).

[73] Qian, W., Li, X., Riedel, M. D., Bazargan, K., and Lilja,

D. J. An architecture for fault-tolerant computation with stochastic

logic. IEEE Transactions on Computers 60, 1 (2011), 93–105.

[74] Qian, W., and Riedel, M. D. The synthesis of robust polynomial

arithmetic with stochastic logic. In DAC’08 (2008), pp. 648–653.

[75] Qian, W., Riedel, M. D., and Rosenberg, I. Uniform approxima-

tion and Bernstein polynomials with coefficients in the unit interval.

European Journal of Combinatorics 32, 3 (2011), 448–463.

[76] Qian, W., Riedel, M. D., Zhou, H., and Bruck, J. Trans-

forming probabilities with combinational logic. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 30, 9

(2011), 1279–1292.

[77] Radding, C. M., Beattie, K. L., Holloman, W. K., and Wie-

gand, R. C. Uptake of homologous single-stranded fragments by

superhelical dna: Iv. branch migration. Journal of molecular biology

116, 4 (1977), 825–839.

[78] Reynisson, B., Alvarez, B., Paul, S., Peters, B., and Nielsen,

M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions

of MHC antigen presentation by concurrent motif deconvolution and

integration of MS MHC eluted ligand data. Nucleic acids research 48,

W1 (2020), W449–W454.

[79] Richmond, T. J., and Davey, C. A. The structure of DNA in the

nucleosome core. Nature 423, 6936 (2003), 145–150.

116

[80] Rigden, D. J., and Rigden, D. J. From protein structure to func-

tion with bioinformatics. Springer, 2009.

[81] Sahin, U., Muik, A., Derhovanessian, E., Vogler, I., Kranz,

L. M., Vormehr, M., Baum, A., Pascal, K., Quandt, J., Mau-

rus, D., et al. COVID-19 vaccine BNT162b1 elicits human antibody

and TH1 T cell responses. Nature 586, 7830 (2020), 594–599.

[82] Salehi, S. A., Liu, X., Riedel, M., and Parhi, K. Comput-

ing mathematical functions using DNA via fractional coding. Nature

Scientific Reports 8, 8312 (2018).

[83] Salehi, S. A., Riedel, M., and Parhi, K. Chemical reaction net-

works for computing polynomials. ACS Synthetic Biology 6, 1 (2017).

[84] Savir, J., Ditlow, G., and Bardell, P. H. Random pattern

testability. IEEE Transactions on Computers 33, 1 (1984), 79–90.

[85] Schlecht, U., Mok, J., Dallett, C., and Berka, J. ConcatSeq:

A method for increasing throughput of single molecule sequencing by

concatenating short DNA fragments. Scientific reports 7, 1 (2017),

1–10.

[86] Shanbhag, N. R., Abdallah, R. A., Kumar, R., and Jones,

D. L. Stochastic computation. In Proceedings of the 47th Design

Automation Conference (2010), pp. 859–864.

[87] Shen, B., Zhang, W., Zhang, J., Zhou, J., Wang, J., Chen, L.,

Wang, L., Hodgkins, A., Iyer, V., Huang, X., et al. Efficient

genome modification by CRISPR-cas9 nickase with minimal off-target

effects. Nature methods 11, 4 (2014), 399–402.

[88] Shipman, S. L., Nivala, J., Macklis, J. D., and Church, G. M.

Crispr–cas encoding of a digital movie into the genomes of a population

of living bacteria. Nature 547, 7663 (2017), 345–349.

117

[89] Solanki, A., Chen, T., and Riedel, M. Cascadable stochastic

logic for dna storage. In 2021 International Conference on Visual

Communications and Image Processing (VCIP) (2021), IEEE, pp. 1–

5.

[90] Solanki, A., Riedel, M., Cornette, J., Udell, J., Koratkar,

I., and Vasmatzis, G. The role of hydrophobicity in peptide-MHC

binding. In International Symposium on Mathematical and Computa-

tional Oncology (2021), Springer, pp. 24–37.

[91] Soloveichik, D., Seelig, G., and Winfree, E. DNA as a uni-

versal substrate for chemical kinetics. Proceedings of the National

Academy of Sciences 107, 12 (2010), 5393–5398.

[92] Srinivas, N., Ouldridge, T. E., Šulc, P., Schaeffer, J. M.,

Yurke, B., Louis, A. A., Doye, J. P., and Winfree, E. On the

biophysics and kinetics of toehold-mediated DNA strand displacement.

Nucleic acids research 41, 22 (2013), 10641–10658.

[93] Sun, L., and Åkerman, B. Characterization of self-assembled

DNA concatemers from synthetic oligonucleotides. Computational and

structural biotechnology journal 11, 18 (2014), 66–72.

[94] Tabatabaei, S. K., Wang, B., Athreya, N. B. M., Enghiad,

B., Hernandez, A. G., Fields, C. J., Leburton, J.-P., Solove-

ichik, D., Zhao, H., and Milenkovic, O. DNA punch cards for

storing data on native DNA sequences via enzymatic nicking. Nature

communications 11, 1 (2020), 1–10.

[95] Tao, K., Tzou, P. L., Kosakovsky Pond, S. L., Ioannidis,

J. P., and Shafer, R. W. Susceptibility of SARS-CoV-2 omicron

variants to therapeutic monoclonal antibodies: systematic review and

meta-analysis. Microbiology Spectrum 10, 4 (2022), e00926–22.

[96] Tarke, A., Sidney, J., Methot, N., Yu, E., Zhang, Y., Dan, J.,

Goodwin, B., Rubiro, P., Sutherland, A., Wang, E., et al.

118

Impact of sars-cov-2 variants on the total cd4 (+) and cd8 (+) t cell

reactivity in infected or vaccinated individuals. cell rep med. 2021; 2

(7): 100355, 2021.

[97] Thachuk, C., Winfree, E., and Soloveichik, D. Leakless DNA

strand displacement systems. In International Workshop on DNA-

Based Computers (2015), Springer, pp. 133–153.

[98] Tsueng, G., Mullen, J., Alkuzweny, M., Cano, M., Benjamin,

H. R., Emily, O., Curators, L., Alaa, A., Zhou, X., Qian,

Z., et al. Outbreak. info research library: A standardized, search-

able platform to discover and explore COVID-19 resources and data.

BioRxiv (2022).

[99] Vasmatzis, G., Zhang, C., Cornette, J. L., and DeLisi, C.

Computational determination of side chain specificity for pockets in

class I MHC molecules. Molecular immunology 33, 16 (1996), 1231–

1239.

[100] Venkatesan, R., Venkataramani, S., Fong, X., Roy, K., and

Raghunathan, A. Spintastic: Spin-based stochastic logic for energy-

efficient computing. In 2015 Design, Automation & Test in Europe

Conference & Exhibition (DATE) (2015), IEEE, pp. 1575–1578.

[101] Von Neumann, J. Probabilistic logics and the synthesis of reliable

organisms from unreliable components. Automata studies 34 (1956),

43–98.

[102] Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A.,

McGuire, A. T., and Veesler, D. Structure, function, and anti-

genicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 2 (2020),

281–292.

[103] Wang, B., Chalk, C., and Soloveichik, D. SIMD——DNA:

Single instruction, multiple data computation with DNA strand dis-

placement cascades. In DNA Computing and Molecular Programming

119

(Cham, 2019), C. Thachuk and Y. Liu, Eds., Springer International

Publishing, pp. 219–235.

[104] Wang, Z., Gerstein, M., and Snyder, M. Rna-seq: a revolu-

tionary tool for transcriptomics. Nature reviews genetics 10, 1 (2009),

57–63.

[105] Watson, J. D., and Crick, F. H. The structure of DNA. In Cold

Spring Harbor symposia on quantitative biology (1953), vol. 18, Cold

Spring Harbor Laboratory Press, pp. 123–131.

[106] Wolfram, S. Mathematica: a system for doing mathematics by com-

puter. Addison Wesley Longman Publishing Co., Inc., 1991.

[107] Xiao, G., Lu, M., Qin, L., and Lai, X. New field of cryptography:

Dna cryptography. Chinese Science Bulletin 51 (2006), 1413–1420.

[108] Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C.,

and Neumann, J. L. A DNA-fuelled molecular machine made of

DNA. Nature 406, 6796 (2000), 605–608.

[109] Zhang, C., Vasmatzis, G., Cornette, J. L., and DeLisi, C.

Determination of atomic desolvation energies from the structures of

crystallized proteins. Journal of molecular biology 267, 3 (1997), 707–

726.

[110] Zhang, D. Y., and Winfree, E. Control of DNA strand displace-

ment kinetics using toehold exchange. Journal of the American Chem-

ical Society 131, 47 (2009), 17303–17314.

[111] Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L.,

Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., et al.

A pneumonia outbreak associated with a new coronavirus of probable

bat origin. nature 579, 7798 (2020), 270–273.

[112] Zuckermann, M., Hlevnjak, M., Yazdanparast, H., Zapatka,

M., Jones, D. T., Lichter, P., and Gronych, J. A novel cloning

120

strategy for one-step assembly of multiplex crispr vectors. Scientific

reports 8, 1 (2018), 1–8.

121

Chapter 10

Appendix

10.1 Supplementary Material for Chapter 3

10.1.1 Instructions for Converting to Another Scheme

Instruction 1 identifies and distinguishes the two different bits. In instruction

1, strand (S1 1 2 3) is issued. In bit 0, the strand will displace the short

strand over domains 2 and 3 but does not edit bit 1 since domain 1 is the

only open domain for binding. In instruction 2, all domains in bit 1 are

replaced by a single strand covering all domains with identifier Sa. Then in

instruction 3, the strand S1 is detached, so domains 1, 2, and 3 on bit 0 are

exposed. In Instruction 4, all domains in bit 0 are replaced by a single strand

covering all the domains with the identifier Sb. Then any encoding scheme

with 7 domains in 1 cell could be written to the bits by first detaching strand

Sa and writing the encoding for bit 1, then detaching strand Sb and writing

the encoding for bit 0.

10.1.2 Detailed Implementation of Each Step for Parallel

Sorting

Here is an instruction set for parallel binary bubble sort with the previously

defined encoding scheme. It is implemented with 12 individual operations.

Details of the design are shown in Figure 10.2.

122

S1 1 2 3

Bit 0 Bit 1

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 1: Distinguish 0, 1

Ins 2: Replace Bit 1 with Strand Sa

S1

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Sa 1 2 3 4 5 6 7 Sa 1 2 3 4 5 6 7

Ins 3: Detach S1

S1

1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1* 1* 2* 3* S1* 1* 2* 3*

Sa

Ins 4: Replace Bit 0 with Strand Sb

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Sa

Sb 1 2 3 4 5 6 7 Sb 1 2 3 4 5 6 7

Result

1 2 3 4 5 6 7 1 2 3 4 5 6 7

SaSb

Figure 10.1: Current coding scheme can be converted to another coding
scheme

123

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 6 7 1 2 3S1 6 7 1 2 3S1 6 7 1 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1S1

6* 7* 1* 2* 3* 6* 7* 1* 2* 3*6* 7* 1* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1

6 72 3 6 72 3 6 72 3 6 72 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1

S1* 6* 7* 1* 2* 3*S1* 6* 7* 1* 2* 3*S1* 6* 7* 1* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2 2 3 S2 2 3 S2 2 3 S2 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2

S3 2 3 4 5 6 7 S3 2 3 4 5 6 7S3 2 3 4 5 6 7 S3 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2 S3

S3* 2* 3* 4* 5* 6* 7* S3* 2* 3* 4* 5* 6* 7*S3* 2* 3* 4* 5* 6* 7* S3* 2* 3* 4* 5* 6* 7*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

1 2 3 4 5 6 7

S2

S2* 2* 3*S2* 2* 3*S2* 2* 3*S2* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3 2 3 4 5 6 7S3 2 3 4 5 6 7S3 2 3 4 5 6 7S3 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3

S3* 2* 3* 4* 5* 6* 7* S3* 2* 3* 4* 5* 6* 7*S3* 2* 3* 4* 5* 6* 7* S3* 2* 3* 4* 5* 6* 7*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

2 3 4 5 6 72 3 4 5 6 72 3 4 5 6 72 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 1: Identify the pair (1, 0)

Ins 2: Detach Strand on other pairs

Ins 3: Seals off region exposed previously

Ins 4: Expose Toehold on pair (1, 0)

Ins 5: Temporarily cover toehold on bit 0

Ins 6: Identify bit 1

Ins 7: Expose all domain in bit 1 identified earlier

Ins 8: Rewrite 0 to exposed bit

Ins 9: Remove the Protection Strand

Ins 10: Identify Bit 0

Ins 11: Expose all domain in bit 0 identified earlier

Ins 12: Rewrite Bit 0 to exposed bit

Result

Original

Figure 10.2: Instructions for Parallel Sorting

124

The 12 instructions fall into 2 stages. The first stage is “identifying.”

During instructions 1-4, all the pairs (0, 1) are identified, and in both bit

0 and 1, a toehold is exposed for writing new data. More specifically, In-

structions 1 and 2 identify the combination of (1, 0). In instruction 1, (S1

6 7 1 2 3) is issued to each pair of bits. In pair (0, 0), S1 and domains 6, 7

are exposed. In pair (0, 1), since the only open domain is 1, it will not form

a strong enough bond. In pair (1, 0), only S1 is exposed. In pair (1, 1), S1

and domains 2, 3 are exposed. In instruction 2, strand (6* 7* 1* 2* 3*) is

issued to each pair of bits. Since pair (1, 0) is the only pair that does not

have exposure 5 or 2, this strand will detach strand S1 in each pair except

pair (1, 0). After Instruction 2, the toehold between a bit value of 1 and

a bit value of 0 in the pair (1, 0) is replaced by a strand with an identifier

of S1. Instruction 3 seals off the domain exposed in the other pairs during

Instruction 1 and 2 so that it will not be edited later. In instruction 4, the

strand with identifier S1 is detached, exposing domains 6 and 7 in the left

cell containing bit 1, or domains 2 and 3, in the right cell containing bit 0.

After this instruction, toeholds are exposed only in the 1s and 0s in pair

(1, 0). Other bits are not affected.

The second stage is flipping the bits in the pair (1, 0). In instruction 5,

in the case of a bit value of 0, domains 2 and 3 are temporarily covered by

a strand with identifier S2 so that the writing process will not interfere with

the identified 0s at this moment. In instruction 6, a bit value of 1 is replaced

by a strand with identifier S3 via the open toehold at domains 6 and 7. The

strand is then detached in instruction 8, exposing all the domains of that

bit. Then, the bit value of 0 is written to the location of a bit value of 1

in instruction 8. In instruction 9, the temporary cover for a bit 0 is lifted.

Then, in instructions 10 through 12, a bit 1 is written to the location of a bit

value of 0 using the same scheme as instructions 6 through 8. Throughout

the process, only bits identified in the first stage with toeholds exposed are

affected.

125

10.1.3 Detailed Implementation of Each Step for Parallel Ex-

clusive OR

The instructions are shown below, alongside an example of the Exclusive

OR algorithm for sequence 11101 to 00000 in two iterations.

In each XOR iteration, the f(1,1) = (0,0) rewriting must be performed on

non-overlapping pairs of bits. In the first iteration, the pairing is as follows:

cell 0 with cell 1, cell 2 with cell 3, and so on. This means that all instruction

strands only operate on these pairs. For this algorithm specifically, this can

be achieved by using different sequences for the even versus the odd cells on

the strand. In instruction 1, the strand (S1 6 7 1 2 3) is issued to identify

(1,0) pairs. In instruction 2, strand (6* 7* 1* 2* 3*) is issued to detach any

S1 strands with exposed domains of 6 and 7, or 2 and 3. In instruction 3,

the strands (S2 6 7 1) and (S3 1 2 3) are issued to identify (1,1) and (0,0)

pairs respectively. Finally, (0,1) pairs are identified with strand (S4 4 5 6

7 1) for instruction 4. Now that all 1 domain toeholds are covered, strand

(S2* 6* 7* 1*) is issued in instruction 5 to detach all S2 and expose (1,1)

pairs. In instruction 6, strand (S5 2 3 4 5 6 7 1 2 3 4 5 6 7) is issued to cover

both cells in (1,1) pairs. Both S5 and S4 are now detached using strands

(S5* 2* 3* 4* 5* 6* 7* 1* 2* 3* 4* 5* 6* 7*) and (S4* 4* 5* 6* 7*) in

instruction 7. Then in instruction 8, all exposed cells are written to 0 using

strands (2 3) and (4 5 6 7). In instruction 9, all S1 and S3 are detached using

(S1* 6* 7* 1* 2* 3*) and (S3* 1* 2* 3*). By covering all exposed domains

using strands (2 3) and (6 7) in instruction 10, all (1,1) pairs identified in

the register are rewritten to (0,0) pairs. At this point, instructions 1-11 of

the parallel sorting in Section 10.1.2 are implemented to write all (1,0) pairs

to (0,1). For these sorting steps, the cell pairing can be overlapping. The

result of this whole iteration of the XOR algorithm is a DNA sequence that

has the same bit parity as the input, but is more ordered (i.e., closer to

being sorted), and contains the same or fewer 1’s. In Figure 10.3, the first

iteration is carried out with non-overlapping pairs for cells 0 with 1, and

so on. However, in Figure 10.4, depicting a second iteration of the XOR

algorithm, the pairing is: cell 1 with cell 2, cell 3 with cell 4, and so on. In

126

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 6 7 1 2 3 S1 6 7 1 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1

6* 7* 1* 2* 3* 6* 7* 1* 2* 3*

Original: 11101

Ins 1: Identifying pair (1, 0) on non-overlapping pairs

Ins 2: Detaching S1 on all other pairs

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2 6 7 1

S3 1 2 3

S2 6 7 1

S3 1 2 3

Ins 3: Identifying pair (1, 1) and (0, 0)

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2

S4 4 5 6 7 1S4 4 5 6 7 1
Ins 4: Identifying bit 0 in pair (0, 1)

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2

S2* 6* 7* 1*
Ins 5: Detach S2 to expose (1,1) pair

S2* 6* 7* 1*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 6: Cover both bits of (1,1) pair
S5 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 7: Detach S5 to completely expose (1,1) pair, detach S4 as well

S5

S5* 2* 3* 4* 5* 6* 7* 1* 2* 3* 4* 5* 6* 7*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 8: Write 0 to empty location

Ins 9: Detach S1 and S3

S5 2 3 4 5 6 7 1 2 3 4 5 6 7

S5* 2* 3* 4* 5* 6* 7* 1* 2* 3* 4* 5* 6* 7*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1* 6* 7* 1* 2* 3*

S3* 1* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 10: Cover empty locations with 6,7 and 2,3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 11: Intermediate result 00101. Now perform instruction 1-11 of parallel bubble sort to change (1,0) to (0,1)

Result of 1 iteration of XOR instructions: 00011

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1

S1

S1

S1

S1

S1

S1

S1

S1* 6* 7* 1* 2* 3*

S3* 1* 2* 3*

S4* 4* 5* 6* 7* 1*S4* 4* 5* 6* 7* 1*

Figure 10.3: Instructions for the Exclusive OR. The first iteration converts
11101 to 00011.

127

the third iteration, the pairing can return to the original pairing in the first

iteration. For a n bit register, after n iterations of the XOR algorithm, the

last cell contains the output of the n bit XOR.

10.1.4 Detailed Implementation of Each Step for Parallel

Left Shift cell

The instructions are shown as followed, with an example of shifting 11001

to 10011.

The first three instructions are exactly the same as those for identifying

bit pairs in Section 3.2.1. In instruction 1, the strand (S1 6 7 1 2 3), which

identifies the different patterns of two bits, is issued to each pair of bits. In

instruction 2, strand (6* 7* 1* 2* 3*) is issued, detaching strands with open

domains 6 and 7, or 2 and 3. After this instruction, strands with identifier S1

only remain at pair (1, 0). In instruction 3, we issue two species of strands at

the same time: (S2 6 7 1) and (S3 1 2 3). (S2 6 7 1) will bind with pair (1, 1)

and (S3 1 2 3) will bind with pair (0, 0). S2 will not form a stable binding

with pair (0, 0) or (0, 1) because the binding area is only one domain. Same

goes with S3 and pair (1, 1) or (0, 1). After this instruction, only domain 1

between pair (0, 1) is still exposed. In instruction 4, strand (S4 4 5 6 7 1) is

issued. Through the open domain 1 between pair (0, 1), the strand in bit 0

is replaced by S4. After this step, the first bit in pair (1, 0) is identified with

the strand S1, and the first bit in pair (0, 1) is replaced with the strand S4.

Instructions 5 to 9 rewrite the first bit in pair (1, 0) to 0. In instruction

5, the strand S1 is detached, exposing domains 6, 7, 1, 2 and 3. The ex-

posed domains 2 and 3 are sealed off in instruction 6 to not interfere with

subsequent instructions. In instruction 7, strand (S5 2 3 4 5 6 7) is issued

through the open toehold on domains 6 and 7 in the bit 1 in pair (1, 0),

and displaces the strand in that bit. Since domains 2 and 3 are sealed off,

bit 0 will not be modified in this instruction. In instruction 8, strand S5 is

detached, leaving the domains in the bit open. In instruction 9, strands (2

3) and (4 5 6 7), which represent 0, are written to the bit containing open

domains.

128

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 6 7 1 2 3 S1 6 7 1 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1

6* 7* 1* 2* 3* 6* 7* 1* 2* 3*

Current: 00011

Ins 1: Identifying pair (1, 0) on non-overlapping pairs, offset from first iteration

Ins 2: Detaching S1 on all other pairs

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2 6 7 1

S3 1 2 3

S2 6 7 1

S3 1 2 3

Ins 3: Identifying pair (1, 1) and (0, 0)

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3

S4 4 5 6 7 1S4 4 5 6 7 1
Ins 4: Identifying bit 0 in pair (0, 1)

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S2* 6* 7* 1*
Ins 5: Detach S2 to expose (1,1) pair

S2* 6* 7* 1*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 6: Cover both bits of (1,1) pair
S5 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 7: Detach S5 to completely expose (1,1) pair, detach S4 as well

S5

S5* 2* 3* 4* 5* 6* 7* 1* 2* 3* 4* 5* 6* 7*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 8: Write 0 to empty location

Ins 9: Detach S1 and S3

S5 2 3 4 5 6 7 1 2 3 4 5 6 7

S5* 2* 3* 4* 5* 6* 7* 1* 2* 3* 4* 5* 6* 7*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1* 6* 7* 1* 2* 3*

S3* 1* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 10: Cover empty locations with 6,7 and 2,3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 11: Intermediate result 00000. Now perform instruction 1-11 of parallel bubble sort (not needed in this case)

Result of 2 iterations of XOR instructions: 00000

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1

S2

S1* 6* 7* 1* 2* 3*

S3* 1* 2* 3*

S4* 4* 5* 6* 7* 1*S4* 4* 5* 6* 7* 1*

S3 S2

S3

S3

S3

S3

Figure 10.4: Instructions for the Exclusive OR. The second iteration con-
verts 00011 to 00000.

129

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 6 7 1 2 3 S1 6 7 1 2 3 S1 6 7 1 2 3 S1 6 7 1 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 S1 S1

6* 7* 1* 2* 3* 6* 7* 1* 2* 3* 6* 7* 1* 2* 3* 6* 7* 1* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1
S2 6 7 1

S3 1 2 3

S2 6 7 1

S3 1 2 3

S2 6 7 1

S3 1 2 3

S2 6 7 1

S3 1 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 S3S2

S4 4 5 6 7 1S4 4 5 6 7 1S4 4 5 6 7 1S4 4 5 6 7 1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S1 S3S2 S4

S1* 6* 7* 1* 2* 3*S1* 6* 7* 1* 2* 3* S1* 6* 7* 1* 2* 3*S1* 6* 7* 1* 2* 3*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4

S5 2 3 4 5 6 7S5 2 3 4 5 6 7 S5 2 3 4 5 6 7S5 2 3 4 5 6 7 S5 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4S5

S5* 2* 3* 4* 5* 6* 7* S5* 2* 3* 4* 5* 6* 7*S5* 2* 3* 4* 5* 6* 7* S5* 2* 3* 4* 5* 6* 7* S5* 2* 3* 4* 5* 6* 7*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

S3S2 S4

S2* 6* 7* 1*

S3* 1* 2* 3*

S4* 4* 5* 6* 7* 1*

S2* 6* 7* 1*

S3* 1* 2* 3*

S4* 4* 5* 6* 7* 1*

S2* 6* 7* 1*

S3* 1* 2* 3*

S4* 4* 5* 6* 7* 1*

S2* 6* 7* 1*

S3* 1* 2* 3*

S4* 4* 5* 6* 7* 1*

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Original: 11001

Ins 1: Identifying pair (1, 0)

Ins 2: Detaching S1 on all other pairs

Ins 3: Identifying pair (0, 0) and (1, 1)

Ins 4: Identifying bit 0 in pair (0, 1)

Ins 5: Detach S1

Ins 6: Sealing off exposed region 2 and 3

Ins 7: Displacing bit 1 in pair (1, 0) with S5

Ins 8: Detaching S5, emptying location

Ins 9: Write 0 to empty location

Ins 10: Detaching S2 S3 and S4

Ins11: Writing 1 to location with region 4 and 5 exposed, fix exposed 2,3 and 6,7

Final: 10011

Figure 10.5: Instructions for the Left Shift cell

130

In the final two instructions, we write 1 to the first bit in pair (0, 1). In

instruction 10, 3 strands are issued to each pair of bits: (S2* 6* 7* 1*), (S3*

1* 2* 3*) and (S4* 4* 5* 6* 7* 1*). S2, S3 and S4 are detached through these

strands. Since S4 covers the bit 0 in pair (0, 1), after this step, domains 3

and 4 are exposed in these bits, ready to be written to 1. In the final step,

strands (2 3), (2 3 4 5), and (6 7) are issued to each cell. Strands (2 3) and

(6 7) will fix the exposed domains from strand S2 or S3, and strand (2 3 4

5) will write bit 1 to the bit with domain 3 and 4 exposed. Details of the

design are shown in Figure 10.5.

For all the pairs of (0, 0) and (1, 1), the first bit in those pairs will not

be modified since the toehold 1 will be covered with S2 or S3 in the process.

10.1.5 Detailed Implementation of the Second Level in Par-

allel Search

Here the second level of the parallel search operation is discussed. The

first level of the search operation uses the instructions that were described

in Section 3.2.1, except now only strands to non-overlapping bit pairs are

issued. Identifiers A0 = 00, A1 = 01, A2 = 10, A3 = 11 are used to represent

symbols in this level. For instance, to search for the target string 1011, the

symbols A2 in odd symbols and A3 in even symbols are searched. The cases

of A2 in even symbols and A3 in odd symbols are covered by searching with

an offset.

In the first instruction of the second level, the A2 is uncovered in the odd

symbols, creating an open region. In instruction 2, a long strand is used to

cover the entire right half of the symbol, from the start of identifier A2 to

the rightmost cell. This strand is pulled out in instruction 3. In instruction

4, an identifier A′
2 is used to cover domains 5, 6, 7 in the rightmost cell while

covering all other domains.

Instructions 5 to 8 are essentially the same as instructions 1 to 4, but

with two significant differences. Firstly, since A3 is the second symbol in

the current level of query, only even-numbered symbols (2, 4, 6, etc.) are

searched. Secondly, instead of rewriting the right half of the symbol, the

131

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3A2
Initial state: Sequence 1011, Symbols is already identified in previous level

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3
A2* 6* 7* 1* 2* 3*

A2

Ins 1: Uncover Symbol A2 for every odd numbered symbol

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3
S 6 7 1 2 3 4 5 6 7

Ins 2: Cover the entire half of symbol for the odd A2 symbols

Ins 3: Remove the cover

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3S

S*

Ins 4: Write: A new identifier A2' covers domain 5, 6, 7 in right most register, cover the rest

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3

A2'

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A3A2'

A3* 6* 7* 1*
Ins 5: Uncover Symbol A3 for every even numbered symbol

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A2'
S 2 3 4 5 6 7 1

Ins 6: Cover the entire half of symbol for the even A3 symbols

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A2' S

S*Ins 7: Remove the cover

Ins 8: Write: A new identifier A6' covers domain 2, 3, 4 in left most register, cover the rest

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A2'

A3'

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A2' A3'

B11Ins 9: Add identifier for current level

Result

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

B11

Figure 10.6: Instructions for a search operation of target sequence 1011

132

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

B11 A1
Initial state: Sequence 1010, After the identification step

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

B11 A1

5* 6* 7* 1* 2* 3* 4*
Ins 10: Pull out identifier B11 in an imperfect fit

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

A1

Ins 11: Cover the open domains 6, 7 or 2, 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 12: Cover the open domains 5, 6, 7 or 2, 3, 4

A1

A3'A2'

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ins 13: Cover the open domains 4, 5, 6, 7 or 2, 3, 4, 5

A1A2'

Figure 10.7: Instructions for the cleanup process for a failed searching. These
instructions won’t affect the result of a successful search.

133

left half is written. The new identifier A′
3 is made to cover domains 2, 3, 4

in the left-most cell. In instruction 9, identifier (B11 5 6 7 1 2 3 4) is used

to recognize the two consecutive symbols A2 and A3. Since, in the regular

encoding, no strand starts from domain 5 or ends at domain 4, it will only

form a perfect binding with a matched result.

After the identifier B11 binds, imperfect bindings also need to be cleaned

up in case of a mismatch. Figure 10.6 shows the instructions for the cleanup

process. In instruction 10, the complementary strand (5* 6* 7* 1* 2* 3* 4*)

is used to pull out the imperfect bond identifier B11. Then strands covering

the exposed domain are issued. First strands covering fewer domains are

issued, followed by strands covering more domains in the next instruction.

This results in a perfect fit; the strands will not be pulled out in potentially

unrelated rewriting processes.

10.1.6 Example of Parallel Bubble Sort on an arbitrary bit-

string

Consider the 12-bit long string S = 110010010110. In each iteration of

bubble sort, we first identify all (1, 0) pairs (shown in red) and then rewrite

them to (0, 1) (shown in blue). For this string, the numerous iterations of

the sorting algorithm are:

110010010110 → 101001001101

101001001101 → 010100101011

010100101011 → 001010010111

001010010111 → 000101001111

000101001111 → 000010101111

000010101111 → 000001011111

000001011111 → 000000111111.

After 7 iterations, the final sorted string is 000000111111.

134

10.1.7 Gibson Assembly of a 2 bit register

Gibson Assembly of DNA molecules is achieved through the use of “sticky

ends” – single stranded sequences at the ends of these molecules that allow

them to concatenate. To create registers storing unique bit sequences, we

use two different molecules to start off: pre-cell molecules (domains 2 to 7,

with sticky ends on domains 2 and 7), and linker molecules (domains 7 1 2,

with sticky ends on domains 7 and 2). To store a bit value of 0 in a pre-cell,

a toehold on domain 4 is created. To store a bit value of 1, a toehold on

domain 5 is created. This is shown in Figure 10.8b.

Before concatenating two different pre-cells, their particular sticky ends

must be “sealed” – those ends are no longer single stranded and cannot link

together anymore. Sealing a particular sticky end can easily be done by

adding a single strand of DNA that binds to that sticky end. For example,

by sealing the sticky end on domain 2 of a pre-cell, that pre-cell can no longer

concatenate with itself when the linker molecule is mixed. In Figure 10.8c,

pre-cell A only has a sticky end on domain 7, and pre-cell B only has a

sticky end on domain 7. When these pre-cells are mixed together with the

linker molecule, they will bind to each other in the order A to B. This

creates a pre-register of those two pre-cells. The starting end of the pre-

register has a domain 1 concatenated through a “cap” molecule (domains 1

and 2, with a sticky end at domain 2) as shown in Figures 10.8e and 10.8f.

After this stage, the pre-register can be treated with DNA ligase to seal all

nicks. The resulting DNA strand contains the cells A and B which contain

toeholds at domain 4 and 5 respectively. All 1 domains across all cells in this

strand can be exposed into to toehold domains through nicking and gentle

denaturing. Finally, this DNA molecule (which encodes 01 based on the

pre-cell encoding scheme) can be converted to the bit encoding scheme used

in this study (Figure 3.2) through the procedure described in Sections 3.2.2

and 3.7.3. This entire procedure yields a 2 bit register storing the bits 0 and

1 in that order.

This approach can be used to construct registers of any arbitrary number

of bits despite all cells having the same sequence. This is because pre-

135

Pre-cell template Linker

2 3 4 5 6 7 27 1

(a) The two main types of molecules used for Gibson Assembly

Pre-cell storing 0 Pre-cell storing 1

2 3 4 5 6 7 2 3 4 5 6 7

(b) How to store bit values 0 or 1 through toeholds 4 or 5 respectively.

Pre-cell BPre-cell A

2 3 4 5 6 7 2 3 4 5 6 7

Linker

27 1+ +

(c) Pre-cell A stores 0, Pre-cell B stores 1. They are mixed together with
linker molecules to concatenate them. The blunt ends (domain 2 on A,
domain 7 on B) prevent linking of two same pre-cells.

Pre-register AB

2 3 4 5 6 7 3 4 5 6 721

(d) The resulting pre-register AB.

2 3 4 5 6 7 3 4 5 6 721

(e) Creating a sticky end on the first domain 2 of the pre-register.

+21 2 3 4 5 6 7 3 4 5 6 721

Pre-register ABCap

(f) Using a cap molecule to add a domain 1 at the start of the pre-register

21 3 4 5 6 7 3 4 5 6 721

(g) The resulting pre-register after ligation

21 3 4 5 6 7 3 4 5 6 721

(h) Toeholds are created on all 1 domains.

21 3 4 5 6 7 3 4 5 6 721

Register storing 01

(i) The pre-cell encoding is changed to the encoding proposed in Figure 3.2.

Figure 10.8: Using Gibson Assembly to construct a register storing 01 from
cells with the same sequence.

136

registers can also be concatenated in the same manner as pre-cells as shown

in Figure 10.8c. For this, the sealed ends of a pre-register must be unsealed

(through the use of an exonuclease) to create sticky ends again.

137

10.2 Supplementary Material for Chapter 4

Examples of CRNs for polynomial approximations of nonlinear functions.

10.2.1 ArcTan Function

arctan(x) can be approximated as:

arctan(x) ≈ x− 1

3
x3 = x(1− 1

3
x2).

After assigning the stochastic variables x1 = x, x2 = 1
3 , x3 = x4 = x, the

stochastic logic function is:

AND(x1,NAND(x2,AND(x3, x4))).

According to the truth table, the corresponding CRN is:

X1,0 +X2,0 +X3,0 +X4,0 → Y0

X1,0 +X2,0 +X3,0 +X4,1 → Y0

X1,0 +X2,0 +X3,1 +X4,0 → Y0

X1,0 +X2,0 +X3,1 +X4,1 → Y0

X1,0 +X2,1 +X3,0 +X4,0 → Y0

X1,0 +X2,1 +X3,0 +X4,1 → Y0

X1,0 +X2,1 +X3,1 +X4,0 → Y0

X1,0 +X2,1 +X3,1 +X4,1 → Y0

X1,1 +X2,0 +X3,0 +X4,0 → Y1

X1,1 +X2,0 +X3,0 +X4,1 → Y1

X1,1 +X2,0 +X3,1 +X4,0 → Y1

138

X1,1 +X2,0 +X3,1 +X4,1 → Y1

X1,1 +X2,1 +X3,0 +X4,0 → Y1

X1,1 +X2,1 +X3,0 +X4,1 → Y1

X1,1 +X2,1 +X3,1 +X4,0 → Y1

X1,1 +X2,1 +X3,1 +X4,1 → Y0

139

10.2.2 Exponential Function

exp(−x) is approximated as:

exp(−x) ≈ 1− x+
1

2
x2 − 1

6
x3 = 1− x(1− 1

2
x(1− 1

3
x))

Assigning the stochastic variables x1 = x, x2 = 1
2 , x3 = x, x4 = 1

3 , x5 = x

yields the stochastic logic function:

NAND(x1,NAND(x2,AND(x3,NAND(x4, x5)))).

According to the truth table, the corresponding CRN is:

X1,0 +X2,0 +X3,0 +X4,0 +X5,0 → Y1

X1,0 +X2,0 +X3,0 +X4,0 +X5,1 → Y1

X1,0 +X2,0 +X3,0 +X4,1 +X5,0 → Y1

X1,0 +X2,0 +X3,0 +X4,1 +X5,1 → Y1

X1,0 +X2,0 +X3,1 +X4,0 +X5,0 → Y1

X1,0 +X2,0 +X3,1 +X4,0 +X5,1 → Y1

X1,0 +X2,0 +X3,1 +X4,1 +X5,0 → Y1

X1,0 +X2,0 +X3,1 +X4,1 +X5,1 → Y1

X1,0 +X2,1 +X3,0 +X4,0 +X5,0 → Y1

X1,0 +X2,1 +X3,0 +X4,0 +X5,1 → Y1

X1,0 +X2,1 +X3,0 +X4,1 +X5,0 → Y1

X1,0 +X2,1 +X3,0 +X4,1 +X5,1 → Y1

X1,0 +X2,1 +X3,1 +X4,0 +X5,0 → Y1

X1,0 +X2,1 +X3,1 +X4,0 +X5,1 → Y1

140

X1,0 +X2,1 +X3,1 +X4,1 +X5,0 → Y1

X1,0 +X2,1 +X3,1 +X4,1 +X5,1 → Y1

X1,1 +X2,0 +X3,0 +X4,0 +X5,0 → Y0

X1,1 +X2,0 +X3,0 +X4,0 +X5,1 → Y0

X1,1 +X2,0 +X3,0 +X4,1 +X5,0 → Y0

X1,1 +X2,0 +X3,0 +X4,1 +X5,1 → Y0

X1,1 +X2,0 +X3,1 +X4,0 +X5,0 → Y0

X1,1 +X2,0 +X3,1 +X4,0 +X5,1 → Y0

X1,1 +X2,0 +X3,1 +X4,1 +X5,0 → Y0

X1,1 +X2,0 +X3,1 +X4,1 +X5,1 → Y0

X1,1 +X2,1 +X3,0 +X4,0 +X5,0 → Y0

X1,1 +X2,1 +X3,0 +X4,0 +X5,1 → Y0

X1,1 +X2,1 +X3,0 +X4,1 +X5,0 → Y0

X1,1 +X2,1 +X3,0 +X4,1 +X5,1 → Y0

X1,1 +X2,1 +X3,1 +X4,0 +X5,0 → Y1

X1,1 +X2,1 +X3,1 +X4,0 +X5,1 → Y1

X1,1 +X2,1 +X3,1 +X4,1 +X5,0 → Y1

X1,1 +X2,1 +X3,1 +X4,1 +X5,1 → Y0

141

10.2.3 Bessel Function

Consider the example of the Bessel function of the first kind with parameter

α = 1. Its approximation is:

J1(x) ≈
1

2
x− 1

16
x3 =

1

2
x(1− 1

8
x2).

Assigning the stochastic variables x1 =
1
2 , x2 = x, x3 =

1
8 , x4 = x5 = x yields

the stochastic logic function:

AND(x1,AND(x2,NAND(x3,AND(x4, x5)))).

According to the truth table, the corresponding CRN is:

X1,0 +X2,0 +X3,0 +X4,0 +X5,0 → Y0

X1,0 +X2,0 +X3,0 +X4,0 +X5,1 → Y0

X1,0 +X2,0 +X3,0 +X4,1 +X5,0 → Y0

X1,0 +X2,0 +X3,0 +X4,1 +X5,1 → Y0

X1,0 +X2,0 +X3,1 +X4,0 +X5,0 → Y0

X1,0 +X2,0 +X3,1 +X4,0 +X5,1 → Y0

X1,0 +X2,0 +X3,1 +X4,1 +X5,0 → Y0

X1,0 +X2,0 +X3,1 +X4,1 +X5,1 → Y0

X1,0 +X2,1 +X3,0 +X4,0 +X5,0 → Y0

X1,0 +X2,1 +X3,0 +X4,0 +X5,1 → Y0

X1,0 +X2,1 +X3,0 +X4,1 +X5,0 → Y0

X1,0 +X2,1 +X3,0 +X4,1 +X5,1 → Y0

X1,0 +X2,1 +X3,1 +X4,0 +X5,0 → Y0

X1,0 +X2,1 +X3,1 +X4,0 +X5,1 → Y0

142

X1,0 +X2,1 +X3,1 +X4,1 +X5,0 → Y0

X1,0 +X2,1 +X3,1 +X4,1 +X5,1 → Y0

X1,1 +X2,0 +X3,0 +X4,0 +X5,0 → Y0

X1,1 +X2,0 +X3,0 +X4,0 +X5,1 → Y0

X1,1 +X2,0 +X3,0 +X4,1 +X5,0 → Y0

X1,1 +X2,0 +X3,0 +X4,1 +X5,1 → Y0

X1,1 +X2,0 +X3,1 +X4,0 +X5,0 → Y0

X1,1 +X2,0 +X3,1 +X4,0 +X5,1 → Y0

X1,1 +X2,0 +X3,1 +X4,1 +X5,0 → Y0

X1,1 +X2,0 +X3,1 +X4,1 +X5,1 → Y0

X1,1 +X2,1 +X3,0 +X4,0 +X5,0 → Y1

X1,1 +X2,1 +X3,0 +X4,0 +X5,1 → Y1

X1,1 +X2,1 +X3,0 +X4,1 +X5,0 → Y1

X1,1 +X2,1 +X3,0 +X4,1 +X5,1 → Y1

X1,1 +X2,1 +X3,1 +X4,0 +X5,0 → Y1

X1,1 +X2,1 +X3,1 +X4,0 +X5,1 → Y1

X1,1 +X2,1 +X3,1 +X4,1 +X5,0 → Y1

X1,1 +X2,1 +X3,1 +X4,1 +X5,1 → Y0

143

10.2.4 Sinc Function

The mathematical expression of the sinc function is:

sinc(x) =
sin(x)

x
.

Its approximation is:

sinc(x) ≈ 1− 1

6
x2 +

1

120
x4 = 1− 1

6
x2(1− 1

20
x2)

Assigning the stochastic variables x1 = x2 = x, x3 =
1
6 , x4 =

1
20 , x5 = x6 = x

yields the stochastic logic function:

NAND(AND(x1, x2),AND(x3,NAND(x4,AND(x5, x6)))).

According to the truth table, the corresponding CRN is:

X1,0 +X2,0 +X3,0 +X4,0 +X5,0 +X6,0 → Y1

X1,0 +X2,0 +X3,0 +X4,0 +X5,0 +X6,1 → Y1

X1,0 +X2,0 +X3,0 +X4,0 +X5,1 +X6,0 → Y1

X1,0 +X2,0 +X3,0 +X4,0 +X5,1 +X6,1 → Y1

X1,0 +X2,0 +X3,0 +X4,1 +X5,0 +X6,0 → Y1

X1,0 +X2,0 +X3,0 +X4,1 +X5,0 +X6,1 → Y1

X1,0 +X2,0 +X3,0 +X4,1 +X5,1 +X6,0 → Y1

X1,0 +X2,0 +X3,0 +X4,1 +X5,1 +X6,1 → Y1

X1,0 +X2,0 +X3,1 +X4,0 +X5,0 +X6,0 → Y1

X1,0 +X2,0 +X3,1 +X4,0 +X5,0 +X6,1 → Y1

X1,0 +X2,0 +X3,1 +X4,0 +X5,1 +X6,0 → Y1

X1,0 +X2,0 +X3,1 +X4,0 +X5,1 +X6,1 → Y1

144

X1,0 +X2,0 +X3,1 +X4,1 +X5,0 +X6,0 → Y1

X1,0 +X2,0 +X3,1 +X4,1 +X5,0 +X6,1 → Y1

X1,0 +X2,0 +X3,1 +X4,1 +X5,1 +X6,0 → Y1

X1,0 +X2,0 +X3,1 +X4,1 +X5,1 +X6,1 → Y1

X1,0 +X2,1 +X3,0 +X4,0 +X5,0 +X6,0 → Y1

X1,0 +X2,1 +X3,0 +X4,0 +X5,0 +X6,1 → Y1

X1,0 +X2,1 +X3,0 +X4,0 +X5,1 +X6,0 → Y1

X1,0 +X2,1 +X3,0 +X4,0 +X5,1 +X6,1 → Y1

X1,0 +X2,1 +X3,0 +X4,1 +X5,0 +X6,0 → Y1

X1,0 +X2,1 +X3,0 +X4,1 +X5,0 +X6,1 → Y1

X1,0 +X2,1 +X3,0 +X4,1 +X5,1 +X6,0 → Y1

X1,0 +X2,1 +X3,0 +X4,1 +X5,1 +X6,1 → Y1

X1,0 +X2,1 +X3,1 +X4,0 +X5,0 +X6,0 → Y1

X1,0 +X2,1 +X3,1 +X4,0 +X5,0 +X6,1 → Y1

X1,0 +X2,1 +X3,1 +X4,0 +X5,1 +X6,0 → Y1

X1,0 +X2,1 +X3,1 +X4,0 +X5,1 +X6,1 → Y1

X1,0 +X2,1 +X3,1 +X4,1 +X5,0 +X6,0 → Y1

X1,0 +X2,1 +X3,1 +X4,1 +X5,0 +X6,1 → Y1

X1,0 +X2,1 +X3,1 +X4,1 +X5,1 +X6,0 → Y1

X1,0 +X2,1 +X3,1 +X4,1 +X5,1 +X6,1 → Y1

X1,1 +X2,0 +X3,0 +X4,0 +X5,0 +X6,0 → Y1

X1,1 +X2,0 +X3,0 +X4,0 +X5,0 +X6,1 → Y1

145

X1,1 +X2,0 +X3,0 +X4,0 +X5,1 +X6,0 → Y1

X1,1 +X2,0 +X3,0 +X4,0 +X5,1 +X6,1 → Y1

X1,1 +X2,0 +X3,0 +X4,1 +X5,0 +X6,0 → Y1

X1,1 +X2,0 +X3,0 +X4,1 +X5,0 +X6,1 → Y1

X1,1 +X2,0 +X3,0 +X4,1 +X5,1 +X6,0 → Y1

X1,1 +X2,0 +X3,0 +X4,1 +X5,1 +X6,1 → Y1

X1,1 +X2,0 +X3,1 +X4,0 +X5,0 +X6,0 → Y1

X1,1 +X2,0 +X3,1 +X4,0 +X5,0 +X6,1 → Y1

X1,1 +X2,0 +X3,1 +X4,0 +X5,1 +X6,0 → Y1

X1,1 +X2,0 +X3,1 +X4,0 +X5,1 +X6,1 → Y1

X1,1 +X2,0 +X3,1 +X4,1 +X5,0 +X6,0 → Y1

X1,1 +X2,0 +X3,1 +X4,1 +X5,0 +X6,1 → Y1

X1,1 +X2,0 +X3,1 +X4,1 +X5,1 +X6,0 → Y1

X1,1 +X2,0 +X3,1 +X4,1 +X5,1 +X6,1 → Y1

X1,1 +X2,1 +X3,0 +X4,0 +X5,0 +X6,0 → Y1

X1,1 +X2,1 +X3,0 +X4,0 +X5,0 +X6,1 → Y1

X1,1 +X2,1 +X3,0 +X4,0 +X5,1 +X6,0 → Y1

X1,1 +X2,1 +X3,0 +X4,0 +X5,1 +X6,1 → Y1

X1,1 +X2,1 +X3,0 +X4,1 +X5,0 +X6,0 → Y1

X1,1 +X2,1 +X3,0 +X4,1 +X5,0 +X6,1 → Y1

X1,1 +X2,1 +X3,0 +X4,1 +X5,1 +X6,0 → Y1

X1,1 +X2,1 +X3,0 +X4,1 +X5,1 +X6,1 → Y1

146

X1,1 +X2,1 +X3,1 +X4,0 +X5,0 +X6,0 → Y0

X1,1 +X2,1 +X3,1 +X4,0 +X5,0 +X6,1 → Y0

X1,1 +X2,1 +X3,1 +X4,0 +X5,1 +X6,0 → Y0

X1,1 +X2,1 +X3,1 +X4,0 +X5,1 +X6,1 → Y0

X1,1 +X2,1 +X3,1 +X4,1 +X5,0 +X6,0 → Y0

X1,1 +X2,1 +X3,1 +X4,1 +X5,0 +X6,1 → Y0

X1,1 +X2,1 +X3,1 +X4,1 +X5,1 +X6,0 → Y0

X1,1 +X2,1 +X3,1 +X4,1 +X5,1 +X6,1 → Y1

147

Table 10.1: Confusion matrices for the training data analysis for NetMHC-
4.0. The abbreviations used are: True Negatives (TN), False Positives (FP),
False Negatives (FN), and True Positives (TP).

HLA Peptide Case TN FP FN TP

A2

All 42621 770 3540 5728
Hydrophobic only 8050 516 1094 3199
Hydrophilic only 5213 3 71 11
Balanced only 29316 250 2371 2508

B27

All 14573 118 1476 1255
Hydrophobic only 2581 12 215 247
Hydrophilic only 1946 24 162 92
Balanced only 10028 82 1098 914

B8

All 15923 169 1257 2099
Hydrophobic only 2864 35 265 353
Hydrophilic only 2101 18 78 209
Balanced only 10950 116 913 1534

10.3 Supplementary Material for Chapter 7

The changes in predictions observed in Figures 7.1 to 7.3 suggested that

NetMHCpan-4.1 approximated the training scores better than NetMHC-

4.0 did inFigures 7.1 to 7.3 (the yellow plot fitted the S-curve transition

of the blue plot more tightly than the red plot did). To confirm this,

the Pearson Correlations of the training data with NetMHC-4.0, and with

NetMHCpan-4.1 were calculated. The correlation coefficients for NetMHC-

4.0 and NetMHCpan-4.1 for A2 were 0.8492 and 0.8637 respectively. For

B27, these coefficients were 0.8165 and 0.8844. For B8, these were 0.8492

and 0.863. It was likely that the stronger correlation for NetMHCpan-4.1

was a consequence of NetMHCpan-4.1 having “seen” EL peptides which

NetMHC-4.0 would not have been trained on.

148

Table 10.2: Confusion matrices for the training data analysis for
NetMHCpan-4.1. The abbreviations used are: True Negatives (TN), False
Positives (FP), False Negatives (FN), and True Positives (TP).

HLA Peptide Case TN FP FN TP

A2

All 41166 730 2630 8133
Hydrophobic only 7467 316 1345 3731
Hydrophilic only 5193 12 36 57
Balanced only 28464 402 1247 4332

B27

All 14367 221 384 2450
Hydrophobic only 2564 15 80 396
Hydrophilic only 1905 45 51 223
Balanced only 9880 161 253 1828

B8

All 15495 280 667 3006
Hydrophobic only 2785 38 189 505
Hydrophilic only 2058 32 53 263
Balanced only 10645 210 424 2234

0 10000 20000 30000 40000 50000
Number of 9-mers

0.00

0.25

0.50

0.75

1.00

Bi
nd

in
g

Sc
or

e

Sorted Scores for all Sampled A2 9-mers
NetMHC-4.0 scores
NetMHCpan-4.1 scores

Figure 10.9: The cumulative distribution of NetMHC-4.0 predicted scores
(red) and NetMHCpan-4.1 predicted scores (yellow) for peptides in the
human proteome dataset for HLA A2. The strong binder thresholds for
NetMHC-4.0 and NetMHCpan-4.1 are shown as dashed lines of the corre-
sponding colors. These thresholds are the same as those in Figure 7.1. Each
plot of scores was independently sorted. Consequently, the order of peptides
is not conserved across the 2 plots.

149

0 10000 20000 30000 40000 50000
Number of 9-mers

0.00

0.25

0.50

0.75

1.00

Bi
nd

in
g

Sc
or

e
Sorted Scores for all Sampled B27 9-mers

NetMHC-4.0 scores
NetMHCpan-4.1 scores

Figure 10.10: The cumulative distribution of NetMHC-4.0 predicted scores
(red) and NetMHCpan-4.1 predicted scores (yellow) for peptides in the hu-
man proteome dataset for HLA B27. The strong binder thresholds for
NetMHC-4.0 and NetMHCpan-4.1 are shown as dashed lines of the cor-
responding colors. These thresholds are the same as those in Figure 7.2.
Each plot of scores was independently sorted. Consequently, the order of
peptides is not conserved across the 2 plots.

0 10000 20000 30000 40000 50000
Number of 9-mers

0.00

0.25

0.50

0.75

1.00

Bi
nd

in
g

Sc
or

e

Sorted Scores for all Sampled B8 9-mers
NetMHC-4.0 scores
NetMHCpan-4.1 scores

Figure 10.11: The cumulative distribution of NetMHC-4.0 predicted scores
(red) and NetMHCpan-4.1 predicted scores (yellow) for peptides in the
human proteome dataset for HLA B8. The strong binder thresholds for
NetMHC-4.0 and NetMHCpan-4.1 are shown as dashed lines of the corre-
sponding colors. These thresholds are the same as those in Figure 7.3. Each
plot of scores was independently sorted. Consequently, the order of peptides
is not conserved across the 2 plots.

150

12 9 6 3 0 3 6 9 12
Hydrophobicity

All Training
Peptides

NetMHC-4.0
predicted
antigens

NetMHCpan-4.1
predicted
antigens

Distributions of 9-mers for A2

Figure 10.12: Violin plots of the hydrophobicity of the sets of strong binders
predicted by NetMHC-4.0 and NetMHCpan-4.1 on the training dataset for
A2. The x-axis represents the hydrophobicity of a 9-mer, and the y-axis
represents the frequency. The distributions of all training peptides (blue),
strong binders predicted by NetMHC-4.0 (red), and those predicted by
NetMHCpan-4.1 (yellow) are shown. The mean and two quartiles are also
depicted in each distribution.

Table 10.3: Sizes, Means, and Standard Deviations of the hydrophobicity of
the sets of peptides reported in the Training Data Analysis. The abbrevia-
tions used here are: NetMHC-4.0 predicted Strong Binders (N-4.0 SB), and
NetMHCpan-4.1 predicted Strong Binders (NP-4.1 SB).

HLA Value of Set All N-4.0 SB NP-4.1 SB

A2
Size 52659 6498 8863
Mean 0.902 3.458 2.756

Std. Dev. 3.063 2.365 2.426

B27
Size 17422 1373 2671
Mean 0.364 0.725 0.450

Std. Dev. 2.923 2.593 2.593

B8
Size 19448 2268 3286
Mean 0.393 0.544 0.570

Std. Dev. 2.946 2.652 2.566

151

12 9 6 3 0 3 6 9 12
Hydrophobicity

All Training
Peptides

NetMHC-4.0
predicted
antigens

NetMHCpan-4.1
predicted
antigens

Distributions of 9-mers for B27

Figure 10.13: Violin plots of the hydrophobicity of the sets of strong binders
predicted by NetMHC-4.0 and NetMHCpan-4.1 on the training dataset for
B27. The x-axis represents the hydrophobicity of a 9-mer, and the y-
axis represents the frequency. The distributions of all training peptides
(blue), strong binders predicted by NetMHC-4.0 (red), and those predicted
by NetMHCpan-4.1 (yellow) are shown. The mean and two quartiles are
also depicted in each distribution.

Table 10.4: Sizes, Means, and Standard Deviations of the hydrophobicity
of the sets of peptides reported in the Human Proteome Analysis. The
abbreviations used here are: NetMHC-4.0 predicted Strong Binders (N-4.0
SB), and NetMHCpan-4.1 predicted Strong Binders (NP-4.1 SB).

HLA Value of Set All N-4.0 SB NP-4.1 SB

A2
Size 50804 486 730
Mean 0.052 4.519 2.789

Std. Dev. 3.212 2.517 2.647

B27
Size 50804 290 528
Mean 0.052 -0.155 -0.775

Std. Dev. 3.212 2.740 2.729

B8
Size 50804 411 801
Mean 0.052 0.182 0.031

Std. Dev. 3.212 3.332 3.011

152

12 9 6 3 0 3 6 9 12
Hydrophobicity

All Training
Peptides

NetMHC-4.0
predicted
antigens

NetMHCpan-4.1
predicted
antigens

Distributions of 9-mers for B8

Figure 10.14: Violin plots of the hydrophobicity of the sets of strong binders
predicted by NetMHC-4.0 and NetMHCpan-4.1 on the training dataset for
B8. The x-axis represents the hydrophobicity of a 9-mer, and the y-axis
represents the frequency. The distributions of all training peptides (blue),
strong binders predicted by NetMHC-4.0 (red), and those predicted by
NetMHCpan-4.1 (yellow) are shown. The mean and two quartiles are also
depicted in each distribution.

153

12 9 6 3 0 3 6 9 12
Hydrophobicity

Binding Affinity

Eluted Ligand

Distributions of Training 9-mers for A2

Figure 10.15: Violin plots of the hydrophobicity of the sets of all BA (blue)
vs. EL (red) training data predicted by NetMHC-4.0 and NetMHCpan-4.1
on the human proteome dataset for A2. The x-axis represents the hydropho-
bicity of a 9-mer, and the y-axis represents the frequency. The mean and
two quartiles are also depicted in each distribution.

12 9 6 3 0 3 6 9 12
Hydrophobicity

Binding Affinity

Eluted Ligand

Distributions of Training 9-mers for B27

Figure 10.16: Violin plots of the hydrophobicity of the sets of all BA (blue)
vs. EL (red) training data predicted by NetMHC-4.0 and NetMHCpan-
4.1 on the human proteome dataset for B27. The x-axis represents the
hydrophobicity of a 9-mer, and the y-axis represents the frequency. The
mean and two quartiles are also depicted in each distribution.

154

12 9 6 3 0 3 6 9 12
Hydrophobicity

Binding Affinity

Eluted Ligand

Distributions of Training 9-mers for B8

Figure 10.17: Violin plots of the hydrophobicity of the sets of all BA (blue)
vs. EL (red) training data predicted by NetMHC-4.0 and NetMHCpan-4.1
on the human proteome dataset for B8. The x-axis represents the hydropho-
bicity of a 9-mer, and the y-axis represents the frequency. The mean and
two quartiles are also depicted in each distribution.

155

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetMHC ROCs for
Training A2 9-mers

All peptides (0.97)
Hydrophobic only (0.95)
Hydrophilic only (0.98)
Balanced only (0.97)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetMHCpan ROCs for
Training A2 9-mers

All peptides (0.98)
Hydrophobic only (0.96)
Hydrophilic only (0.97)
Balanced only (0.98)

Figure 10.18: Receiver Operating Characteristic curves for NetMHC-4.0
(top) and NetMHCpan-4.1 (bottom) for A2 based on the training dataset. In
each subfigure, plots are drawn for all peptides (blue), hydrophobic peptides
only (red), hydrophilic peptides only (yellow), and balanced peptides only
(green). A completely random classifier is also plotted for reference (dashed
black). For each plot, the Area Under the Curve (AUC) is also noted in the
legend.

156

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetMHC ROCs for
Training B27 9-mers

All peptides (0.98)
Hydrophobic only (0.97)
Hydrophilic only (0.96)
Balanced only (0.98)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetMHCpan ROCs for
Training B27 9-mers

All peptides (0.98)
Hydrophobic only (0.97)
Hydrophilic only (0.98)
Balanced only (0.99)

Figure 10.19: Receiver Operating Characteristic curves for NetMHC-4.0
(top) and NetMHCpan-4.1 (bottom) for B27 based on the training dataset.
In each subfigure, plots are drawn for all peptides (blue), hydrophobic pep-
tides only (red), hydrophilic peptides only (yellow), and balanced peptides
only (green). A completely random classifier is also plotted for reference
(dashed black). For each plot, the Area Under the Curve (AUC) is also
noted in the legend.

157

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetMHC ROCs for
Training B8 9-mers

All peptides (0.96)
Hydrophobic only (0.92)
Hydrophilic only (0.99)
Balanced only (0.96)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetMHCpan ROCs for
Training B8 9-mers

All peptides (0.99)
Hydrophobic only (0.97)
Hydrophilic only (0.99)
Balanced only (0.99)

Figure 10.20: Receiver Operating Characteristic curves for NetMHC-4.0
(top) and NetMHCpan-4.1 (bottom) for B8 based on the training dataset. In
each subfigure, plots are drawn for all peptides (blue), hydrophobic peptides
only (red), hydrophilic peptides only (yellow), and balanced peptides only
(green). A completely random classifier is also plotted for reference (dashed
black). For each plot, the Area Under the Curve (AUC) is also noted in the
legend.

158

10.4 Supplementary Material for Chapter 8

Table 10.5: P-values for the Wilcoxon rank-sum test for individual HLAs
in Class I. The lower the p-value, the more “separated” the two sets being
compared.

HLA
Nonrandom vs.

Evasive
Omicron vs.
Nonrandom

Omicron vs.
Evasive

A1 4.3× 10−7 8.7× 10−1 9.2× 10−2

A2 2.9× 10−5 8.7× 10−1 1.7× 10−1

A3 2.1× 10−7 1.5× 10−1 8.6× 10−2

A24 1.9× 10−9 1.5× 10−1 9.2× 10−2

A26 7.0× 10−7 1.5× 10−1 1.8× 10−1

A30 7.6× 10−6 1.5× 10−1 8.9× 10−2

B15 3.4× 10−7 1.5× 10−1 1.7× 10−1

B35 2.0× 10−7 2.6× 10−1 8.6× 10−2

B40 2.7× 10−6 2.0× 10−1 1.7× 10−1

B44 1.7× 10−6 1.5× 10−1 8.6× 10−2

B51 1.2× 10−4 6.3× 10−1 2.4× 10−1

159

Table 10.6: P-values for the Wilcoxon rank-sum test for individual HLAs in
Class II.

HLA
Nonrandom vs.

Evasive
Omicron vs.
Nonrandom

Omicron vs.
Evasive

DR1 2.9× 10−3 1.5× 10−1 1.0× 10−1

DR3 3.4× 10−6 7.5× 10−1 1.0× 10−1

DR4 3.6× 10−7 2.6× 10−1 9.6× 10−2

DR7 3.1× 10−5 1.0× 100 1.6× 10−1

DR8 1.3× 10−5 1.5× 10−1 9.2× 10−2

DR11 1.1× 10−1 1.5× 10−1 1.0× 10−1

DR12 5.3× 10−5 2.0× 10−1 9.2× 10−2

DR13 1.9× 10−4 8.7× 10−1 2.3× 10−1

DR1302 1.5× 10−5 2.6× 10−1 9.9× 10−2

DR15 9.4× 10−7 4.2× 10−1 1.1× 10−1

Table 10.7: Antigens predicted by NetMHCpan-4.1 for the vaccine and new
Omicron subvariant spikes. The vaccine labels are BNT (BNT162b2), Ad26
(Ad26.COV2.S), and NVX (NVX-CoV2373).

HLA BNT Ad26 NVX BA.2.75 BA.5

A1 14 14 14 15 15
A2 16 16 16 17 16
A3 18 18 18 17 18
A24 17 17 17 17 18
A26 22 22 22 22 22
A30 18 17 17 18 18
B15 19 19 19 19 19
B35 25 25 25 27 26
B40 8 8 8 8 7
B44 7 7 7 7 7
B51 13 13 13 11 11

160

Table 10.8: Class I Antigens conserved from the Original Spike Protein in
the vaccine and new Omicron subvariant spikes. The vaccine labels are BNT
(BNT162b2), Ad26 (Ad26.COV2.S), and NVX (NVX-CoV2373).

HLA BNT Ad26 NVX BA.2.75 BA.5

A1 14 14 14 11 12
A2 16 16 16 16 16
A3 18 18 18 16 16
A24 17 17 17 16 16
A26 22 22 22 19 19
A30 18 17 17 15 16
B15 19 19 19 13 14
B35 25 25 25 23 23
B40 8 8 8 7 7
B44 7 7 7 6 6
B51 12 12 12 11 11

Table 10.9: Antigens predicted by NetMHCiipan-4.0 for the vaccine and
new Omicron subvariant spikes. The vaccine labels are BNT (BNT162b2),
Ad26 (Ad26.COV2.S), and NVX (NVX-CoV2373).

HLA BNT Ad26 NVX BA.2.75 BA.5

DR1 6 6 6 6 6
DR3 13 13 13 11 11
DR4 19 23 23 18 18
DR7 15 15 15 13 13
DR8 8 8 8 8 8
DR11 1 1 1 3 3
DR12 9 9 9 15 15
DR13 3 3 3 3 3
DR1302 10 10 10 12 15
DR15 25 25 25 27 24

161

Table 10.10: Class II Antigens conserved from the Original Spike Protein
in the vaccine and new Omicron subvariant spikes. The vaccine labels are
BNT (BNT162b2), Ad26 (Ad26.COV2.S), and NVX (NVX-CoV2373).

HLA BNT Ad26 NVX BA.2.75 BA.5

DR1 6 6 6 6 6
DR3 13 13 13 11 11
DR4 19 19 19 18 18
DR7 15 15 15 12 12
DR8 8 8 8 8 8
DR11 1 1 1 1 1
DR12 9 9 9 9 9
DR13 3 3 3 3 3
DR1302 10 10 10 5 7
DR15 25 25 25 19 16

162

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	I DNA Computing
	Overview
	Toehold Mediated Strand Displacement

	Parallelized Computing on Data Stored in DNA
	Parallel computation using SIMD
	Design of Encoding System
	Identifying Bit Pairs
	Rewriting a cell

	Parallel Binary Bubble Sorting
	Implementation

	Parallel Exclusive OR
	Implementation

	Parallel Left Shifting
	Parallel Search Algorithm
	Parallel search procedure
	Search procedure with offset
	Implementation

	Discussion
	Initializing data on cells sharing the same sequences
	Ability to compute any non-conflicting pairwise operation
	Converting to Different Encoding Schemes
	Time Complexity of Parallel Search

	Conclusion

	Stochastic Computing on Data Stored in DNA
	Background
	Chemical Reaction Networks
	Digital Logic
	Stochastic Logic
	Implementing Stochastic Logic with Chemical Reactions
	Fractional Representation in Solution
	Building a Chemical Reaction Network from a Truth Table

	Proof for the correctness of CRNs implementing truth tables
	A demonstrative example

	Error Analysis
	Trials for Error Analysis

	Implementation using DNA
	DNA Concatemers
	Procedure

	Conclusion

	Discussion

	II Bioinformatics
	Overview
	Major Histocompatibility Complex

	Investigating False Positives and False Negatives in Machine Learning Predictions
	Methods
	Data Mining
	Hydrophobicity

	Results
	Conclusion

	Investigating T Cell Immune Responses to the various SARS-CoV-2 variants
	Methods
	SARS-CoV-2 Spike Protein and Variants
	MHC-Peptide Binding Affinity Prediction
	Generating Evaders as Positive Controls
	Statistics and Ranking

	Results
	MHC Class I
	MHC Class II

	Conclusion

	Discussion
	Bibliography
	Appendix
	Supplementary Material for chapter:simd
	Instructions for Converting to Another Scheme
	Detailed Implementation of Each Step for Parallel Sorting
	Detailed Implementation of Each Step for Parallel Exclusive OR
	Detailed Implementation of Each Step for Parallel Left Shift cell
	Detailed Implementation of the Second Level in Parallel Search
	Example of Parallel Bubble Sort on an arbitrary bitstring
	Gibson Assembly of a 2 bit register

	Supplementary Material for chapter:crn
	ArcTan Function
	Exponential Function
	Bessel Function
	Sinc Function

	Supplementary Material for chapter:hydro
	Supplementary Material for chapter:omicron

