### A Framework for Computing Discrete-Time Systems and Functions using DNA

### A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA

 $\mathbf{B}\mathbf{Y}$ 

Sayed Ahmad Salehi

### IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy

Advisors: Keshab K. Parhi and Marc D. Riedel

July, 2017

© Sayed Ahmad Salehi 2017 ALL RIGHTS RESERVED

## Acknowledgements

This thesis has been done under supervision of two advisors, Professor Keshab K. Parhi and Professor Marc D. Riedel. With different research backgrounds and approaches, they acutely supervised my research in totally different aspects. I am thankful to both of them because my research achievements could not be accomplished without their thoughtful guidance, constructive criticisms, and fruitful scientific discussions. Furthermore, I sincerely appreciate their encouragement, support, kindness, and true understanding of my concerns during my graduate studies at the University of Minnesota.

I would like to express my deeply-felt thanks to other members of my thesis committee: Professor Kiarash Bazargan and Professor Antonia Zhai. Their invaluable comments and feedback helped me improve the quality of this research.

I would also like to thank Dr. Vishwesh Kulkarni for our productive discussions about my research. I am grateful to my current and former members of our research group. In particular, Dr. Yingjie Lao, Dr. Chuan Zhang, Dr. Hua Jiang, Dr. Te-Lung Kung, Dr. Mojtaba Bandarabadi, Abdolreza Rashno, Sandhya Koteshwara, Bhaskar Sen, Sandeep Avvaru, Denis Chu, Zisheng Zhang, Yin Liu, and Anoop Koyily for all the good time I spent with them.

I want to acknowledge my thanks to National Science Foundation for their financial support of this research, under grants CCF-1117168 and CCF-14234707, without which I would not have been able to develop my scientific discoveries. Last, but most importantly, my sincerest gratitude goes to my family: my wonderful mom Badrosadat, my dad Sayed Kamal, my brother Sayed Mohamad, and my beautiful sister Sabihesadat. Definitely I would not be standing where I am today without their faithful love and support.

## Dedication

To my parents for their endless, faithful, and unconditional love and support.

#### Abstract

Due to the recent advances in the field of synthetic biology, molecular computing has emerged as a non-conventional computing technology. A broad range of computational processes has been considered for molecular implementation. In this dissertation, we investigate the development of molecular systems for performing the following computations: signal processing, Markov chains, polynomials, and mathematical functions.

First, we present a *fully asynchronous* framework to design molecular signal processing algorithms. The framework maps each delay unit to two molecular types, i.e., first-type and second-type, and provides a 4-phase scheme to synchronize data flow for any multi-input/multi-output signal processing system. In the first phase, the input signal and values stored in all delay elements are consumed for computations. Results of computations are stored in the first-type molecules corresponding to the delay units and output variables. During the second phase, the values of the first-type molecules are transferred to the second-type molecules for the output variable. In the third phase, the concentrations of the first-type molecules are transferred to the second-type molecules associated with each delay element. Finally, in the fourth phase, the output molecules are collected. The method is illustrated by synthesizing a simple finite-impulse response (FIR) filter, an infinite-impulse response (IIR) filter, and an 8-point real-valued fast Fourier transform (FFT). The simulation results show that the proposed frameworks

We then present an overview of how continuous-time, discrete-time and digital signal processing systems can be implemented using molecular reactions. We also present molecular sensing systems where molecular reactions are used to implement analog-todigital converters (ADCs) and digital-to-analog converters (DACs). These converters can be used to design mixed-signal processing molecular systems. A complete example of the addition of two molecules using digital implementation is described where the concentrations of two molecules are converted to digital by two 3-bit ADCs, and the 4-bit output of the digital adder is converted to analog by a 4-bit DAC.

Furthermore, we describe implementation of other forms of molecular computation. We propose an approach to implement any first-order Markov chain using molecular reactions in general and DNA in particular. The Markov chain consists of two parts: a set of states and state transition probabilities. Each state is modeled by a unique molecular type, referred to as a data molecule. Each state transition is modeled by a unique molecular type, referred to as a control molecule, and a unique molecular reaction. Each reaction consumes data molecules of one state and produces data molecules of another state. The concentrations of control molecules are initialized according to the probabilities of corresponding state transitions in the chain. The steady-state probability of the Markov chain is computed by the equilibrium concentration of data molecules. We demonstrate our method for the Gamblers Ruin problem as an instance of the Markov chain process. We analyze the method according to both the stochastic chemical kinetics and the mass-action kinetics model.

Additionally, we propose a novel *unipolar molecular encoding* approach to compute a certain class of polynomials. In this molecular encoding, each variable is represented using two molecular types: a type-0 and a type-1. The value is the ratio of the concentration of type-1 molecules to the sum of the concentrations of type-0 and type-1 molecules. With the new encoding, CRNs can compute any set of polynomial functions subject only to the limitation that these polynomials can be expressed as linear combinations of Bernstein basis polynomials with positive coefficients less than or equal to 1. The proposed encoding naturally exploits the expansion of a power-form polynomial into a Bernstein polynomial. We present molecular encoders for converting any input in a standard representation to the fractional representation, as well as decoders for converting the computed output from the fractional to a standard representation.

Lastly, we expand the unipolar molecular encoding for bipolar molecular encoding and propose simple molecular circuits that can compute multiplication and scaled addition. Using these circuits, we design molecular circuits to compute more complex mathematical functions such as  $e^{-x}$ ,  $\sin(x)$ , and  $\operatorname{sigmoid}(x)$ . According to this approach, we implement a molecular perceptron as a simple artificial neural network.

# Contents

| A              | cknov | wledgements                                     | i             |  |
|----------------|-------|-------------------------------------------------|---------------|--|
| D              | edica | tion                                            | iii           |  |
| A              | bstra | $\mathbf{ct}$                                   | $\mathbf{iv}$ |  |
| $\mathbf{Li}$  | st of | Tables                                          | viii          |  |
| $\mathbf{Li}$  | st of | Figures                                         | ix            |  |
| 1 Introduction |       |                                                 |               |  |
|                | 1.1   | Overview                                        | 1             |  |
|                | 1.2   | Contribution                                    | 3             |  |
|                | 1.3   | Outline of the Dissertation                     | 4             |  |
| <b>2</b>       | Des   | ign and Modeling of Molecular Computing Systems | 6             |  |
|                | 2.1   | Design (Programming)                            | 6             |  |
|                | 2.2   | Simulation (Modeling)                           | 7             |  |
|                |       | 2.2.1 Stochastic model                          | 8             |  |
|                |       | 2.2.2 Mass-action kinetic model                 | 9             |  |
|                | 2.3   | Implementation                                  | 9             |  |

| 3        | Asy | Inchronous Discrete-time Signal Processing                          | <b>14</b> |
|----------|-----|---------------------------------------------------------------------|-----------|
|          | 3.1 | Prior Work                                                          | 14        |
|          |     | 3.1.1 Fully-Synchronous Framework                                   | 15        |
|          |     | 3.1.2 Globally-Synchronous Locally-Asynchronous Framework $(RGB)$ . | 19        |
|          | 3.2 | Fully Asynchronous Scheme                                           | 22        |
|          | 3.3 | SIMULATION RESULTS                                                  | 31        |
|          | 3.4 | COMPARISON                                                          | 33        |
| 4        | Miz | ked-Signal Molecular Computing Systems                              | 36        |
|          | 4.1 | Molecular Continuous-Time Systems                                   | 37        |
|          | 4.2 | Digital Sensing and Computing Molecular Systems                     | 41        |
|          |     | 4.2.1 Analog to Digital Converter (ADC)                             | 42        |
|          |     | 4.2.2 Molecular Digital Logic Circuits                              | 46        |
|          |     | 4.2.3 Digital to Analog Converter (DAC)                             | 49        |
|          |     | 4.2.4 A complete molecular digital System                           | 51        |
|          | 4.3 | DNA Implementation                                                  | 51        |
|          | 4.4 | Discussion and Concluding Remarks                                   | 52        |
| <b>5</b> | Ma  | rkov Chain Computations using Molecular Reactions                   | 61        |
|          | 5.1 | Introduction                                                        | 61        |
|          | 5.2 | Modeling by Molecular reactions                                     | 62        |
|          | 5.3 | Analysis of the Proposed Molecular Model                            | 65        |
|          |     | 5.3.1 Stochastic Model                                              | 65        |
|          |     | 5.3.2 Mass-action Kinetics                                          | 67        |
|          | 5.4 | DNA implementation                                                  | 68        |
|          | 5.5 | Discussion                                                          | 73        |
| 6        | CR  | Ns for Computing Polynomials Using Fractional Coding                | <b>74</b> |
|          | 6.1 | Fractional Coding                                                   | 74        |

|   | 6.2   | CRNs for Computing Polynomials                                                                                                                                        |
|---|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |       | 6.2.1 Representation by Bernstein Polynomials                                                                                                                         |
|   |       | 6.2.2 Synthesizing CRNs for Computing Polynomials                                                                                                                     |
|   |       | 6.2.3 Proof Based on the Mass-Action Kinetics                                                                                                                         |
|   |       | 6.2.4 Encoding and Decoding                                                                                                                                           |
|   |       | 6.2.5 DNA Implementation                                                                                                                                              |
|   | 6.3   | Discussion                                                                                                                                                            |
| 7 | CR    | Is for Computing Mathematical Functions using Fractional Cod-                                                                                                         |
|   | ing   | 95                                                                                                                                                                    |
|   | 7.1   | Prior work                                                                                                                                                            |
|   | 7.2   | CRNs for Multiplication Units                                                                                                                                         |
|   |       | 7.2.1 Mult unit:                                                                                                                                                      |
|   |       | 7.2.2 NMult unit:                                                                                                                                                     |
|   | 7.3   | Designing CRNs for Computing Functions                                                                                                                                |
|   |       | 7.3.1 Methodology                                                                                                                                                     |
|   | 7.4   | Molecular Perceptron                                                                                                                                                  |
|   |       | 7.4.1 MUX unit:                                                                                                                                                       |
|   |       | 7.4.2 Bipolar Mult unit:                                                                                                                                              |
|   |       | 7.4.3 Bipolar NMult unit:                                                                                                                                             |
|   |       | 7.4.4 Bipolar sigmoid function $\ldots \ldots \ldots$ |
|   | 7.5   | DNA Implementation                                                                                                                                                    |
|   | 7.6   | Discussion                                                                                                                                                            |
| 8 | Cor   | clusions and Future Directions 114                                                                                                                                    |
|   | 8.1   | Conclusion                                                                                                                                                            |
|   | 8.2   | Future Directions                                                                                                                                                     |
| R | efere | nces 118                                                                                                                                                              |

| Apper | ndix A. List of molecular Reactions                                                                      | 129 |
|-------|----------------------------------------------------------------------------------------------------------|-----|
| A.1   | Molecular Reactions                                                                                      | 129 |
|       | A.1.1 molecular perceptron                                                                               | 129 |
|       | A.1.2 molecular ADC 3bit                                                                                 | 137 |
|       | A.1.3 molecular DAC 3bit                                                                                 | 138 |
|       | A.1.4 molecular Adder 3bit                                                                               | 140 |
|       | A.1.5 molecular Markov                                                                                   | 146 |
|       | A.1.6 $y(x) = \frac{3}{4}x^2 - x + \frac{3}{4}$ Molecular                                                | 147 |
|       | A.1.7 molecular encoder                                                                                  | 147 |
|       | A.1.8 molecular decoder                                                                                  | 148 |
|       | A.1.9 molecular e-x                                                                                      | 148 |
|       | A.1.10 molecular bipolar sigmoid $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ | 151 |
|       | A.1.11 molecular unipolar sigmoid                                                                        | 152 |
|       | A.1.12 molecular Fully async FIR                                                                         | 154 |
|       | A.1.13 molecular Fully async IIR                                                                         | 155 |
| A.2   | DNA Reactions                                                                                            | 156 |
|       | A.2.1 perceptron DNA                                                                                     | 156 |
|       | A.2.2 ADC-3bit DNA                                                                                       | 197 |
|       | A.2.3 DAC-3bit DNA                                                                                       | 202 |
|       | A.2.4 Markov Chain DNA                                                                                   | 206 |
|       | A.2.5 $y(x) = \frac{3}{4}x^2 - x + \frac{3}{4}$ DNA                                                      | 208 |
|       | A.2.6 Function $e^{-x}$ DNA                                                                              | 210 |

# List of Tables

| 4.1 | Stable concentration of molecules $i, x_2$ , and $w_2$ after completion of Re-                                                                 |     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | actions $(4.15)$                                                                                                                               | 44  |
| 4.2 | Stable molecular concentrations after completion of Reactions $(4.16)$ and                                                                     |     |
|     | $(4.17). \ldots \ldots$ | 45  |
| 5.1 | Simulation vs theoretical computation of ruin probability for example in                                                                       |     |
|     | Figure 5.1                                                                                                                                     | 67  |
| 5.2 | Simulation vs theoretical computation of ruin probabilities for A 9-state                                                                      |     |
|     | gambler Ruin Problem                                                                                                                           | 71  |
| 6.1 | The number of required molecular types in the proposed CRN for a poly-                                                                         |     |
|     | nomial of degree $m$                                                                                                                           | 83  |
| 6.2 | Accuracy of a DNA strand displacement implementation of a CRN com-                                                                             |     |
|     | puting $y(x) = \frac{1}{4} + \frac{9}{8}x - \frac{15}{8}x^2 + \frac{5}{4}x^3$ using the proposed method                                        | 90  |
| 6.3 | Number of chemical and DNA Strand-Displacement reactions for each                                                                              |     |
|     | group of the proposed CRN for computation of a Bernstein polynomial                                                                            |     |
|     | of degree $m$                                                                                                                                  | 93  |
| 7.1 | Truncated Maclaurin series, reformatted Maclaurin series using Horner's                                                                        |     |
|     | rule, and Mult/NMult structure for functions in equations (41)-(46) of                                                                         |     |
|     | the Supplementary Information                                                                                                                  | 105 |
| 7.2 | Computed values of functions with the proposed CRNs compared to their                                                                          |     |
|     | exact values.                                                                                                                                  | 110 |

| 8.1 | Comparison   | between | molecular | (DNA) | and ele | ectronics | (silicon) | comput- |     |
|-----|--------------|---------|-----------|-------|---------|-----------|-----------|---------|-----|
|     | ing systems. |         |           |       |         |           |           |         | 115 |

# List of Figures

| 2.1 | An example of DNA strand displacement.                                                                 | 11 |
|-----|--------------------------------------------------------------------------------------------------------|----|
| 2.2 | <b>DNA implementation of</b> $A + B \rightarrow C$ <b>.</b> According to the methodology               |    |
|     | developed in [1], a sequence of six DNA strand displacement reactions,                                 |    |
|     | $R1 - R6$ , implement bimolecular reaction $A + B \rightarrow C. \dots \dots \dots$                    | 12 |
| 3.1 | Block diagram for the moving-average filter [2]                                                        | 16 |
| 3.2 | simulation results for R and B phases of a four-phase oscillator [2]                                   | 18 |
| 3.3 | Block diagram for synchronous implementation of the moving-average                                     |    |
|     | filter [2]                                                                                             | 19 |
| 3.4 | Set of molecular reactions for the synchronous implementation of the                                   |    |
|     | moving-average filter [2]                                                                              | 19 |
| 3.5 | Block diagram for the asynchronous implementation of the moving-average $% \left( {{{\rm{B}}} \right)$ |    |
|     | filter [2]                                                                                             | 20 |
| 3.6 | (i) Implementing delay elements using the 3-phase asynchronous scheme.                                 |    |
|     | (ii) Cascaded delay elements implemented using asychronous scheme [2].                                 | 20 |
| 3.7 | Set of molecular reactions for the asynchronous implementation of the                                  |    |
|     | moving-average filter [2]                                                                              | 21 |
| 3.8 | Two types of signal transfer not allowed in our molecular scheme: (a)                                  |    |
|     | Outgoing edges scheduled in different times (b) Incoming edge with as-                                 |    |
|     | signed phase $i+1$ for a node with outgoing edge assigned to phase $i$ .                               | 23 |

| 3.9  | A three-tap FIR filter: (a) Block diagram, (b) Data flow graph and                                                      |    |
|------|-------------------------------------------------------------------------------------------------------------------------|----|
|      | scheduling based on the proposed method                                                                                 | 25 |
| 3.10 | An IIR filter: (a) Block diagram, (b) Data flow graph and scheduling for                                                |    |
|      | molecular implementation                                                                                                | 26 |
| 3.11 | 4-parallel 8-point RFFT: (a)Block diagram, (b)Data flow graph and schedul-                                              |    |
|      | ing obtained by the proposed method                                                                                     | 29 |
| 3.12 | Implementation of multiplexer by molecular reactions                                                                    | 29 |
| 3.13 | Speeding up signal transfers by positive feedback.                                                                      | 31 |
| 3.14 | Simulation results for FIR filter.                                                                                      | 32 |
| 3.15 | Simulation results for IIR filter                                                                                       | 33 |
| 3.16 | Simulation results for 8-point RFFT                                                                                     | 34 |
| 4.1  | Constructing linear I/O systems based on transfer function $\frac{Y(s)}{U(s)} = \frac{B(s)}{A(s)}$ ,                    |    |
|      | using integration, gain, and summation blocks.                                                                          | 40 |
| 4.2  | A first order low-pass continuous-time filter                                                                           | 41 |
| 4.3  | Block diagram of a general system developed in this chapter.                                                            | 42 |
| 4.4  | Simulation results of 3-bit molecular ADC for different input concentrations.                                           | 54 |
| 4.5  | Schematic of the 3-bit adder; (a) Block diagram, (b) Internal circuits for                                              |    |
|      | HA and FA blocks.                                                                                                       | 55 |
| 4.6  | Block diagram of the system for verifying molecular 3-bit adder                                                         | 55 |
| 4.7  | Simulation results of the molecular implementation of the system shown                                                  |    |
|      | in Figure 4.6                                                                                                           | 56 |
| 4.8  | Schematic for 4-bit Square-root unit                                                                                    | 57 |
| 4.9  | Kinetics simulations that compute the Square-root of 0, 1, 4, and 9 using                                               |    |
|      | the molecular implementation of unit shown in Figure 4.8                                                                | 57 |
| 4.10 | Block diagram of a simple prototype developed and verified in this research.                                            | 58 |
| 4.11 | Simulation results for the system shown in Figure 6.1.                                                                  | 59 |
| 4.12 | Implementation of $A + B \rightleftharpoons^{f} C + D$ using DNA strand-displacement                                    |    |
|      | $\begin{array}{c} r \\ mechanism. \\ \dots \\ $ | 59 |

| 4.13 | Simulation results for the DNA implementation of the system shown in                            |    |
|------|-------------------------------------------------------------------------------------------------|----|
|      | Figure 6.1                                                                                      | 60 |
| 5.1  | State diagram for the gambler problem with N=3. $\ldots$                                        | 63 |
| 5.2  | First two steps of updating the state of molecular model for Figure 5.1.                        | 66 |
| 5.3  | Stochastic simulation results for molecular model of Figure 5.1. $\ldots$                       | 68 |
| 5.4  | a) ODE simulation for molecular model of Markov chain in Figure 5.1,                            |    |
|      | b) The computed [RUIN]/([RUIN]+[WIN]) ratio. $\dots \dots \dots \dots \dots \dots$              | 69 |
| 5.5  | DNA representation of molecule $A$                                                              | 70 |
| 5.6  | Simulation results of DNA implementation for the proposed molecular                             |    |
|      | model for Figure 5.1.                                                                           | 71 |
| 5.7  | Simulation results of the DNA implementation for the gambler problem                            |    |
|      | with N=9 and starting with a) $5, b$ $8. \dots \dots \dots \dots \dots \dots$                   | 72 |
| 6.1  | Whole system performing computation in fractional representation                                | 76 |
| 6.2  | Simulation results for the CRN implementing the polynomial $y(x)$ =                             |    |
|      | $\frac{3}{4}x^2 - x + \frac{3}{4}$ at $x = 0.5$ . These were obtained from an ODE simulation of |    |
|      | the mass-action kinetics                                                                        | 79 |
| 6.3  | The values of $y(x)$ computed by a DNA implementation of proposed                               |    |
|      | CRN. Blue line: target $y(x)$ . Red stars: computed by DNA reactions.                           | 91 |
| 6.4  | DNA strand displacement reactions that emulates reaction $A + B \xrightarrow{k_i}$              |    |
|      | A + B + C                                                                                       | 92 |
| 6.5  | DNA strand displacement reaction that emulates reaction $A \xrightarrow{k_i} \emptyset$         | 93 |

- 7.1 **Basic molecular modules. a**, Multiplication module, Mult, calculates  $c = a \times b$ , the multiplication of two input variables a and b in unipolar fractional representation. The module is implemented by four molecular reactions and represented by the presented symbol. **b**, The four molecular reactions and the symbol for Nmult unit. This module computes  $c = 1 a \times b$  in unipolar fractional representation. **c**, The MUX unit that performs scaled addition. a, b and c can be unipolar or bipolar, whereas s is in unipolar representation. **d**, The bipolar Mult unit that performs multiplication in bipolar fractional representation and its molecular reactions. **e**, The molecular reactions and the symbol for bipolar NMult unit. This module computes  $c = -a \times b$  in bipolar fractional representation.
- 7.2 The proposed methodology. This figure shows the required steps for computing functions based on the proposed methodology. It starts with the approximation of the desired function as a polynomial using a series expansion method. The polynomial is then expressed in an equivalent form that only contains Mult and NMult units. The structure of Mult and NMult elements are mapped to their equivalent chemical reactions and finally the CRN is implemented by DNA strand displacement reactions. 102

100

- 7.4 **DNA simulation results.** The DNA reaction kinetics for computation of  $e^{-x}$ ,  $\sin(x)$ ,  $\cos(x)$ ,  $\log(1 + x)$ ,  $\tanh(x)$ , and  $\operatorname{sigmoid}(x)$  for x=0.3, and x=0.7. Each row is related to one function. The details for DNA implementation are listed in Supplementary Information Section S.7 . . 111

## Chapter 1

## Introduction

#### 1.1 Overview

The field of synthetic biology has advanced remarkably in the last 20-25 years. The progress in the broad field of synthetic biology continues to accelerate at a rate even faster than Moore's law that refers to doubling in the number of transistors on an integrated circuit (IC) chip every 18 months. A similar growth in synthetic biology is referred as Carlson's law [3], [4]. Due to the remarkable advancements in the field of synthetic biology, biomolecular systems are emerging as new technologies for performing computation. For bimolecular systems the concentrations of molecules, i.e., number of molecules per unit volume, represent signal values, in the same way that for electronic systems voltages, i.e., energy per unit charge, represent signal values. One can design molecular systems to perform signal processing or other forms of computation in terms of molecular concentrations.

The idea of computation directly with molecular reactions, as opposed to writing computer programs to analyze chemical systems, dates back to the early work by Conard [5] and the seminal work of Adleman [6]. In this context, a chemical reaction network (CRN) transforms input concentrations of molecular types into output concentrations, and thus implements computation. (It should be noted that the equilibrium concentrations of the output molecules are considered as the computed output of the system.) In other words, CRNs are used as a programming language for designing molecular computing systems. These designed programs, i.e., CRNs, are technologyindependent and can be realized by any physical molecular system. In this research, the designed CRNs are mapped to DNA, a promising technology for such systems.

Although the ability to compute using biological and chemical molecules, as an alternative to computing using silicon ICs has been demonstrated [7], the incentive of molecular computing is not to compete with electronic circuits in terms of computational speed or size. Electronic circuits perform computations on the scale of nanoseconds whereas the computational rate of molecular systems is measured in minutes or even hours (typically 10-15 orders of magnitude slower). For example, when using a molecular system to monitor a protein 4 times a day, one requires a sample period of 21,600 seconds whereas, the sampling period for the electronic circuits is 1 ns with a clock speed of 1 GHz. Fortunately, today's DNA circuits can meet these sample rate constraints for simple circuits. Due to the advancement in the semiconductor technology, electronic circuits have been scaled to the size of nanometers. The size of molecular computing systems is also in the order of nanometers.

The main advantage of molecular computing systems is their environment of application. Whereas electronic circuits are pervasive in industrial and commercial applications, in some situations, it is more appropriate to implement computation directly with biological mechanisms. Molecular computing has the potential to revolutionize monitoring concentrations or rates of change of concentrations of proteins and targeted drug delivery. For example, one might want to implement a molecular mechanism for detecting protein markers of cancer and for producing drugs targeted precisely to cancerous cells. In fact, biomolecular circuits are the best alternative for electronic circuits and other computing technologies for in vivo applications. They are compatible with living cells and, unlike electronic circuits, biomolecular circuits do not need batteries. Biomolecular circuits can obtain the required energy from resources, such as heat, when inside living bodies.

This research discusses two categories of molecular computing systems. The first group is made up of molecular reactions that perform discrete-time signal processing. The second group is compromised of molecular systems for other forms of computation. For the first group, only one molecular type is used to represent the value of each signal/variable. This is the traditional way of molecular signal representation where, the signal/variables value is directly defined by the concentration of the assigned molecular type. For the second group, however, each signal/variable is represented using two molecular types: type-0 and type-1. The variables value is defined as the ratio of concentration of molecule type-1 over the total concentration of type-0 and type-1 molecules. This novel representation, proposed for the first time in this research, is referred to as fractional coding. Fractional coding empowers the computational capability of chemical reactions and enables them to compute more complex mathematical functions.

#### **1.2** Contribution

The contributions of this research can be listed as follows.

1- The most challenging parts of molecular implementation of signal processing algorithms are signal flow controlling and delay (memory) units. This thesis proposes an asynchronous forward signal flow scheme that is able to implement multiple-input/multiple-output signal processing systems including delay units. Prior work [2] has proposed two other schemes, i.e., *synchronous* and RGB schemes, for signal flow control and has verified them for the implementation of finite impule response (FIR) and infinite impulse response (IIR) filters. In this thesis, we implement FIR and IIR filters and 8-point real-valued FFT algorithm using both prior signal flow schemes and

the proposed signal flow scheme. Then we compare them with respect to the number of required molecular types and reactions, computational speed and accuracy, and robustness.

2- In order to increase the robustness of molecular computing systems, we propose mixed (digital and analog) signal processing structures. Since digital is more robust than analog, part of the computation can be performed in digital. We propose required analog to digital and digital to analog converters by molecular reactions.

3- Markov chains have been used to model different systems. For the first time, we propose a systematic method for implementing Markov chains by molecular reactions.

4-We propose fractional coding for molecular systems that bridges molecular computing and stochastic logic.

5- Based on the proposed unipolar fractional coding, we present a systematic method to design molecular reactions for computing Bernstein polynomials. The method is used to compute a wide range of general polynomials with both the input and output in the unit interval [0, 1].

6- Based on the unipolar and bipolar fractional coding, we propose molecular reactions for computing mathematical functions. We show that some common complex functions such as  $\sin x$ ,  $e^{-x}$ ,  $\log(1+x)$ , and sigmoid(x) can be computed by molecular reactions. Since all of these reactions are bimolecular reactions, i.e., each reaction has only two reactants, they are compatible with natural DNA and can be implemented by DNA systems with a high level of accuracy.

#### **1.3** Outline of the Dissertation

This dissertation is organized as follows:

Chapter 2, provides the development process employed in this research for implementation of molecular computing systems. The process consists of three phases: design, simulation, and implementation. The chapter describes the tools and methods used in each phase.

Chapter 3 presents a new design framework for discrete-time signal processing systems by molecular reactions. The presented framework is a fully-asynchronous scheme. The DNA implementation of the new framework is compared to prior frameworks.

Chapter 4 reviews molecular implementation of continuous-time, discrete-time, and digital signal processing systems. It also presents molecular sensing systems where molecular reactions are used to implement analog-to-digital converters (ADCs) and digital-to-analog converters (DACs). The chapter provides several examples including a complete example of the addition of two molecular signals using digital implementation. For this example, the concentrations of two input molecules are converted to digital by two 3-bit ADCs, and the 4-bit output of the digital adder is converted to analog by a 4-bit DAC.

Chapter 5 discusses a systematic method that can be used in order to synthesize molecular reactions for computing any first order Markov chain process. This chapter theoretically analyze the synthesized reactions and validate them for DNA implementation.

Chapter 6 introduces unipolar fractional coding as a new non-standard representation of variables by molecules. Based on this molecular coding the chapter presents a systematic method for synthesis of chemical reactions that are able to compute polynomials.

Chapter 7 introduces bipolar representation and very simple molecular reactions for operations such as multiplication and addition. This chapter then presents a systematic method for synthesis of chemical reactions that are able to compute mathematical functions. The chapter also describes implementation of molecular perceptron using the fractional molecular coding.

Finally, Chapter 8 concludes remarks and points out some of the possible future research directions.

## Chapter 2

# Design and Modeling of Molecular Computing Systems

Generally speaking, a product development process for a system consists of three main phases: design (programming), simulation (modeling), and implementation. Similarly, we develop the desired molecular systems through several iterations of a designsimulation-implementation cycle. This chapter describes methods and tools we use in each development phase.

#### 2.1 Design (Programming)

A common way to begin the design of a system is representing it using an abstract level. For example, for electronic circuits, the design begins in different levels of abstraction such as system blocks, register transfer levels (RTLs), gates, and transistors. Analogous levels of abstraction exist for biological systems: multicellular organisms, single cells, signaling pathways, genetic regulatory networks, proteins, and molecular dynamics and reactions. In this research, we use *molecular reactions* as the abstract level to design, analyze, and discuss target computing molecular systems. Chemical reaction network (CRN) is commonly used as a describing and programming language for molecular reactions. As we describe later in this chapter, CRNs have well-defined theory and simulation software tools. Furthermore, due to the recent advances in DNA nanotechnology, it is possible to map and synthesize nearly arbiterary CRNs by DNA reactions. Thus, we can benefit from the advantages of CRNs by selecting *molecular reactions* as the abstract level for the design phase.

A CRN consists of a set of molecular reactions. For example, the simple CRN, represented in (2.1), is composed of two reactions; the first reaction in the first line and the second reaction in the second line.

$$\begin{array}{c} A + B \xrightarrow{k_1} C \\ 2C \xrightarrow{k_2} A \end{array} \tag{2.1}$$

The first reaction says that one molecule of type A combines with one molecule of type B to produce one molecule of type C. The rate constant,  $k_1$ , denotes the speed of this reaction. Similarly, the second reaction says that two molecules of C react and form one molecule of A.

In the design phase, we synthesize chemical reactions such that, in terms of molecular concentrations, the system produces a specific output for each input. In other words, the output concentration is a desired function of the input concentration.

In the next phase, we discuss how the dynamic behavior of each chemical reaction and the whole CRN can be quantitatively modeled and simulated.

#### 2.2 Simulation (Modeling)

Assuming that molecular concentrations and reaction rate constants are well-defined, there are two main models for simulation of CRNs: stochastic model and mass-action kinetic model. Both models deal with molecular concentrations. However, the stochastic model is used when the number of molecules is small (as small as hundreds of molecules) and the mass-action kinetic model is applicable to systems with a sufficiently large number of molecules.

In the stochastic model, the molecular concentrations are considered as discrete values, while in the mass-action kinetic model, the concentrations are continuous variables. It has been shown that if the number of molecules increases, the stochastic model converges to the mass-action kinetic model, and for molecular concentration of infinity, both models are the same.

#### 2.2.1 Stochastic model

Based on the stochastic model, each reaction is fired randomly provided there is enough number of reacting molecules [8][9]. In fact, the probability of firing each reaction is proportional to the rate constant and the number of reacting molecules available in the system.

In the stochastic model, the behavior of the CRN is simulated by the sequence of reactions. The firing probabilities are updated after the completion of each reaction.

Suppose for the CRN shown in (2.1), the initial concentrations of A, B, and C are 15, 10, and 5 molecules, respectively. The firing probabilities for the first reaction, P(R1), and the second reaction, P(R2), can be calculated as

$$P(R1) = \frac{k_1 \binom{15}{1} \binom{10}{1}}{k_1 \binom{15}{1} \binom{10}{1} + k_2 \binom{5}{2}}$$

and

$$P(R2) = \frac{k_2\binom{5}{2}}{k_1\binom{15}{1}\binom{10}{1} + k_2\binom{5}{2}}.$$

Depending on which reaction takes place, the firing probabilities of reactions are updated for the next reaction. The calculation can be continued until either there is no possible firing reaction, the same pattern of firing reaction repeats, or a sufficiently large number of reactions are completed. For a CRN, even with a particular initial concentration, the sequence of fired reactions is not the same if the simulation is repeated. Therefore, the simulation is repeated enough times to obtain the distribution of the final output.

#### 2.2.2 Mass-action kinetic model

The second model, i.e., Mass-action kinetic model, is based on the mass-action law, where the concentrations of molecules are continuous variables and their time variation can be described by ordinary differential equations (ODEs). The concentration of molecule A is denoted [A], and typically its unit is moles per liter. It is noticeable that one mole is  $6.02 \times 10^{23}$  molecules, and the symbol M is used for moles per liter. For the CRN shown in (2.1), the model leads to the following ODEs:

$$\frac{d[A]}{dt} = -k_1[A][B] + k_2[C]^2 
\frac{d[B]}{dt} = -k_1[A][B] 
\frac{d[C]}{dt} = k_1[A][B] - 2k_2[C]^2$$
(2.2)

In general, the ODEs produced by the mass-action model of CRNs can be solved by standard numerical techniques, and thus one can generate the time variation dynamics of molecular concentrations.

For both models, there are some software tools that perform simulations for different CRNs accordingly. In this thesis, however, we use our own MATLAB code for the stochastic kinetic model and a Mathematica code written by Caltech for the mass-action kinetic model.

#### 2.3 Implementation

One should notice that the contributions of this research are neither experimental nor empirical; rather, they are constructive and conceptual. CRNs, as a fundamental model of computation, are used to design systems for performing desired computations. However, in order to validate practical aspects of our theoretical designs, we map them to DNA reactions. These DNA reactions are then simulated to verify the functionality and performance of the design.

There are three reasons behind why we choose DNA to validate the physical implementation of our designs:

1. DNA is a medium with biological origin. This means that DNA development of our designs can be realized *in vivo* or *in vitro* and potential application of our designs for smart drugs and protein monitoring.

2. DNA for the community of synthetic biology is like silicon for the electronics community. As development of silicon devices has made it feasible to produce low-cost complex electronic circuits, DNA technology is reducing the cost and time of constructing artificial biological systems. Moreover, new synthesis technologies are increasing the length and accuracy of the synthesized DNA molecules. Although it has not yet been achieved, the technology is heading toward making the DNA design phase and the DNA fabrication phase independent; designers only think of what DNA molecules they should use and then let technology figure out how to realize them.

3. Much work was involved in developing automated tools that map CRNs to DNA reactions. Fortunately, there are already some software tools that can produce DNA reactions for CRNs. In this research we use such a tool that is a Mathematica code developed by Caltech. The code produces DNA reactions for a given CRN and simulates them based on the mass-action kinetic model. Such simulation predicts the behavior of the actual DNA implementation with an acceptable accuracy.

We describe two approaches used to produce DNA reactions that can emulate the kinetic of CRNs. Both approaches are based on the toehold-mediated DNA strand-displacement reactions. Toehold-mediation was first introduced in [10] for the construction of DNA tweezers. We can map a molecular reaction to a set of DNA strand displacement (DSD) reactions using the *toehold mediated* mechanism if we consider similar strands of DNA as one molecular type.

**Approach 1:** We briefly describe the first approach of mapping chemical reactions to DNA strand displacement reactions with an example. The reader is referred to Soloveichik et al. for a detailed discussion of this mechanism [11]. The following is a simple example.

Consider the DNA strand displacement reaction shown in Figure 2.1. Here, a single strand of DNA  $R_1$  replaces the top strand of a double-strand DNA L; this generates a double strand H and a single strand B (this reaction is reversible). One of the top strands of the double strand H can be replaced by a single strand  $R_2$ , generating a single strand O. Then, O replaces the top strand of T, releasing P (note that the strands L, G and T are "fuel" sources. It is assumed that there is an abundant source of these; the concentrations do not matter). The signals are the concentrations of  $R_1$ ,  $R_2$  and P. This sequence of strand displacements implements the abstract chemical reaction:  $R_1 + R_2 \xrightarrow{k} P$ .

Figure 2.1: An example of DNA strand displacement.

**Approach 2:** We describe the second approach for chemical reactions with the same pattern, i.e., bimolecular reactions with one product. We use the template presented in Figure 2.2 for the implementation of these reactions by DNA strand-displacement reactions.



Figure 2.2: **DNA implementation of**  $A + B \rightarrow C$ . According to the methodology developed in [1], a sequence of six DNA strand displacement reactions, R1 - R6, implement bimolecular reaction  $A + B \rightarrow C$ .

Fig. 2.2 shows a sequence of six DNA reactions, R1-R6, that implement molecular reaction  $A + B \rightarrow C$ . All DNA reactions are based on the toehold mediated mechanism first presented in [10]. The primary molecules, A, B, and C, are represented by single strand DNA molecules – red strands in Fig. 2.2 – composed of a toehold and a main domain part. The initial system provides required gate and auxiliary molecules, i.e., DNA molecules G1, G2, , <c tr>, and <i tc> – black strands in Fig. 2.2. Furthermore, the concentration of gate and auxiliary strands are initialized to be large enough to efficiently supply the sequence of DNA reactions to continue as long as the primary molecules last.

Each reaction in the sequence of DNA reactions produces the mediating toehold for the next reaction. The sequence starts when the toehold domain of input molecule A, i.e., ta, binds with its WatsonCrick complementary domain in gate G1, i.e., ta<sup>\*</sup>. This leads to the binding of whole molecules of A to gate G1. Similarly, through reaction R2, the DNA molecule B binds to gate G1, and in Reaction R5, the output DNA molecule C is released from gate G2. For details of the mechanism, the reader is referred to [1]. The authors in [1] have experimentally validated that the sequence of DNA strand displacement reactions in Fig. 2.2 do implement the expected kinetics for the desired bimolecular reaction. They also showed that the rate constant can be tuned by adjusting the initial concentrations of gates and auxiliary molecules. The linear, double-stranded DNA molecules used in the mechanism can be derived from biologically synthesized (plasmid) DNA. Compared to the first approach, for the second approach, compatibility with natural DNA leads to the reduction of errors associated with chemically synthesized DNA.

The following chapters discuss molecular implementation of signal processing and other forms of computations using the development process described in this chapter.

## Chapter 3

# Asynchronous Discrete-time Signal Processing

General signal processing algorithms can be specified in terms of two basic modules: computation and delay (memory) units. The computation module is mainly composed of multiplication and addition, and its molecular implementation has been realized in prior work [12][2]. The most challenging parts of molecular implementation of signal processing algorithms, however, are delay (memory) units and signal transfer among delay units and computation units. In this chapter we discuss a methodology to implement signal processing systems including delay units. We propose a framework that controls signal flow among computation and delay units. This framework is called fully *asynchronous schemes*.

#### 3.1 Prior Work

For discrete-time systems the corresponding computations start after the inputs are sampled at specific points in time. In these systems the timings of signal transfers need to be synchronized in order to avoid any interference in computations. The concept of a computational cycle in a molecular system is critical. Two different synchronization schemes have been proposed in prior work; these include: fully-synchronous and globally-synchronous locally-asynchronous. Fully synchronous systems are synchronized by a two-phase clock [13, 2]. In a globally-synchronous locally-asynchronous systems, three proteins, referred as Red (R), Green (G) and (Blue) are introduced. The transfer of R to G, G to B and B to R completes a computational cycle. The global RGBclock provides global synchronization [14, 2]. Typically, RGB clocked systems are faster than the fully-synchronous systems, as the latter involve more phases of transfers. The protein transfer operation is a slow operation and is the bottleneck in molecular systems with respect to sample period. Although fully-synchronous systems require a two-phase clock, this clock is designed from a 4-phase protein transfer mechanism. This section presents a brief review of the fully-synchronous and the RGB systems.

All reactions in the discrete-time system are implemented using only two coarse rate categories for the reaction rate constants, i.e.,  $k_{fast}$  and  $k_{slow}$ . Given reactions with any such set of rates, the computation is correct. It does not matter how fast the fast reactions are or how slow the slow reactions are - only that all fast reactions fire relatively faster than slow reactions. We illustrate both schemes with a simple example, a moving-average filter. In fact, it is a first-order discrete-time low-pass filter. The circuit diagram for the filter is shown in Figure 3.1. It produces an output value that is one-half the current input value plus one-half the previous value. Given a time-varying input signal X, the output signal Y is a moving average, i.e., a smoother version of the input signal. Since there is no feedback in the system, it is called a *finite impulse* response (FIR) filter [15].

#### 3.1.1 Fully-Synchronous Framework

In this framework a global clock signal synchronizes signal transfers in the system. For a molecular clock, reactions are chosen that produce sustained oscillations in terms of chemical concentrations. With such oscillations, a low concentration corresponds



Figure 3.1: Block diagram for the moving-average filter [2].

to a logical value of zero; a high concentration corresponds to a logical value of one. Techniques for generating chemical oscillations are well established in the literature. Classic examples include the Lotka-Volterra, the Brusselator, and the Arsenite-Iodate-Chlorite systems [16, 17]. Unfortunately, none of these schemes is quite suitable for synchronous sequential computation: the required clock signal should be symmetrical, with abrupt transitions between the phases. A new design was proposed in [2] and [13] for multi-phase chemical oscillator. For a 4-phase oscillator the phases can be represented by molecular types R, G, B, V. First consider the reactions

$$2S_{r} \xrightarrow{k_{slow}} r + 2S_{r}$$

$$2S_{g} \xrightarrow{k_{slow}} g + 2S_{g}$$

$$2S_{b} \xrightarrow{k_{slow}} b + 2S_{b}$$

$$2S_{v} \xrightarrow{k_{slow}} v + 2S_{v}$$

$$R + r \xrightarrow{k_{fast}} R$$

$$G + g \xrightarrow{k_{fast}} G$$

$$B + b \xrightarrow{k_{fast}} B$$

$$V + v \xrightarrow{k_{fast}} V.$$

$$(3.1)$$

In reactions (3.1), the molecular types r, g, b, v are generated slowly and constantly, from source types  $S_r, S_g, S_b, S_v$ , whose concentrations do not change with the reactions. In reactions (3.2), the types R, G, B, V quickly consume the types r, g, b, v, respectively. Call R, G, B, V the phase signals and r, g, b, v the absence indicators. The latter are only present in the absence of the former. The reactions

transfer one phase signal to another, in the absence of the previous one. The essential aspect is that, within the R, G, B, V sequence, the full quantity of the preceding type is transferred to the current type before the transfer to the succeeding type begins. To achieve sustained oscillation, we introduce positive feedback. This is provided by the reactions

$$2G \quad \frac{k_{slow}}{\overleftarrow{k_{fast}}} \quad I_G$$

$$R + I_G \quad \frac{k_{slow}}{\overleftarrow{k_{fast}}} \quad 3G$$

$$2B \quad \frac{k_{slow}}{\overleftarrow{k_{fast}}} \quad I_B$$

$$G + I_B \quad \frac{k_{slow}}{\overleftarrow{k_{fast}}} \quad 3B$$

$$2V \quad \frac{k_{slow}}{\overleftarrow{k_{fast}}} \quad I_V$$

$$B + I_V \quad \frac{k_{slow}}{\overleftarrow{k_{fast}}} \quad 3V$$

$$2R \quad \frac{k_{slow}}{\overleftarrow{k_{fast}}} \quad I_R$$

$$V + I_R \quad \frac{k_{slow}}{\overleftarrow{k_{fast}}} \quad 3R$$

$$(3.4)$$

Consider the first two reactions. Two molecules of G combine with one molecule of R to produce three molecules of G. The first step in this process is reversible: two molecules of G can combine, but in the absence of any molecules of R, the combined form will dissociate back into G. So, in the absence of R, the quantity of G will not change much. In the presence of R, the sequence of reactions will proceed, producing one molecule of G for each molecule of R that is consumed. Due to the first reaction  $2G \xrightarrow{k_{slow}} I_G$ , the
transfer will occur at a rate that is super-linear in the quantity of G; this speeds up the transfer and so provides positive feedback. Suppose that the initial quantity of R is set to some non-zero amount and the initial quantity of the other types is set to zero. We will get an oscillation among the quantities of R, G, B, and V.

One requirement for a clock in synchronous computation is that different clock phases should not overlap. A two-phase clock is used for synchronous structures: concentrations of molecular types representing clock phase 0 and clock phase 1 should not be present at the same time. To this end, two nonadjacent phases, say R and B in a four-phase RGBV oscillator, are chosen as the clock phases. The scheme for chemical oscillation works well. Figure 3.2 shows the concentrations of R and B as a function of time, obtained through differential equation simulations of the Reactions (3.1), (3.2), (3.3), and (3.4). It may be noted that the two phases R and B are essentially nonoverlapping.



Figure 3.2: simulation results for R and B phases of a four-phase oscillator [2].

The delay and computation elements for the moving average filter in Figure 3.3 are implemented by the reactions in Figure 3.4. As Figure 3.3 shows each delay element, D, is modeled by two molecular types, D and D'. In the presence of B, the input signal X is transferred to molecular types A and C; these are both reduced to half and transferred to D' and Y, respectively. In the presence of R, D' is transferred to D.



Figure 3.3: Block diagram for synchronous implementation of the moving-average filter [2].

| S1                                       | S2                                          |
|------------------------------------------|---------------------------------------------|
| $B + X \xrightarrow{k_{slow}} A + C + B$ | , kslow                                     |
| $2 A \xrightarrow{k_{fast}} D'$          | $R + D \xrightarrow{\longrightarrow} D + R$ |
| $2 C \xrightarrow{k_{fast}} Y$           |                                             |
| $B + D \xrightarrow{k_{slow}} Y + B$     |                                             |

Figure 3.4: Set of molecular reactions for the synchronous implementation of the moving-average filter [2].

Therefore, in the following phase B, half of the new sample adds with the half of the previous sample stored in D.

#### 3.1.2 Globally-Synchronous Locally-Asynchronous Framework (RGB)

The globally-synchronous locally-asynchronous framework is illustrated in Figure 3.5. It contains no clock signal; rather it is "self-timed" in the sense that a new phase of the computation begins when an external sink removes the entire quantity of molecules Y, i.e., the previous output value, and supplies a new quantity of molecules X, i.e., the current input value. Each delay element in this framework is modeled by three molecular

types, namely RGB. Figure 3.6 shows how the computations in asynchronous framework are performed in three phases and how delay elements are implemented using three molecular types  $R_i, G_i, B_i$ .



Figure 3.5: Block diagram for the asynchronous implementation of the moving-average filter [2].



Figure 3.6: (i) Implementing delay elements using the 3-phase asynchronous scheme. (ii) Cascaded delay elements implemented using asychronous scheme [2].

In this framework, the moving-average filter is implemented by the reactions in Figure 3.7. The molecular types corresponding to signals are X, A, C, R, G, B, and Y. To illustrate the design, we use colors to categorize some of these types into three categories: Y and R in red; G in green; and X and B in blue. The group of the first

three reactions shown in the S1 column of Figure 3.7 transfers the concentration of X to A and to C, a *fanout* operation. The concentrations of A and C are both reduced to half, scalar multiplication operations. The concentration of A is transferred to the output Y, and the concentration of C is transferred to R. The transfer to R is the first phase of a delay operation. Once the signal has moved through the delay operation, the concentration of B is transferred to the output Y. Since this concentration is combined with the concentration of Y produced from A, this is an addition operation. The final group of three reactions shown in the S1 column of Figure 3.7 implements the delay operation. The concentration of R is transferred to G and then to B. Transfers between two color categories are enabled by the absence of the third category: red goes to green in the absence of green. The reactions are enabled by molecular types r, g, and b that we call absence indicators. The absence indicators ensure that the delay element takes a new value only when it has finished processing the previous value.

| S1                                    | S2                                      | S3                                     | S4                                    |  |
|---------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------|--|
| $g + X \xrightarrow{k_{slow}} A + C$  | $2 R \xrightarrow{k_{fast}} 2R + R'$    | $2S_r \xrightarrow{k_{slow}} 2S_r + r$ | $R' + X \xrightarrow{k_{fast}} A + C$ |  |
| $2 A \xrightarrow{k_{fast}} Y$        | $2 Y \xrightarrow{k_{fast}} 2Y + R'$    | $2S_g \xrightarrow{k_{slow}} 2S_g + g$ | $G' + R \xrightarrow{k_{fast}} G$     |  |
| 2 A k <sub>fast</sub> P               | $2 G \xrightarrow{k_{fast}} 2G + G'$    | $2S_b \xrightarrow{k_{slow}} 2S_b + b$ | $B' + G \xrightarrow{k_{fast}} B$     |  |
| $2 C \xrightarrow{k} R$               | $2 B \xrightarrow{k_{fast}} 2B + B'$    | $R' + r \xrightarrow{k_{fast}} R'$     | $R' + B \xrightarrow{k_{fast}} Y$     |  |
| $b + R \xrightarrow{\kappa_{slow}} G$ | $2 X \xrightarrow{k_{fast}} 2X + R'$    | $G' + g \xrightarrow{k_{fast}} G'$     |                                       |  |
| $r + G \xrightarrow{k_{slow}} B$      | $2 R' \xrightarrow{k_{fast}} \emptyset$ | $B' + b \xrightarrow{k_{fast}} B'$     |                                       |  |
| $g + B \xrightarrow{k_{slow}} Y$      | $2 G' \xrightarrow{k_{fast}} \emptyset$ |                                        |                                       |  |
|                                       | $2 B' \xrightarrow{k_{fast}} \emptyset$ |                                        |                                       |  |

Figure 3.7: Set of molecular reactions for the asynchronous implementation of the moving-average filter [2].

In the group of reactions shown in the S2 column of Figure 3.7 molecules of types R', G', and B' are generated from the signal types that we color-code red, green, and blue, respectively. The concentrations of the signal types remain unchanged. This generation/consumption process ensures that equilibria of the concentrations of R', G', and B' reflect the total concentrations of red, green, and blue color-coded types, respectively. Accordingly, we call R', G', and B' color concentration indicators. They serve to speed up signal transfers between color categories, and provide global synchronization.

In the group of reactions shown in the S3 column of Figure 3.7, molecules of the absence indicator types r, g, and b are generated from external sources  $S_r, S_g$ , and  $S_b$ . At the same time, they are consumed when R', G', and B' are present, respectively. Therefore, the absence indicators only persist in the absence of the corresponding signals: r in the absence of red types; g in the absence of green types; and b in the absence of blue types. They only persist in the absence of these types because otherwise "fast" reactions consume them quickly.

Finally, the reactions shown in the S4 column of Figure 3.7 provide positive feedback kinetics. These reactions effectively speed up transfers between color categories as molecules in one category are "pulled" to the next by color concentration indicators. Note that the concentration of the input X is sampled in the green-to-blue phase. The output Y is produced in the blue-to-red phase.

Although the RGB scheme doesn't have an independent global clock signal it provides a global synchronization by categorizing signals into three phases, so called RGBphases. Many local RGB blocks enable locally-asynchronous computation while global color concentrations, R', G', B', provide global synchronization. In fact, they form a nonsymmetric clock dependent on the signal values of local RGB blocks.

### 3.2 Fully Asynchronous Scheme

This section presents an asynchronous 4-phase method for implementing discretetime signal processing algorithms with molecular reactions. The proposed synthesis flow guarantees a conflict-free scheduling for any arbitrary DFG related to a DSP operation including computations and delay elements.

We present a new approach for designing and implementing discrete-time signal processing algorithms with molecular reactions. In the new framework, each delay element of the structure is assigned two molecular types,  $D_i$  and  $D'_i$ . Transferring signals among delay elements is implemented by transferring concentrations between molecular types assigned to delay elements. The entire computation is completed in four phases. Signal transfers in each phase are triggered by the absence indicators of the other phases. In the proposed scheme, two types of transfer are not allowed. These restrictions are illustrated in Figure 1. First, all outgoing edges of a node must be scheduled in the same phase. Figure 3.8 illustrates a violation of this constraint. Second, if outgoing edges of a node are scheduled at phase "i", none of its incoming edges can be scheduled at phase "i + 1". Figure 1(b) illustrates a violation of this constraint.

A synthesis approach for mapping any DSP algorithm to molecular reactions is described as follows:

1- Draw the data flow graph (DFG) according to the block diagram of the DSP algorithm. Replace the output node y by nodes y and y', and each delay element  $D_k$  by a pair of nodes  $D_k$  and  $D'_k$ .

2- Assign phase 1 to the outgoing edges of the input node and the outgoing edges of each  $D'_k$  node.

3- Assign phase 2 to the fan out edge of output node (y).

4- All edges between  $D_k$  and  $D'_k$  are scheduled to phase 3.

5- The outgoing edge of y' is scheduled to phase 4.



Figure 3.8: Two types of signal transfer not allowed in our molecular scheme: (a) Outgoing edges scheduled in different times (b) Incoming edge with assigned phase i+1 for a node with outgoing edge assigned to phase i.

6- The molecular reactions for absence indicators, computations, and signal transfers are synthesized according to the assigned scheduling phases.

The proposed 4-phase method is now illustrated by three DSP operations: an FIR filter, a first-order IIR filter and an FFT computation for real-valued signals.

a. FIR filter: Figure 3.9(a) shows a three-tap FIR filter. For simplicity, all tap coefficients are assumed to be 1. The flow graph in Figure 3.9(b) illustrates the phase assignments.

The molecular reactions producing the absence indicator for each phase of this flow graph are described by (3.5).  $a_i$ 's (i = 1, 2, 3, 4) denote the absence indicators for phase *i*.

Phase 1:  

$$src \xrightarrow{k_s} a_1 + a_2 + a_3 + a_4$$

$$a_1 + x \xrightarrow{k_f} x$$

$$a_1 + D'_1 \xrightarrow{k_f} D'_1$$



(b)

Figure 3.9: A three-tap FIR filter: (a) Block diagram, (b) Data flow graph and scheduling based on the proposed method.

|          | $a_1 + D'_2 \xrightarrow{k_f} D'_2$ |       |
|----------|-------------------------------------|-------|
| Phase 2: | $a_2 + y \xrightarrow{k_f} y$       | (3.5) |
| Phase 3: | $a_3 + D_1 \xrightarrow{k_f} D_1$   |       |
|          | $a_3 + D_2 \xrightarrow{k_f} D_2$   |       |
| Phase 4: | $a_4 + y' \xrightarrow{k_f} y'$     |       |

Then, reactions (3.6) provide the signal transfers associated with related absence indicators. Signal transfers of each phase are enabled by the absence indicator of the previous phase. Note that these are all slow reactions.

Phase 1:  $x + a_4 \xrightarrow{k_s} D_1 + y$   $D'_1 + a_4 \xrightarrow{k_s} D_2 + y$   $D'_2 + a_4 \xrightarrow{k_s} y$ 

Phase 2:  

$$y + a_1 \xrightarrow{k_s} y' \qquad (3.6)$$
Phase 3:  

$$D_1 + a_2 \xrightarrow{k_s} D'_1$$

$$D_2 + a_2 \xrightarrow{k_s} D'_2$$

According to reactions (3.5) and (3.6), molecules of x,  $D'_1$ , and  $D'_2$  transfer in the first phase. After all molecules of x,  $D'_1$ , and  $D'_2$  are transferred, phase 2 starts and y is transferred to y'. In phase 3,  $D_1$  and  $D_2$  transfer, respectively, to  $D'_1$  and  $D'_2$  after all molecules of y transfer to y'. Concentration of  $D'_1$  and  $D'_2$  are stored to be used for the computation of the next output. Thus, each pair of  $D_i$  and  $D'_i$  (i = 1, 2) functions as a delay element.

One should notice that the final output y' is collected whenever the absence indicator of the third phase,  $a_3$ , is nonzero, implying the third phase has been completed. While the new input is also injected at the same time, it is not used by the system until all molecules of y' are collected.

**b.** IIR Filter: As another simple DSP operation, we describe the 4-phase method for a simple first-order IIR filter. The block diagram of this filter is shown in Figure 3(a). The filter contains a multiplication by 0.5 inside a feedback loop. From steps 1 to 5 of the synthesis flow, the scheduled 4-phase flow graph for the filter is obtained as shown in Figure 3.10(b).

The set of required absence indicator reactions are illustrated in (3.7).

$$src \xrightarrow{k_s} a_1 + a_2 + a_3 + a_4$$
Phase 1:  

$$a_1 + x \xrightarrow{k_f} x$$

$$a_1 + D'_1 \xrightarrow{k_f} D'_1$$
Phase 2:  

$$a_2 + y \xrightarrow{k_f} y$$
Phase 3:  

$$a_3 + D_1 \xrightarrow{k_f} D_1$$
Phase 4:  

$$a_4 + y' \xrightarrow{k_f} y'$$
(3.7)



(b)

Figure 3.10: An IIR filter: (a) Block diagram, (b) Data flow graph and scheduling for molecular implementation.

Signal transfers and computations are implemented by the reactions in (3.8). Phase 1:  $x + a_4 \xrightarrow{k_s} y$ 

$$D'_{1} + a_{4} \xrightarrow{k_{s}} Ty$$

$$2Ty \xrightarrow{k_{f}} y$$
Phase 2:  $y + a_{1} \xrightarrow{k_{s}} y' + D_{1}$ 
Phase 3:  $D_{1} + a_{2} \xrightarrow{k_{s}} D'_{1}$ 

$$(3.8)$$

Note that the third reaction in (3.8), related to the multiplication by 0.5, fires to completion much faster than the transfer reactions. Each two Ty molecules are immediately combined to produce one y molecule. In other words,  $D'_1$  is transferred to temporary molecules Ty and in the same phase, Ty is multiplied by 0.5 to produce y. The presented method can be easily generalized for DSP algorithms with more than one input/output. The following example illustrates such an algorithm with four inputs and four outputs. c. Real-valued FFT (RFFT): Discrete Fourier transform (DFT) computes the spectral contents of a signal at various frequencies. Fast Fourier transform (FFT) computes DFT using a fast approach when the number of required multiplications can be reduced from  $O(N^2)$  to  $O(Nlog_2N)$  [13]. We implement FFT, as a canonical algorithm in DSP, with molecular reactions. Molecular implementation of FFT can be used to monitor the frequency content of a protein over time in applications such as drug delivery or cell growth modeling. Like all of the physical signals the concentration of input molecules is a real-valued signal. Therefore, we consider implementation of an FFT system with real-valued inputs, called RFFT. Figure 3.11(a) shows the block diagram for a 4-parallel 8-point RFFT. 8 samples of the input signal, x(n), arrive in two stages. In the first stage, x(0) to x(3) arrive while multiplexers choose their select input s1. In the second stage x(4) to x(7) arrive and multiplexers select input s2. All of the internal datapaths For an RFFT structure can be real-valued (not complex-valued) datapaths [14]. For more information about RFFT the reader is referred to [15].

The proposed synthesis method assigns scheduling of phases to the flow graph as shown in Figure 3.11(b). Multiplexers in Figure 3.11(a) are implemented as shown in Figure 3.12.

As figure 3.12 shows when s1 is nonzero x transfers to z and when s2 is nonzero y transfers to z. So signal s1 and s2 are control signals for multiplexers. In the first stage s1 is nonzero while s2 is zero. At the end of each stage s1 and s2 toggle to be ready for the next stage. For this purpose, in the second phase s1 transfers to s2' and s2 transfers to s1' simultaneously. Then in the fourth phase, s2' transfers to s2 and s1' transfers to s1. The circular flow graph at the bottom of Figure 3.11(b) represents the toggling of s1 and s2. This flow graph is implemented by the reactions in (3.5).

$$s1 + a_1 \xrightarrow{k_s} s2'$$
$$s2' + a_3 \xrightarrow{k_s} s2$$



(a) <u>Á</u>,  $D_{1}^{(3)}D_{1}'$  $D_{5}^{(3)}D'_{5}$ 1  $A_1$ 0 1  $I_1$ 1 1 5 m 2 4  $I_2$  $\mathcal{L}$  $(\pm)$ 0'2 s2 6 02 1  $\underbrace{+}^{A_{11}}$ ---3 D<sub>7 D'7</sub> (1) (1)<sub>s1</sub>  $D_{3} D'_{3}$  (1) 2 4  $I_3$ 13 0<sub>3</sub> 0'<sub>3</sub> 1  $\frac{\sqrt{2}}{2}$ (1)A<sub>12</sub> DÇ 2.4 M (+s2 (1) 0'4  $O_4$ 3D'8 (b)

Figure 3.11: 4-parallel 8-point RFFT: (a)Block diagram, (b)Data flow graph and scheduling obtained by the proposed method.

$$\begin{array}{c} x \xrightarrow{sl} \\ y \xrightarrow{s2} \\ z \end{array} = \begin{array}{c} x \xrightarrow{sl} \\ z \\ y \xrightarrow{s2} \\ y \xrightarrow{s2} \end{array} \qquad \begin{array}{c} x \xrightarrow{sl} \\ z \\ y \xrightarrow{s2} \\ y \xrightarrow{s2} \end{array} \qquad \begin{array}{c} x + S1 \xrightarrow{k_f} S1 + z \\ y + S2 \xrightarrow{k_f} S2 + z \end{array}$$

Figure 3.12: Implementation of multiplexer by molecular reactions.

$$s2 + a_1 \xrightarrow{k_s} s1' \tag{3.5}$$
$$s1' + a_3 \xrightarrow{k_s} s1$$

Similar to FIR and IIR filters, the reactions related to the computation, signal transfer, and absence indicators for each phase can be synthesized from the flow graph in Figure 3.11(b). Multiplication by  $\frac{\sqrt{2}}{2}$  is implemented using  $(\frac{1}{2} + \frac{1}{8} + \frac{1}{16})$  approximation.

In general a signal value can be negative, while concentration of a molecular type can't be negative. Therefore, we use one molecular type for positive and another one for negative part of each signal. We perform computations and signal transfers for each part independently. Finally these two parts cancel out each other and the one with larger concentration determines the sign and value of the signal [5]. For example  $x_p$  and  $x_n$  represent positive and negative part of signal x, and (3.6) describes positive-negative cancellation reaction by transferring equal concentrations of positive and negative parts to an external sink,  $\phi$ .

$$x_p + x_n \xrightarrow{k_f} \phi \tag{3.6}$$

In order to improve the accuracy and speed of the implemented molecular systems, we add three sets of reactions to them. We call these reactions: *threshold*, *negative feedback*, and *positive feedback* reactions.

Threshold reactions: When a type of molecule exists in the system, its absence indicator is nearly zero but not exactly zero. Although they are very slow a small nonzero value of absence indicator can fire the next phase reactions before completion of the current phase reactions. To avoid this, we initially inject a small concentration of so-called threshold molecules,  $T_x$ . The first reaction in (3.11) is a fast reaction. Thus, the absence indicator molecules,  $a_x$ , can't fire slow reactions before consuming  $T_x$ . In other words, the concentration of  $a_x$  must be more than the concentration of  $T_x$ , in order to fire signal transfer reactions. When x is present, the second reaction in (3.11) replenishes the threshold molecules  $T_x$ .

$$a_x + T_x \xrightarrow{k_f} \phi$$

$$x + a_x \xrightarrow{k_f} x + T_x \tag{3.11}$$

Negative feedback reactions: The absence indicator molecules,  $a_x$ , are produced constantly from the *src*. If x doesn't exist for a while, the concentration of  $a_x$  becomes larger and larger. Then when x is produced it takes more time to consume all molecules of  $a_x$ . The first reaction in (3.12) limits the increase of  $a_x$  concentration. The second reaction in (3.12) controls  $T_x$  in the same manner.

$$2a_x \xrightarrow{k_s} a_x + T_x$$

$$2T_x \xrightarrow{k_s} a_x + T_x \qquad (3.12)$$

Positive feedback reaction: As shown in Figure 3.13, in positive feedback reactions, destination of a signal transfer, z, is used to speed up the signal transfer y to z. In other words, when the first reaction in Figure 3.13 starts, second reaction speeds up its completion.



Figure 3.13: Speeding up signal transfers by positive feedback.

# 3.3 SIMULATION RESULTS

The molecular reactions are mapped to DNA-strand displacement reactions. Critical for mapping to DNA strands, all of our reactions are bimolecular reactions [9]. We

simulated the kinetic of reactions in our designs exploring the mechanism and software tools for DNA-strand displacement developed by Winfree's group at Caltech.

For all DNA simulations for the presented designs we used the following parameters: The initial concentration of auxiliary complexes,  $C_{max} = 10^{-5}M$ , the maximum strand displacement rate constant,  $q_{max} = 10^{6}M^{-1}s^{-1}$ ,  $k_s = 5.56 \times 10^{4}M^{-1}s^{-1}$  and  $k_f = 10 \times k_s$ . The initial concentration for the source molecular type, *src*, is set to 0.2 *nM*. The simulation results for the FIR and IIR filters are shown in Figure 3.14 and Figure 3.15, respectively.



Figure 3.14: Simulation results for FIR filter.

The input is a time-varying signal x with both high frequency and low frequency components. The output is a time-varying concentration y'. For the FIR filter, molecules of x are injected into the system and molecules y' are collected from the system every 20 hours. For IIR filter the injection/collection time is every 30 hours. The Figures show the theoretical outputs as well as simulated outputs. The simulated outputs track the theoretical outputs with some errors. The errors come mainly from the leakage among molecular types. Although it has one more delay element and more number of



Figure 3.15: Simulation results for IIR filter.

signal transfers, the average relative error for the FIR filter is less than the IIR filter. Generally speaking, IIR filters have higher errors than FIR filters since feedback in such filters leads to error accumulation. Therefore, we considered longer interval between output collections for IIR filter in order to improve its output accuracy.

For an 8-point 4-parallel RFFT implementation, the simulation results are illustrated in Figure 3.16.

Concentrations for the inputs in the first and second stages and their corresponding theoretical outputs are tabulated in Table 1. The injection for inputs and collection for outputs are scheduled once every 250 hours.

Table 2 summarizes the simulation results of the three operations, namely, the FIR filter, the IIR filter, and the RFFT transform in the proposed framework. The errors in this table are computed as the difference between the output value obtained by simulation,  $o_s$ , and the theoretical output,  $o_t$ . Table 2 shows that as the complexity of operation is increased, or equivalently the number of reactions in the system is increased, the calculation time and the output error increase.



Figure 3.16: Simulation results for 8-point RFFT.

# 3.4 COMPARISON

To evaluate the performance of our presented method, we compare the RFFT implementation with prior work in Table 3. As the table shows our 4-phase implementation is the fastest one; however, its accuracy is degraded. It is noticeable that even if we allow longer calculation time for 4-phase RFFT, it doesn't improve its output accuracy significantly. The 4-phase and synchronous schemes have less number of reactions and reactants compared to the RGB scheme. However, the number of reactants is not a limiting factor because DNA strands can easily generate a vast number of reactant types.

Although the *in-vitro* simulation results using DNA strands validate the functionality of the method, it is essential to improve the speed and robustness of the method. Future work will be directed towards synthesis of signal processing functions using DNA with one to two orders of magnitude faster sampling rates.

# Chapter 4

# Mixed-Signal Molecular Computing Systems

Computing or signal processing systems can either be analog or discrete-time. In analog processing, the input and output correspond to continuous-time signals. In discrete-time processing, the continuous-time signal is first sampled using a sampler, then processed in discrete time steps, and finally converted to a continuous-time signal if necessary by some form of interpolation. If the sampled signal in a discrete-time system is also discretized in amplitude, then it is referred to as a digital signal. A digital signal processing (DSP) system requires an analog-to-digital converter (ADC), processing of digital signals and finally a digital-to-analog conversion (DAC). Most information processing systems today store, process or transmit digital information. Discrete-time signal processing provides significantly higher accuracy than continuous-time since the delay elements can be realized with high-precision. In [18], it was recognized that the strength of a molecule was significantly degraded in an analog delay line with increase in the order of the system or the number of delays. In contrast, delay lines implemented in a discrete-time molecular or DNA system do not suffer from significant degradation. Digital processing provides even higher robustness and precise control in processing the signal in temporal or spectral domain than discrete-time signals. We differentiate discrete-time as sampled in time but continuous in amplitude and digital as sampled in time and discretized in amplitude.

This chapter presents synthesis of molecular computing systems that can be analog, discrete-time or digital. Analog and discrete-time processing of molecular systems have been considered in prior work. Synthesizing molecular and DNA reactions to implement continuous-time linear filters was first presented in [19]. Signal processing systems, implemented as either discrete-time or digital, contain delay elements. Delay elements transfer the molecules from their inputs to outputs without altering the concentration every computation cycle. Delay elements were first synthesized using molecular reactions in [2]. As described in Chapter 3, these systems can operate either in a fully-synchronous manner [13] using a two-phase clock, or in a locally-asynchronous globally-synchronous manner [2, 14], or in a fully-asynchronous manner [20] and [21]. The goal of this chapter is two-fold. First, this chapter presents a review of past work on continuous-time and discrete-time processing systems. Second, a new methodology to synthesize molecular ADCs and molecular DACs are presented. Molecular and DNA implementations of a complete digital processing system using ADC, digital computing and DAC are presented. These molecular designs can be scaled up with respect to their complexity. However, due to the resource limitation in living cells, they are more suitable for *in vitro* implementation, particularly by DNA.

One should notice that discrete-time continuous-amplitude molecular systems are not reviewed in this chapter because they have been discussed in Chapter 3.

# 4.1 Molecular Continuous-Time Systems

Molecular implementations of continuous-time or analog systems have been described in many past publications [22]-[25]. Study of analog molecular systems is important since it has been proven that computations in living cells are mostly analog [22]-[24]. Analog computations can be implemented with chemical reaction networks (CRNs) efficiently with respect to the number of reactions and molecular species. For example, as presented for the first time in [24] and [25], implementing a molecular adder via analog computation is simple: we have two input concentrations to be added; both are transferred to the same molecular type by means of two independent reactions. In one application of an *in vivo* analog adder, two inputs may correspond to regulating the expressions of a common protein from two independent genetic promoters [24]. Analog multiplication can be simply implemented by two molecular reactions [26]:

$$\begin{array}{cccc} x+y & \stackrel{\mathbf{k}_1}{\longrightarrow} & x+y+z \\ z & \stackrel{\mathbf{k}_2}{\longrightarrow} & \varnothing \end{array} \tag{4.1}$$

From mass-action kinetics model we have

$$\frac{dz}{dt} = k_1 x y - k_2 z \tag{4.2}$$

where x, y, and z are molecular concentrations of their corresponding molecular types. In the steady-state  $\frac{dz}{dt} = 0$ , thus,  $z = \frac{k_1}{k_2}xy$ . The output z represents a scaled version of the product xy. Analog implementation of more complex functions such as square roots and logarithmic additions have been presented in [25]. Implementation of linear continuous-time systems with biochemical reactions has been presented in [19]. We briefly describe this method with an example. Each signal, u, is represented by the difference in concentration between two particular molecular types,  $u^+$  and  $u^-$ , where  $u^+$  and  $u^-$  are defined as:

$$u^{+} = \begin{cases} u & if & u > 0\\ 0 & otherwise \end{cases}$$
(4.3)

and

$$u^{-} = \begin{cases} |u| & if \quad u < 0\\ 0 & otherwise. \end{cases}$$
(4.4)

Any linear continuous-time system can be implemented using three building blocks: integrator, gain and summation. Using mass-action kinetics model, these blocks can be approximated by a minimal set of chemical reactions, referred as: catalysis, degradation, and annihilation reactions described by (4.5), (4.6), and (4.7), respectively.

$$u^{\pm} \xrightarrow{\gamma} u^{\pm} + y^{\pm}$$
 (4.5)

$$u^{\pm} \xrightarrow{\gamma} \varnothing$$
 (4.6)

$$u^+ + u^- \xrightarrow{\eta} \varnothing,$$
 (4.7)

where  $\gamma$  and  $\eta \in \mathbb{R}^+$ . Reaction (4.5) is a concise representation of the following two reactions:

$$\begin{array}{ccc} u^+ & \stackrel{\gamma}{\longrightarrow} & u^+ + y^+ \\ u^- & \stackrel{\gamma}{\longrightarrow} & u^- + y^-. \end{array}$$

$$(4.8)$$

This notation is also adopted for other reactions with double superscripts. For each molecular type, an annihilation reaction is necessary to ensure a minimal representation of the molecule. For example, if y is used in a reaction network, the reaction  $y^++y^- \rightarrow \emptyset$  should be added.

Integration: Reactions (4.9) implement integration,  $y(t) = \int_0^t u(\tau) d\tau + y(0)$  with  $t \in R$ :

$$u^{\pm} \xrightarrow{\alpha} u^{\pm} + y^{\pm},$$
 (4.9)

where  $\alpha \in \mathbb{R}^+$ . For these reactions we have

$$\frac{dy^+}{dt} = \alpha u^+ \\ \frac{dy^-}{dt} = \alpha u^-$$
 
$$\} \Rightarrow \frac{dy}{dt} = \frac{dy^+}{dt} - \frac{dy^-}{dt}$$
 (4.10)

$$= \alpha u^{+} - \alpha u^{-} = \alpha u \Rightarrow y(t) = \alpha \int_{0}^{t} u(\tau) d\tau + y(0).$$
(4.11)

Gain and Summation: The following reactions output a linear combination of the input signals,  $u_i$ , with corresponding gain  $k_i$ .

$$\begin{array}{cccc} u_i^{\pm} & \stackrel{\gamma \mathbf{k}_i}{\longrightarrow} & u_i^{\pm} + y^{\pm} \\ y^{\pm} & \stackrel{\gamma}{\longrightarrow} & \varnothing, \end{array}$$

$$(4.12)$$

where y represents the output,  $k_i, \gamma \in \mathbb{R}^+$  for  $i \in 1, 2, ..., n$ . In the special case n = 1, this chemical representation approximates the gain block,  $y = k_1 u_1$  for  $k \ge 0$ . For  $n \ge 2$  this chemical representation approximates the summation block,  $y = \sum_{i=1}^n k_i u_i$  [19]. Suppose U(s) and Y(s) represent the Laplace transforms of input and output, respectively. Any linear I/O system with the transfer function  $\frac{Y(s)}{U(s)} = \frac{B(s)}{A(s)}$  can be approximated by using integration, gain, and summation blocks where  $B(s) = b_n s^n + b_{n-1} s^{n-1} + ... + b_1 s + b_0$ and  $A(s) = s^m + a_{m-1} s^{m-1} + ... + a_1 s + a_0$  and  $m \ge n$ . Figure 4.1 illustrates how  $\frac{Y(s)}{U(s)}$ can be constructed using these basic building blocks [27, 28].



Figure 4.1: Constructing linear I/O systems based on transfer function  $\frac{Y(s)}{U(s)} = \frac{B(s)}{A(s)}$ , using integration, gain, and summation blocks.

A PI controller has been implemented in [19] using these blocks. Here, we illustrate an example molecular implementation of a first-order low-pass continuous-time filter, shown in Figure 4.2. The transfer function for this filter is  $\frac{1}{s+a_0}$ . It can be approximated by the following reactions:

$$y^{\pm} \xrightarrow{\gamma a_{0}} y^{\pm} + x^{\mp}$$

$$u^{\pm} \xrightarrow{\gamma} u^{\pm} + x^{\pm}$$

$$x(t) = u(t) - a_{0}y(t) \rightarrow \begin{cases} u^{\pm} \xrightarrow{\gamma} & \emptyset \\ x^{\pm} & \xrightarrow{\gamma} & \emptyset \\ x^{+} + x^{-} & \xrightarrow{\eta} & \emptyset \\ u^{+} + u^{-} & \xrightarrow{\eta} & \emptyset \end{cases}$$

$$(4.13)$$

Figure 4.2: A first order low-pass continuous-time filter.

# 4.2 Digital Sensing and Computing Molecular Systems

Although analog computing systems are important due to their efficiency and their application in *in vivo* systems, digital computing systems are more robust [29, 24, 30]. In fact, regardless of the implementation technology, the fundamental reason for the robustness of the digital computation lies in information theory: information is coded across many 1-bit-precise interacting computational channels in the digital approach but on one channel in the analog approach [24].

Although complex molecular digital systems may be impractical today, these will be practical in near future as synthetic biology is seeing remarkable progress for synthesizing more complex systems *in vitro* especially from DNA. As a practical *in vitro* example, implementation of a scalable digital system, so called *seesaw gates*, with DNA strand-displacement reactions have been used to implement simple logical AND/OR gates, and 2-bit-precise square roots in [30].

Roughly speaking, in a digital molecular system, absence or existence of a molecular type defines whether the related signal is logically '0' or '1', respectively. More precisely, if the concentration of a molecular type is close to 0 nM it represents logical '0', while if it is close to a distinguishable nonzero value, it represents logical '1'. In this chapter,

for *in vitro* DNA implementations, we consider concentrations near 1 nM as the logical value '1' and near 0 nM as logical value '0'.

Molecular digital systems require molecular analog-to-digital conversion (ADC). This section, presents a new molecular implementations of ADCs and DACs. Figure 4.3 illustrates a complete digital system.



Figure 4.3: Block diagram of a general system developed in this chapter.

We present molecular implementations of a k-bit analog to digital converter and a k-bit digital to analog converter. We also review the molecular implementation of basic digital logic gates. Using these gates, we demonstrate a 3-bit molecular binary adder including two ADCs required to sample and digitize the two input operands and a DAC to output an analog signal. A DNA implementation of the complete system is also demonstrated in Section 4.3. It can be noted that all of the molecular reactions are rate-independent. In other words, no matter what the speed rates of the reactions are and how they may change during the computation, the steady-state concentrations compute the correct desired outputs.

#### 4.2.1 Analog to Digital Converter (ADC)

This subsection describes molecular implementation of analog to digital converter. A 3-bit example is considered. Let the input molecular type, i, have an analog concentration between 0 nM and 8 nM. The output is a 3-bit digital number  $x = x_2x_1x_0$ . Each bit is considered as logical '0' if its concentration is approximately 0 nM and logical '1' if its concentration is approximately 1 nM. We start with the most significant bit,  $x_2$ . This bit should be set to 1 when *i* is larger than 4 nM and to zero when *i* is less than 4 nM. Reactions (4.15) implement a one-bit comparator that determines  $x_2$ . The initial concentration of  $T_2$  represents the threshold for the comparator which is set to 4 nM.

$$i + T_2 \longrightarrow w_2$$
  
 $i + x_{2n} \longrightarrow x_2 + i$  (4.15)  
 $T_2 + x_2 \longrightarrow x_{2n} + T_2$ 

In the first reaction, i and  $T_2$  molecules combine and the one with larger initial concentration remains and the other one vanishes. The first reaction is independent of the second and third reactions because i and  $T_2$  remain unaltered in the second and third reactions. However, activation of the second or third reactions depends on the outcome of the first reaction. After completion of the first reaction only one of the second or third reactions is active. If i is larger than  $T_2$ , the third reaction stops firing while the second reaction transfers all molecules of  $x_{2n}$  to  $x_2$ . Alternately, if i is less than  $T_2$ , second reaction stops and third reaction transfers  $x_2$  to  $x_{2n}$  completely.  $x_2$  and  $x_{2n}$  are initialized to 0 nM and 1 nM, respectively. Note that in general for a k-bit ADC, each bit, i.e.,  $x_j$  where j = 0, 1, ..., k - 1, is modeled by two molecular types, i.e.,  $x_j$  and  $x_{jn}$ , called the bit and its complement molecular types. All of the  $x_j$  species are initialized to 0 nM and  $x_{jn}$  species are initialized to 1 nM. Furthermore, for each j, the total concentration of  $x_j$  and  $x_{jn}$ , is constantly 1 nM, i.e., if the concentration of  $x_j$  is C, then the concentration of  $x_{jn}$  is (1 - C), both in nM.

Table 4.1 shows the final concentrations for i,  $x_2$  and  $w_2$  after completion of Reactions (4.15).  $i_0$  denotes the initial concentration of i. If  $i_0 > T_2$  then i can be used to compute the second bit of x, *i.e.*,  $x_1$ . If  $i_0 < T_2$  then  $w_2$  can be used to determine  $x_1$ . Reactions (4.16) and (4.17) determine  $x_1$  for the above two cases. The initial concentrations for both threshold molecules,  $T_1$  and  $T'_1$ , are equal to 2 nM. Similar to Reactions (4.15), the first three reactions of (4.16) implement a one-bit comparator. However, here, the molecular concentration of i and  $T_1$  are compared to determine  $x_1$  when  $x_2$  is nonzero. This is equivalent to comparing initial  $i_0$  to 6 nM. Similarly the first three reactions of (4.17) compare  $w_2$  and  $T'_1$  to determine  $x_1$  when  $x_2$  is zero. This is equivalent to comparing initial  $i_0$  to 2 nM.

Table 4.1: Stable concentration of molecules i,  $x_2$ , and  $w_2$  after completion of Reactions (4.15).  $i \quad w_2 \quad x_2$ 

|          | $i_0 < 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                          | $i_0$      | 0           |           |  |            |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|-------------|-----------|--|------------|
|          | $i_0 > 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $i_0 - 4$                  | 4          | 1           |           |  |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |             |           |  |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |             |           |  |            |
| а        | $x_2 + i + 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Gamma_1 \longrightarrow$ | $w_1 + $   | $x_2$       |           |  |            |
| $x_2$    | $x_{2} + i + x_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $n \longrightarrow$        | $x_1 +$    | $i + x_2$   | 2         |  | (4.16)     |
| $x_2$    | $+T_{1}+x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $c_1 \longrightarrow$      | $x_{1n}$ - | $-T_1 +$    | $x_2$     |  | (4.10)     |
|          | $x_{2n} + u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $v_1 \longrightarrow$      | i + T      | $y_1 + x_2$ | 2n        |  |            |
| $x_{2n}$ | $+ w_2 + w_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $T'_1 \longrightarrow$     | $w_1'$ -   | $-x_{2n}$   |           |  |            |
| $x_{2n}$ | $+w_{2}+x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1n \longrightarrow$       | $x_1 +$    | $-w_2 + $   | $x_{2n}$  |  | $(4 \ 17)$ |
| $x_{2r}$ | $n + T_1' + T_1$ | $x_1 \longrightarrow$      | $x_{1n}$   | $+ T'_1 -$  | $+x_{2n}$ |  | (1.11)     |
|          | $x_2 + x_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $w_1' \longrightarrow$     | $w_2$ -    | $-T_{1}' +$ | $x_2$     |  |            |

Before the concentration of  $x_2$  reaches its stable value, both  $x_2$  and  $x_{2n}$  may have nonzero concentrations and both sets of Reactions (4.16) and (4.17) can be fired. The fourth reactions of (4.16) and (4.17) are added to undo undesired reactions fired during the transient time. For example, when the final concentration of  $x_2$  is zero the fourth reaction of (4.16) transfers  $w_1$  back to i and  $T_1$  in order to undo the first reaction. The initial concentrations for  $x_1$  and  $x_{1n}$  are 0 nM and 1 nM, respectively. After  $x_1$  and  $x_{1n}$ are stabilized to their final concentrations, depending on the initial value of i, one of them has the concentration of 1 nM and the other 0 nM.

Except *i*, none of the molecular types participating in Reactions (4.15) is altered by Reactions (4.16) and (4.17). However, Reactions (4.16) and (4.17) need the final concentrations of  $x_2$  and  $x_{2n}$  from Reactions (4.15). Thus, the concentrations of molecules of Reactions (4.16) and (4.17) reach stable values after reactions in (4.15) are completed. For different values of  $i_0$ , Table 4.2 shows the final concentrations after Reactions (4.16) and (4.17) are completed.

Table 4.2: Stable molecular concentrations after completion of Reactions (4.16) and (4.17).

|               | i         | $w_2$     | $w_1$     | $w'_1$ | $x_2$ | $x_1$ |
|---------------|-----------|-----------|-----------|--------|-------|-------|
| $i_0 < 2$     | 0         | 0         | 0         | $i_0$  | 0     | 0     |
| $2 < i_0 < 4$ | 0         | $i_0 - 2$ | 0         | 2      | 0     | 1     |
| $4 < i_0 < 6$ | 0         | 4         | $i_0 - 4$ | 0      | 1     | 0     |
| $6 < i_0$     | $i_0 - 6$ | 4         | 2         | 0      | 1     | 1     |

Finally, in order to determine the least significant bit (LSB) of x, i.e.,  $x_0$ , depending on  $i_0$ 's value, the molecular types underlined in Table 4.2 are used. For each range of  $i_0$ , the concentration of its related molecular type is compared to 1 nM to determine  $x_0$ . For example when  $i_0 > 6$ , Reactions (4.18) are used to determine  $x_0$ . The initial concentration of threshold molecules  $T_0$  is 1 nM. Because both  $x_2$  and  $x_1$  are nonzero for  $i_0 > 6$ , the first three reactions compare i with 1 nM. It is equivalent to comparing  $i_0$ with 7 nM. That is to say, for  $i_0 > 6$ ,  $x_0=1$  nM if  $i_0 > 7$  nM and  $x_0=0$  nM if  $i_0 < 7$  nM. The last two reactions of (4.18) are used to undo the undesirable combination of i and  $T_0$  during the transient time when any of  $x_2$  or  $x_1$  is zero.

$$\begin{aligned} x_2 + x_1 + i + T_0 &\longrightarrow w_0 + x_2 + x_1 \\ x_2 + x_1 + i + x_{0n} &\longrightarrow x_0 + i + x_2 + x_1 \\ x_2 + x_1 + T_0 + x_0 &\longrightarrow x_{0n} + T_0 + x_2 + x_1 \\ x_{2n} + w_0 &\longrightarrow i + T_0 + x_{2n} \\ x_{1n} + w_0 &\longrightarrow i + T_0 + x_{1n} \end{aligned}$$

$$(4.18)$$

Similarly for each range of  $i_0$  five reactions are used to determine  $x_0$ . Due to space limit, these three sets of reactions, each containing five reactions, are not listed here.

The number of bits or the resolution of ADC can be increased by adding the required comparisons and their related undo reactions. In general for k-bit ADC

 $2^{k+1} + 2(k-1)$  molecular types are required while the number of required reactions is  $\sum_{j=1}^{k} (j+2)2^{j-1} = (k+1)2^k - 1$ . The precision (sensitivity) of ADC depends on its acceptable input range and the number of its output bits.

Figure 4.4 shows results for the mass-action kinetic model simulation of the proposed ADC for different values of  $i_0$ .

#### 4.2.2 Molecular Digital Logic Circuits

In this section we demonstrate how digital designs can be implemented by molecular reactions. We describe molecular implementations of simple logic AND/OR/XOR gates, a binary adder, and a square-root unit. The method we use here for implementing logical gates is similar to the method presented in [12]. However, in [12] three regulation bit operation reactions are needed for each bit, Whereas these reactions are not required in our complete system implementation due to the self-regulated bits output by the proposed ADC. Here, self-regulated means for each bit only the related molecular type,  $x_j$ , or its complement,  $x_{jn}$ , but not both, has stable non-zero concentration.

#### Logic Gates

We only consider two-input gates AND, OR, and XOR. Gates with more than two inputs can be easily implemented by cascading two-input gates. Let X and Y denote the inputs of a gate and Z the output.

AND Gate: We start with an AND gate. The output of a logical AND gate is '1' only if both inputs are '1'. It means that if either X='0' or Y='0' then the output Z should be zero. In other words, when concentration of  $x_n$  or  $y_n$ , i.e., complement molecular types of inputs, is nonzero molecules of z should be transferred to  $z_n$  in order to set Z='0'. This can be implemented by Reactions (4.19).

When both x and y have stable nonzero concentrations, all molecules of  $z_n$  should be transferred to z in order to set Z='1'. This can be implemented by Reactions (4.20).

In the first reaction of (4.20), x combines with y to generate z', an indicator that Z should be set to '1'. z' is transferred to an external sink, denoted by  $\emptyset$ , in the second reaction. (This could be a waste type whose concentration we do not track.) When molecules of both x and y are present, these reactions maintain the concentration of z' at an equilibrium level. When either x or y is not present, z' gets cleared out. In the last reaction, z' transfers  $z_n$  to z.

One should note that the input concentrations don't change in logic computations. This enables the outputs of the ADC to be input to other logic gates if needed.

OR Gate: The output of an OR gate is '1' if any of its inputs is '1'. For molecular implementation it means that if either x or y has nonzero concentration then all molecules of  $z_n$  should be transferred to z. It is implemented by Reactions (4.21). In the other case, i.e., when both inputs have zero concentrations, molecules of z should be transferred to  $z_n$  as implemented by Reactions (4.22).

$$\begin{array}{rccc} x + z_n & \longrightarrow & x + z \\ y + z_n & \longrightarrow & y + z. \end{array}$$

$$\tag{4.21}$$

$$\begin{array}{rccc} x_n + y_n & \longrightarrow & x_n + y_n + z' \\ 2z' & \longrightarrow & \varnothing \\ z' + z & \longrightarrow & z_n. \end{array}$$

$$\tag{4.22}$$

XOR Gate: The output of a two-input XOR gate is '1' when inputs are complements of each other. In molecular implementation it means that when either x and  $y_n$  or  $x_n$  and y have nonzero concentrations, molecules of  $z_n$  should be transferred to z as implemented by Reactions (4.23). For the inputs with the same logical level the output should set to zero and molecules of z should be transferred to  $z_n$ . This is implemented by Reactions (4.24).

$$\begin{array}{rcl}
x_n + y & \longrightarrow & x_n + y + z' \\
x + y_n & \longrightarrow & x + y_n + z' \\
2z' & \longrightarrow & \varnothing \\
z' + z_n & \longrightarrow & z. \\
x_n + y_n & \longrightarrow & x_n + y_n + z'_n \\
x + y & \longrightarrow & x + y + z'_n \\
2z'_n & \longrightarrow & \varnothing \\
z'_n + z & \longrightarrow & z_n.
\end{array}$$

$$(4.23)$$

NAND, NOR, and XNOR gates can be implemented by exchanging z and its complement in the transfer reactions,  $z_n$  in the opposite directions of those of the AND, OR, and XOR gates, respectively.

#### **Binary Adder**

By cascading AND, OR, and XOR gates we implement more complex digital systems such as a 3-bit adder. The adder consists of one half adder (HA) for the LSB and two full adders (FA) as shown in Figure 4.5a. Internal schematics of HA and FA are shown in Figure 12b. A general *n*-bit adder can be easily implemented by extending 3-bit adder using additional FAs for new bits.

Cascaded gates for the adder are implemented by molecular reactions presented in Section IV.B. However, other molecular logic gates such as seesaw gates [30] can also be used. In order to verify the functionality of the 3-bit adder we implement the structure shown in Figure 4.6.

Two analog concentrations, x and y, are converted to two 3-bit digital data using the proposed ADC. These two digital numbers are added using the 3-bit adder. The output,  $s = s_3 s_2 s_1 s_0$ , is a 4-bit digital number representing the digital sum of x and y. Figure 4.7 shows the simulation results for different concentrations of inputs, x and y.

#### Square-root Unit

As another example of digital computing, we implement square-root of a 4-bit number. Figure 4.8 shows the schematic of its circuit. In Figure 4.8, the three-input NAND gate can be implemented by cascading a two-input AND gate with a two-input NAND gate. However, it is more efficient to implement three-input NAND by reactions (4.25). In these reaction  $x_1$ ,  $x_2$ , and  $x_3$  are inputs and y is the output.

The strategy used for the direct implementation of three-input NAND in (4.25) is similar to that of two-input NAND.

Figure 4.9 shows the simulation results for the square root circuit implemented by molecular reactions.

#### 4.2.3 Digital to Analog Converter (DAC)

After performing computations in digital form, in order to convert the computed signal to its analog form, a DAC is required. Using recombinase-based logic and memory, a DAC has been implemented in [31]. For this DAC various digital combinations of the input inducers result in multiple levels of analog gene expression outputs on the basis of the varying strengths of the promoters used and the sum of their respective outputs.

This section presents molecular implementations of a k-bit DAC with controlling the impact of each bit on the analog output concentration. Reactions (4.26) show a 1-bit template for implementing DAC.

where  $x_j$  and  $x_{jn}$ , respectively, represent the input bit and its complement molecular type. *out* is the analog output of DAC with initial concentration of zero. Molecular type  $V_j$  denotes the value of the input bit. In other words, it defines the amount of concentration that is added to the output if input bit,  $x_j$ , is nonzero. If  $x_j$  is the LSB then  $V_j$  is initialized to 1 nM and if it is the bit next to the LSB then  $V_j$  is initialized to 2 nM and so on.

Even when the stable value of  $x_j$  is zero, during the transient state  $x_j$  may have nonzero concentration. The second reaction of (4.26) prevents undesired output increase due to the nonzero concentration of  $x_j$  in transient state.  $M_j$  controls the amount of deducted concentration from the output such that this amount is the same as the amount added to output undesirably during the transient state. In other words, without  $M_j$ , the second reaction continues transferring *out* molecules to  $V_j$  during the steady-state. However, this degrades the effects of other bits on the DAC's output, since the molecular type *out* is common for all bits. The initial concentration for  $M_j$  is zero.

The 1-bit template presented here can be easily extended to a k - bit DAC; for each additional bit, one instance of Reactions (4.26) is added. Therefore, to construct a k-bit DAC, a chemical reaction network including k copies of the 1-bit template are used with proper initial values of  $V_j$ . As an example, Reactions (4.27) illustrate a 4-bit DAC using the proposed template. The initial concentrations of  $V_0$ ,  $V_1$ ,  $V_2$ , and  $V_3$  are 1, 2, 4, and 8 nM, respectively.

$$x_{0} + V_{0} \longrightarrow out + x_{0} + M_{0}$$

$$out + x_{0n} + M_{0} \longrightarrow x_{0n} + V_{0}$$

$$x_{1} + V_{1} \longrightarrow out + x_{1} + M_{1}$$

$$out + x_{1n} + M_{1} \longrightarrow x_{1n} + V_{1}$$

$$x_{2} + V_{2} \longrightarrow out + x_{2} + M_{2}$$

$$out + x_{2n} + M_{2} \longrightarrow x_{2n} + V_{2}$$

$$x_{3} + V_{3} \longrightarrow out + x_{3} + M_{3}$$

$$out + x_{3n} + M_{3} \longrightarrow x_{3n} + V_{3}$$

$$(4.27)$$

#### 4.2.4 A complete molecular digital System

We now illustrate molecular implementation of a digital adder where concentrations of two analog molecules x and y are converted to 3-bit digital, then added using a binary adder, and the 4-bit output is converted to an analog value s. Two molecular ADCs, a molecular digital adder, and a molecular DAC are used to construct a complete system as shown in Figure 6.1. The functionality of the complete molecular system is verified.

Figure 4.11 shows the simulation results for the complete system illustrated in Figure 6.1 for different input concentrations.

# 4.3 DNA Implementation

This section describes mapping of the molecular reactions to DNA. We illustrate mapping the complete digital adder of Section IV.D including ADC, adder and DAC to DNA strand displacement reactions.

Considering each strand (single or double) of DNA as a molecule, it is possible to implement CRNs with DNA strand-displacement mechanism. For example Figure 4.12 shows DNA strand-displacement primitive for implementing  $A + B \stackrel{f}{\underset{r}{\leftarrow}} C + D$ .

Toehold 1 of strand A starts binding to its complement toehold  $1^*$  of B. Then branch migration happens and domain 2 of A displaces domain 2 of strand 2-3. Finally, toehold 3 and  $3^*$  are separated and two new strands (molecules), C and D, are produced.

A general method of mapping CRNs to DNA strand-displacement reactions has been presented in [11] by Soloveichik, et. al. In their method based on the number of reactants a chemical reaction is converted to a series of DNA strand-displacement reactions similar to Figure 4.12. Similarly, for our design we generate the corresponding DNA reactions and simulate the system using the kinetic differential equations to characterize the behavior of the system.

The initial concentrations of auxiliary complexes is set to  $C_{max} = 10^{-5}$ M, and the maximum strand displacement rate constant is  $q_{max} = 10^{6}$  M<sup>-1</sup> s<sup>-1</sup>. For all of the reactions the rate constant is considered as  $10^{5}M^{-1}S^{-1}$ . Figure 4.13 shows the ODE simulation results for the DNA implementation of the complete system illustrated in Figure 6.1 for different inputs.

# 4.4 Discussion and Concluding Remarks

This chapter presented methodologies for implementing continuous-time and digital processing with molecular reactions. Several examples are presented to illustrate the approaches presented in the chapter.

Although pertaining to biology, the contributions of this chapter are neither experimental nor empirical; rather they are constructive and conceptual. We design robust digital logic with molecular reactions. For the molecular digital systems, our designs do not depend on specific reaction rates; the computation is accurate for a wide range of rates. This is crucial for mapping the design to DNA substrates.

Intense efforts by the synthetic biology community have been devoted to the implementation of computation and logical functions with genetic regulatory elements [32]-[36]. For example design of robust logical circuits using chemically wired cells have been presented in [29] for single logic gates. Also genetic circuits consisting of multilayer logical gates have been implemented in single cell in [37]. Yet, progress seems to have stalled at the complexity level of circuits with perhaps 7-15 components. In fact, *in vivo* engineering of such circuits is full of experimental difficulties. In contrast, *in vitro* molecular computation with DNA strand displacement is following a Moore's Law-like trajectory in the scaling of its complexity. Thus, due to their complexity, systems presented in this chapter are more likely to be physically realizable *in vitro* than *in vivo*.

The impetus of the field is not computation *per se*; chemical systems will never be useful for number crunching. Rather the field aims for the design of custom, embedded biological "sensors" and "controllers" – viruses and bacteria that are engineered to perform useful tasks *in situ*, such as cancer detection and drug therapy. Exciting work in this vein includes [38, 39, 40, 41].

One should notice that there is quantization error in the ADC component. This is similar to the quantization error for other types of ADC usually used in digital signal processing systems [42]. The error can decrease the accuracy of system. The quantization error can be reduced by increasing the ADC resolution and, consequently, increasing the number of bits of ADC and DAC components.


Figure 4.4: Simulation results of 3-bit molecular ADC for different input concentrations.



Figure 4.5: Schematic of the 3-bit adder; (a) Block diagram, (b) Internal circuits for HA and FA blocks.



Figure 4.6: Block diagram of the system for verifying molecular 3-bit adder.



Figure 4.7: Simulation results of the molecular implementation of the system shown in Figure 4.6.



Figure 4.8: Schematic for 4-bit Square-root unit.



Figure 4.9: Kinetics simulations that compute the Square-root of 0, 1, 4, and 9 using the molecular implementation of unit shown in Figure 4.8.



Figure 4.10: Block diagram of a simple prototype developed and verified in this research.



Figure 4.11: Simulation results for the system shown in Figure 6.1.



Figure 4.12: Implementation of  $A + B \rightleftharpoons_{r}^{f} C + D$  using DNA strand-displacement mechanism.



Figure 4.13: Simulation results for the DNA implementation of the system shown in Figure 6.1.

# Chapter 5

# Markov Chain Computations using Molecular Reactions

# 5.1 Introduction

The Markov chain has been frequently used for modeling and analyzing systems of chemical reactions [43],[44],[8]. However, this chapter addresses the reverse problem, i.e., modeling the Markov chain and computing its steady-state probabilities by a system of chemical reactions. Since Markov processes are commonly used in numerous processing and statistical modeling applications, a systematic method for synthesizing Markov chains with DNA strand displacement reactions leads to a systematic method for implementing these applications using DNA.

This research, for the first time, presents a systematic method of implementing firstorder Markov chain processes using molecular reactions. Each state in the Markov chain is modeled by a unique *data* molecular type and each state transition is modeled by a molecular reaction and a unique *control* molecule. *Data* molecule for each state or *control* molecule for each state transition is distinguishable from molecules corresponding to other states or state transitions. All the reactions have the form of  $C_{ij} + D_i \rightarrow C_{ij} + D_j$ , where  $C_{ij}$  is the *control* molecule that facilitates transition from state *i* to *j*, and  $D_i$  and  $D_j$  are *data* molecules for states *i* and *j*, respectively. The final concentration of *data* molecules related to each state determines the probability of that state. Since all of the reactions are bimolecular, the model can be mapped to a set of toehold-mediated DNA strand displacement reactions according to the second approach described in Chapter 2.

# 5.2 Modeling by Molecular reactions

This section describes the methodology of constructing a model for Markov chain process using molecular reactions. This model can be used to compute the steady-state probability of each state in the Markov chain diagram. The methodology has two parts: *initialization* and *transition reactions*.

*Initialization:* This stage consists of initializing two groups of molecules: *data* molecules and *control* molecules.

Data molecule for each state of Markov chain is a unique type of molecule assigned to that state. The initial quantity for each data molecule, except the start state, is zero. For the start state the initial value can be any large nonzero number; however, larger the initial value, more accurate the probability estimates are.

*Control* molecules are used to control transformation of data molecules of one state to data molecules of other states according to the transition probabilities in the Markov chain diagram. A unique type of molecule is devoted for each state transition in the chain. The quantities of control molecules are time invariant and can be determined according to the probabilities related to their corresponding transition in the chain; the ratio of quantity of a control molecule over total quantities of all control molecules in a state equals the probability of corresponding transition.

In general, the number of unique molecular types in our model is the sum of the number of states and the number of transitions in the Markov chain.

Transition Reactions: The transition reactions determine how data molecules transfer in order to implement the desired Markov chain. There is a transition reaction for each transition in the chain. This reaction transfers data molecules in the source state of transition to the data molecules in the destination state. Each transition reaction uses a control molecule for transferring data molecules. However, transition reactions should not change the concentration of control molecules. Therefore, if a control molecule is used as a reactant in a reaction, it should be also be a product of the reaction.

To illustrate our methodology we explain the molecular model for gambler problem as an instance of Markov chain[23]; a gambler starts with i dollars and plays game of chance in each step, either increasing his money by \$1 or decreasing by \$1. He stops when money is gone, *RUIN*, or when he has N dollars, *WIN*. Assuming the chances of winning, w, and loosing, l, for all states to be identical, what's the probability of ruin?

Figure 5.1 shows a 4-state (N=3) gambler problem with w = 0.3 and l = 0.7. Theoretical ruin and win probabilities for this example are 0.886076 and 0.113924, respectively [23].



Figure 5.1: State diagram for the gambler problem with N=3.

In order to design its molecular reactions, first we devote a *data* molecular type to each state: Molecule RUIN for ruin state, A and B for intermediate states, and WINfor win state. Suppose we want to compute P1, i.e., the probability of ruin if gambler starts the game at state A with \$1. Therefore, the initial value of *data* molecule A is nonzero, while the other states have *data* molecules with zero initial values. We consider 100 as the initial value of A. Control molecules A1 and A2 are assigned to the output transitions of state A. Similarly, B1 and B2 are assigned to the transitions from state B. Because w=0.3 and l=0.7 for this example, we choose initial values as [A1] = [B1] = 30 and [A2] = [B2] = 70. One should notice that despite the exact concentrations for the control molecules, they need to conform to (5.1).

$$w = \frac{[A1]}{[A1] + [A2]} = \frac{[B1]}{[B1] + [B2]}$$
$$l = \frac{[A2]}{[A1] + [A2]} = \frac{[B2]}{[B1] + [B2]}$$
(5.1)

The final step is to write the molecular reactions related to each state transition. Reactions (5.2) and (5.3) represent output transitions for states A and B, respectively. These reactions with the initial concentrations for each molecular type are the proposed molecular model for the gambler problem in Figure 5.1.

$$R1: \qquad A + A1 \rightarrow B + A1$$

$$R2: A + A2 \rightarrow RUIN + A2$$

$$R3: B + B1 \rightarrow WIN + B1$$
(5.2)

$$R4: \qquad B+B2 \rightarrow A+B2 \tag{5.3}$$

Thus, the gambler problem with N=3 can be modeled by eight types of molecules and four molecular reactions. Here the transition probabilities for states A and B are similar and control molecules A1 and A2 can be used for both states and B1 and B2can be omitted.

# 5.3 Analysis of the Proposed Molecular Model

According to both stochastic chemical kinetics [20],[21] and mass-action kinetics [22], in this section the proposed molecular model is analyzed. We analyze the molecular model for the 4-state gambler problem shown in Figure fig:markov1.

## 5.3.1 Stochastic Model

If we only consider state A, there are two ways for data molecules A to transfer from this state; they can participate either in reaction R1, or R2. Based on the stochastic kinetics the probabilities of participating in reactions R1 and R2 can be computed as (5.4) and (5.5), respectively. We use lowercase letter to represent quantities for related molecular types; e.g.,  $a_1$  and  $a_2$  stand for quantities of A1 and A2 respectively. Since the quantities of A1 and A2 are time invariant, the probabilities remain constant.

$$P(R1) = \frac{\begin{pmatrix} a_1 \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix}}{\begin{pmatrix} a_1 \\ 1 \end{pmatrix} \begin{pmatrix} a_2 \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix}} = \frac{a_1}{a_1 + a_2}$$
(5.4)

$$P(R2) = \frac{\begin{pmatrix} a_2 \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix}}{\begin{pmatrix} a_1 \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} + \begin{pmatrix} a_2 \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix}} = \frac{a_2}{a_1 + a_2}$$
(5.5)

If all the states are considered, all of the four reactions can be fired and their probabilities are computed as (5.6).

$$P(R1) = \frac{\binom{a_1}{1}\binom{a}{1}}{\binom{a_1}{1}\binom{a}{1} + \binom{a_2}{1}\binom{a}{1} + \binom{b_1}{1}\binom{b}{1} + \binom{b_2}{1}\binom{b}{1}} = \frac{a_1.a}{a(a_1 + a_2) + b(b_1 + b_1)}$$

$$P(R2) = \frac{\binom{a_1}{1}\binom{a}{1} + \binom{a_2}{1}\binom{a}{1} + \binom{b_1}{1}\binom{b}{1} + \binom{b_2}{1}\binom{b}{1}}{\binom{a_1}{1}\binom{a}{1} + \binom{a_2}{1}\binom{a}{1} + \binom{b_1}{1}\binom{b}{1} + \binom{b_2}{1}\binom{b}{1}} = \frac{a_2.a}{a(a_1 + a_2) + b(b_1 + b_1)}$$

$$P(R3) = \frac{\binom{b_1}{1}\binom{b}{1}}{\binom{a_1}{1}\binom{a}{1} + \binom{a_2}{1}\binom{a}{1} + \binom{b_1}{1}\binom{b}{1} + \binom{b_2}{1}\binom{b}{1}} = \frac{b_1.b}{a(a_1 + a_2) + b(b_1 + b_1)}$$

$$P(R4) = \frac{\binom{b_2}{1}\binom{b}{1}}{\binom{a_1}{1}\binom{a}{1} + \binom{a_2}{1}\binom{a}{1} + \binom{b_1}{1}\binom{b}{1} + \binom{b_2}{1}\binom{b}{1}} = \frac{b_2.b}{a(a_1 + a_2) + b(b_1 + b_1)}.$$
(5.6)

For the four probabilities in (5.6) we assume that at each step at least one reaction can be fired. In other words,  $a(a_1 + a_2) + b(b_1 + b_2) \neq 0$ . The quantities of molecules *RUIN*, *A*, *B*, and *WIN* denote the elements for the states of the system, S = (ruin, a, b, win). Depending on which reaction is fired, *S* changes after each step.

$$S_{0}=(0,100,0,0) \xrightarrow{P(R1)} (0,99,1,0) \xrightarrow{P(R1)} (0,98,2,0) \xrightarrow{P(R2)} (1,98,1,0) \xrightarrow{P(R3)} (0,99,0,1) \xrightarrow{P(R4)} (0,100,0,0) \xrightarrow{P(R4)} (0,100,0,0) \xrightarrow{P(R2)} (1,99,0,0) \xrightarrow{P(R1)} (1,98,1,0) \xrightarrow{P(R2)} (2,98,0,0) \cdots$$

Figure 5.2: First two steps of updating the state of molecular model for Figure 5.1.

Figure 5.2 shows the graph for the first two steps of the example in Figure 5.1. One should keep in mind that the total number of data molecules in each state is constant.

As another interpretation for the model we consider each molecule in the system. The molecule transforms to a molecule either in left state or right state with the probabilities of 0.3 or 0.7, respectively. Therefore, we can interpret each single molecule in the system as an instance of the gambler's play.

The *Monte Carlo* simulation is used for validating the model. The goal is to compute the ruin probability if gambler arrives to play with \$1. Therefore, the simulation starts

with the initial state S = (0, 100, 0, 0) and stops whenever no more reaction can be fired. The simulation is repeated  $10^6$  times. Figure 5.3 shows the simulation results. The horizontal axis represents the number of molecules and the blue (red) line represents the number of times the simulation ends up with those numbers of molecules in ruin (win) state. Ruin probability can be calculated as formulated in (5.7). The mean values of the ruin and win distributions in Figure 5.3 are used as the number of molecules. If we simulate with a larger initial value of *data* molecule, the probabilities can be computed more accurately. Table 5.1 shows the probabilities obtained using different initial values for *data* molecule A. Note that the accuracy improves with increase in the initial value of A.

$$P_1 = \frac{number \ of \ data \ molecules \ in \ ruin \ state}{total \ number \ of \ data \ molecules \ in \ ruin \ and \ win \ states}$$
(5.7)

| Initial value for A | Computed ruin probability | Error  |
|---------------------|---------------------------|--------|
| 100                 | 0.89                      | 0.003  |
| 1000                | 0.887                     | 0.0009 |
| 10000               | 0.8862                    | 0.0001 |

## 5.3.2 Mass-action Kinetics

Based on the mass-action law, time variation of data molecules can be represented by the ODEs (5.8).

$$\frac{d[A]}{dt} = -k. [A_1] [A] - k. [A_2] [A] + k. [B_2] [B]$$

$$\frac{d[B]}{dt} = -k. [B_1] [B] - k. [B_2] [B] + k. [A_1] [A]$$

$$\frac{d[S]}{dt} = k. [A_2] [A]$$
(5.8)



Figure 5.3: Stochastic simulation results for molecular model of Figure 5.1.

$$\frac{d[E]}{dt} = k. \left[B_1\right] \left[B\right]$$

Solving these ODEs using the initial values of molecules, we can obtain the time variation for each molecule. The final concentration of data molecule related to each state can be used to determine the probability of that state.

We used MATLAB to solve the ODEs and plot them as shown in Figure 5.4(a). The final concentration for ruin and win molecules are 88.61 (nM) and 11.39 (nM), respectively. Figure 5.4(b) illustrates the ratio [RUIN]/([RUIN] + [WIN]) which is the ruin probability and perfectly matches with the theoretical value.

## 5.4 DNA implementation

To implement the proposed model with a real molecular system we used DNA strand displacement reactions. By properly designing the toeholds in DNA molecules, an arbitrary rate of binding can be achieved. Our model consists of bimolecular reactions and it can be implemented by DNA strand displacements using both approaches presented in Section 2.3 of Chapter 2. We choose the approach 1. For this purpose each molecule needs to be identified by two toeholds and two domains as depicted in Figure 5.5 for



Figure 5.4: a) ODE simulation for molecular model of Markov chain in Figure 5.1, b) The computed [RUIN]/([RUIN]+[WIN]) ratio.

molecule A. In this representation continuous and dotted lines are used for domain and toehold parts, respectively.

Figure 5.5: DNA representation of molecule A.

To evaluate the DNA implementation of the proposed model, we implement the model for the example shown in Figure 5.1. All the molecules are mapped to the DNA strands as described above. We use the *Mathematica* tool of Soloveichik et al [11] to simulate the designed DNA system. The similar initial parameters as [11] are used for simulation. Figure 5.6 illustrates the dynamic concentrations of each *data* molecular type. The simulation results match with the simulation results of ODE model as shown in Figure fig:markov4(a). The ruin probability is computed as the ratio of the final concentrations of RUIN molecule over the summation of the final concentrations of RUIN molecules.

We next use our DNA construction for a more complex instance of a gambler problem with N=9 and similar transition probabilities. We compute ruin probabilities when the gambler starts with \$5 and \$8. For the first case, we initialize the *data* molecule of the 5th state, E, to 100nM and the other *data* molecules to zero. While for the second case, we initialize the *data* molecule of the 8th state, H, to 100nM and the other *data* molecules to zero. Figure 5.7 demonstrates the simulation results. Note that as tabulated in Table 5.2, the ruin probabilities computed using the final concentrations shown in Figure 5.7 match with the theoretical probabilities.



Figure 5.6: Simulation results of DNA implementation for the proposed molecular model for Figure 5.1.

Table 5.2: Simulation vs theoretical computation of ruin probabilities for A 9-state gambler Ruin Problem

| Start state | [ruin]/([ruin]+[win]) | Theoretical probability of ruin |
|-------------|-----------------------|---------------------------------|
| \$5         | 0.962                 | 0.9667                          |
| \$8         | 0.569                 | 0.5717                          |



Figure 5.7: Simulation results of the DNA implementation for the gambler problem with N=9 and starting with a) \$5, b) \$8.

# 5.5 Discussion

Molecular systems have been used for modeling different applications. This chapter demonstrates a method for modeling the stochastic behavior of Markov chain processes using molecular reactions. Both stochastic and ODE simulation results validate our model. Although we describe the modeling of a gambler ruin problem; i.e., a firstorder Markov chain with identical transition probabilities in each state, the method can be used for modeling any Markov chain process. A first-order Markov process with different transition probabilities for each state can be easily modeled by adjusting the initial quantities for control molecules of each state. Future work will be directed towards modeling of higher order Markov processes and generalizing the method for different types of random processes.

# Chapter 6

# CRNs for Computing Polynomials Using Fractional Coding

# 6.1 Fractional Coding

It has long been recognized that, viewed from a mathematical standpoint, a set of chemical reactions can exhibit rich dynamical behavior [45]. On the computational front, there has been a wealth of research into efficient methods for simulating chemical reactions, ranging from ordinary differential equations (ODEs) [46] to stochastic simulation [47]. On the mathematical front, entirely new branches of theory have been developed to characterize chemical dynamics [48]. As opposed to writing computer programs to analyze chemical systems, in the nascent field of molecular computing, the goal is computation directly with chemical reactions. In this context, a CRN transforms *input* concentrations of molecular types into *output* concentrations and so performs computation. The question of the computational power of chemical reactions has been considered by several authors. Magnasco demonstrated that chemical reactions can compute anything that digital circuits can compute [49]. Soloveichik *et al.* demonstrated that chemical reactions are *Turing Universal*, meaning that they can compute anything that a computer algorithm can compute [43]. This work was applicable to a discrete, stochastic model of chemical kinetics. The computation is probabilistic; the total probability of error of the computation can be made arbitrarily small (but not zero).

Either explicitly or implicitly, prior work has considered two types of *encodings* for the input and output variables of CRNs [50, 51]:

- 1. The value of each variable corresponds to the concentration of a specific molecular type; we will call this the **direct** representation.
- 2. The value of each variable is represented by the difference between the concentrations of a pair of molecular types; we will call this the **dual-rail** representation [51].

In this chapter we introduce a new representation that we call the **fractional** representation. A pair of molecular types is assigned to each variable, e.g.,  $(X_0, X_1)$  for a variable x. The value of the variable is determined by the following ratio:

$$x = \frac{[X_1]}{[X_0] + [X_1]}.$$
(6.1)

Evidently, the value is confined to the unit interval, [0,1]. The proposed encoding method is inspired by prior work in designing stochastic circuits [52, 53, 54, 55]. Such circuits operate on randomized bit streams, with the values of variables represented as the fraction of 1's versus 0's in the streams. In a sense, the main contribution of this chapter is the application of this theory from stochastic circuit design to CRNs.

# 6.2 CRNs for Computing Polynomials

Based on the fractional representation in Eq. 6.1, we propose a CRN framework for computing univariate polynomials that map the unit interval [0,1] to itself. We demonstrate that a CRN exists that computes any such polynomial. The full system consists of an *encoder*, the *computation CRNs* and a *decoder*, as shown in Fig. 6.1. The encoder converts the input molecular type, X (for  $0 \le [X] \le 1$ ), into two molecular



Figure 6.1: Whole system performing computation in fractional representation.

types,  $X_0$  and  $X_1$ , such that

$$[X] = \frac{[X_1]}{[X_0] + [X_1]}.$$

The decoder converts the ratio of two molecular types,  $Y_0$  and  $Y_1$ , into a single molecular type, Y, as the final output such that

$$[Y] = \frac{[Y_1]}{[Y_0] + [Y_1]}.$$

We describe the design of the Encoder and Decoder in Section 6.2.4, "Encoding and Decoding".

We first illustrate the Computation CRN block with a simple example. Consider the following CRN:

$$S_{0} + B_{0,0} \rightarrow Y_{0} + B_{0,0}$$

$$S_{0} + B_{0,1} \rightarrow Y_{1} + B_{0,1}$$

$$S_{1} + B_{1,0} \rightarrow Y_{0} + B_{1,0}$$

$$S_{1} + B_{1,1} \rightarrow Y_{1} + B_{1,1}$$

$$S_{1} + B_{1,1} \rightarrow Y_{1} + B_{1,1}$$

$$S_{2} + B_{2,0} \rightarrow Y_{0} + B_{2,0}$$

$$S_{2} + B_{2,1} \rightarrow Y_{1} + B_{2,1}$$

$$Y_{0} \rightarrow \emptyset$$

$$Y_{1} \rightarrow \emptyset$$

$$(b)$$

Set the initial concentrations as follows:

$$\begin{array}{ll} \begin{bmatrix} B_{0,0} \end{bmatrix} = 0.25 \ nM \\ \begin{bmatrix} B_{0,1} \end{bmatrix} = 0.75 \ nM \end{bmatrix} \Rightarrow \quad b_0 = \frac{\begin{bmatrix} B_{0,1} \end{bmatrix}}{\begin{bmatrix} B_{0,0} \end{bmatrix} + \begin{bmatrix} B_{0,1} \end{bmatrix}} = \frac{0.75}{0.25 + 0.75} = \frac{3}{4} \\ \begin{bmatrix} B_{1,0} \end{bmatrix} = 0.75 \ nM \\ \begin{bmatrix} B_{1,1} \end{bmatrix} = 0.25 \ nM \end{bmatrix} \Rightarrow \quad b_1 = \frac{\begin{bmatrix} B_{1,1} \end{bmatrix}}{\begin{bmatrix} B_{1,0} \end{bmatrix} + \begin{bmatrix} B_{1,1} \end{bmatrix}} = \frac{0.25}{0.75 + 0.25} = \frac{1}{4} \\ \begin{bmatrix} B_{2,0} \end{bmatrix} = 0.50 \ nM \\ \begin{bmatrix} B_{2,1} \end{bmatrix} = 0.50 \ nM \end{bmatrix} \Rightarrow \quad b_2 = \frac{\begin{bmatrix} B_{2,1} \end{bmatrix}}{\begin{bmatrix} B_{2,0} \end{bmatrix} + \begin{bmatrix} B_{2,1} \end{bmatrix}} = \frac{0.50}{0.50 + 0.50} = \frac{1}{2} \end{array}$$

Although not obvious, it may be shown that this CRN computes the function

$$y(x) = \frac{3}{4}x^2 - x + \frac{3}{4},\tag{6.2}$$

where  $0 \le x \le 1$ .

Note that any unit could have been used in this chapter for the molecular concentrations. nM has been used due to the practical utility.

The CRN is composed of two sets of reactions: the three reactions in group (a) are referred as *control generating reactions* and the six reactions in group (b) represent the *transferring reactions*. The control generating reactions generate the molecules that control the transferring reactions (similar to the way that the control bits select outputs from inputs with multiplexors in electronic circuits). However, the control molecules represent analog values and transfer inputs to outputs proportionally. We note that the transferring reactions are conceptually similar to the molecular reactions proposed in Chapter 5 for implementing Markov Chains [56].

We provide details regarding the synthesis method in Section "Synthesizing CRNs for Computing Polynomials" 6.2.2. Here we simply note that, given a polynomial y(x), the first step is to convert it to its *Bernstein polynomial* equivalent, g(x). For the polynomial y(x) in Equation (6.2),

$$g(x) = \frac{3}{4}[(1-x)^2] + \frac{1}{4}[2x(1-x)] + \frac{1}{2}x^2.$$
(6.3)

(A discussion of the math behind this is given in Section "Proof Based on the Mass-Action Kinetics" 6.2.3.)

Note that the coefficients of the Bernstein polynomial correspond to the values of  $b_i$  for i=0,1,2. These values are used to initialize the molecular types  $B_{i,0}$  and  $B_{i,1}$  for i = 0, 1, 2. In fact, computing with chemical reaction networks consists of two parts. First, choose a CRN as a means of building the dynamical system. Second, simulate a purposefully chosen dynamical system to equilibrium. By introducing the  $B_{i,0}$  and  $B_{i,1}$  species, the concentrations of which are time-invariant and fixed to what would have been rate constants, we propose changes to the first part that result in the same dynamical system simulated in the second part.

Suppose we want to evaluate y(x) at x=0.5. We would initialize  $X_0 = X_1=0.5$  nM such that

$$x = \frac{[X_1]}{[X_0] + [X_1]} = 0.5.$$
(6.4)

We would set the initial concentration of the other types to zero. The control generating reactions use  $X_0$  and  $X_1$  to produce the control molecules,  $S_0$ ,  $S_1$ , and  $S_2$  and transferring reactions use control molecules to compute the output. The output value, y(x), is computed as the ratio of the final concentrations of  $Y_0$  and  $Y_1$ , i.e.,

$$y(x) = \frac{[Y_1]}{[Y_0] + [Y_1]}.$$
(6.5)

The simulation results for evaluating this example at x=0.5 using a continuous massaction kinetics model are shown in Fig. 6.2. As the time  $t \to \infty$ , the ratio

$$\frac{[Y_1(t)]}{[Y_0(t)] + [Y_1(t)]}$$
(6.6)

approaches the correct value of y(0.5)=0.4375.



Figure 6.2: Simulation results for the CRN implementing the polynomial  $y(x) = \frac{3}{4}x^2 - x + \frac{3}{4}$  at x = 0.5. These were obtained from an ODE simulation of the mass-action kinetics.

## 6.2.1 Representation by Bernstein Polynomials

In our method, the **Bernstein representation** of a polynomial is a key element. We briefly describe the relevant mathematics. The family of n + 1 polynomials of the form

$$B_{i,n}(x) = \binom{n}{i} x^{i} (1-x)^{n-i}, \qquad i = 0, \dots, n$$
(6.7)

are called Bernstein basis polynomials of degree n. A linear combination of Bernstein basis polynomials of degree n,

$$g(x) = \sum_{i=0}^{n} b_{i,n} B_{i,n}(x), \qquad (6.8)$$

is a Bernstein polynomial of degree n. The  $b_{i,n}$ 's are called Bernstein coefficients.

Polynomials are usually represented in power form, i.e.,

$$y(x) = \sum_{i=0}^{n} a_{i,n} x^{i}.$$
(6.9)

We can convert such a power-form polynomial of degree n into a Bernstein polynomial of degree n. The conversion from the power-form coefficients,  $a_{i,n}$ , to the Bernstein coefficients,  $b_{i,n}$ , is a closed-form expression:

$$b_{i,n} = \sum_{j=0}^{i} \frac{\binom{i}{j}}{\binom{n}{j}} a_{j,n}, \qquad 0 \le i \le n.$$
(6.10)

For a proof of this, the reader is referred to [57].

Generally speaking, a power-form polynomial of degree n can be converted into an equivalent Bernstein polynomial of degree greater than or equal to n. The coefficients of a Bernstein polynomial of degree m + 1 ( $m \ge n$ ) can be derived from the Bernstein coefficients of an equivalent Bernstein polynomial of degree m as

$$b_{i,m+1} = \begin{cases} b_{0,m} & i = 0\\ (1 - \frac{i}{m+1})b_{i,m} + \frac{i}{m+1}b_{i-1,m} & 1 \le i \le m\\ b_{m,m} & i = m+1. \end{cases}$$
(6.11)

Again, for a proof the reader is referred to [57].

By encoding the values of variables as the ratio of the concentrations of two molecular types,

$$x = \frac{[X_1]}{[X_0] + [X_1]},$$

we can only represent numbers between 0 and 1. Accordingly, our method synthesizes functions that map the unit interval [0,1] onto itself. The method can also synthesize functions that map the unit interval to the negative unit interval [-1,0]. This computes the negative of a function that maps the unit interval to itself. As was shown in Example 1, the coefficients of the polynomials that we compute are also represented in this fractional form. Fortunately, it has been shown that polynomials that maps the unit interval [0,1] onto the interval (0,1) can be converted into a Bernstein polynomial with all coefficients in the unit interval [58]. Note, that the value of polynomial should not reach 0 or 1 in the unit interval, otherwise, it can't be converted into a Bernstein polynomial; however, it can be approximated by a Bernstein polynomial.

## 6.2.2 Synthesizing CRNs for Computing Polynomials

In this section we present a systematic methodology for synthesizing CRNs that can compute polynomials. As discussed in the previous section, we assume that the target polynomial is given in Bernstein form, with all coefficients in the unit interval. The method is composed of two parts, designing the CRN and initializing certain types to specific values, as discussed in the following section.

### Designing the CRN

The CRN reactions consist of two sets of reactions that we call the *control generating* reactions and the transferring reactions.

First consider the control generating reactions. When our proposed CRN is computing a polynomial of degree m, each control generating reaction should have m reactants. The reactions consist of all possible combinations of m molecules chosen from  $X_0$  and  $X_1$ . These (m + 1) reactions are listed in (6.12). In the first reaction of (6.12), all reactants are chosen from molecules of  $X_0$  and produce molecules of  $S_0$ . In the second, (m - 1) molecules of  $X_0$  and one molecule of  $X_1$  are combined to produce molecules of  $S_1$ . Similarly, the (i + 1)st reaction contains *i* molecules of  $X_1$  and (m - i) molecule of  $X_0$ . The total number of possible reactions, as shown in (6.12), is (m + 1).

$$mX_{0} \rightarrow S_{0} + mX_{0}$$

$$X_{1} + (m-1)X_{0} \rightarrow mS_{1} + X_{1} + (m-1)X_{0}$$

$$2X_{1} + (m-2)X_{0} \rightarrow {\binom{m}{2}}S_{2} + 2X_{1} + (m-2)X_{0}$$

$$\vdots$$

$$iX_{1} + (m-i)X_{0} \rightarrow {\binom{m}{i}}S_{i} + X_{0,1} + iX_{1} + (m-i)X_{0}$$

$$\vdots$$

$$mX_{1} \rightarrow S_{m} + mX_{1}.$$
(6.12)

A degree *m* Bernstein polynomial has (m + 1) Bernstein coefficients. We consider (m + 1) pairs of types  $(B_{j,0}, B_{j,1})$  for j = 0, 1, ..., m, to represent these coefficients. The transferring reactions produce the final output,  $Y_0$  or  $Y_1$ , from the products of the control generating reactions, the  $S_j$ 's. They do so proportionally to the Bernstein coefficients.  $S_j$  goes to  $Y_0$  if it combines with  $B_{j,0}$  and goes to  $Y_1$  if it combines with  $B_{j,1}$ . Accordingly, there are 2(m+1) transferring reactions as listed in Equation (6.13).

$$S_{0} + B_{0,0} \rightarrow Y_{0} + B_{0,0}$$

$$S_{0} + B_{0,1} \rightarrow Y_{1} + B_{0,1}$$

$$S_{1} + B_{1,0} \rightarrow Y_{0} + B_{1,0}$$

$$S_{1} + B_{1,1} \rightarrow Y_{1} + B_{1,1}$$

$$\vdots$$

$$S_{m} + B_{m,0} \rightarrow Y_{0} + B_{m,0}$$

$$S_{m} + B_{m,1} \rightarrow Y_{1} + B_{m,1}$$

$$Y_{0} \rightarrow \emptyset$$

$$Y_{1} \rightarrow \emptyset.$$
(6.13)

The number of required reactions for the implementation of a Bernstein polynomial of degree m is equal to 3m + 5. We also need 3m + 7 molecular types listed in Table 6.1.

Table 6.1: The number of required molecular types in the proposed CRN for a polynomial of degree m.

| Represented molecular type | Number of molecular types |
|----------------------------|---------------------------|
| $X_0, X_1$                 | 2                         |
| $S_j$                      | m + 1                     |
| $B_{i,0}, B_{i,1}$         | 2m + 2                    |
| $Y_0, Y_1$                 | 2                         |
| Total                      | 3m + 7                    |

## Initialization

We initialize the pair  $(B_{j,0}, B_{j,1})$  according to the Bernstein coefficients  $b_{j,m}$ , i.e., we have

$$b_{j,m} = \frac{[B_{j,1}]}{[B_{j,0}] + [B_{j,1}]}.$$
(6.14)

For simplicity we initialize  $B_{j,0}$  and  $B_{j,1}$  such that the sum  $[B_{j,0}] + [B_{j,1}]$  is the same arbitrary value for all *j*'s. Call the sum  $[B_{j,0}] + [B_{j,1}] = B$  for all *j*'s. In fact, first we calculate the values of Bernstein coefficients using (6.10) and then initialize  $B_{j,1}$  and  $B_{j,0}$  as  $[B_{j,1}] = B \times b_{j,m}$  and  $[B_{j,0}] = B - [B_{j,1}]$ . (For the example in the introduction, we considered  $B = 1 \ nM$ .)

We initialize the corresponding molecular type in the input pair  $(X_0, X_1)$  based on the value  $x_{in}$  at which the polynomial is to be evaluated, i.e.,

$$x_{in} = \frac{[X_1]}{[X_0] + [X_1]}.$$
(6.15)

All the other intermediate types, i.e., the  $S_j$ 's as well as the output types  $Y_0$  and  $Y_1$ , are initialized to zero.

### 6.2.3 Proof Based on the Mass-Action Kinetics

We use an ordinary differential model of the mass-action kinetics to prove the correctness of our proposed CRN design.

The control generating reactions (6.12) produce types  $S_j$  while the transferring reactions (6.13) consume them. Therefore the ODEs for the types  $S_j$  are:

$$\frac{d[S_0]}{dt} = [X_0]^m - [B_{0,0}][S_0] - [B_{0,1}][S_0] = [X_0]^m - [S_0]([B_{0,0}] + [B_{0,1}]) 
\frac{d[S_1]}{dt} = m[X_0]^{m-1}[X_1] - [B_{1,0}][S_1] - [B_{1,1}][S_1] = m[X_0]^{m-1}[X_1] - [S_1]([B_{1,0}] + [B_{1,1}]) 
\vdots 
\frac{d[S_k]}{dt} = \binom{m}{k} [X_0]^{m-k} [X_1]^k - [B_{k,0}][S_k] - [B_{k,1}][S_k] = \binom{m}{k} [X_0]^{m-k} [X_1]^k - [S_k]([B_{k,0}] + [B_{k,1}]) 
\vdots 
\frac{d[S_m]}{dt} = [X_1]^m - [B_{m,0}][S_m] - [B_{m,1}][S_m] = [X_1]^m - [S_m]([B_{m,0}] + [B_{m,1}]).$$

At equilibrium  $\frac{d[S_j]}{dt} = 0$  for all j's. Accordingly, we can compute the  $S_j$ 's as:

$$[S_j] = \frac{\binom{m}{j} [X_0]^{m-j} [X_1]^j}{[B_{j,0}] + [B_{j,1}]} \qquad 0 \le j \le m.$$
(6.16)

Now we write the ODEs for the output types  $Y_0$  and  $Y_1$ . Based on the transferring reactions (6.13), we have:

$$\frac{d[Y_0]}{dt} = [B_{0,0}][S_0] + [B_{1,0}][S_1] + \dots + [B_{m,0}][S_m] - [Y_0]$$
  
$$\frac{d[Y_1]}{dt} = [B_{0,1}][S_0] + [B_{1,1}][S_1] + \dots + [B_{m,1}][S_m] - [Y_1]$$
(6.17)

At equilibrium  $\frac{d[Y_0]}{dt} = \frac{d[Y_1]}{dt} = 0$  and

$$[Y_0] = [B_{0,0}][S_0] + [B_{1,0}][S_1] + \dots + [B_{m,0}][S_m]$$
$$[Y_1] = [B_{0,1}][S_0] + [B_{1,1}][S_1] + \dots + [B_{m,1}][S_m].$$
(6.18)

According to the fractional encoding, the output value, y, is calculated as follows.

$$y = \frac{[Y_1]}{[Y_0] + [Y_1]} =$$

$$\frac{[B_{0,1}][S_0] + [B_{1,1}][S_1] + \dots + [B_{m,1}][S_m]}{([B_{0,0}][S_0] + [B_{1,0}][S_1] + \dots + [B_{m,0}][S_m]) + ([B_{0,1}][S_0] + [B_{1,1}][S_1] + \dots + [B_{m,1}][S_m])}$$
(6.19)

With the assumption that  $([B_{j,0}] + [B_{j,1}]) = B$  for all j's, we have:

$$y = \frac{[B_{0,1}][S_0] + [B_{1,1}][S_1] + \dots + [B_{m,1}][S_m]}{([B_{0,0}] + [B_{0,1}])[S_0] + ([B_{1,0}] + [B_{1,1}])[S_1] + \dots + ([B_{m,0}] + [B_{m,1}])[S_m]}$$
  
$$= \frac{[B_{0,1}][S_0] + [B_{1,1}][S_1] + \dots + [B_{m,1}][S_m]}{B([S_0] + [S_1] + \dots + [S_m])}$$
  
$$= \frac{\sum_{j=0}^m [B_{j,1}][S_j]}{B(\sum_{j=0}^m [S_j])}.$$
 (6.20)

By substituting  $[S_i]$  from Eq. (6.16)

$$y = \frac{\sum_{j=0}^{m} [B_{j,1}] \frac{\binom{m}{j} [X_0]^{m-j} [X_1]^j}{B}}{B(\sum_{j=0}^{m} \frac{\binom{m}{j} [X_0]^{m-j} [X_1]^j}{B})}$$
(6.21)

We know that  $\sum_{j=0}^{m} {m \choose j} [X_0]^{m-j} [X_1]^j = ([X_0] + [X_1])^m$ , due to binomial theorem; therefore, the denominator can be replaced by  $([X_0] + [X_1])^m$ .

$$y = \frac{\sum_{j=0}^{m} [B_{j,1}] \frac{\binom{m}{j} [X_0]^{m-j} [X_1]^j}{B}}{([X_0] + [X_1])^m}$$
  
= 
$$\sum_{j=0}^{m} \frac{[B_{j,1}]}{B} \binom{m}{j} \frac{[X_0]^{m-j} [X_1]^j}{([X_0] + [X_1])^m}$$
  
= 
$$\sum_{j=0}^{m} b_{j,m} \binom{m}{j} (1-x)^{m-j} x^j$$
(6.22)

Equation (6.22) is exactly the expression for a Bernstein polynomial representation of degree m for y(x). Thus, this CRN computes y(x). Note that y is finite since  $0 \leq [X_0] \leq 1$  and  $0 \leq [X_1] \leq 1$ . Therefore, for every initial state of interest our proposed CRN computes a stable equilibrium state.

Note that, in general, all the rate constants in our CRNs are assumed to be equal to each other. More precisely, based on the proof, there are three categories of reactions with respect to the rate constants: the control generating reactions, the transferring reactions, and the last two annihilation reactions of the transferring reactions. All reactions in each of these *categories* are required to have the same rate constant.

## 6.2.4 Encoding and Decoding

Our proposed CRNs perform computations on the fractional representation in Eq. 6.1. In this section we present chemical reactions that convert between this representation and a "direct representation", where the value of each variable is represented directly the concentration of a molecular type.

## Encoding

Let a molecular type X denote the direct representation of the input value x and  $(X_0, X_1)$  denote the molecular pair for its fractional representation. Assume that the

total concentration of  $X_0$  and  $X_1$  is  $1~\mathrm{nM}.$  Then we have

$$\begin{bmatrix} X \end{bmatrix} = \frac{\begin{bmatrix} X_1 \end{bmatrix}}{\begin{bmatrix} X_0 \end{bmatrix} + \begin{bmatrix} X_1 \end{bmatrix}} \\ \begin{bmatrix} X_0 \end{bmatrix} + \begin{bmatrix} X_1 \end{bmatrix} = 1nM$$
  $\Rightarrow$   $\{ \begin{array}{c} \begin{bmatrix} X_1 \end{bmatrix} = \begin{bmatrix} X \end{bmatrix} \\ \begin{bmatrix} X_0 \end{bmatrix} = 1 - \begin{bmatrix} X_1 \end{bmatrix}$  (6.23)

Since the concentration values for  $X_1$  and X are the same and subsequent stages do not consume them, type X can be directly used as type  $X_1$  in the fractional representation.

For generating  $X_0$ , we must implement subtraction. This is a little tricky. We designed the following reactions (6.24) for this task. T is initialized to 1 nM and B is an intermediate molecular type with initial value of zero.

$$T \rightarrow X_0 + T$$

$$B + X_0 \rightarrow \varnothing$$

$$X_1 \rightarrow X_1 + B$$

$$X_0 \rightarrow \varnothing$$
(6.24)

For these reactions the ODEs are

$$\frac{d[X_0]}{dt} = [T] - [B][X_0] - [X_0]$$
  
$$\frac{d[B]}{dt} = [X_1] - [B][X_0]$$
(6.25)

and at equilibrium we have

$$\frac{d[X_0]}{dt} = 0 \Rightarrow [X_0] = [T] - [B][X_0]$$
(6.26)

$$\frac{d[B]}{dt} = 0 \Rightarrow [X_1] = [B][X_0]. \tag{6.27}$$

By substituting  $[B][X_0]$  from Equation (6.27) to (6.26) we have

$$[X_0] = [T] - [X_1]. (6.28)$$

Equation (6.28) is valid when  $[T] \ge [X_1]$ . Since  $[X_0]$  cannot be negative, for  $[T] \le [X_1]$ ,  $[X_0] = 0$ . Thus, the equilibrium ODE solution for these reactions is

$$[X_0] = \begin{cases} [T] - [X_1] & \text{if } [T] \ge [X_1] \\ 0 & \text{if } [T] \le [X_1]. \end{cases}$$
(6.29)

If T is initialized to 1 nM, Reactions (6.24) compute  $[X_0] = 1 - [X_1]$ .

So reactions (6.24) encode the input concentration of X as a pair of concentrations  $(X_0, X_1)$  in a fractional representation. Here, in fact,  $X_1$  can substitute for X, as discussed above. Note that the concentration of  $X_0$  is initialized to zero at the outset.

### Decoding

For the output of our molecular computing system, we convert the fractional representation back to a direct representation. If the fractional output is represented by the pair of molecules  $(Y_0, Y_1)$  and the direct output by Y, we have

$$[Y] = \frac{[Y_1]}{[Y_0] + [Y_1]}.$$
(6.30)

In other words, we need to compute the summation of  $[Y_0]$  and  $[Y_1]$  and then the ratio of  $[Y_1]$  over this summation. For this computation, we use the reactions proposed in [59]. We will show that Reactions (6.31) compute  $[Y'] = [Y_0] + [Y_1]$  and Reactions (6.32) compute the final output  $[Y] = \frac{[Y_1]}{[Y']} = \frac{[Y_1]}{[Y_0] + [Y_1]}$ .

$$\begin{array}{rcl} Y_0 & \to & Y_0 + Y' \\ Y_1 & \to & Y_1 + Y' \\ Y' & \to & \varnothing \end{array} \tag{6.31}$$

$$Y_1 \rightarrow Y_1 + Y$$

$$Y' + Y \rightarrow Y'$$
(6.32)

According to the ODEs of the Reactions (6.31) we have

$$\frac{d[Y']}{dt} = [Y_0] + [Y_1] - [Y']$$

and at equilibrium

$$\frac{d[Y']}{dt} = 0 \Rightarrow [Y'] = [Y_0] + [Y_1].$$
(6.33)

Similarly for Reactions (6.32) we have

$$\frac{d[Y]}{dt} = [Y_1] - [Y][Y']$$

and the equilibrium value of [Y] is

$$\frac{d[Y]}{dt} = 0 \Rightarrow [Y] = \frac{[Y_1]}{[Y']} = \frac{[Y_1]}{[Y_0] + [Y_1]}.$$
(6.34)

Therefore the set of reactions in (6.31) and (6.32) implement the decoding of the output.

## 6.2.5 DNA Implementation

The proposed CRN for computing polynomials is general in the sense that it can be implemented by any chemical or biochemical system with mass-action kinetics. As a practical medium, we choose DNA strand-displacement reactions. Indeed, we used the first approach, presented in Chapter 2, to map CRNs to DNA reactions.

We illustrate with the following target function:

$$y(x) = \frac{1}{4} + \frac{9}{8}x - \frac{15}{8}x^2 + \frac{5}{4}x^3$$
(6.35)

The CRN includes reactions for the encoder, computation, and decoder parts. The Bernstein polynomial for y(x) is

$$g(x) = \frac{2}{8}[(1-x)^3] + \frac{5}{8}[3x(1-x)^2] + \frac{3}{8}[3x^2(1-x)] + \frac{6}{8}x^3.$$
 (6.36)
From the Bernstein coefficients, we initialize the types  $(B_{i,0}, B_{i,1})$  for i = 0, 1, 2, 3 as follows:

$$\begin{array}{ll} [B_{0,0}] = 0.6 \ nM \\ [B_{0,1}] = 0.2 \ nM \end{array} \} \quad \Rightarrow \quad \frac{0.2}{0.6 + 0.2} = \frac{2}{8} \\ [B_{1,0}] = 0.2 \ nM \\ [B_{1,1}] = 0.5 \ nM \end{array} \} \quad \Rightarrow \quad \frac{0.5}{0.3 + 0.5} = \frac{5}{8} \\ [B_{2,0}] = 0.5 \ nM \\ [B_{2,1}] = 0.3 \ nM \end{array} \} \quad \Rightarrow \quad \frac{0.3}{0.5 + 0.3} = \frac{3}{8} \\ [B_{3,0}] = 0.2 \ nM \\ [B_{3,1}] = 0.6 \ nM \end{array} \} \quad \Rightarrow \quad \frac{0.6}{0.2 + 0.6} = \frac{6}{8} \end{array}$$

We map our design to DNA strand-displacement reactions and evaluate it for 11 different input values between 0 and 1. The values of y computed by these CRN are plotted against x and shown with the target polynomial y(x) in Fig. 6.3. Table 6.2 tabulates the computed values of y(x) and the corresponding errors.

Table 6.2: Accuracy of a DNA strand displacement implementation of a CRN computing  $y(x) = \frac{1}{4} + \frac{9}{8}x - \frac{15}{8}x^2 + \frac{5}{4}x^3$  using the proposed method.

| $x_{in}$ | Computed $y(x)$ | Error $(\%)$ |
|----------|-----------------|--------------|
| 0        | 0.261           | 4.4          |
| 0.1      | 0.3626          | 5            |
| 0.2      | 0.4207          | 2.5          |
| 0.3      | 0.4588          | 1.4          |
| 0.4      | 0.4838          | 0.8          |
| 0.5      | 0.5010          | 0.2          |
| 0.6      | 0.5180          | 0.4          |
| 0.7      | 0.5426          | 0.9          |
| 0.8      | 0.5823          | 1.3          |
| 0.9      | 0.6356          | 3            |
| 1        | 0.723           | 4            |

For the DNA implementation we used the parameters based on the examples in [11]. The maximum strand displacement rate constant is  $q_{max} = 10^6 M^{-1} s^{-1}$ , and the



Figure 6.3: The values of y(x) computed by a DNA implementation of proposed CRN. Blue line: target y(x). Red stars: computed by DNA reactions.

initial concentrations of auxiliary complexes is set to  $C_{max} = 10^{-5}M$ . If the concentration of auxiliary species,  $C_{max}$ , is much larger than the maximum concentration of other species, (i.e., in proposed CRNs  $C_{max} \gg 1nM$ ) then, as described in [11], we can assume that over the simulation time the auxiliary concentrations remain effectively constant. Therefore, DNA reactions correctly emulate the CRN independent of the auxiliary concentrations. Note that, for this assumption, the simulation time and reaction rates should not be very large values [11]. Although these requirements have been met in our simulations, errors exist.

As we describe later, the error stems from the fact that each molecular reaction is implemented by a sequence of DNA strand displacement reactions; the concentrations of auxiliary molecules,  $C_{max}$ , is bounded. In fact, if  $C_{max} \to \infty$  the DNA simulation results converge to ODE simulation results. Further details concerning the analysis of errors when implementing CRNs with DNA strand displacement reactions, as well as a proof of convergence of a DNA implementation to the target CRN, can be found in the Supplementary Information of [11] and [1].

Using the method presented in [11], each chemical reaction with m reactants and nonzero products can be emulated by m + 1 DNA strand displacement reactions. For example, bimolecular reactions are mapped to 3 DNA strand displacement reactions. To illustrate this, we present a sequence of DNA strand displacement reactions that are used to simulate a bimolecular reaction with three products.

As described in [11], three DNA reactions, R1, R2, and R3, shown in Fig. 6.4 implement the molecular reaction  $A + B \xrightarrow{k_i} A + B + C$ .



Figure 6.4: DNA strand displacement reactions that emulates reaction  $A + B \xrightarrow{k_i} A + B + C$ .

Unimolecular reactions without product, e.g.,  $Y \to \emptyset$ , can be implemented by a single DNA strand displacement reaction. The DNA reaction shown in Fig. 6.5 emulates the reaction  $A \xrightarrow{k_i} \emptyset$ . The toehold of strand A binds to its complementary part of gate molecule G and produces double strand  $W_1$  and single strand  $W_2$ . Since  $W_1$  and  $W_2$  cannot bind together, the reaction is unidirectional.



Figure 6.5: DNA strand displacement reaction that emulates reaction  $A \xrightarrow{k_i} \emptyset$ .

Table 6.3 summarizes the number of chemical and DNA strand displacement reactions for each group in our proposed method for computing polynomial of degree m.

Table 6.3: Number of chemical and DNA Strand-Displacement reactions for each group of the proposed CRN for computation of a Bernstein polynomial of degree m.

| Group of reactions | Type of chemical reaction    | Number of chemical reactions | Number of DNA reactions |  |
|--------------------|------------------------------|------------------------------|-------------------------|--|
| Control generating | reactions with $m$ reactants | (m+1)                        | $(m+1) \times (m+1)$    |  |
| Transferring       | bimolecular                  | 2m + 2                       | $(2m+2)\times 3$        |  |
|                    | unimolecular without product | 2                            | $2 \times 1$            |  |
| Total              |                              | 3m + 5                       | $m^2 + 8m + 9$          |  |

# 6.3 Discussion

In this chapter, we have introduced a new encoding for computation with CRNs: the value corresponding to each variable consists of the ratio of the concentration of a molecular type to the sum of two types. Based on this fractional representation, we proposed a method for computing arbitrary polynomials that map the unit interval [0,1]to (-1,0). This is a rich class of functions.

Computation of polynomials with chemical kinetics has been attempted before by Buisman *et al.* [59]. Compared to our method, their method requires fewer molecular types and fewer reactions (m molecular types and 3m molecular reactions for a complete polynomial of degree m). However, unlike our approach, their CRNs are dependent on reaction rates. In fact, for each coefficient of the desired polynomial, they need a distinct reaction rate. This is unrealistic. Note that our approach only requires a single rate. Soloveichik et al. [43], as well as earlier work [60, 61, 49], attempted to achieve Turing universality with chemical reactions. Although it is possible to compute polynomials with their CRNs, they did not provide a systematic framework for doing so.

The fractional representation that we propose is a nonstandard representation. However, we note that it is similar to encodings found in nature. Many biological systems have species with two distinct *states*. For example, it is common for an enzyme to have *active* and *inactive* states. The ratio of the concentrations of the two states is a meaningful value. This is quite analogous to our representation.

Clearly, the primary interest of this work is theoretical. CRNs are a fundamental model of computation, abstract yet conforming to the physical behavior of chemical systems. Delineating the range of behaviors of such systems has intellectual merit. These results may also have practical applications.

Control theory has played a remarkable role in mathematical biology, providing a framework for modeling, designing, and improving the dynamic behavior of systems such biological oscillators [62, 63, 64, 65]. Polynomials play a central role in control and oscillation. In fact, the transfer function of a control system, that is the ratio of its output to its input in the Laplace domain, is the ratio of two polynomials, i.e.,  $H(z) = \frac{A(z)}{B(z)} = \frac{a_0+a_1z++a_nz^n}{b_0+b_1z++b_mz^m}$  [66]. Furthermore, nonlinear feedback in oscillators can be implemented by polynomials [67].

Practitioners in synthetic biology are striving to create "embedded controllers" – viruses and bacteria that are engineered to perform useful molecular computation in situ where it is needed, for instance for drug delivery and biochemical sensing. Such embedded controllers may be called upon to perform computation such as filtering or signal processing. Computing polynomial functions is at the core of many of these computational tasks.

In the next chapter, we will attempt to generalize the method to compute a wider class of functions.

# Chapter 7

# CRNs for Computing Mathematical Functions using Fractional Coding

As yet, there is no *systematic* way to design molecular systems capable of computing mathematical functions. This chapter presents a systematic methodology to design CRNs for this goal. Using the fractional coding presented in Chapter 6 and expanding it for bipolar fractional coding, we propose a framework for design and implementation common mathematical functions.

# 7.1 Prior work

Synthetic biology in general, and molecular computing in particular, hold promises for not only monitoring proteins that have been identified as disease-specific biomarkers, but also for delivering drugs and systematically altering the interactions among molecules. Since early work on DNA computing [6], the field has evolved significantly and various applications have been considered, some of which we point out in the following paragraphs. There has been noticeable interest in activating and inhibiting pathways by filtering proteins in different bands [18][68][69]. Furthermore, it has been demonstrated that DNA and other biological systems can be used to implement simple circuits such as AND, OR, NAND etc [33]– [70][71][72][73] [74][35] [36] [29]. These circuits have been used as building blocks for both digital signal processing [12][2][21][75][76], and mixed-signal (analog and digital) computation [75] [77]. Using these simple circuits, complex genetic circuits have been constructed to perform computation in cells [78]. To automate the design of genetic circuits, recently a computer-aided design system has been presented [78].

Additionally, as a non-conventional design language, chemical reaction networks (CRNs) have been used to design mathematical functions. Prior work has presented molecular reactions designed to compute different functions such as polynomials [59] [79],  $log_a(x)$ [80], and log(1 + x) [81]. However, no systematic method for molecular implementation of complex mathematical functions, such as exponential and sigmoid, has been presented before. This chapter presents a systematic method for designing CRNs that are able to compute a wide range of common mathematical functions. The building blocks of the proposed CRNs are simple units composed of four chemical reactions. All chemical reactions in the proposed system have two reactants. It has been shown that bimolecular chemical reactions, i.e., reactions with two reactants, can be implemented by DNA in a robust way [1]. Thus, our method provides a systematic way for DNA implementation of molecular systems that are able to compute mathematical functions.

Molecular computation of mathematical functions may have applications in the field of machine learning. Machine learning classifiers are becoming increasingly ubiquitous and their physical realization using different technologies has been considered [82][83]. Due to the remarkable advances in the field of synthetic biology, it is possible to implement biological machine learning systems in vitro and in vivo. For example cell classifier genetic logic circuits can sense features of molecules (miRNAs) in living cells, detect their expression patterns, and selectively respond to specific cell types [72] [84] [73][85] [86]. These circuits can potentially lead to the production of personalized smart drugs that provide therapeutic medicine tailored to specific disease for specific patients[87].

Machine learning classifiers based on neural networks are commonly used today in many applications where sensor data are collected, features are computed and fed as input to a neural network [82][83]. In the biology realm, two types of neural networks have been studied in the literature: first, biological sensory neurons that convert external stimuli (light, surface electron density, etc.), coming from environment, into internal responses [88]– [89]; second, biological neural networks whose inputs and outputs are both molecular concentrations [90]-[91]. The second type is more attractive because it can work in homogeneous systems like living cells with no need of outside influence. This chapter considers the second group.

As an early theoretical research, [90] has presented chemical reactions that, based on the ordinary differential equations of mass action kinetics model, can imitate simple McClulloch-Pitts neurons. These chemical neurons can be coupled together in order to build a chemical neural network or finite state machine [92]. Practical implementation of neurons has not been considered in [90] and contemporaneous work until DNA emerged in the community as the silicon in the electronics community. Fortunately, DNA nanotechnology based on strand displacement reactions has provided a promising medium for physical implementation of neural networks and encouraged scientists to consider the realization of DNA neural networks both theoretically and experimentally. For example, in the theoretical aspect, [93] described a DNA Hopfield neural network and a DNA multi-layer perceptron. According to its proposed DNA system, [93] speculated that networks containing as many as 10<sup>9</sup> neurons might be feasible. In a later work, [94] described theoretical DNA implementation of a linear classifier. Beside theoretical research, experimental work for DNA neural networks has been proposed by researchers [95]-[96]. However, experimental attempts were not able to completely implement even a single neuron till, for the first time, [58] successfully implemented artificial neural networks (ANNs) experimentally, using DNA strand displacement.

In general an ANN consists of one or more layers where, in each layer, a neuron computes a weighted sum followed by a nonlinear activation (transfer) function. Typically the activation function corresponds to a sigmoid function. Prior work on molecular implementations of ANNs has considered either a hard-threshold or linear transfer function as an activation function. The DNA sigmoid function proposed in this chapter can be used to construct ANNs with nonlinear activation functions.

The contribution of this chapter is developing a framework based on a novel fractional coding approach that is able to synthesize simple bimolecular reactions to implement complex mathematical functions such as exponential, sigmoid, and tangent hyperbolic. This chapter also demonstrates a DNA implementation of a nonlinear ANN using the proposed framework, as an application.

In chapter 6 we presented a nontraditional molecular coding, referred to as *fractional* representation. In fractional representation a pair of molecular types is assigned to each variable, e.g.,  $(X_0, X_1)$  for a variable x. The value of the variable is determined by the ratio of the concentrations for the assigned pair,

$$x = \frac{[X_1]}{[X_0] + [X_1]} \tag{7.1}$$

where  $[X_1]$  and  $[X_0]$  represent concentrations of molecules  $X_1$  and  $X_0$ , respectively. Note that the value of x is confined to the unit interval, [0, 1]. We refer to this representation as *unipolar fractional* coding.

Variables with values in the range [-1, 1] can be represented by a different coding using two molecular types, given by:

$$x = \frac{[X_1] - [X_0]}{[X_0] + [X_1]}.$$
(7.2)

We refer to this representation as *bipolar fractional* coding. In this representation, the value of x lies between -1 and 1.

The novel contribution of this chapter is twofold. First, biomolecular reactions are proposed to compute operations such as ab, 1 - ab, and sa + (1 - s)b using unipolar and bipolar fractional coding. These molecular circuits are, respectively, referred to as Mult, NMult, and MUX. Second, this chapter demonstrates that unipolar and bipolar fractional coding approaches can be used to design CRNs for computing complex mathematical functions such as  $e^{-x}$ ,  $\sin(x)$ , and  $\operatorname{sigmoid}(x)$ . The proposed CRNs can be implemented by biomolecular systems such as DNA.

The unipolar and biploar fractional coding approaches are inspired by digital computing using unipolar and biploar stochastic logic circuits where numbers are represented by a bit stream of 0's and 1's [97], [98]. In molecular computing  $X_0$  and  $X_1$  molecules, respectively, correspond to the grouping of all 0's and all 1's. The knowledge of existing stochastic logic circuits form the basis of proposed new CRNs.

## 7.2 CRNs for Multiplication Units

Based on the fractional coding we propose novel CRNs for computing multiplication. These CRNs serve as fundamental units for computing desired functions described in Section 2. The fundamental multiplication units are referred to as Mult and NMult. The module Mult computes  $c = a \times b$ , and the module NMult computes  $c = 1 - a \times b$ where a, b, and c are in unipolar fractional representation. The modules are described below.

### 7.2.1 Mult unit:

The Mult module shown by the symbol in Fig. 7.1(a) computes c as the multiplication of two inputs a and b all in unipolar fractional representation. In other words if  $a = \frac{[A_1]}{[A_0]+[A_1]}$  and  $b = \frac{[B_1]}{[B_0]+[B_1]}$  then  $c = \frac{[C_1]}{[C_0]+[C_1]} = a \times b$ . The set of four reactions in Fig. 7.1(a) shows the CRN for a multiplication unit, Mult.



Figure 7.1: Basic molecular modules. a, Multiplication module, Mult, calculates  $c = a \times b$ , the multiplication of two input variables a and b in unipolar fractional representation. The module is implemented by four molecular reactions and represented by the presented symbol. b, The four molecular reactions and the symbol for Nmult unit. This module computes  $c = 1 - a \times b$  in unipolar fractional representation. c, The MUX unit that performs scaled addition. a, b and c can be unipolar or bipolar, whereas s is in unipolar representation. d, The bipolar Mult unit that performs multiplication in bipolar fractional representation and its molecular reactions. e, The molecular reactions and the symbol for bipolar NMult unit. This module computes  $c = -a \times b$  in bipolar fractional representation

On the basis of both stochastic and ordinary differential equations, we theoretically prove in Supplementary Section S.1 that these reactions compute  $c = a \times b$ .

#### 7.2.2 NMult unit:

If we switch  $C_0$  and  $C_1$  in the molecular reactions of the Mult unit, we obtain the so called NMult unit which computes  $1 - a \times b$ . Fig. 7.1(b) shows the symbol and the set of reactions for the NMult unit.

Similar to the method we used for Multiplication module, it is easy to show that the reactions listed in 7.1(b) compute  $c = 1 - a \times b$  in unipolar fractional coding. The details for the proof are in Supplementary Section S1.

The chemical reactions presented in Fig. 7.1 do not save the initial values of the input molecules of each Mult or NMult units. The reactions can be changed such that they preserve the values of either one or both of the input molecular pairs,  $(A_0, A_1)$  and  $(B_0, B_1)$ . The details for these alternative Mult and NMult units are presented in Section S.2 of the Supplementary Information.

Note that for some functions we use another molecular unit, so called MUX, shown in Fig. 7.1(c). Furthermore, to perform multiplication in bipolar fractional coding, two different molecular units, shown in Fig. 7.1(d) and (e), are used. These three units are described in detail and used to compute the bipolar sigmoid function in Section 3.

# 7.3 Designing CRNs for Computing Functions

In this section we propose a framework for designing CRNs to compute different functions. Our method is illustrated in Fig. 7.2.

#### 7.3.1 Methodology

In the proposed methodology, the functions are approximated by truncating their Maclaurin series expansions. Note that other expansion methods such as Taylor series



Figure 7.2: The proposed methodology. This figure shows the required steps for computing functions based on the proposed methodology. It starts with the approximation of the desired function as a polynomial using a series expansion method. The polynomial is then expressed in an equivalent form that only contains Mult and NMult units. The structure of Mult and NMult elements are mapped to their equivalent chemical reactions and finally the CRN is implemented by DNA strand displacement reactions.

can also be used. The approximated polynomials are then mapped into equivalent forms such that they can be implemented using Mult and NMult units. The Mult/NMult structure is then mapped to chemical reactions and then implemented by DNA. We describe these steps using  $f(x) = e^{-x}$  as an example.

#### Step 1- Approximate the function

The Taylor series of any function f(x) that is infinitely differentiable at the point a, corresponds to the power series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$
(7.3)

If the Taylor series is centered at zero, i.e., a = 0, then the series is called a Maclaurin series. As an example for  $f(x) = e^{-x}$  the Maclaurin expansion is given by:

$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \dots$$
(7.4)

The series is truncated to a polynomial of degree n, in order to approximate the desired function. As an example if n = 5, i.e., the first six terms are retained, for  $f(x) = e^{-x}$  we obtain:

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{x^5}{5!}.$$
(7.5)

#### Step 2- Reformat the approximation and map it to Mult/NMult units

As the second step, the approximating polynomials obtained in the first step, are mapped into equivalent forms such that they can be implemented using Mult and NMult units. The Mult and NMult units are analogous to AND and NAND gates in stochastic logic; the AND and NAND gates perform the same operations for stochastic bit streams as Mult and NMult, respectively, do for molecular concentrations in unipolar fractional encoding. Recent work in stochastic logic [99] has shown that the form of such polynomials can be changed in a way that they can be mapped to a cascade of AND and NAND logic gates. The approach presented in [99] uses the well known Horner's rule in order to map polynomials with alternating positive and negative coefficients and decreasing magnitudes to AND and NAND gates. This approach can be used for Maclaurin series of  $e^{-x}$ ,  $\sin(x)$ ,  $\cos(x)$ ,  $\log(1 + x)$ ,  $\tanh(x)$ , and  $\operatorname{sigmoid}(x)$ . We use the approach proposed in [99] to change the form of the desired approximating polynomials and then map them to a cascade of Mult and NMult units. We briefly describe this approach.

#### Horner's rule:

Consider a polynomial P(x) of degree n given in its power form as

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n.$$
(7.6)

According to the details in [99], (7.6) can be rewritten as

$$P(x) = b_0(1 - b_1x(1 - b_2x(1 - b_3x...(1 - b_{n-1}x(1 - b_nx))))...)$$
(7.7)

where  $b_0 = a_0$  and  $b_i = -\frac{a_i}{a_{i-1}}$  for i = 1, 2, ..., n. Provided  $0 \le b_i \le 1$  for i = 0, 1, ..., n, this representation can be easily mapped to a regular cascade of molecular Mult and NMult units as described in [99].

In order to guarantee  $0 \le b_i \le 1$  these requirements must be satisfied:

First, the coefficients of the original polynomial, i.e., the  $a_i$ 's, should be alternatively positive and negative. Second, absolute values for all coefficients, i.e., the  $a_i$ 's, should be less than one and decrease as the terms' orders increase. There exist several polynomials that satisfy these requirements. For example Maclaurin series expansion of  $e^{-x}$ ,  $\sin(x)$ ,  $\cos(x)$ ,  $\log(1 + x)$ ,  $\tanh(x)$ , and  $\operatorname{sigmoid}(x)$ , listed in equations (41) to (46) of the Supplementary Information, meet these requirements and can be represented using Equation (7.7).

For example if we apply the Horner's rule for the fifth order Maclaurin series of  $f(x) = e^{-x}$ , shown in (7.5), we obtain

$$e^{-x} = 1 - x\left(1 - \frac{x}{2}\left(1 - \frac{x}{3}\left(1 - \frac{x}{4}\left(1 - \frac{x}{5}\right)\right)\right)\right).$$
(7.8)

Equation (7.8) can be implemented using Mult and NMult units as shown in Table 7.1.

Elements,  $E_i$ , of the structure shown in Table 7.1 compute intermediate outputs,  $t_i$  in order to progressively compute  $e^{-x}$  function using the Equation (7.8). For this example we list the computation related to each element as follows:

Table 7.1 summarizes the truncated Maclaurin series, reformatted Maclaurin series using Horner's rule, and Mult/NMult structure for several other desired functions.

#### Step3- Synthesize the Chemical Reactions

Table 7.1: Truncated Maclaurin series, reformatted Maclaurin series using Horner's rule,<br/>and Mult/NMult structure for functions in equations (41)-(46) of the Supplementary<br/>Information.Information.FunctionTruncated Maclaurin seriesReformatted using Equation (7.7)

| Function    | Truncated Maclaurin series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reformatted using Equation $(7.7)$                                                                          |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| $e^{-x}$    | $1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{x^5}{5!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1 - x(1 - \frac{x}{2}(1 - \frac{x}{3}(1 - \frac{x}{4}(1 - \frac{x}{5}))))$                                 |
|             | $x \xrightarrow{E_1} x \xrightarrow{E_1} x \xrightarrow{E_2} x \xrightarrow{E_3} x \xrightarrow{E_4} x$ |                                                                                                             |
| $\sin(x)$   | $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $x(1 - \frac{x^2}{6}(1 - \frac{x^2}{20}(1 - \frac{x^2}{42})))$                                              |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |
| $\cos(x)$   | $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{1 - \frac{x^2}{2}(1 - \frac{x^2}{12}(1 - \frac{x^2}{30}))}{1 - \frac{x^2}{12}(1 - \frac{x^2}{30})}$  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |
| $\log(1+x)$ | $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $x(1 - \frac{x}{2}(1 - \frac{2}{3}x(1 - \frac{3}{4}x)))$                                                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |
| $\tanh(x)$  | $x - \frac{1}{3}x^3 + \frac{2}{15}x^5 - \frac{17}{315}x^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $x(1 - \frac{x^2}{3}(1 - \frac{2}{5}x^2(1 - \frac{17}{42}x^2)))$                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1 - \frac{1}{2}\left(1 - \frac{x}{2}\left(1 - \frac{x^2}{12}\left(1 - \frac{x^2}{10}\right)\right)\right)$ |
| sigmoid(x)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2<br>i/2<br>i/2<br>i/2<br>igmoid (X)                                                                      |

To build the CRN for computing the desired function, the next step is to synthesize the related chemical reactions for each element used in the Mult/NMult structure. Depending on the unit type, either the set of reactions presented in Fig. 7.1 (a) or (b) is used.

After designing chemical reactions the final step is to map them to DNA reactions as described in Section 7.5.

## 7.4 Molecular Perceptron

This section describes implementation of a single-layered neural network, also called a perceptron, by molecular reactions. As it is shown in Fig. 7.3(a), the system first computes the inner product of an input vector and a coefficient vector as  $y = \sum_{i=1}^{N} w_i x_i + w_0$ and then it uses the sigmoid function to compute the final output z as z = sigmoid(y)for the soft decision of whether the output should be close to 0 or 1. For the perceptron system that we implement, the inputs are binary, that is to say either  $x_i = 0$  or  $x_i = 1$ , and the coefficients, i.e.,  $w_i$ 's, are between -1 and 1. All multiply-add operations are implemented using bipolar Mult units. Since the input of the sigmoid function is between -1 and 1, we implement sigmoid function using bipolar fractional coding. Note that prior biomolecular implementations of artificial neural networks (ANNs) have considered either hard limit or linear activation functions [58][94]. No prior publication has considered molecular ANNs using sigmoid activation function. In this section we describe the implementation of bipolar MUX unit and bipolar Mult and NMult units.

### 7.4.1 MUX unit:

The MUX module shown by the symbol in Fig. 7.1(c) computes c as the weighted addition of two inputs a and b as  $c = a \times (1-s) + b \times s$ , where  $0 \le s \le 1$ . a, b, and c can be in unipolar or bipolar fractional representation while the weight s is always considered as



Figure 7.3: Molecular Perceptron. a, A perceptron system with 32 binary inputs and 1 output between 0 and 1. b, Molecular implementation of bipolar sigmoid function using bipolar Mult, NMult and MUX units. c, Results for the molecular simulation and MATLAB simulation of the perceptron system. Considering 0.5 as the threshold for decision, the results show that the molecular and MATLAB simulation agree with respect to the final decision.

unipolar. The set of four reactions in Fig. 7.1(c) shows the CRN for a MUX unit for both unipolar and bipolar fractional coding. Mass-action kinetic equations for both unipolar and bipolar fractional coding are discussed in Supplementary Information Section S.4.

#### 7.4.2 Bipolar Mult unit:

The bipolar Mult module shown by the symbol in Fig. 7.1(d) computes c as the multiplication of two inputs a and b, where a, b and c are represented in bipolar fractional representation. In other words if  $a = \frac{[A_1]-[A_0]}{[A_0]+[A_1]}$  and  $b = \frac{[B_1]-[B_0]}{[B_0]+[B_1]}$  then  $c = \frac{[C_1]-[C_0]}{[C_0]+[C_1]} = a \times b$ . The set of four reactions in Fig. 7.1(d) represents the CRN for a multiplication unit in bipolar fractional coding. In Supplementary Information Section S.3 we prove that these reactions compute  $c = a \times b$ .

#### 7.4.3 Bipolar NMult unit:

Analogous to the way that we obtained NMult from Mult unit in unipolar fractional coding, if we switch  $C_0$  and  $C_1$  in the reactions of the bipolar Mult unit, we obtain the so called bipolar NMult unit which computes  $-a \times b$ . Fig. 7.1(e) shows the symbol and the set of reactions for the bipolar NMult unit. Similar to the method we used for Mult unit, it is easy to show that the reactions listed in 7.1(e) compute  $c = -a \times b$  in bipolar fractional coding. The details for the proof are in Supplementary Information Section S.3.

#### 7.4.4 Bipolar sigmoid function

The bipolar fractional representation can be used to implement the sigmoid function, presented in Section 7.3.1 for unipolar fractional representation. Therefore, the function can be computed for inputs between -1 and 1, i.e.,  $-1 \le x \le 1$ . The output of this function, however, is still in the unit interval [0,1] and can be represented by unipolar fractional representation. In fact, for  $x \in [-1,1]$  the corresponding output range is [0.2689, 0.7311] As it is shown in [99], the sigmoid function for bipolar input and unipolar output in stochastic logic can be implemented by electronic logic circuits, namely, XOR and XNOR gates and Multiplexers. These electronic circuits perform multiplication and weighted addition for stochastic bit streams analogous to the same operations that bipolar Mult, NMult, and MUX units in Fig. 7.1 perform for molecular systems. Accordingly, we map the circuit to the cascade of proposed molecular units as shown in Fig. 7.3(b). The inner product can be implemented by N bipolar Mult units having the same output. Details for the molecular implementation of the inner product are described in Section S.5 of the Supplementary Information.

By cascading the inner product part and the sigmoid function, we can implement the desired perceptron system as it is shown in Fig. 7.3(a). We map this molecular circuit to DNA strand-displacement reactions and simulate it for N = 32 with the bias value of zero, i.e.,  $w_0 = 0$ . We repeat the simulation for 100 different sets of input vectors. The results are compared to the theoretical results obtained by MATLAB simulation in Fig. 7.3(c). Since the molecular inner product computes  $y = \frac{1}{N} \sum_{i=1}^{N} w_i x_i$  instead of  $y = \sum_{i=1}^{N} w_i x_i$ , the amplitude for the computed output is less than that of the MATLAB output. Although the DNA computed outputs do not perfectly match with MATLAB simulation, if we consider 0.5 as the threshold for a binary decision, the DNA results and MATLAB results agree with respect to the final decision. Next section describes the details for DNA implementation of the proposed molecular systems.

# 7.5 DNA Implementation

In order to validate our proposed method using a biological medium, we implement the Mult/NMult circuits by DNA strand displacement (DSD) reactions. With biological origin, the DSD reactions can closely emulate mass-action kinetics of CRNs. Indeed, we use the second approach described in Chapter 2 for DNA implementation of our designs. We choose the second SNA implementation approach because recently Chen, *et al.*, [1] showed that, using this approach, bimolecular reactions, such as  $A + B \rightarrow C$ , can be implemented by linear, double-stranded DNA complexes that are compatible with natural DNA. Our computational units are constructed from bimolecular reactions and can be biologically realized in a highly pure form using bacterial cloning as proposed in [1]. This means that the experimental limitations in the length of synthetic DNA strands can be bypassed. With longer strands the larger number of distinct molecular types can be designed and more complex CRNs can be realized by DNA molecules. Furthermore, as the experimental results in [1] show, for bimolecular chemical reactions, the kinetics of DNA implementation matches the mass-action kinetics model precisely. Since our designed CRNs are composed of bimolecular reactions, these can be implemented using the framework developed in [1].

Table 7.2 presents the accuracy of the proposed method, by listing the computed values of functions at eleven equally separated points in the interval [0,1]. The computed result, for each function, is reported 50 hrs after the simulation starts. The table also lists the mean square error for computation of each function at the eleven points. The error maybe due to several factors: the approximation of the function with their truncated series expansion, the implementation of the related CRNs by DSD reactions, and the limited simulation time, i.e., 50 hrs. As the results show the error is less than  $1 \times 10^{-3}$ .

| exact values. |          |        |        |        |        |        |        |        |         |        |        |        |         |
|---------------|----------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|---------|
| Function      |          | x=0    | x=0.1  | x=0.2  | x=0.3  | x=0.4  | x=0.5  | x=0.6  | x=0.7   | x=0.8  | x=0.9  | x=1    | Error   |
| $e^{-x}$      | computed | 0.9568 | 0.8770 | 0.7975 | 0.7228 | 0.6609 | 0.5951 | 0.5295 | 0.4772  | 0.4300 | 0.3872 | 0.3482 | 5.02e-4 |
|               | exact    | 1      | 0.9048 | 0.8187 | 0.7408 | 0.6703 | 0.6065 | 0.5488 | 0.4966  | 0.4493 | 0.4066 | 0.3679 |         |
| $\sin(x)$     | computed | 0      | 0.1045 | 0.2062 | 0.3043 | 0.3970 | 0.4833 | 0.5570 | 0.6261  | 0.6844 | 0.7460 | 0.7967 | 4.63e-4 |
|               | exact    | 0      | 0.0998 | 0.1986 | 0.2955 | 0.3894 | 0.4794 | 0.5646 | 0.64421 | 0.7173 | 0.7833 | 0.8414 |         |
| $\cos(x)$     | computed | 0.9728 | 0.9757 | 0.9641 | 0.9407 | 0.9129 | 0.8671 | 0.8071 | 0.7461  | 0.6778 | 0.6029 | 0.5221 | 3.16e-4 |
|               | exact    | 1      | 0.9950 | 0.9800 | 0.9553 | 0.9210 | 0.8775 | 0.8253 | 0.7648  | 0.6967 | 0.6216 | 0.5403 |         |
| $\log(1+x)$   | computed | 0.0090 | 0.0985 | 0.1868 | 0.2675 | 0.3410 | 0.4075 | 0.4660 | 0.5212  | 0.5707 | 0.6217 | 0.6699 | 1.8e-4  |
|               | exact    | 0      | 0.0953 | 0.1823 | 0.2623 | 0.3364 | 0.4054 | 0.4700 | 0.5306  | 0.5877 | 0.6418 | 0.6931 |         |
| $\tanh(x)$    | computed | 0      | 0.0935 | 0.1883 | 0.2823 | 0.3701 | 0.4574 | 0.5277 | 0.5826  | 0.6246 | 0.6682 | 0.7038 | 7.35e-4 |
|               | exact    | 0      | 0.0996 | 0.1973 | 0.2913 | 0.3799 | 0.4621 | 0.5370 | 0.6043  | 0.6640 | 0.7162 | 0.7615 |         |
| sigmoid(x)    | computed | 0.5196 | 0.5453 | 0.5657 | 0.5878 | 0.6068 | 0.6212 | 0.6366 | 0.6570  | 0.6721 | 0.6906 | 0.7084 | 2.5e-4  |
|               | exact    | 0.5000 | 0.5250 | 0.5498 | 0.5744 | 0.5987 | 0.6225 | 0.6457 | 0.6682  | 0.6900 | 0.7109 | 0.7311 |         |

Table 7.2: Computed values of functions with the proposed CRNs compared to their exact values.

For each of the six target functions in this chapter we perform the DNA simulation based on the template in Fig. 2.2. For a visual comparison, each function is computed



Figure 7.4: **DNA simulation results.** The DNA reaction kinetics for computation of  $e^{-x}$ ,  $\sin(x)$ ,  $\cos(x)$ ,  $\log(1 + x)$ ,  $\tanh(x)$ , and  $\operatorname{sigmoid}(x)$  for x=0.3, and x=0.7. Each row is related to one function. The details for DNA implementation are listed in Supplementary Information Section S.7

for 11 different inputs 0:0.1:1 and the results are demonstrated in Fig. 7.5. The DNA computed outputs are shown by red stars and the exact values of functions are shown as blue lines. The DNA computed values follow the exact values with an acceptable accuracy.



Figure 7.5: Exact and computed values of the functions. Computed values of functions using our proposed molecular systems along their exact graphs for  $e^{-x}$ ,  $\sin(x)$ ,  $\cos(x)$ ,  $\log(1+x)$ ,  $\tanh(x)$ , and  $\operatorname{sigmoid}(x)$ . Blue lines: exact values, red stars: computed values.

# 7.6 Discussion

As yet, there is no *systematic* way to design molecular systems capable of computing mathematical functions. This chapter presents a systematic methodology to design CRNs for this goal. Furthermore, the proposed method is unique in that it relies exclusively on bimolecular reactions. According to recent work [1], bimolecular reactions are compatible with natural DNA. This means that, the computational elements of the

proposed CRNs can be biologically *realized* in a highly pure form by bacterial cloning, and can potentially be used for *in vivo* applications.

The Computation of polynomials has been presented in prior work [79]. Based on [79], a polynomial of degree n is converted to the equivalent Bernstein polynomial of degree m, where  $n \leq m$ , and is then mapped to a CRN. Although the method presented in [79] can be used to compute truncated Maclaurin series of desired functions, it uses complex molecular reactions with m reactants and at least m+1 products, with  $m \geq 2$ . The basic issue for having molecular reactions with more than two reactants is that they require large complexes. The trouble with using large complexes is that these can lead to DNA synthesis errors and are harder to be purified. The proposed systems, however, are only composed of bimolecular reactions and can be experimentally synthesized with a high level of purity.

Although the proposed molecular circuits are compatible with the experimental framework presented in [1], the proposed molecular circuits need to be experimentally demonstrated. Future work needs to be directed towards experimental validation of the theoretical framework presented in this chapter. Future work also needs to be directed towards extending the framework to complex genetic circuits where computing is carried out in cell.

# Chapter 8

# Conclusions and Future Directions

# 8.1 Conclusion

In this research, we explore the molecular implementation of several forms of computation: Signal processing, Markov chains, polynomials, and mathematical functions. In molecular systems signals are represented by time-varying *concentrations of different molecular types*, in contrast to electronic systems where signals are represented by time-varying voltage values. Although our designs are based on CRNs, a general and technology-independent programming language, we validate them by DNA as a fast growing biological technology.

We have presented a cross-disciplinary research framework that combines signal processing, analog and digital electronic circuit design, and synthetic biology to address the development of molecular computing circuits. Our research benefits from the well-established knowledge and techniques of very large scale integration (VLSI) implementation of DSP algorithms. We adjust and employ these techniques to design scalable molecular circuits with the same functionality. Molecular systems are not substitutes for electronic computers. Indeed, the applications and challenges for these systems are different. In terms of applications, molecular systems will never be useful for fast number crunching. Rather, they are designed for *in vivo/in vitro* environments where, compared to electronic circuits, molecular systems are more compatible with the environment.

| 0                                 |                |                                         |                     |                   |
|-----------------------------------|----------------|-----------------------------------------|---------------------|-------------------|
| Aspost                            |                | Silicon based                           |                     |                   |
| Aspect                            | analog         | Discrete-time                           | Sincon-Dased        |                   |
| Addition                          | free           | free free expe                          |                     | expensive         |
| Multiplication                    | less expensive | less expensive less expensive expensive |                     | expensive         |
| Fanout                            | expensive      | ensive expensive free                   |                     | free              |
| Delay/Signal Transfer             | v              | almost free                             |                     |                   |
| Bound on Performance              | comm           | computation bounded                     |                     |                   |
| Speed                             | ultra-slow     |                                         |                     | very fast         |
| Area                              | $\sim$ nm      |                                         |                     | $\sim nm$         |
| Parallelism                       | h              | ighly-parallel                          | less-parallel       |                   |
| Level of Integration              | no integration |                                         |                     | highly-integrated |
| Application Area in vivo/in vitro |                |                                         | industrial/consumer |                   |

Table 8.1: Comparison between molecular (DNA) and electronics (silicon) computing systems.

In addition to application, we point out several other fundamental differences in characteristics of molecular and electronic circuits. These are summarized in Table 8.1. Fanout operations in electronic circuits are free but are expensive in molecular implementations. Addition operations are free in molecular systems but are expensive in electronic circuits. The critical path of an electronic circuit is typically bounded by computation time; the delay elements enable reduction of critical path and faster computation. However, molecular implementations of delay elements require inherently slow transfer reactions. In fact, in contrast to electronic circuits, the most challenging part of molecular systems is delay unit. The speed of molecular systems is bounded by communication as opposed to computation. The computations in molecular systems are inherently highly parallel unlike in electronic systems where parallelism requires a significant increase in hardware resources. Finally, the electronic circuits are highly integrated while the molecular systems are not suitable for highly integrated implementations. DNA and electronic systems also differ fundamentally with respect to storage properties. DNA systems can hold their concentrations indefinitely while the charge or stored value in an electronic system can leak and needs to be refreshed periodically.

# 8.2 Future Directions

For the molecular signal processing, future research direction would be a detailed study of the characteristics of continuous-time, discrete-time and digital processing molecular systems including noise analysis. For instance, the study would address how the precision correlates with changing the molecular concentrations and how robust the designs are with respect to parametric variations. In addition, the impact of specific DSP techniques, used in VLSI circuits, such as pipelining, retiming, folding, and unfolding on biomolecular designs would be investigated.

The main bottleneck in current implementations is computational speed. Unlike in electronic systems, where the speed is limited by changes in electric charge, the speed in molecular systems is limited by changes in molecular concentrations, which are inherently slow. A second future direction will be the development of faster molecular computing systems. New scheduling approaches where multiple computations are mapped into different phases of transfer will be investigated. Reducing currently achievable sample periods from hundreds of hours to a few hours, or even a few minutes, will enable experimental demonstration of some example signal processing functions using DNA. Furthermore, other biomolecular mediums such as enzymatic reactions will be considered to speed up the computational performance.

For the Markov chain computation, future work will be directed toward modeling of higher order Markov processes and generalizing the method for different types of random processes. Although in this dissertation we used Maclaurin series expansion of mathematical functions, future research would be the investigation of other expansions such as the Lagrange expansion in order to implement other functions or to achieve more efficient implementations. What kinds of other molecular computations can be performed with fractional representation would be the direction of a future work. In this context, implementation of artificial neural networks can be investigated.

# References

- Dalchau N. Srinivas N. Phillips A. Cardelli L. Soloveichik D. Chen, Y. and G. Seelig. Programmable chemical controllers made from dna. *Nature Nanotechnology*, 8:755– 762, 2013.
- [2] H. Jiang, S. Salehi, M. Riedel, and K. Parhi. Discrete-time signal processing with DNA. ACS Synthetic Biology, 2(5):245–254, 2013.
- [3] R. H. Carlson. Biology Is Technology: The Promise, Peril, and New Business of Engineering Life. Cambridge, MA: Harvard UP, 2010.
- [4] R. Carlson. The pace and proliferation of biological technologies. Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science, 1:203–214, Sep. 2003.
- [5] Michael Conrad. Molecular computing. Advances in Computers, 31:235–324, 1990.
- [6] L. Adleman. Molecular computation of solutions to combinatorial problems. Science, 266(11):1021–1024, 1994.
- [7] J. Chen and D. H. Wood. Computation with biomolecules. Proceedings of the National Academy of Sciences, 97(4):1328–1330, 2000.
- [8] D. T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. *Journal of Computational Physics*, 22(4):403–434, 1976.

- [9] D. T. Gillespie. Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry, 58:35–55, 2006.
- [10] B. Yurke, A. J. Turberfield, A. P. Mills, Jr, F. C. Simmel, and J. Neumann. A DNA-fuelled molecular machine made of DNA. *Nature*, 406:605–608, 2000.
- [11] D. Soloveichik, G. Seelig, and E. Winfree. DNA as a universal substrate for chemical kinetics. *Proceedings of the National Academy of Sciences*, 107(12):5393–5398, 2010.
- [12] H. Jiang, M. D. Riedel, and K. K. Parhi. Digital logic with molecular reactions. In *IEEE International Conference on Computer Aided Design (ICCAD)*, pages 721–727. IEEE, 2013.
- [13] H. Jiang, M. Riedel, and K.K. Parhi. Synchronous sequential computation with molecular reactions. Proc. of 2011 ACM/IEEE Design Automation Conference, pages 836–841, 2011.
- [14] H. Jiang, M.D. Riedel, and K.K. Parhi. Digital signal processing with molecular reactions. *IEEE Design and Test Magazine*, (Special Issue on Bio-Design Automation in Synthetic Biology), 29(3):21–31, 2012.
- [15] K. K. Parhi. VLSI Digital Signal Processing Systems. John Wiley & Sons, 1999.
- [16] I. R. Epstein and J. A. Pojman. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford Univ Press, 1998.
- [17] P. De Kepper, I. R. Epstein, and K. Kustin. A systematically designed homogeneous oscillating reaction: the arsenite-iodate-chlorite system. *Journal of the American Chemical Society*, 103(8):2133–2134, 2008.
- [18] M. Samoilov, A. Arkin, and J. Ross. Signal processing by simple chemical systems. *Journal of Physical Chemistry A*, 106(43):10205–10221, 2002.

- [19] K. Oishi and E. Klavins. Biomolecular implementation of linear i/o systems. IET Syst. Biol., 5:252–260, 2011.
- [20] H. Jiang, M. Riedel, and K.K. Parhi. Asynchronous computations with molecular reactions. Asilomar Conf. on Signals, Systems and Computers, pages 493–497, 2011.
- [21] S. A. Salehi, M. D. Riedel, and K. K. Parhi. Asynchronous discrete-time signal processing with molecular reactions. Proc. of Asilomar Conference on Signals, Systems, and Computers, pages 1767–1772, 2014.
- [22] H. M. Sauro and K. Kim. Synthetic biology: It's an analog world. Nature, 497:572– 573, 2013.
- [23] R. Sarpeshkar. Analog synthetic biology. Philos. Transact. A. Math. Phys. Eng. Sci., 372(20130110), 2014.
- [24] R. Sarpeshkar. Analog versus digital: extrapolating from electronics to neurobiology. Neural Comput., 10:1601–1638, 1998.
- [25] R. Daniel, J. R. Rubens, R. Sarpeshkar, and T. K. Lu. Synthetic analog computation in living cells. *Nature*, 497:619–623, 2013.
- [26] S. Hayat and T. Hinze. Toward integration of in vivo molecular computing devices: successes and challenges. *HFSP Journal*, 5(2):239–243, 2008.
- [27] T. Kailath. *Linear Systems*. Prentice Hall, Englewood Cliffs, N.J., 1980.
- [28] V. V. Kulkarni, H. Jiang, T. Chanyaswad, and M. Riedel. A biomolecular implementation of systems described by linear and nonlinear ODE's. In *International Workshop on Biodesign Automation*, 2013.
- [29] A. Tamsir, J. J. Tabor, and C. A. Voigt. Robust multicellular computing using genetically encoded nor gates and chemical 'wires'. *Nature*, 469:212–215, 2011.

- [30] L. Qian and E. Winfree. Scaling up digital circuit computation with dna strand displacement cascades. *Science*, 332:1196–1201, 2011.
- [31] P. Siuti, J. Yazbek, and T.K. Lu. Synthetic circuits integrating logic and memory in living cells. *Nature Biotechnology*, 31:448–452, 2013.
- [32] R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja, and I. Netravali. Genetic circuit building blocks for cellular computation, communications, and signal processing. *Natural Computing*, 2:47–84, 2003.
- [33] T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of a genetic toggle switch in escherichia coli. *Nature*, 403(2000):339–342, 2000.
- [34] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro. An autonomous molecular computer for logical control of gene expression. *Nature*, 429(6990):423– 429, 2004.
- [35] D. Endy. Foundations for engineering biology. *Nature*, 438:449–453, 2005.
- [36] K. Ramalingam, J. R. Tomshine, J. A. Maynard, and Y. N. Kaznessis. Forward engineering of synthetic bio-logical AND gates. *Biochemical Engineering Journal*, 47(1–3):38–47, 2009.
- [37] T.S. Moon, C. Lou, A. Tamsi, B.C. Stanton, and C. A. Voigt. Genetic programs constructed from layered logic gates in single cells. *Nature*, 491:249–253, 2012.
- [38] J. C. Anderson, E. J. Clarke, A. P. Arkin, and C. A. Voigt. Environmentally controlled invasion of cancer cells by engineered bacteria. *Journal of Molecular Biology*, 355(4):619–627, 2006.
- [39] D. Ro, E. Paradise, M. Ouellet, K. Fisher, K. Newman, J. Ndungu, K. Ho, R. Eachus, T. Ham, M. Chang, S. Withers, Y. Shiba, R. Sarpong, and J. Keasling. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. *Nature*, 440:940–943, 2006.

- [40] S. Venkataramana, R. M. Dirks, C. T. Ueda, and N. A. Pierce. Selective cell death mediated by small conditional RNAs. *Proceedings of the National Academy* of Sciences, 2010 (in press).
- [41] D. M. Widmaier, D. Tullman-Ercek, E. A. Mirsky, R. Hill, S. Govindarajan, J. Minshull, and C. A. Voigt. Engineering the Salmonella type III secretion system to export spider silk monomers. *Molecular Systems Biology*, 5(309):1–9, 2009.
- [42] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. 3rd ed. Prentice Hall Press Upper Saddle River, NJ, USA, 2009.
- [43] D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. Computation with finite stochastic chemical reaction networks. *Natural Computing*, 7(4), 2008.
- [44] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simulation of chemical systems with many species and many channels. *The Journal of Physical Chemistry A*, 104(9):1876–1889, 2000.
- [45] F. Horn and R. Jackson. General mass action kinetics. Archive for Rational Mechanics and Analysis, 47:81–116, 1972.
- [46] P. Érdi and J. Tóth. Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models. Manchester University Press, 1989.
- [47] D. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81(25):2340–2361, 1977.
- [48] S. Strogatz. Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books, 1994.
- [49] M. O. Magnasco. Chemical kinetics is turing universal. Phys. Rev. Lett., 78(6):1190–1193, Feb 1997.

- [50] Doty D. Chen, H. and D. Soloveichik. Deterministic function computation with chemical reaction networks. DNA Computing and Molecular Programming, LNCS, Springer, 7433:24–42, 2012.
- [51] Doty D. Chen, H. and D. Soloveichik. Rate-independent computation in continuous chemical reaction networks. *Conference on Innovations in Theoretical Computer Science*, pages 313–326, 2014.
- [52] B. R. Gaines. Stochastic computing. In proceedings of AFIP spring join computer conference, ACM, pages 149–156, 1967.
- [53] W. Qian and M. D. Riedel. The synthesis of robust polynomial arithmetic with stochastic logic. In *Design Automation Conference*, pages 648–653, 2008.
- [54] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja. An architecture for fault-tolerant computation with stochastic logic. *IEEE Transactions on Computers*, 60(1):93–105, 2011.
- [55] W. Qian, M. D. Riedel, and I. Rosenberg. Uniform approximation and Bernstein polynomials with coefficients in the unit interval. *European Journal of Combinatorics*, 32(3):448–463, 2011.
- [56] S. A. Salehi, M. D. Riedel, and K. K. Parhi. Markov chain computations using moleular reactions. *IEEE International Conference on Digital Signal Processing* (DSP), pages 689–693, 2015.
- [57] R. Farouki and V. Rajan. On the numerical condition of polynomials in Bernstein form. *Computer Aided Geometric Design*, 4(3):191–216, 1987.
- [58] L. Qian and E. Winfree. Neural network computation with dna strand displacement cascades. *Nature*, 475:368372, 2011.

- [59] ten Eikelder H. M. M. Hilbers P. A. J. Buisman, H. J. and A. M. L. Liekens. Computing algebraic functions with biochemical reaction networks. *Artif. Life*, 15(1):5–19, 2009.
- [60] A. M. L. Liekens and C. T. Fernando. Turing complete catalytic particle computers. In Lecture Notes in Computer Science – Advances in Artificial Life, volume 4648, pages 1202–1211. Springer, 2007.
- [61] Aspnes J. Angluin, D. and D. Eisenstat. Fast computation by population protocols with a leader. *Technical Report YALEU/DCS/TR-1358*, Yale University Department of Computer Science, 2006.
- [62] Workshop:Biological Systems and Networks. Ima thematic year on control theory and its applications. http://www.ima.umn.edu/2015-2016/W11.16-20.15/abstracts.html, 2015.
- [63] P. A. Iglesias and P. Ingalls, B. Control theory and systems biology. *MIT Press*, 2010.
- [64] Buzi G. Doyle J. C. Chandra, F. A. Glycolytic oscillations and limits on robust efficiency. *Science*, 333(6039):187–192, 2013.
- [65] Franco E. Agrawal, D. K. and R. Schulman. A self-regulating biomolecular comparator for processing oscillatory signals. *Journal of The Royal Society Interface*, 12(111), 2015.
- [66] R. C. Dorf and R. H. Bishop. Modern Control Systems 9th ed. Prentice Hall, 2001.
- [67] G. Stan and R. Sepulchre. Analysis of interconnected oscillators by dissipativity theory. *IEEE Trans. Autom. Control*, 52(2):256270, 2007.
- [68] S. C. Moenke G. Prince V. L. Meena A. Thomas A. P. Skupin A. Taylor C. W. Thurley, K. Tovey and M. Falcke. Reliable encoding of stimulus intensities within

random sequences of intracellular  $ca^{2+}$  spikes. *Science Signaling*, 7((331): ra59 DOI: 10.1126/scisignal.2005237), 2014.

- [69] R. R. Takayama S. Sumit, M. Neubig and J. J. Linderman. Band-pass processing in a gpcr signaling pathway selects for nfat transcription factor activation. *Integr. Biol.*, 7:1378–1386, 20.
- [70] R. Weiss, G. E. Homsy, and T. F. Knight. Toward in vivo digital circuits. In DIMACS Workshop on Evolution as Computation, pages 1–18, 1999.
- [71] K. Rinaudo, L. Bleris, R. Maddamsetti, S. Subramanian, R. Weiss, and Y. Benenson. A universal rnai-based logic evaluator that operates in mammalian cells. *Nature biotechnology*, 25(7):795–801, 2007.
- [72] Z. Xie, L. Wroblewska, L. Prochazka, R. Weiss, and Y. Benenson. Multi-input rnaibased logic circuit for identification of specific cancer cells. *Science*, 333(6047):1307– 1311, 2011.
- [73] Jiang Y. Chen H. Liao W. Li Z. Weiss R. Li, Y. and Z. Modular Xie. construction of mammalian gene circuits using tale transcriptional repressors. *Nat. Chem. Biol.*, 11(207-2013), 2015.
- [74] Gil B. Ben-Dor U. Adar R. Beneson, Y. and E. Shapiro. An autonomous molecular computer for logical control of gene expression. *Nature*, 429:423–429, 1987.
- [75] Jiang H. Riedel-M.D. Salehi, S.A. and K.K. Parhi. Molecular sensing and computing systems (invited paper). *IEEE Transactions on Molecular, Biological, and Multi-Scale Communications*, 1(3):249–264, 2015.
- [76] P. Senum and M. D. Riedel. Rate-independent constructs for chemical computation. PLoS ONE, 6(6), 2011.
- [77] Selvaggio G. Rubens, J.R. and T.K. Lu. Synthetic mixed-signal computation in living cells. Nat. Commun., 7:11658, 2016.
- [78] Shin J. Vaidyanathan P. Paralanov V. Strychalski E.A. Ross D. Densmore D. Nielsen A.A.K., Der B.S. and Voigt C.A. Genetic circuit design automation. *Sci*ence, (DOI: 10.1126/science.aac7341), 2016.
- [79] Parhi K. K. Salehi, S. A. and M. D. Riedel. Chemical reaction networks for computing polynomials. ACS Synthetic Biology, 6(1):76–83, 2017.
- [80] Sawlekar R. Foo, M. and Bates D.G. Exploiting the dynamic properties of covalent modification cycle for the design of synthetic analog biomolecular circuitry. *Journal* of Biological Engineering, 10:15, 2016.
- [81] C.T. Chou. Chemical reaction networks for computing logarithm. *submitted to* Synthetic Biology.
- [82] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2013.
- [83] E. Alpaydin. Introduction to Machine Learning, volume 3rd Edition. MIT press, 2014.
- [84] Y. Benenson. Biomolecular computing systems: principles, progress and potential. *Nature Reviews Genetics*, 13:455–468, 2012.
- [85] Endo K. Takahashi S. Funakoshi S. Takei I. Katayama S. Toyoda T. Kotaka M. Takaki T. Umeda M. et al. Miki, K. Efficient detection and purification of cell populations using synthetic microrna switches. *Cell Stem Cell*, 16:699–711, 2015.
- [86] Weinberg B.H. Cha S.S. Goodloe M. Wong W.W. Sayeg, M.K. and X. Han. Rationally designed microrna-based genetic classifiers target specific neurons in the brain. ACS Synth. Biol., 4:788–799, 2015.
- [87] Beerenwinkel N. Mohammadi, P. and Y. Benenson. Automated design of synthetic cell classifier circuits using a two-step optimization strategy. *Cell Systems*, 4(2):207– 21, 2017.

- [88] Sahu S. Bandyopadhyay, A. and D. Fujita. Smallest artificial molecular neuralnet for collective and emergent information processing. *Applied physics letters*, 95(11):113702, 2009.
- [89] Chen L. X. Lei J. L. Luo H. Q. Huang, W. T. and N. B. Li. Molecular neuron: From sensing to logic computation, information encoding, and encryption. *Sensors* and Actuators: B. Chemical, 239:704–710, 2017.
- [90] Weinberger E. D. Hjelmfelt, A. and J. Ross. Chemical implementation of neural networks and turing machines. Proc. Natl Acad. Sci. USA, 88:10983–10987, 1991.
- [91] Jr Turberfield M. Turberfield A. J. Yurke B. Mills, A. P. and P. M. Platzman. Experimental aspects of dna neural network computation. *Soft Comput.*, 5:1018, 2001.
- [92] Weinberger E. D. Hjelmfelt, A. and J. Ross. Chemical implementation of finitestate machines. Proc. Natl. Acad. Sci. U.S.A., 89:383, 1992.
- [93] Yurke B. Mills, A. P. and P. M. Platzman. Article for analog vector algebra computation. *Biosystems*, 52:175–180, 1999.
- [94] W. Zhang, M. Ha, D. Braga, M. Renn, C.D. Frisbie, and C.H. Kim. A 1v printed organic dram cell based on ion-gel gated transistors with a sub-10nw-per-cell refresh power. In *International Solid-State Circuits Conference Digest*, pages 326–328, 2011.
- [95] Pemberton M. Hjelmfelt A. Laplante, J. P. and J. Ross. Experiments on pattern recognition by chemical kinetics. J. Phys. Chem., 99:1006310065, 1995.
- [96] H. W. et al. Lim. In vitro molecular pattern classification via dna-based weightedsum operation. *Biosystems*, 100:1–7, 2010.
- [97] B. Gaines. Stochastic computing systems. In Advances in Information Systems Science, volume 2, chapter 2, pages 37–172. Plenum Press, 1969.

- [98] A. Alaghi and Hayes j. Survey of stochastic computing. ACM Transactions on Embedded computing systems (TECS), 12:92, 2013.
- [99] K. K. Parhi and Y. Liu. Computing arithmetic functions using stochastic logic by series expansion. *IEEE Transactions on Emerging Technologies in Computing* (*TETC*), (DOI: 10.1109/TETC.2016.2618750), 2016.

# Appendix A

# List of molecular Reactions

In this chapter, we list chemical reaction networks and DNA-level reactions for the molecular circuits presented in this thesis. Each chemical reaction discussed in this thesis is mapped to DNA level using the method described in [11].

## A.1 Molecular Reactions

#### A.1.1 molecular perceptron

$$\begin{array}{rcccc} X10 + W10 & \stackrel{k}{\longrightarrow} & X10 + W10 + C1 \\ X10 + W11 & \stackrel{k}{\longrightarrow} & X10 + W11 + C0 \\ X11 + W10 & \stackrel{k}{\longrightarrow} & X11 + W10 + C0 \\ X11 + W11 & \stackrel{k}{\longrightarrow} & X11 + W11 + C1 \\ X20 + W20 & \stackrel{k}{\longrightarrow} & X20 + W20 + C1 \\ X20 + W21 & \stackrel{k}{\longrightarrow} & X20 + W21 + C0 \\ X21 + W20 & \stackrel{k}{\longrightarrow} & X21 + W20 + C0 \\ X21 + W21 & \stackrel{k}{\longrightarrow} & X21 + W21 + C1 \end{array}$$

| $\begin{array}{ccc} \stackrel{\mathrm{k}}{\longrightarrow} & X30 + W31 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X31 + W30 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X31 + W31 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X40 + W40 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X40 + W41 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X41 + W40 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X41 + W40 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X50 + W50 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X50 + W51 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X51 + W50 + C0 \end{array}$ | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X30 + W30 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| $\begin{array}{ccc} \stackrel{\mathrm{k}}{\longrightarrow} & X31 + W30 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X31 + W31 + C1 \\ \begin{array}{c} \stackrel{\mathrm{k}}{\longrightarrow} & X40 + W40 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X40 + W41 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X41 + W40 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X41 + W40 + C1 \\ \begin{array}{c} \stackrel{\mathrm{k}}{\longrightarrow} & X50 + W50 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X50 + W51 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X51 + W50 + C0 \end{array}$                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                             | X30 + W31                                                                               | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X30 + W31 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $ \begin{array}{ccc} \overset{\mathrm{k}}{\longrightarrow} & X31 + W31 + C1 \\ & \overset{\mathrm{k}}{\longrightarrow} & X40 + W40 + C1 \\ & \overset{\mathrm{k}}{\longrightarrow} & X40 + W41 + C0 \\ & \overset{\mathrm{k}}{\longrightarrow} & X41 + W40 + C0 \\ & \overset{\mathrm{k}}{\longrightarrow} & X41 + W41 + C1 \\ & \overset{\mathrm{k}}{\longrightarrow} & X50 + W50 + C1 \\ & \overset{\mathrm{k}}{\longrightarrow} & X50 + W51 + C0 \\ & \overset{\mathrm{k}}{\longrightarrow} & X51 + W50 + C0 \end{array} $                                                                                                               | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X31 + W30                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X31 + W30 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\begin{array}{ccc} \overset{\mathrm{k}}{\longrightarrow} & X40 + W40 + C1 \\ \overset{\mathrm{k}}{\longrightarrow} & X40 + W41 + C0 \\ \overset{\mathrm{k}}{\longrightarrow} & X41 + W40 + C0 \\ \overset{\mathrm{k}}{\longrightarrow} & X41 + W41 + C1 \\ \end{array}$ $\begin{array}{c} \overset{\mathrm{k}}{\longrightarrow} & X50 + W50 + C1 \\ \overset{\mathrm{k}}{\longrightarrow} & X50 + W51 + C0 \\ \overset{\mathrm{k}}{\longrightarrow} & X51 + W50 + C0 \end{array}$                                                                                                                                                          | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X31 + W31                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X31 + W31 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $ \begin{array}{ccc} \overset{\mathrm{k}}{\longrightarrow} & X40 + W41 + C0 \\ \overset{\mathrm{k}}{\longrightarrow} & X41 + W40 + C0 \\ \overset{\mathrm{k}}{\longrightarrow} & X41 + W41 + C1 \\ \end{array} \\ \begin{array}{c} \overset{\mathrm{k}}{\longrightarrow} & X50 + W50 + C1 \\ \overset{\mathrm{k}}{\longrightarrow} & X50 + W51 + C0 \\ \end{array} \\ \begin{array}{c} \overset{\mathrm{k}}{\longrightarrow} & X51 + W50 + C0 \end{array} $                                                                                                                                                                                 | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X40 + W40                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X40 + W40 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $ \begin{array}{ccc} \overset{\mathrm{k}}{\longrightarrow} & X41 + W40 + C0 \\ \overset{\mathrm{k}}{\longrightarrow} & X41 + W41 + C1 \\ \end{array} \\ \begin{array}{ccc} \overset{\mathrm{k}}{\longrightarrow} & X50 + W50 + C1 \\ \end{array} \\ \begin{array}{ccc} \overset{\mathrm{k}}{\longrightarrow} & X50 + W51 + C0 \\ \end{array} \\ \begin{array}{ccc} \overset{\mathrm{k}}{\longrightarrow} & X51 + W50 + C0 \end{array} $                                                                                                                                                                                                     | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X40 + W41                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X40 + W41 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $ \stackrel{k}{\longrightarrow} X41 + W41 + C1 $ $ \stackrel{k}{\longrightarrow} X50 + W50 + C1 $ $ \stackrel{k}{\longrightarrow} X50 + W51 + C0 $ $ \stackrel{k}{\longrightarrow} X51 + W50 + C0 $                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{rcccc} X41+W41 & \stackrel{\mathbf{k}}{\longrightarrow} & X41+W41+C1 \\ X50+W50 & \stackrel{\mathbf{k}}{\longrightarrow} & X50+W50+C1 \\ X50+W51 & \stackrel{\mathbf{k}}{\longrightarrow} & X50+W51+C0 \\ X51+W50 & \stackrel{\mathbf{k}}{\longrightarrow} & X51+W50+C0 \\ \end{array}$                                                                                                                           | X41 + W40                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X41 + W40 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\begin{array}{ccc} \overset{\mathrm{k}}{\longrightarrow} & X50 + W50 + C1 \\ \overset{\mathrm{k}}{\longrightarrow} & X50 + W51 + C0 \\ \overset{\mathrm{k}}{\longrightarrow} & X51 + W50 + C0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X41 + W41                                                                               | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X41 + W41 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $ \stackrel{k}{\longrightarrow} X50 + W51 + C0 $ $ \stackrel{k}{\longrightarrow} X51 + W50 + C0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X50 + W50                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X50 + W50 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\xrightarrow{\text{k}}$ X51 + W50 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccc} X51 + W50 & \stackrel{\mathbf{k}}{\longrightarrow} & X51 + W50 + C0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                         | X50 + W51                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X50 + W51 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ···· k ···· a.                                                                                                                                                                                                                                                                                                                                                                                                                   | X51 + W50                                                                               | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X51 + W50 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\stackrel{\rm k}{\longrightarrow}  X51 + W51 + C1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $X51 + W51 \longrightarrow X51 + W51 + C1$                                                                                                                                                                                                                                                                                                                                                                                       | X51 + W51                                                                               | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X51 + W51 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\stackrel{\rm k}{\longrightarrow}  X60+W60+C1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k                                                                                                                                                                                                                                                                                                                                                                                                                                | X60 + W60                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X60 + W60 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $X60 + W60 \xrightarrow{\mathbf{x}} X60 + W60 + C1$                                                                                                                                                                                                                                                                                                                                                                              | X60 + W61                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X60 + W61 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\stackrel{\rm k}{\longrightarrow}  X60 + W61 + C0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{rcl} X60 + W60 & \stackrel{\text{\tiny AC}}{\longrightarrow} & X60 + W60 + C1 \\ X60 + W61 & \stackrel{\text{\tiny BC}}{\longrightarrow} & X60 + W61 + C0 \end{array}$                                                                                                                                                                                                                                            | X61 + W60                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X61 + W60 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $ \stackrel{k}{\longrightarrow} X60 + W61 + C0 $ $ \stackrel{k}{\longrightarrow} X61 + W60 + C0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{rcl} X60+W60 & \stackrel{\mathrm{\tiny AC}}{\longrightarrow} & X60+W60+C1 \\ X60+W61 & \stackrel{\mathrm{\tiny BC}}{\longrightarrow} & X60+W61+C0 \\ X61+W60 & \stackrel{\mathrm{\tiny BC}}{\longrightarrow} & X61+W60+C0 \end{array}$                                                                                                                                                                            | X61 + W61                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X61 + W61 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\begin{array}{rcl} \stackrel{\mathrm{k}}{\longrightarrow} & X60 + W61 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W60 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W61 + C1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| $\begin{array}{rcl} \stackrel{\mathrm{k}}{\longrightarrow} & X60 + W61 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W60 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W61 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X70 + W70 + C1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X70 + W70                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X70 + W70 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\begin{array}{ccc} \stackrel{\mathrm{k}}{\longrightarrow} & X60 + W61 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W60 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W61 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X70 + W70 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X70 + W71 + C0 \end{array}$                                                                                                                                                                                                                                                                                                        | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X70 + W70 $X70 + W71$                                                                   | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X70 + W70 + C1 $X70 + W71 + C0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| $\begin{array}{ccc} \stackrel{\mathrm{k}}{\longrightarrow} & X60 + W61 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W60 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W61 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X70 + W70 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X70 + W71 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X71 + W70 + C0 \end{array}$                                                                                                                                                                                                                                             | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X70 + W70 $X70 + W71$ $X71 + W70$                                                       | $\xrightarrow{k} \\ \xrightarrow{k} \\ $ | X70 + W70 + C1<br>X70 + W71 + C0<br>X71 + W70 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| $\begin{array}{ccc} \overset{\mathrm{k}}{\longrightarrow} & X60 + W61 + C0 \\ \overset{\mathrm{k}}{\longrightarrow} & X61 + W60 + C0 \\ \overset{\mathrm{k}}{\longrightarrow} & X61 + W61 + C1 \\ \end{array}$ $\begin{array}{c} \overset{\mathrm{k}}{\longrightarrow} & X70 + W70 + C1 \\ \overset{\mathrm{k}}{\longrightarrow} & X70 + W71 + C0 \\ \overset{\mathrm{k}}{\longrightarrow} & X71 + W70 + C0 \\ \overset{\mathrm{k}}{\longrightarrow} & X71 + W71 + C1 \end{array}$                                                                                                                                                          | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X70 + W70<br>X70 + W71<br>X71 + W70<br>X71 + W71                                        | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X70 + W70 + C1<br>X70 + W71 + C0<br>X71 + W70 + C0<br>X71 + W71 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| $\begin{array}{ccc} \stackrel{\mathrm{k}}{\longrightarrow} & X60 + W61 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W60 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W61 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X70 + W70 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X70 + W71 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X71 + W70 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X71 + W71 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X80 + W80 + C1 \end{array}$                                                                                                                       | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X70 + W70<br>X70 + W71<br>X71 + W70<br>X71 + W71<br>X80 + W80                           | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X70 + W70 + C1<br>X70 + W71 + C0<br>X71 + W70 + C0<br>X71 + W71 + C1<br>X80 + W80 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| $\begin{array}{ccc} \stackrel{\mathrm{k}}{\longrightarrow} & X60 + W61 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W60 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W61 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X70 + W70 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X70 + W71 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X71 + W70 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X71 + W71 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X80 + W80 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X80 + W81 + C0 \end{array}$                                                            | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X70 + W70<br>X70 + W71<br>X71 + W70<br>X71 + W71<br>X80 + W80<br>X80 + W81              | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} X70 + W70 + C1 \\ X70 + W71 + C0 \\ X71 + W70 + C0 \\ X71 + W71 + C1 \\ X80 + W80 + C1 \\ X80 + W81 + C0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| $\begin{array}{ccc} \stackrel{\mathrm{k}}{\longrightarrow} & X60 + W61 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W60 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X61 + W61 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X70 + W70 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X70 + W71 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X71 + W70 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X71 + W71 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X80 + W80 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X80 + W81 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X81 + W80 + C0 \end{array}$ | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X70 + W70<br>X70 + W71<br>X71 + W70<br>X71 + W71<br>X80 + W80<br>X80 + W81<br>X81 + W80 | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X70 + W70 + C1 $X70 + W71 + C0$ $X71 + W70 + C0$ $X71 + W71 + C1$ $X80 + W80 + C1$ $X80 + W81 + C0$ $X81 + W80 + C0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| $\rightarrow \Lambda 00 + W 00 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{CO} + W_{CO} = \mathbf{w} + V_{CO} + W_{CO} + \mathbf{w}$                                                                                                                                                                                                                                                                                                                                                                    | X 60 + W 60<br>X 60 + W 61<br>X 61 + W 60<br>X 61 + W 61                                | $\xrightarrow{k} \xrightarrow{k} \xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X60 + W60 + W60 + W60 + W61 + W61 + W60 + W61 + W60 + W61 | C1<br>C0<br>C1 |
| $\xrightarrow{k} X31 + W31 + C1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $A 51 + W 51 \longrightarrow A 51 + W 51 + C1$                                                                                                                                                                                                                                                                                                                                                                                   | X 31 + $W$ 31                                                                           | $\xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X 31 + W 31 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| $\xrightarrow{k}  X60 + W60 + C1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                  | X60 + W60                                                                               | k ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X60 + W60 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\stackrel{\text{\tiny K}}{\longrightarrow}  X51 + W51 + C1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $X51 + W51 \xrightarrow{\simeq} X51 + W51 + C1$                                                                                                                                                                                                                                                                                                                                                                                  | X51 + W51                                                                               | $\xrightarrow{\mathbf{K}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X51 + W51 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\xrightarrow{k} X51 + W51 + C1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $X51 + W51 \longrightarrow X51 + W51 + C1$                                                                                                                                                                                                                                                                                                                                                                                       | X51 + W50 $X51 + W51$                                                                   | $\xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X51 + W50 + C0<br>X51 + W51 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k                                                                                                                                                                                                                                                                                                                                                                                                                                | X50 + W51 $X51 + W50$                                                                   | $\xrightarrow{k}{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X50 + W51 + C0<br>X51 + W50 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| $\xrightarrow{k} X51 + W50 + C0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                             | X50 + W50<br>X50 + W51                                                                  | $\xrightarrow{k}{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X50 + W50 + C1<br>X50 + W51 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| $ \stackrel{k}{\longrightarrow} X50 + W50 + C1 $ $ \stackrel{k}{\longrightarrow} X50 + W51 + C0 $ $ \stackrel{k}{\longrightarrow} X51 + W50 + C0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X41 + W41                                                                               | $\xrightarrow{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X41 + W41 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\xrightarrow{k} X50 + W50 + C1$ $\xrightarrow{k} X50 + W51 + C0$ $\xrightarrow{k} X51 + W50 + C0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                             | X41 + W40<br>X41 + W41                                                                  | $\xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X41 + W40 + C0<br>X41 + W41 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| $ \stackrel{k}{\longrightarrow} X41 + W40 + C0  \stackrel{k}{\longrightarrow} X41 + W41 + C1  \stackrel{k}{\longrightarrow} X50 + W50 + C1  \stackrel{k}{\longrightarrow} X50 + W51 + C0  \stackrel{k}{\longrightarrow} X51 + W50 + C0 $                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{rcl} X41 + W40 & \stackrel{\mathbf{k}}{\longrightarrow} & X41 + W40 + C0 \\ X41 + W41 & \stackrel{\mathbf{k}}{\longrightarrow} & X41 + W41 + C1 \\ X50 + W50 & \stackrel{\mathbf{k}}{\longrightarrow} & X50 + W50 + C1 \\ X50 + W51 & \stackrel{\mathbf{k}}{\longrightarrow} & X50 + W51 + C0 \\ X51 + W50 & \stackrel{\mathbf{k}}{\longrightarrow} & X51 + W50 + C0 \end{array}$                                 | X40 + W41                                                                               | $\xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X40 + W41 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $ \stackrel{k}{\longrightarrow} X40 + W41 + C0  \stackrel{k}{\longrightarrow} X41 + W40 + C0  \stackrel{k}{\longrightarrow} X41 + W41 + C1  \stackrel{k}{\longrightarrow} X50 + W50 + C1  \stackrel{k}{\longrightarrow} X50 + W51 + C0  \stackrel{k}{\longrightarrow} X51 + W50 + C0 $                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{rcl} X40+W41 & \stackrel{\mathrm{k}}{\longrightarrow} & X40+W41+C0\\ X41+W40 & \stackrel{\mathrm{k}}{\longrightarrow} & X41+W40+C0\\ X41+W41 & \stackrel{\mathrm{k}}{\longrightarrow} & X41+W41+C1\\ X50+W50 & \stackrel{\mathrm{k}}{\longrightarrow} & X50+W50+C1\\ X50+W51 & \stackrel{\mathrm{k}}{\longrightarrow} & X50+W51+C0\\ X51+W50 & \stackrel{\mathrm{k}}{\longrightarrow} & X51+W50+C0\\ \end{array}$ | X40 + W40                                                                               | $\xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X40 + W40 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\begin{array}{ccc} \overset{\mathbf{k}}{\longrightarrow} & X40 + W40 + C1 \\ & \overset{\mathbf{k}}{\longrightarrow} & X40 + W41 + C0 \\ & \overset{\mathbf{k}}{\longrightarrow} & X41 + W40 + C0 \\ & \overset{\mathbf{k}}{\longrightarrow} & X41 + W41 + C1 \\ & \overset{\mathbf{k}}{\longrightarrow} & X50 + W50 + C1 \\ & \overset{\mathbf{k}}{\longrightarrow} & X50 + W51 + C0 \\ & \overset{\mathbf{k}}{\longrightarrow} & X51 + W50 + C0 \end{array}$                                                                                                                                                                             | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X31 + W31                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X31 + W31 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\begin{array}{ccc} \overset{\mathrm{k}}{\longrightarrow} & X31 + W31 + C1 \\ & \overset{\mathrm{k}}{\longrightarrow} & X40 + W40 + C1 \\ & \overset{\mathrm{k}}{\longrightarrow} & X40 + W41 + C0 \\ & \overset{\mathrm{k}}{\longrightarrow} & X41 + W40 + C0 \\ & \overset{\mathrm{k}}{\longrightarrow} & X41 + W41 + C1 \\ & \overset{\mathrm{k}}{\longrightarrow} & X50 + W50 + C1 \\ & \overset{\mathrm{k}}{\longrightarrow} & X50 + W51 + C0 \\ & \overset{\mathrm{k}}{\longrightarrow} & X51 + W50 + C0 \end{array}$                                                                                                                 | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X31 + W30                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X31 + W30 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\begin{array}{ccc} \stackrel{\mathrm{k}}{\longrightarrow} & X31 + W30 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X31 + W31 + C1 \\ \begin{array}{c} \stackrel{\mathrm{k}}{\longrightarrow} & X40 + W40 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X40 + W41 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X41 + W40 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X41 + W40 + C1 \\ \begin{array}{c} \stackrel{\mathrm{k}}{\longrightarrow} & X50 + W50 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X50 + W51 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X51 + W50 + C0 \end{array}$                          | $\begin{array}{rcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                            | X30 + W31                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X30 + W31 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $\begin{array}{ccc} \stackrel{\mathrm{k}}{\longrightarrow} & X30 + W31 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X31 + W30 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X31 + W31 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X40 + W40 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X40 + W41 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X41 + W40 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X41 + W40 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X50 + W50 + C1 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X50 + W51 + C0 \\ \stackrel{\mathrm{k}}{\longrightarrow} & X51 + W50 + C0 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X30 + W30 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |

| X90 + W90                                                                                                                                          | $\xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X90 + W90 + C1                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X90 + W91                                                                                                                                          | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X90 + W91 + C0                                                                                                                                                                                                                                          |
| X91 + W90                                                                                                                                          | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X91 + W90 + C0                                                                                                                                                                                                                                          |
| X91 + W91                                                                                                                                          | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X91 + W91 + C1                                                                                                                                                                                                                                          |
| X100 + W100                                                                                                                                        | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X100 + W100 + C1                                                                                                                                                                                                                                        |
| X100 + W101                                                                                                                                        | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X100 + W101 + C0                                                                                                                                                                                                                                        |
| X101 + W100                                                                                                                                        | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X101 + W100 + C0                                                                                                                                                                                                                                        |
| X101 + W101                                                                                                                                        | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X101 + W101 + C1                                                                                                                                                                                                                                        |
| X110 + W110                                                                                                                                        | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X110 + W110 + C1                                                                                                                                                                                                                                        |
| X110 + W111                                                                                                                                        | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X110 + W111 + C0                                                                                                                                                                                                                                        |
| X111 + W110                                                                                                                                        | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X111 + W110 + C0                                                                                                                                                                                                                                        |
| X111 + W111                                                                                                                                        | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X111 + W111 + C1                                                                                                                                                                                                                                        |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                         |
| X120 + W120                                                                                                                                        | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X120 + W120 + C1                                                                                                                                                                                                                                        |
| $\begin{array}{c} X120+W120\\ X120+W121 \end{array}$                                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X120 + W120 + C1<br>X120 + W121 + C0                                                                                                                                                                                                                    |
| X120 + W120<br>X120 + W121<br>X121 + W120                                                                                                          | $\xrightarrow{k} \\ \xrightarrow{k} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X120 + W120 + C1<br>X120 + W121 + C0<br>X121 + W120 + C0                                                                                                                                                                                                |
| X120 + W120<br>X120 + W121<br>X121 + W120<br>X121 + W121                                                                                           | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X120 + W120 + C1<br>X120 + W121 + C0<br>X121 + W120 + C0<br>X121 + W121 + C1                                                                                                                                                                            |
| X120 + W120<br>X120 + W121<br>X121 + W120<br>X121 + W121<br>X130 + W130                                                                            | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{aligned} X120 + W120 + C1 \\ X120 + W121 + C0 \\ X121 + W120 + C0 \\ X121 + W121 + C1 \\ X130 + W130 + C1 \end{aligned}$                                                                                                                        |
| X120 + W120<br>X120 + W121<br>X121 + W120<br>X121 + W121<br>X130 + W130<br>X130 + W131                                                             | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} X120 + W120 + C1 \\ X120 + W121 + C0 \\ X121 + W120 + C0 \\ X121 + W121 + C1 \\ X130 + W130 + C1 \\ X130 + W131 + C0 \end{array}$                                                                                                     |
| X120 + W120<br>X120 + W121<br>X121 + W120<br>X121 + W121<br>X130 + W130<br>X130 + W131<br>X131 + W130                                              | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{l} X120 + W120 + C1 \\ X120 + W121 + C0 \\ X121 + W120 + C0 \\ X121 + W121 + C1 \\ X130 + W130 + C1 \\ X130 + W131 + C0 \\ X131 + W130 + C0 \end{array}$                                                                                 |
| X120 + W120<br>X120 + W121<br>X121 + W120<br>X121 + W121<br>X130 + W130<br>X130 + W131<br>X131 + W130<br>X131 + W131                               | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{l} X120 + W120 + C1 \\ X120 + W121 + C0 \\ X121 + W120 + C0 \\ X121 + W121 + C1 \\ X130 + W130 + C1 \\ X130 + W131 + C0 \\ X131 + W130 + C0 \\ X131 + W131 + C1 \end{array}$                                                             |
| X120 + W120<br>X120 + W121<br>X121 + W120<br>X121 + W121<br>X130 + W130<br>X130 + W131<br>X131 + W130<br>X131 + W131<br>X140 + W140                | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} X120 + W120 + C1 \\ X120 + W121 + C0 \\ X121 + W120 + C0 \\ X121 + W121 + C1 \\ X130 + W130 + C1 \\ X130 + W131 + C0 \\ X131 + W130 + C0 \\ X131 + W131 + C1 \\ X140 + W140 + C1 \end{array}$                                         |
| X120 + W120<br>X120 + W121<br>X121 + W120<br>X121 + W121<br>X130 + W130<br>X130 + W131<br>X131 + W130<br>X131 + W131<br>X140 + W140                | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}$     | $\begin{array}{c} X120 + W120 + C1 \\ X120 + W121 + C0 \\ X121 + W120 + C0 \\ X121 + W120 + C1 \\ X130 + W130 + C1 \\ X130 + W131 + C0 \\ X131 + W130 + C0 \\ X131 + W131 + C1 \\ X140 + W140 + C1 \\ X140 + W141 + C0 \end{array}$                     |
| X120 + W120<br>X120 + W121<br>X121 + W120<br>X121 + W121<br>X130 + W130<br>X130 + W131<br>X131 + W130<br>X131 + W131<br>X140 + W140<br>X140 + W141 | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\$ | $\begin{array}{l} X120 + W120 + C1 \\ X120 + W121 + C0 \\ X121 + W120 + C0 \\ X121 + W120 + C1 \\ X130 + W130 + C1 \\ X130 + W131 + C0 \\ X131 + W130 + C0 \\ X131 + W131 + C1 \\ X140 + W140 + C1 \\ X140 + W141 + C0 \\ X141 + W140 + C0 \end{array}$ |

| X150 + W150                                                                                                                                                       | $\xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X150 + W150 + C1                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X150 + W151                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X150 + W151 + C0                                                                                                                                                                                                                                                            |
| X151 + W150                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X151 + W150 + C0                                                                                                                                                                                                                                                            |
| X151 + W151                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X151 + W151 + C1                                                                                                                                                                                                                                                            |
| X160 + W160                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X160 + W160 + C1                                                                                                                                                                                                                                                            |
| X160 + W161                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X160 + W161 + C0                                                                                                                                                                                                                                                            |
| X161 + W160                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X161 + W160 + C0                                                                                                                                                                                                                                                            |
| X161 + W161                                                                                                                                                       | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X161 + W161 + C1                                                                                                                                                                                                                                                            |
| X170 + W170                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X170 + W170 + C1                                                                                                                                                                                                                                                            |
| X170 + W171                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X170 + W171 + C0                                                                                                                                                                                                                                                            |
| X171 + W170                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X171 + W170 + C0                                                                                                                                                                                                                                                            |
| X171 + W171                                                                                                                                                       | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X171 + W171 + C1                                                                                                                                                                                                                                                            |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                             |
| X180 + W180                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X180 + W180 + C1                                                                                                                                                                                                                                                            |
| X180 + W180 $X180 + W181$                                                                                                                                         | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X180 + W180 + C1<br>X180 + W181 + C0                                                                                                                                                                                                                                        |
| X180 + W180<br>X180 + W181<br>X181 + W180                                                                                                                         | $\xrightarrow{k} \\ \xrightarrow{k} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X180 + W180 + C1<br>X180 + W181 + C0<br>X181 + W180 + C0                                                                                                                                                                                                                    |
| X180 + W180<br>X180 + W181<br>X181 + W180<br>X181 + W181                                                                                                          | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X180 + W180 + C1<br>X180 + W181 + C0<br>X181 + W180 + C0<br>X181 + W181 + C1                                                                                                                                                                                                |
| X180 + W180<br>X180 + W181<br>X181 + W180<br>X181 + W181<br>X190 + W190                                                                                           | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X180 + W180 + C1<br>X180 + W181 + C0<br>X181 + W180 + C0<br>X181 + W181 + C1<br>X190 + W190 + C1                                                                                                                                                                            |
| X180 + W180<br>X180 + W181<br>X181 + W180<br>X181 + W181<br>X190 + W190<br>X190 + W191                                                                            | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{split} &X180 + W180 + C1 \\ &X180 + W181 + C0 \\ &X181 + W180 + C0 \\ &X181 + W181 + C1 \\ &X190 + W190 + C1 \\ &X190 + W191 + C0 \end{split}$                                                                                                                      |
| X180 + W180<br>X180 + W181<br>X181 + W180<br>X181 + W181<br>X190 + W190<br>X190 + W191<br>X191 + W190                                                             | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X180 + W180 + C1 $X180 + W181 + C0$ $X181 + W180 + C0$ $X181 + W180 + C1$ $X190 + W190 + C1$ $X190 + W191 + C0$ $X191 + W190 + C0$                                                                                                                                          |
| X180 + W180<br>X180 + W181<br>X181 + W180<br>X181 + W181<br>X190 + W190<br>X190 + W191<br>X191 + W190<br>X191 + W191                                              | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{split} &X180 + W180 + C1 \\ &X180 + W181 + C0 \\ &X181 + W180 + C0 \\ &X181 + W181 + C1 \\ &X190 + W190 + C1 \\ &X190 + W191 + C0 \\ &X191 + W190 + C0 \\ &X191 + W191 + C1 \end{split}$                                                                            |
| X180 + W180<br>X180 + W181<br>X181 + W180<br>X181 + W181<br>X190 + W190<br>X190 + W191<br>X191 + W190<br>X191 + W191<br>X200 + W200                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{l} X180 + W180 + C1 \\ X180 + W181 + C0 \\ X181 + W180 + C0 \\ X181 + W180 + C1 \\ X190 + W190 + C1 \\ X190 + W191 + C0 \\ X191 + W190 + C0 \\ X191 + W191 + C1 \\ X200 + W200 + C1 \end{array}$                                                             |
| X180 + W180<br>X180 + W181<br>X181 + W180<br>X181 + W181<br>X190 + W190<br>X190 + W191<br>X191 + W190<br>X191 + W191<br>X200 + W200<br>X200 + W201                | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} X180 + W180 + C1 \\ X180 + W181 + C0 \\ X181 + W180 + C0 \\ X181 + W180 + C1 \\ X190 + W190 + C1 \\ X190 + W191 + C0 \\ X191 + W190 + C0 \\ X191 + W191 + C1 \\ X200 + W200 + C1 \\ X200 + W201 + C0 \end{array}$                                         |
| X180 + W180<br>X180 + W181<br>X181 + W180<br>X181 + W181<br>X190 + W190<br>X190 + W191<br>X191 + W190<br>X191 + W191<br>X200 + W200<br>X200 + W201<br>X201 + W200 | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}$    | $\begin{array}{c} X180 + W180 + C1 \\ X180 + W181 + C0 \\ X181 + W180 + C0 \\ X181 + W180 + C1 \\ X190 + W190 + C1 \\ X190 + W191 + C0 \\ X191 + W190 + C0 \\ X191 + W191 + C1 \\ X200 + W200 + C1 \\ X200 + W201 + C0 \\ X201 + W200 + C0 \end{array}$                     |
| X180 + W180<br>X180 + W181<br>X181 + W180<br>X181 + W181<br>X190 + W190<br>X190 + W191<br>X191 + W190<br>X191 + W191<br>X200 + W200<br>X200 + W201<br>X201 + W200 | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\$ | $\begin{array}{c} X180 + W180 + C1 \\ X180 + W181 + C0 \\ X181 + W180 + C0 \\ X181 + W180 + C1 \\ X190 + W190 + C1 \\ X190 + W191 + C0 \\ X191 + W190 + C0 \\ X191 + W191 + C1 \\ X200 + W200 + C1 \\ X200 + W201 + C0 \\ X201 + W200 + C0 \\ X201 + W201 + C1 \end{array}$ |

| X210 + W210                                                                                                                                                       | $\xrightarrow{\mathrm{k}}$                                                                                                                                                                                                                                                                                                                                                                                                  | X210 + W210 + C1                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X210 + W211                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                             | X210 + W211 + C0                                                                                                                                                                                                            |
| X211 + W210                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                             | X211 + W210 + C0                                                                                                                                                                                                            |
| X211 + W211                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                             | X211 + W211 + C1                                                                                                                                                                                                            |
| X220 + W220                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                             | X220 + W220 + C1                                                                                                                                                                                                            |
| X220 + W221                                                                                                                                                       | $\xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                                                                           | X220 + W221 + C0                                                                                                                                                                                                            |
| X221 + W220                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                             | X221 + W220 + C0                                                                                                                                                                                                            |
| X221 + W221                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                             | X221 + W221 + C1                                                                                                                                                                                                            |
| X230 + W230                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                             | X230 + W230 + C1                                                                                                                                                                                                            |
| X230 + W231                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                             | X230 + W231 + C0                                                                                                                                                                                                            |
| X231 + W230                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                             | X231 + W230 + C0                                                                                                                                                                                                            |
| X231 + W231                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                             | X231 + W231 + C1                                                                                                                                                                                                            |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                             |
| X240 + W240                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                             | X240 + W240 + C1                                                                                                                                                                                                            |
| X240 + W240<br>X240 + W241                                                                                                                                        | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                             | X240 + W240 + C1<br>X240 + W241 + C0                                                                                                                                                                                        |
| X240 + W240<br>X240 + W241<br>X241 + W240                                                                                                                         | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                 | X240 + W240 + C1<br>X240 + W241 + C0<br>X241 + W240 + C0                                                                                                                                                                    |
| X240 + W240<br>X240 + W241<br>X241 + W240<br>X241 + W241                                                                                                          | $ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} $                                                                                                                                                                                                                                                                                        | X240 + W240 + C1<br>X240 + W241 + C0<br>X241 + W240 + C0<br>X241 + W241 + C1                                                                                                                                                |
| X240 + W240<br>X240 + W241<br>X241 + W240<br>X241 + W241<br>X250 + W250                                                                                           | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                             | $\begin{aligned} &X240 + W240 + C1 \\ &X240 + W241 + C0 \\ &X241 + W240 + C0 \\ &X241 + W241 + C1 \\ &X250 + W250 + C1 \end{aligned}$                                                                                       |
| X240 + W240<br>X240 + W241<br>X241 + W240<br>X241 + W241<br>X250 + W250<br>X250 + W251                                                                            | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                 | $\begin{array}{l} X240+W240+C1\\ X240+W241+C0\\ X241+W240+C0\\ X241+W241+C1\\ X250+W250+C1\\ X250+W251+C0\\ \end{array}$                                                                                                    |
| X240 + W240<br>X240 + W241<br>X241 + W240<br>X241 + W241<br>X250 + W250<br>X250 + W251<br>X251 + W250                                                             | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                          | $\begin{array}{l} X240 + W240 + C1 \\ X240 + W241 + C0 \\ X241 + W240 + C0 \\ X241 + W241 + C1 \\ X250 + W250 + C1 \\ X250 + W251 + C0 \\ X251 + W250 + C0 \end{array}$                                                     |
| X240 + W240<br>X240 + W241<br>X241 + W240<br>X241 + W241<br>X250 + W250<br>X250 + W251<br>X251 + W250<br>X251 + W251                                              | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                 | $\begin{array}{l} X240+W240+C1\\ X240+W241+C0\\ X241+W240+C0\\ X241+W241+C1\\ X250+W250+C1\\ X250+W251+C0\\ X251+W250+C0\\ X251+W251+C1\\ \end{array}$                                                                      |
| X240 + W240<br>X240 + W241<br>X241 + W240<br>X241 + W241<br>X250 + W250<br>X250 + W251<br>X251 + W250<br>X251 + W251<br>X260 + W260                               | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                         | $\begin{array}{l} X240+W240+C1\\ X240+W241+C0\\ X241+W240+C0\\ X241+W241+C1\\ X250+W250+C1\\ X250+W251+C0\\ X251+W250+C0\\ X251+W251+C1\\ X260+W260+C1\\ \end{array}$                                                       |
| X240 + W240<br>X240 + W241<br>X241 + W240<br>X241 + W241<br>X250 + W250<br>X250 + W251<br>X251 + W250<br>X251 + W251<br>X260 + W260<br>X260 + W261                | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                 | $\begin{array}{l} X240+W240+C1\\ X240+W241+C0\\ X241+W240+C0\\ X241+W241+C1\\ \\ X250+W250+C1\\ X250+W251+C0\\ \\ X251+W250+C0\\ \\ X251+W251+C1\\ \\ \\ X260+W260+C1\\ \\ X260+W261+C0\\ \end{array}$                      |
| X240 + W240<br>X240 + W241<br>X241 + W240<br>X241 + W241<br>X250 + W250<br>X250 + W251<br>X251 + W250<br>X251 + W251<br>X260 + W260<br>X260 + W261<br>X261 + W260 | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$ | $\begin{array}{l} X240+W240+C1\\ X240+W241+C0\\ X241+W240+C0\\ X241+W241+C1\\ \\ X250+W250+C1\\ X250+W251+C0\\ \\ X251+W250+C0\\ \\ X251+W251+C1\\ \\ \\ X260+W260+C1\\ \\ X260+W261+C0\\ \\ \\ X261+W260+C0\\ \end{array}$ |

| X270 + W270                                                                                                                                                                    | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X270 + W270 + C1                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X270 + W271                                                                                                                                                                    | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X270 + W271 + C0                                                                                                                                                                                                                                                            |
| X271 + W270                                                                                                                                                                    | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X271 + W270 + C0                                                                                                                                                                                                                                                            |
| X271 + W271                                                                                                                                                                    | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X271 + W271 + C1                                                                                                                                                                                                                                                            |
| X280 + W280                                                                                                                                                                    | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X280 + W280 + C1                                                                                                                                                                                                                                                            |
| X280 + W281                                                                                                                                                                    | $\xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X280 + W281 + C0                                                                                                                                                                                                                                                            |
| X281 + W280                                                                                                                                                                    | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X281 + W280 + C0                                                                                                                                                                                                                                                            |
| X281 + W281                                                                                                                                                                    | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X281 + W281 + C1                                                                                                                                                                                                                                                            |
| X290 + W290                                                                                                                                                                    | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X290 + W290 + C1                                                                                                                                                                                                                                                            |
| X290 + W291                                                                                                                                                                    | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X290 + W291 + C0                                                                                                                                                                                                                                                            |
| X291 + W290                                                                                                                                                                    | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X291 + W290 + C0                                                                                                                                                                                                                                                            |
| X291 + W291                                                                                                                                                                    | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X291 + W291 + C1                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                             |
| X300 + W300                                                                                                                                                                    | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X300 + W300 + C1                                                                                                                                                                                                                                                            |
| X300 + W300<br>X300 + W301                                                                                                                                                     | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X300 + W300 + C1<br>X300 + W301 + C0                                                                                                                                                                                                                                        |
| X300 + W300<br>X300 + W301<br>X301 + W300                                                                                                                                      | $\xrightarrow{k} \\ \xrightarrow{k} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X300 + W300 + C1<br>X300 + W301 + C0<br>X301 + W300 + C0                                                                                                                                                                                                                    |
| X300 + W300<br>X300 + W301<br>X301 + W300<br>X301 + W301                                                                                                                       | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X300 + W300 + C1<br>X300 + W301 + C0<br>X301 + W300 + C0<br>X301 + W301 + C1                                                                                                                                                                                                |
| X300 + W300<br>X300 + W301<br>X301 + W300<br>X301 + W301<br>X310 + W310                                                                                                        | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{l} X300 + W300 + C1 \\ X300 + W301 + C0 \\ X301 + W300 + C0 \\ X301 + W301 + C1 \\ X310 + W310 + C1 \end{array}$                                                                                                                                             |
| X300 + W300<br>X300 + W301<br>X301 + W300<br>X301 + W301<br>X310 + W310<br>X310 + W311                                                                                         | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} X300 + W300 + C1 \\ X300 + W301 + C0 \\ X301 + W300 + C0 \\ X301 + W301 + C1 \\ X310 + W310 + C1 \\ X310 + W311 + C0 \end{array}$                                                                                                                         |
| X300 + W300<br>X300 + W301<br>X301 + W300<br>X301 + W301<br>X310 + W310<br>X310 + W311<br>X311 + W310                                                                          | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{l} X300 + W300 + C1 \\ X300 + W301 + C0 \\ X301 + W300 + C0 \\ X301 + W301 + C1 \\ X310 + W310 + C1 \\ X310 + W311 + C0 \\ X311 + W310 + C0 \end{array}$                                                                                                     |
| X300 + W300<br>X300 + W301<br>X301 + W300<br>X301 + W301<br>X310 + W310<br>X310 + W311<br>X311 + W310<br>X311 + W311                                                           | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} X300+W300+C1\\ X300+W301+C0\\ X301+W300+C0\\ X301+W301+C1\\ X310+W310+C1\\ X310+W311+C0\\ X311+W310+C0\\ X311+W310+C1\\ \end{array}$                                                                                                                      |
| X300 + W300 $X300 + W301$ $X301 + W300$ $X301 + W301$ $X310 + W310$ $X310 + W311$ $X311 + W310$ $X311 + W311$ $X311 + W311$                                                    | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} X300 + W300 + C1 \\ X300 + W301 + C0 \\ X301 + W300 + C0 \\ X301 + W301 + C1 \\ X310 + W310 + C1 \\ X310 + W311 + C0 \\ X311 + W310 + C0 \\ X311 + W311 + C1 \\ X320 + W320 + C1 \end{array}$                                                             |
| X300 + W300 $X300 + W301$ $X301 + W300$ $X301 + W301$ $X310 + W310$ $X310 + W311$ $X311 + W310$ $X311 + W311$ $X320 + W320$ $X320 + W321$                                      | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} X300 + W300 + C1 \\ X300 + W301 + C0 \\ X301 + W300 + C0 \\ X301 + W301 + C1 \\ X310 + W310 + C1 \\ X310 + W311 + C0 \\ X311 + W310 + C0 \\ X311 + W311 + C1 \\ X320 + W320 + C1 \\ X320 + W321 + C0 \end{array}$                                         |
| $\begin{array}{c} X300+W300\\ X300+W301\\ X301+W300\\ X301+W301\\ X310+W310\\ X310+W311\\ X311+W310\\ X311+W311\\ X320+W320\\ X320+W321\\ X320+W321\\ X321+W320\\ \end{array}$ | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\$ | $\begin{array}{c} X300 + W300 + C1 \\ X300 + W301 + C0 \\ X301 + W300 + C0 \\ X301 + W301 + C1 \\ X310 + W310 + C1 \\ X310 + W311 + C0 \\ X311 + W310 + C0 \\ X311 + W310 + C1 \\ X320 + W320 + C1 \\ X320 + W320 + C1 \\ X320 + W321 + C0 \\ X321 + W320 + C0 \end{array}$ |

$$\begin{array}{rcl} C10+C30 & \stackrel{\mathrm{k}}{\longrightarrow} & C41+C10+C30 \\ C10+C31 & \stackrel{\mathrm{k}}{\longrightarrow} & C40+C10+C31 \\ C11+C30 & \stackrel{\mathrm{k}}{\longrightarrow} & C40+C11+C30 \\ C11+C31 & \stackrel{\mathrm{k}}{\longrightarrow} & C41+C11+C31 \\ & C40 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C41 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C41 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C41 & \stackrel{\mathrm{k}}{\longrightarrow} & C50+A50+C40 \\ & A50+C40 & \stackrel{\mathrm{k}}{\longrightarrow} & C50+A50+C41 \\ & A50+C41 & \stackrel{\mathrm{k}}{\longrightarrow} & C51+A50+C41 \\ & A51+B50 & \stackrel{\mathrm{k}}{\longrightarrow} & C50+A51+B50 \\ & A51+B51 & \stackrel{\mathrm{k}}{\longrightarrow} & C50+A51+B51 \\ & C50 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C51 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C51 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C51 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C0+C50 & \stackrel{\mathrm{k}}{\longrightarrow} & C60+C0+C50 \\ & C0+C51 & \stackrel{\mathrm{k}}{\longrightarrow} & C61+C0+C51 \\ & C1+C50 & \stackrel{\mathrm{k}}{\longrightarrow} & C61+C1+C51 \\ & C60 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C61 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C61 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C61 & \stackrel{\mathrm{k}}{\longrightarrow} & C61+cp \\ & cp & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C61 & \stackrel{\mathrm{k}}{\longrightarrow} & C61+cp \\ & cp & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C61 & \stackrel{\mathrm{k}}{\longrightarrow} & C61+cp \\ & cp & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C61 & \stackrel{\mathrm{k}}{\longrightarrow} & C61+cp \\ & cp & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C61 & \stackrel{\mathrm{k}}{\longrightarrow} & C61+cp \\ & cp & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C61 & \stackrel{\mathrm{k}}{\longrightarrow} & C61+cp \\ & cp & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C61 & \stackrel{\mathrm{k}}{\longrightarrow} & C61+cp \\ & cp & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C61 & \stackrel{\mathrm{k}}{\longrightarrow} & C61+cp \\ & cp & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C61 & \stackrel{\mathrm{k}}{\longrightarrow} & C61+cp \\ & cp & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C61 & \stackrel{\mathrm{k}}{\longrightarrow} & C61+cp \\ & cp & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C61 & \stackrel{\mathrm{k}}{\longrightarrow} & c61+cp \\ & cp & cp & \stackrel{\mathrm{k}}{\longrightarrow} & c61+cp \\ & cp & cp & \stackrel{\mathrm{k}}{\longrightarrow} & c61+cp \\ & cp & cp & \stackrel{\mathrm{k}}{\longrightarrow} & c61+cp \\ & cp & cp & \stackrel{\mathrm{k}}{\longrightarrow} & c61+cp \\ & cp & cp & \stackrel{\mathrm{k}{\longrightarrow} & c61+cp \\ & cp & cp & cp \\ & cp & \stackrel{\mathrm{k}}{\longrightarrow} &$$

,

### A.1.2 molecular ADC 3bit

## A.1.3 molecular DAC 3bit

### A.1.4 molecular Adder 3bit

 $y2n + y1n + Tppp3y + y0p \xrightarrow{k} y0n + y2n + y1n + Tppp3y$ 

$$\begin{array}{c} c2p + o4 \quad \stackrel{k}{\longrightarrow} \quad out + c2p + m4 \\ c2n + m4 + out \quad \stackrel{k}{\longrightarrow} \quad o4 + c2n \\ s2p + o3 \quad \stackrel{k}{\longrightarrow} \quad out + s2p + m3 \\ s2n + m3 + out \quad \stackrel{k}{\longrightarrow} \quad o3 + s2n \\ s1p + o2 \quad \stackrel{k}{\longrightarrow} \quad out + s1p + m2 \\ s1n + m2 + out \quad \stackrel{k}{\longrightarrow} \quad o2 + s1n \\ s0p + o1 \quad \stackrel{k}{\longrightarrow} \quad o2 + s1n \\ s0p + o1 \quad \stackrel{k}{\longrightarrow} \quad o1 + s0n \\ x0n + y0p \quad \stackrel{k}{\longrightarrow} \quad x0n + y0p + G1p \\ x0p + y0n \quad \stackrel{k}{\longrightarrow} \quad x0p + y0n + G1p \\ 2G1p \quad \stackrel{k}{\longrightarrow} \quad nth \\ G1p + s0n \quad \stackrel{k}{\longrightarrow} \quad s0p \\ x0n + y0p \quad \stackrel{k}{\longrightarrow} \quad x0p + y0n + G1n \\ x0p + y0p \quad \stackrel{k}{\longrightarrow} \quad x0p + y0p + G1n \\ 2G1n \quad \stackrel{k}{\longrightarrow} \quad nth \\ G1n + s0p \quad \stackrel{k}{\longrightarrow} \quad s0n \\ x0n + c0p \quad \stackrel{k}{\longrightarrow} \quad s0n \\ x0n + c0p \quad \stackrel{k}{\longrightarrow} \quad s0n + c0n \\ y0n + c0p \quad \stackrel{k}{\longrightarrow} \quad x0p + y0p + G2 \\ 2G2 \quad \stackrel{k}{\longrightarrow} \quad nth \\ G2 + c0n \quad \stackrel{k}{\longrightarrow} \quad c0p \\ x1n + y1p \quad \stackrel{k}{\longrightarrow} \quad x1n + y1p + G3p \\ x1p + y1n \quad \stackrel{k}{\longrightarrow} \quad x1p + y1n + G3p \\ 2G3p \quad \stackrel{k}{\longrightarrow} \quad nth \\ G3p + z3n \quad \stackrel{k}{\longrightarrow} \quad z3p \end{array}$$

$$\begin{aligned} x1n + y1n & \stackrel{k}{\longrightarrow} x1n + y1n + G3n \\ x1p + y1p & \stackrel{k}{\longrightarrow} x1p + y1p + G3n \\ 2G3n & \stackrel{k}{\longrightarrow} nth \\ G3n + z3p & \stackrel{k}{\longrightarrow} z3n \\ z3n + c0p & \stackrel{k}{\longrightarrow} z3n + c0p + G4p \\ z3p + c0n & \stackrel{k}{\longrightarrow} z3p + c0n + G4p \\ 2G4p & \stackrel{k}{\longrightarrow} nth \\ G4p + s1n & \stackrel{k}{\longrightarrow} s1p \\ z3n + c0p & \stackrel{k}{\longrightarrow} z3n + c0n + G4n \\ z3p + c0p & \stackrel{k}{\longrightarrow} z3p + c0p + G4n \\ 2G4n & \stackrel{k}{\longrightarrow} nth \\ G4n + s1p & \stackrel{k}{\longrightarrow} s1n \\ z3n + z5p & \stackrel{k}{\longrightarrow} z3n + z5n \\ c0n + z5p & \stackrel{k}{\longrightarrow} c0n + z5n \\ z3p + c0p & \stackrel{k}{\longrightarrow} z3p + c0p + G5 \\ 2G5 & \stackrel{k}{\longrightarrow} nth \\ G5 + z5n & \stackrel{k}{\longrightarrow} z5p \\ x1n + z6p & \stackrel{k}{\longrightarrow} x1n + z6n \\ y1n + z6p & \stackrel{k}{\longrightarrow} y1n + z6n \\ x1p + y1p & \stackrel{k}{\longrightarrow} x1p + y1p + G6 \\ \hline 2G6 & \stackrel{k}{\longrightarrow} nth \\ G6 + z6n & \stackrel{k}{\longrightarrow} z5p + c1p \\ z6p + c1n & \stackrel{k}{\longrightarrow} z6p + c1p \\ \end{aligned}$$

$$\begin{split} z5n + z6n & \stackrel{k}{\rightarrow} z5n + z6n + G7 \\ 2G7 & \stackrel{k}{\rightarrow} nth \\ G7 + c1p & \stackrel{k}{\rightarrow} c1n \\ x2n + y2p & \stackrel{k}{\rightarrow} x2n + y2p + G8p \\ x2p + y2n & \stackrel{k}{\rightarrow} x2p + y2n + G8p \\ 2G8p & \stackrel{k}{\rightarrow} nth \\ G8p + z8n & \stackrel{k}{\rightarrow} z8p \\ x2n + y2n & \stackrel{k}{\rightarrow} x2n + y2n + G8n \\ x2p + y2p & \stackrel{k}{\rightarrow} x2p + y2p + G8n \\ 2G8n & \stackrel{k}{\rightarrow} nth \\ G8n + z8p & \stackrel{k}{\rightarrow} z8n \\ z8n + c1p & \stackrel{k}{\rightarrow} z8n + c1p + G9p \\ z8p + c1n & \stackrel{k}{\rightarrow} z8p + c1n + G9p \\ 2G9p & \stackrel{k}{\rightarrow} nth \\ G9p + s2n & \stackrel{k}{\rightarrow} s2p \\ z8n + c1p & \stackrel{k}{\rightarrow} z8n + c1p + G9n \\ z8p + c1p & \stackrel{k}{\rightarrow} z8p + c1p + G9n \\ z6pn & \stackrel{k}{\rightarrow} nth \\ G9n + s2p & \stackrel{k}{\rightarrow} s2n \\ z8n + z10p & \stackrel{k}{\rightarrow} z8n + z10n \\ c1n + z10p & \stackrel{k}{\rightarrow} z8p + c1p + G10 \\ 2G10 & \stackrel{k}{\rightarrow} nth \\ G10 + z10n & \stackrel{k}{\rightarrow} z10p \\ x2n + z11p & \stackrel{k}{\rightarrow} x2n + z11n \\ \end{split}$$

#### A.1.5 molecular Markov

$$\begin{array}{ccccc} AV + A1 & \stackrel{k}{\longrightarrow} & BV + A1 \\ AV + A2 & \stackrel{k}{\longrightarrow} & SV + A2 \\ BV + B1 & \stackrel{k}{\longrightarrow} & CV + B1 \\ BV + B2 & \stackrel{k}{\longrightarrow} & AV + B2 \\ CV + C1 & \stackrel{k}{\longrightarrow} & DV + C1 \\ CV + C2 & \stackrel{k}{\longrightarrow} & BV + C2 \\ DV + D1 & \stackrel{k}{\longrightarrow} & EV + D1 \\ DV + D2 & \stackrel{k}{\longrightarrow} & CV + D2 \\ EV + E1 & \stackrel{k}{\longrightarrow} & FV + E1 \\ EV + E2 & \stackrel{k}{\longrightarrow} & DV + E2 \\ FV + F1 & \stackrel{k}{\longrightarrow} & GV + F1 \end{array}$$

$$FV + F2 \xrightarrow{k} EV + F2$$

$$GV + G1 \xrightarrow{k} HV + G1$$

$$GV + G2 \xrightarrow{k} FV + G2$$

$$HV + H1 \xrightarrow{k} ENDV + H1$$

$$HV + H2 \xrightarrow{k} GV + H2$$

**A.1.6**  $y(x) = \frac{3}{4}x^2 - x + \frac{3}{4}$  Molecular

A.1.7 molecular encoder

$$\begin{array}{rccc} X & \stackrel{\mathrm{k}}{\longrightarrow} & X1 + X \\ X1 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ T & \stackrel{\mathrm{k}}{\longrightarrow} & X0 + T \end{array}$$

$$\begin{array}{rccc} X1 & \stackrel{k}{\longrightarrow} & X1 + Xp \\ & X0 & \stackrel{k}{\longrightarrow} & nth \\ X0 + Xp & \stackrel{k}{\longrightarrow} & nth \end{array}$$

#### A.1.8 molecular decoder

$$\begin{array}{rcccc} Y0 & \stackrel{k}{\longrightarrow} & Y0 + Yp \\ Y1 & \stackrel{k}{\longrightarrow} & Y1 + Yp \\ & & & \\ Yp & \stackrel{k}{\longrightarrow} & nth \\ & & & Y1 & \stackrel{k}{\longrightarrow} & Y1 + Y \\ & & & & \\ Yp + Y & \stackrel{k}{\longrightarrow} & Yp \end{array}$$

#### A.1.9 molecular e-x

$$\begin{array}{rcl} A10 + Ap10 & \stackrel{k}{\longrightarrow} & C11 + A10 + Ap10 \\ A10 + Ap11 & \stackrel{k}{\longrightarrow} & C11 + A10 + Ap11 \\ A11 + Ap10 & \stackrel{k}{\longrightarrow} & C11 + A11 + Ap10 \\ A11 + Ap11 & \stackrel{k}{\longrightarrow} & C10 + A11 + Ap11 \\ & C10 & \stackrel{k}{\longrightarrow} & nth \\ & C11 & \stackrel{k}{\longrightarrow} & nth \\ & C11 & \stackrel{k}{\longrightarrow} & nth \\ A20 + C10 & \stackrel{k}{\longrightarrow} & C20 + A20 + C10 \\ & A20 + C11 & \stackrel{k}{\longrightarrow} & C20 + A20 + C11 \\ & A21 + C10 & \stackrel{k}{\longrightarrow} & C20 + A21 + C10 \\ & A21 + C11 & \stackrel{k}{\longrightarrow} & C21 + A21 + C11 \\ & C20 & \stackrel{k}{\longrightarrow} & nth \\ & C21 & \stackrel{k}{\longrightarrow} & nth \end{array}$$

$$\begin{array}{rccc} A10 + C60 & \stackrel{\mathrm{k}}{\longrightarrow} & C71 + A10 + C60 \\ A10 + C61 & \stackrel{\mathrm{k}}{\longrightarrow} & C71 + A10 + C61 \\ \end{array}$$

$$\begin{array}{rccc} A11 + C60 & \stackrel{\mathrm{k}}{\longrightarrow} & C71 + A11 + C60 \\ A11 + C61 & \stackrel{\mathrm{k}}{\longrightarrow} & C70 + A11 + C61 \\ \end{array}$$

$$\begin{array}{rccc} C70 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ \end{array}$$

$$\begin{array}{rccc} C70 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ \end{array}$$

$$\begin{array}{rccc} A10 + C70 & \stackrel{\mathrm{k}}{\longrightarrow} & C81 + A10 + C70 \end{array}$$

$$\begin{array}{rccc} A10+C71 & \stackrel{k}{\longrightarrow} & C81+A10+C71\\ A11+C70 & \stackrel{k}{\longrightarrow} & C81+A11+C70\\ A11+C71 & \stackrel{k}{\longrightarrow} & C80+A11+C71\\ & C80 & \stackrel{k}{\longrightarrow} & nth \end{array}$$

$$C81 \xrightarrow{k} nth$$

$$x \xrightarrow{k} x + A11$$

$$A11 \xrightarrow{k} nth$$

$$T \xrightarrow{k} A10 + T$$

$$A11 \xrightarrow{k} A11 + yn$$

$$A10 \xrightarrow{k} nth$$

$$A10 \xrightarrow{k} nth$$

$$A10 + yn \xrightarrow{k} nth$$

$$C80 \xrightarrow{k} C80 + cp$$

$$C81 \xrightarrow{k} C81 + cp$$

$$cp \xrightarrow{k} nth$$

$$C81 \xrightarrow{k} C81 + c$$

$$cp + c \xrightarrow{k} cp$$

## A.1.10 molecular bipolar sigmoid

$$A50 + C40 \xrightarrow{k} C50 + A50 + C40$$

$$A50 + C41 \xrightarrow{k} C51 + A50 + C41$$

$$A51 + B50 \xrightarrow{k} C50 + A51 + B50$$

$$A51 + B51 \xrightarrow{k} C51 + A51 + B51$$

$$C50 \xrightarrow{k} nth$$

$$C51 \xrightarrow{k} nth$$

$$X0 + C50 \xrightarrow{k} C60 + X0 + C50$$

$$X0 + C51 \xrightarrow{k} C61 + X0 + C51$$

$$X1 + C50 \xrightarrow{k} C61 + X1 + C50$$

$$X1 + C51 \xrightarrow{k} C60 + X1 + C51$$

$$C60 \xrightarrow{k} nth$$

$$C61 \xrightarrow{k} nth$$

## A.1.11 molecular unipolar sigmoid

$$2A10 \xrightarrow{k} C10 + A10 + A10$$

$$A10 + A11 \xrightarrow{k} C10 + A10 + A11$$

$$A11 + A10 \xrightarrow{k} C10 + A11 + A10$$

$$2A11 \xrightarrow{k} C11 + A11 + A11$$

$$C10 \xrightarrow{k} nth$$

$$C11 \xrightarrow{k} nth$$

$$A20 + C10 \xrightarrow{k} C21 + A20 + C10$$

$$A20 + C11 \xrightarrow{k} C21 + A20 + C11$$

$$A21 + C10 \xrightarrow{k} C21 + A21 + C10$$

$$A21 + C11 \xrightarrow{k} C20 + A21 + C11$$

$$C20 \xrightarrow{k} nth$$

$$C21 \xrightarrow{k} nth$$

$$\begin{array}{rcccccc} C60 + A70 & \stackrel{\mathrm{k}}{\longrightarrow} & C71 + C60 + A70 \\ C60 + A71 & \stackrel{\mathrm{k}}{\longrightarrow} & C71 + C60 + A71 \\ C61 + A70 & \stackrel{\mathrm{k}}{\longrightarrow} & C71 + C61 + A70 \\ C61 + A71 & \stackrel{\mathrm{k}}{\longrightarrow} & C70 + C61 + A71 \\ & C70 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \\ & C71 & \stackrel{\mathrm{k}}{\longrightarrow} & nth \end{array}$$

# A.1.12 molecular Fully async FIR

# A.2 DNA Reactions

## A.2.1 perceptron DNA

$$\begin{array}{rcl} X10+gateL[1] & \stackrel{\mathrm{k}}{\longrightarrow} & gateH[1]+strandB[1]\\ gateH[1]+strandB[1] & \stackrel{\mathrm{q}_{\max}}{\longrightarrow} & X10+gateL[1]\\ W10+gateH[1] & \stackrel{\mathrm{q}_{\max}}{\longrightarrow} & strandO[1]\\ strandO[1]+gateT[1] & \stackrel{\mathrm{q}_{\max}}{\longrightarrow} & X10+W10+C1\\ & X10+gateL[2] & \stackrel{\mathrm{k}}{\longrightarrow} & gateH[2]+strandB[2]\\ & & & & & & & & \\ \end{array}$$

$$gateH[2] + strandB[2] \xrightarrow{q_{max}} X10 + gateL[2]$$
$$W11 + gateH[2] \xrightarrow{q_{max}} strandO[2]$$
$$strandO[2] + gateT[2] \xrightarrow{q_{max}} X10 + W11 + C0$$

| X11 + gateL[3]                                                                                                                                                                                                                         | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                   | gateH[3] + strandB[3]                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[3] + strandB[3]                                                                                                                                                                                                                  | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                            | X11 + gateL[3]                                                                                                                                                                                              |
| W10 + gateH[3]                                                                                                                                                                                                                         | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                            | strandO[3]                                                                                                                                                                                                  |
| strandO[3] + gateT[3]                                                                                                                                                                                                                  | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                            | X11 + W10 + C0                                                                                                                                                                                              |
| X11 + gateL[4]                                                                                                                                                                                                                         | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                   | gateH[4] + strandB[4]                                                                                                                                                                                       |
| gateH[4] + strandB[4]                                                                                                                                                                                                                  | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                            | X11 + gateL[4]                                                                                                                                                                                              |
| W11 + gateH[4]                                                                                                                                                                                                                         | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                            | strandO[4]                                                                                                                                                                                                  |
| strandO[4] + gateT[4]                                                                                                                                                                                                                  | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                            | X11 + W11 + C1                                                                                                                                                                                              |
| X20 + gateL[5]                                                                                                                                                                                                                         | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                   | gateH[5] + strandB[5]                                                                                                                                                                                       |
| gateH[5] + strandB[5]                                                                                                                                                                                                                  | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                             | X20 + gateL[5]                                                                                                                                                                                              |
| W20 + gateH[5]                                                                                                                                                                                                                         | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                            | strandO[5]                                                                                                                                                                                                  |
| strandO[5] + gateT[5]                                                                                                                                                                                                                  | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                            | X20 + W20 + C1                                                                                                                                                                                              |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                             |
| X20 + gateL[6]                                                                                                                                                                                                                         | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                   | gateH[6] + strandB[6]                                                                                                                                                                                       |
| X20 + gateL[6]<br>gateH[6] + strandB[6]                                                                                                                                                                                                | $\stackrel{k}{\longrightarrow} \stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                              | gateH[6] + strandB[6]<br>X20 + gateL[6]                                                                                                                                                                     |
| X20 + gateL[6]<br>gateH[6] + strandB[6]<br>W21 + gateH[6]                                                                                                                                                                              | $\stackrel{k}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} $                                                                                                                                                                                                                                                                                                                                                    | gateH[6] + strandB[6]<br>X20 + gateL[6]<br>strandO[6]                                                                                                                                                       |
| X20 + gateL[6]<br>gateH[6] + strandB[6]<br>W21 + gateH[6]<br>strandO[6] + gateT[6]                                                                                                                                                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                  | gateH[6] + strandB[6]<br>X20 + gateL[6]<br>strandO[6]<br>X20 + W21 + C0                                                                                                                                     |
| $\begin{array}{c} X20+gateL[6]\\ gateH[6]+strandB[6]\\ W21+gateH[6]\\ strandO[6]+gateT[6]\\ X21+gateL[7]\end{array}$                                                                                                                   | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                     | gateH[6] + strandB[6]<br>X20 + gateL[6]<br>strandO[6]<br>X20 + W21 + C0<br>gateH[7] + strandB[7]                                                                                                            |
| $\begin{array}{c} X20+gateL[6]\\ gateH[6]+strandB[6]\\ W21+gateH[6]\\ strandO[6]+gateT[6]\\ X21+gateL[7]\\ gateH[7]+strandB[7] \end{array}$                                                                                            | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                  | gateH[6] + strandB[6] $X20 + gateL[6]$ $strandO[6]$ $X20 + W21 + C0$ $gateH[7] + strandB[7]$ $X21 + gateL[7]$                                                                                               |
| $\begin{array}{c} X20+gateL[6]\\ gateH[6]+strandB[6]\\ W21+gateH[6]\\ strandO[6]+gateT[6]\\ X21+gateL[7]\\ gateH[7]+strandB[7]\\ W20+gateH[7]\end{array}$                                                                              | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                           | gateH[6] + strandB[6] $X20 + gateL[6]$ $strandO[6]$ $X20 + W21 + C0$ $gateH[7] + strandB[7]$ $X21 + gateL[7]$ $strandO[7]$                                                                                  |
| $\begin{array}{c} X20+gateL[6]\\ gateH[6]+strandB[6]\\ W21+gateH[6]\\ strandO[6]+gateT[6]\\ X21+gateL[7]\\ gateH[7]+strandB[7]\\ W20+gateH[7]\\ strandO[7]+gateT[7]\\ \end{array}$                                                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ q_{\max} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ q_{\max} \\ \overset{q_{\max}}{\longrightarrow} \\ \end{array}$                                                                                                                                                                                                                       | gateH[6] + strandB[6]<br>X20 + gateL[6]<br>strandO[6]<br>X20 + W21 + C0<br>gateH[7] + strandB[7]<br>X21 + gateL[7]<br>strandO[7]<br>X21 + W20 + C0                                                          |
| $\begin{array}{c} X20+gateL[6]\\ gateH[6]+strandB[6]\\ W21+gateH[6]\\ strandO[6]+gateT[6]\\ X21+gateL[7]\\ gateH[7]+strandB[7]\\ W20+gateH[7]\\ strandO[7]+gateT[7]\\ X21+gateL[8]\end{array}$                                         | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                    | gateH[6] + strandB[6]<br>X20 + gateL[6]<br>strandO[6]<br>X20 + W21 + C0<br>gateH[7] + strandB[7]<br>X21 + gateL[7]<br>strandO[7]<br>X21 + W20 + C0<br>gateH[8] + strandB[8]                                 |
| $\begin{array}{c} X20+gateL[6]\\ gateH[6]+strandB[6]\\ W21+gateH[6]\\ strandO[6]+gateT[6]\\ X21+gateL[7]\\ gateH[7]+strandB[7]\\ W20+gateH[7]\\ strandO[7]+gateT[7]\\ x21+gateL[8]\\ gateH[8]+strandB[8]\\ \end{array}$                | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                      | gateH[6] + strandB[6]<br>X20 + gateL[6]<br>strandO[6]<br>X20 + W21 + C0<br>gateH[7] + strandB[7]<br>X21 + gateL[7]<br>strandO[7]<br>X21 + W20 + C0<br>gateH[8] + strandB[8]<br>X21 + gateL[8]               |
| $\begin{array}{c} X20+gateL[6]\\ gateH[6]+strandB[6]\\ W21+gateH[6]\\ strandO[6]+gateT[6]\\ X21+gateL[7]\\ gateH[7]+strandB[7]\\ W20+gateH[7]\\ strandO[7]+gateT[7]\\ x21+gateL[8]\\ gateH[8]+strandB[8]\\ W21+gateH[8]\\ \end{array}$ | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$ | gateH[6] + strandB[6]<br>X20 + gateL[6]<br>strandO[6]<br>X20 + W21 + C0<br>gateH[7] + strandB[7]<br>X21 + gateL[7]<br>strandO[7]<br>X21 + W20 + C0<br>gateH[8] + strandB[8]<br>X21 + gateL[8]<br>strandO[8] |

| X30 + gateL[9]                                                                                                                                                                                                                                        | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gateH[9] + strandB[9]                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[9] + strandB[9]                                                                                                                                                                                                                                 | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X30 + gateL[9]                                                                                                                                                                                                          |
| W30 + gateH[9]                                                                                                                                                                                                                                        | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | strandO[9]                                                                                                                                                                                                              |
| strandO[9] + gateT[9]                                                                                                                                                                                                                                 | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X30 + W30 + C1                                                                                                                                                                                                          |
| X30 + gateL[10]                                                                                                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gateH[10] + strandB[10]                                                                                                                                                                                                 |
| gateH[10] + strandB[10]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X30 + gateL[10]                                                                                                                                                                                                         |
| W31 + gateH[10]                                                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | strandO[10]                                                                                                                                                                                                             |
| strandO[10] + gateT[10]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X30 + W31 + C0                                                                                                                                                                                                          |
| X31 + gateL[11]                                                                                                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gateH[11] + strandB[11]                                                                                                                                                                                                 |
| gateH[11] + strandB[11]                                                                                                                                                                                                                               | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X31 + gateL[11]                                                                                                                                                                                                         |
| W30 + gateH[11]                                                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | strandO[11]                                                                                                                                                                                                             |
| strandO[11] + gateT[11]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X31 + W30 + C0                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |
| X31 + gateL[12]                                                                                                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gateH[12] + strandB[12]                                                                                                                                                                                                 |
| X31 + gateL[12]<br>gateH[12] + strandB[12]                                                                                                                                                                                                            | $\stackrel{k}{\underset{q_{\max}}{\longrightarrow}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gateH[12] + strandB[12]<br>X31 + gateL[12]                                                                                                                                                                              |
| X31 + gateL[12]<br>gateH[12] + strandB[12]<br>W31 + gateH[12]                                                                                                                                                                                         | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gateH[12] + strandB[12]<br>X31 + gateL[12]<br>strandO[12]                                                                                                                                                               |
| X31 + gateL[12]<br>gateH[12] + strandB[12]<br>W31 + gateH[12]<br>strandO[12] + gateT[12]                                                                                                                                                              | $\xrightarrow{k} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  $ | gateH[12] + strandB[12] $X31 + gateL[12]$ $strandO[12]$ $X31 + W31 + C1$                                                                                                                                                |
| $\begin{array}{c} X31+gateL[12]\\gateH[12]+strandB[12]\\W31+gateH[12]\\strandO[12]+gateT[12]\\X40+gateL[13]\end{array}$                                                                                                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gateH[12] + strandB[12]<br>X31 + gateL[12]<br>strandO[12]<br>X31 + W31 + C1<br>gateH[13] + strandB[13]                                                                                                                  |
| $\begin{array}{c} X31+gateL[12]\\gateH[12]+strandB[12]\\W31+gateH[12]\\strandO[12]+gateT[12]\\X40+gateL[13]\\gateH[13]+strandB[13]\end{array}$                                                                                                        | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gateH[12] + strandB[12] $X31 + gateL[12]$ $strandO[12]$ $X31 + W31 + C1$ $gateH[13] + strandB[13]$ $X40 + gateL[13]$                                                                                                    |
| X31 + gateL[12] $gateH[12] + strandB[12]$ $W31 + gateH[12]$ $strandO[12] + gateT[12]$ $X40 + gateL[13]$ $gateH[13] + strandB[13]$ $W40 + gateH[13]$                                                                                                   | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gateH[12] + strandB[12] $X31 + gateL[12]$ $strandO[12]$ $X31 + W31 + C1$ $gateH[13] + strandB[13]$ $X40 + gateL[13]$ $strandO[13]$                                                                                      |
| X31 + gateL[12] $gateH[12] + strandB[12]$ $W31 + gateH[12]$ $strandO[12] + gateT[12]$ $X40 + gateL[13]$ $gateH[13] + strandB[13]$ $W40 + gateH[13]$ $strandO[13] + gateT[13]$                                                                         | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gateH[12] + strandB[12]<br>X31 + gateL[12]<br>strandO[12]<br>X31 + W31 + C1<br>gateH[13] + strandB[13]<br>X40 + gateL[13]<br>strandO[13]<br>X40 + W40 + C1                                                              |
| X31 + gateL[12]<br>gateH[12] + strandB[12]<br>W31 + gateH[12]<br>strandO[12] + gateT[12]<br>X40 + gateL[13]<br>gateH[13] + strandB[13]<br>W40 + gateH[13]<br>strandO[13] + gateT[13]<br>X40 + gateL[14]                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \overset{q_{\max}}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{k} \\ \xrightarrow{k} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gateH[12] + strandB[12]<br>X31 + gateL[12]<br>strandO[12]<br>X31 + W31 + C1<br>gateH[13] + strandB[13]<br>X40 + gateL[13]<br>strandO[13]<br>X40 + W40 + C1<br>gateH[14] + strandB[14]                                   |
| X31 + gateL[12]<br>gateH[12] + strandB[12]<br>W31 + gateH[12]<br>strandO[12] + gateT[12]<br>X40 + gateL[13]<br>gateH[13] + strandB[13]<br>W40 + gateH[13]<br>strandO[13] + gateT[13]<br>X40 + gateL[14]<br>gateH[14] + strandB[14]                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \overset{q_{\max}}{\longrightarrow} \\ \xrightarrow{q_{\max}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gateH[12] + strandB[12]<br>X31 + gateL[12]<br>strandO[12]<br>X31 + W31 + C1<br>gateH[13] + strandB[13]<br>X40 + gateL[13]<br>strandO[13]<br>X40 + W40 + C1<br>gateH[14] + strandB[14]<br>X40 + gateL[14]                |
| X31 + gateL[12]<br>gateH[12] + strandB[12]<br>W31 + gateH[12]<br>strandO[12] + gateT[12]<br>X40 + gateL[13]<br>gateH[13] + strandB[13]<br>W40 + gateH[13]<br>strandO[13] + gateT[13]<br>X40 + gateL[14]<br>gateH[14] + strandB[14]<br>W41 + gateH[14] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{\max}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gateH[12] + strandB[12]<br>X31 + gateL[12]<br>strandO[12]<br>X31 + W31 + C1<br>gateH[13] + strandB[13]<br>X40 + gateL[13]<br>strandO[13]<br>X40 + W40 + C1<br>gateH[14] + strandB[14]<br>X40 + gateL[14]<br>strandO[14] |

| X41 + gateL[15]                                                                                                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                            | gateH[15] + strandB[15]                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[15] + strandB[15]                                                                                                                                                                                                                               | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                      | X41 + gateL[15]                                                                                                                                                                                                         |
| W40 + gateH[15]                                                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                     | strandO[15]                                                                                                                                                                                                             |
| strandO[15] + gateT[15]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                     | X41 + W40 + C0                                                                                                                                                                                                          |
| X41 + gateL[16]                                                                                                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                            | gateH[16] + strandB[16]                                                                                                                                                                                                 |
| gateH[16] + strandB[16]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                     | X41 + gateL[16]                                                                                                                                                                                                         |
| W41 + gateH[16]                                                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                     | strandO[16]                                                                                                                                                                                                             |
| strandO[16] + gateT[16]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                     | X41 + W41 + C1                                                                                                                                                                                                          |
| X50 + gateL[17]                                                                                                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                            | gateH[17] + strandB[17]                                                                                                                                                                                                 |
| gateH[17] + strandB[17]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                     | X50 + gateL[17]                                                                                                                                                                                                         |
| W50 + gateH[17]                                                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                     | strandO[17]                                                                                                                                                                                                             |
| strandO[17] + gateT[17]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                     | X50 + W50 + C1                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                         |
| X50 + gateL[18]                                                                                                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                            | gateH[18] + strandB[18]                                                                                                                                                                                                 |
| X50 + gateL[18]<br>gateH[18] + strandB[18]                                                                                                                                                                                                            | $\stackrel{k}{\underset{q_{max}}{\longrightarrow}}$                                                                                                                                                                                                                                                                                                                                                                        | gateH[18] + strandB[18]<br>X50 + gateL[18]                                                                                                                                                                              |
| X50 + gateL[18]<br>gateH[18] + strandB[18]<br>W51 + gateH[18]                                                                                                                                                                                         | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                    | gateH[18] + strandB[18]<br>X50 + gateL[18]<br>strandO[18]                                                                                                                                                               |
| X50 + gateL[18]<br>gateH[18] + strandB[18]<br>W51 + gateH[18]<br>strandO[18] + gateT[18]                                                                                                                                                              | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                           | gateH[18] + strandB[18] $X50 + gateL[18]$ $strandO[18]$ $X50 + W51 + C0$                                                                                                                                                |
| X50 + gateL[18]<br>gateH[18] + strandB[18]<br>W51 + gateH[18]<br>strandO[18] + gateT[18]<br>X51 + gateL[19]                                                                                                                                           | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \end{array}$                                                                                                                                                                                                                                                                  | gateH[18] + strandB[18]<br>X50 + gateL[18]<br>strandO[18]<br>X50 + W51 + C0<br>gateH[19] + strandB[19]                                                                                                                  |
| X50 + gateL[18]<br>gateH[18] + strandB[18]<br>W51 + gateH[18]<br>strandO[18] + gateT[18]<br>X51 + gateL[19]<br>gateH[19] + strandB[19]                                                                                                                | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                         | gateH[18] + strandB[18]<br>X50 + gateL[18]<br>strandO[18]<br>X50 + W51 + C0<br>gateH[19] + strandB[19]<br>X51 + gateL[19]                                                                                               |
| X50 + gateL[18]<br>gateH[18] + strandB[18]<br>W51 + gateH[18]<br>strandO[18] + gateT[18]<br>X51 + gateL[19]<br>gateH[19] + strandB[19]<br>W50 + gateH[19]                                                                                             | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                             | gateH[18] + strandB[18]<br>X50 + gateL[18]<br>strandO[18]<br>X50 + W51 + C0<br>gateH[19] + strandB[19]<br>X51 + gateL[19]<br>strandO[19]                                                                                |
| X50 + gateL[18]<br>gateH[18] + strandB[18]<br>W51 + gateH[18]<br>strandO[18] + gateT[18]<br>X51 + gateL[19]<br>gateH[19] + strandB[19]<br>W50 + gateH[19]<br>strandO[19] + gateT[19]                                                                  | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                             | gateH[18] + strandB[18]<br>X50 + gateL[18]<br>strandO[18]<br>X50 + W51 + C0<br>gateH[19] + strandB[19]<br>X51 + gateL[19]<br>strandO[19]<br>X51 + W50 + C0                                                              |
| X50 + gateL[18]<br>gateH[18] + strandB[18]<br>W51 + gateH[18]<br>strandO[18] + gateT[18]<br>X51 + gateL[19]<br>gateH[19] + strandB[19]<br>W50 + gateH[19]<br>strandO[19] + gateT[19]<br>X51 + gateL[20]                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                             | gateH[18] + strandB[18]<br>X50 + gateL[18]<br>strandO[18]<br>X50 + W51 + C0<br>gateH[19] + strandB[19]<br>X51 + gateL[19]<br>strandO[19]<br>X51 + W50 + C0<br>gateH[20] + strandB[20]                                   |
| X50 + gateL[18]<br>gateH[18] + strandB[18]<br>W51 + gateH[18]<br>strandO[18] + gateT[18]<br>X51 + gateL[19]<br>gateH[19] + strandB[19]<br>W50 + gateH[19]<br>strandO[19] + gateT[19]<br>X51 + gateL[20]<br>gateH[20] + strandB[20]                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                               | gateH[18] + strandB[18]<br>X50 + gateL[18]<br>strandO[18]<br>X50 + W51 + C0<br>gateH[19] + strandB[19]<br>X51 + gateL[19]<br>strandO[19]<br>X51 + W50 + C0<br>gateH[20] + strandB[20]<br>X51 + gateL[20]                |
| X50 + gateL[18]<br>gateH[18] + strandB[18]<br>W51 + gateH[18]<br>strandO[18] + gateT[18]<br>X51 + gateL[19]<br>gateH[19] + strandB[19]<br>W50 + gateH[19]<br>strandO[19] + gateT[19]<br>X51 + gateL[20]<br>gateH[20] + strandB[20]<br>W51 + gateH[20] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$ | gateH[18] + strandB[18]<br>X50 + gateL[18]<br>strandO[18]<br>X50 + W51 + C0<br>gateH[19] + strandB[19]<br>X51 + gateL[19]<br>strandO[19]<br>X51 + W50 + C0<br>gateH[20] + strandB[20]<br>X51 + gateL[20]<br>strandO[20] |

| X60 + gateL[21]                                                                                                                                                                                                                                       | $\stackrel{\mathrm{k}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                              | gateH[21] + strandB[21]                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[21] + strandB[21]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                | X60 + gateL[21]                                                                                                                                                                                                         |
| W60 + gateH[21]                                                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                | strandO[21]                                                                                                                                                                                                             |
| strandO[21] + gateT[21]                                                                                                                                                                                                                               | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                 | X60 + W60 + C1                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |
| X60 + gateL[22]                                                                                                                                                                                                                                       | $\xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                                     | gateH[22] + strandB[22]                                                                                                                                                                                                 |
| gateH[22] + strandB[22]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                | X60 + gateL[22]                                                                                                                                                                                                         |
| W61 + gateH[22]                                                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                | strandO[22]                                                                                                                                                                                                             |
| strandO[22] + gateT[22]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                | X60 + W61 + C0                                                                                                                                                                                                          |
| X61 + gateL[23]                                                                                                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                       | gateH[23] + strandB[23]                                                                                                                                                                                                 |
| gateH[23] + strandB[23]                                                                                                                                                                                                                               | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                 | X61 + qateL[23]                                                                                                                                                                                                         |
| W60 + aateH[23]                                                                                                                                                                                                                                       | $\xrightarrow{q_{\max}}$                                                                                                                                                                                                                                                                                                                                                              | strandO[23]                                                                                                                                                                                                             |
| strandO[23] + aateT[23]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                | X61 + W60 + C0                                                                                                                                                                                                          |
| 501 anao [20] + gator [20]                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                     | 1101   11 00   00                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |
| X61 + gateL[24]                                                                                                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                       | gateH[24] + strandB[24]                                                                                                                                                                                                 |
| X61 + gateL[24]<br>gateH[24] + strandB[24]                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow} \stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                  | gateH[24] + strandB[24]<br>X61 + gateL[24]                                                                                                                                                                              |
| X61 + gateL[24]<br>gateH[24] + strandB[24]<br>W61 + gateH[24]                                                                                                                                                                                         | $\stackrel{k}{\underset{q_{\max}}{\longrightarrow}}$                                                                                                                                                                                                                                                                                                                                  | gateH[24] + strandB[24]<br>X61 + gateL[24]<br>strandO[24]                                                                                                                                                               |
| X61 + gateL[24] $gateH[24] + strandB[24]$ $W61 + gateH[24]$ $strandO[24] + gateT[24]$                                                                                                                                                                 | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                             | gateH[24] + strandB[24]<br>X61 + gateL[24]<br>strandO[24]<br>X61 + W61 + C1                                                                                                                                             |
| X61 + gateL[24] $gateH[24] + strandB[24]$ $W61 + gateH[24]$ $strandO[24] + gateT[24]$                                                                                                                                                                 | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                      | gateH[24] + strandB[24]<br>X61 + gateL[24]<br>strandO[24]<br>X61 + W61 + C1                                                                                                                                             |
| $\begin{array}{c} X61+gateL[24]\\ gateH[24]+strandB[24]\\ W61+gateH[24]\\ strandO[24]+gateT[24]\\ X70+gateL[25] \end{array}$                                                                                                                          | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{q}{\longrightarrow} \\ \stackrel{q}{\longrightarrow} \end{array}$                                                                                               | gateH[24] + strandB[24]<br>X61 + gateL[24]<br>strandO[24]<br>X61 + W61 + C1<br>gateH[25] + strandB[25]                                                                                                                  |
| $\begin{array}{c} X61+gateL[24]\\ gateH[24]+strandB[24]\\ W61+gateH[24]\\ strandO[24]+gateT[24]\\ X70+gateL[25]\\ gateH[25]+strandB[25] \end{array}$                                                                                                  | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                          | gateH[24] + strandB[24]<br>X61 + gateL[24]<br>strandO[24]<br>X61 + W61 + C1<br>gateH[25] + strandB[25]<br>X70 + gateL[25]                                                                                               |
| $\begin{array}{c} X61+gateL[24]\\ gateH[24]+strandB[24]\\ W61+gateH[24]\\ strandO[24]+gateT[24]\\ X70+gateL[25]\\ gateH[25]+strandB[25]\\ W70+gateH[25] \end{array}$                                                                                  | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                         | gateH[24] + strandB[24]<br>X61 + gateL[24]<br>strandO[24]<br>X61 + W61 + C1<br>gateH[25] + strandB[25]<br>X70 + gateL[25]<br>strandO[25]                                                                                |
| X61 + gateL[24]<br>gateH[24] + strandB[24]<br>W61 + gateH[24]<br>strandO[24] + gateT[24]<br>X70 + gateL[25]<br>gateH[25] + strandB[25]<br>W70 + gateH[25]<br>strandO[25] + gateT[25]                                                                  | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{\max}} \end{array}$                                                                                                           | gateH[24] + strandB[24]<br>X61 + gateL[24]<br>strandO[24]<br>X61 + W61 + C1<br>gateH[25] + strandB[25]<br>X70 + gateL[25]<br>strandO[25]<br>X70 + W70 + C1                                                              |
| X61 + gateL[24]<br>gateH[24] + strandB[24]<br>W61 + gateH[24]<br>strandO[24] + gateT[24]<br>X70 + gateL[25]<br>gateH[25] + strandB[25]<br>W70 + gateH[25]<br>strandO[25] + gateT[25]<br>X70 + gateL[26]                                               | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \end{array}$                                                                              | gateH[24] + strandB[24]<br>X61 + gateL[24]<br>strandO[24]<br>X61 + W61 + C1<br>gateH[25] + strandB[25]<br>X70 + gateL[25]<br>strandO[25]<br>X70 + W70 + C1<br>gateH[26] + strandB[26]                                   |
| X61 + gateL[24]<br>gateH[24] + strandB[24]<br>W61 + gateH[24]<br>strandO[24] + gateT[24]<br>X70 + gateL[25]<br>gateH[25] + strandB[25]<br>W70 + gateH[25]<br>strandO[25] + gateT[25]<br>X70 + gateL[26]<br>gateH[26] + strandB[26]                    | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \end{array}$ | gateH[24] + strandB[24]<br>X61 + gateL[24]<br>strandO[24]<br>X61 + W61 + C1<br>gateH[25] + strandB[25]<br>X70 + gateL[25]<br>strandO[25]<br>X70 + W70 + C1<br>gateH[26] + strandB[26]<br>X70 + gateL[26]                |
| X61 + gateL[24]<br>gateH[24] + strandB[24]<br>W61 + gateH[24]<br>strandO[24] + gateT[24]<br>X70 + gateL[25]<br>gateH[25] + strandB[25]<br>W70 + gateH[25]<br>strandO[25] + gateT[25]<br>X70 + gateL[26]<br>gateH[26] + strandB[26]<br>W71 + gateH[26] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$                                                                 | gateH[24] + strandB[24]<br>X61 + gateL[24]<br>strandO[24]<br>X61 + W61 + C1<br>gateH[25] + strandB[25]<br>X70 + gateL[25]<br>strandO[25]<br>X70 + W70 + C1<br>gateH[26] + strandB[26]<br>X70 + gateL[26]<br>strandO[26] |

| X71 + gateL[27]                                                                                                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                             | gateH[27] + strandB[27]                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[27] + strandB[27]                                                                                                                                                                                                                               | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                       | X71 + gateL[27]                                                                                                                                                                                                         |
| W70 + gateH[27]                                                                                                                                                                                                                                       | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                       | strandO[27]                                                                                                                                                                                                             |
| strandO[27] + gateT[27]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                      | X71 + W70 + C0                                                                                                                                                                                                          |
| X71 + gateL[28]                                                                                                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                             | gateH[28] + strandB[28]                                                                                                                                                                                                 |
| gateH[28] + strandB[28]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                      | X71 + gateL[28]                                                                                                                                                                                                         |
| W71 + gateH[28]                                                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                      | strandO[28]                                                                                                                                                                                                             |
| strandO[28] + gateT[28]                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                      | X71 + W71 + C1                                                                                                                                                                                                          |
| X80 + gateL[29]                                                                                                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                             | gateH[29] + strandB[29]                                                                                                                                                                                                 |
| gateH[29] + strandB[29]                                                                                                                                                                                                                               | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                       | X80 + gateL[29]                                                                                                                                                                                                         |
| W80 + gateH[29]                                                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                      | strandO[29]                                                                                                                                                                                                             |
| strandO[29] + gateT[29]                                                                                                                                                                                                                               | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                       | X80 + W80 + C1                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                         |
| X80 + gateL[30]                                                                                                                                                                                                                                       | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                             | gateH[30] + strandB[30]                                                                                                                                                                                                 |
| X80 + gateL[30]<br>gateH[30] + strandB[30]                                                                                                                                                                                                            | $\stackrel{k}{\underset{q_{\max}}{\longrightarrow}}$                                                                                                                                                                                                                                                                                        | gateH[30] + strandB[30]<br>X80 + gateL[30]                                                                                                                                                                              |
| X80 + gateL[30]<br>gateH[30] + strandB[30]<br>W81 + gateH[30]                                                                                                                                                                                         | $\xrightarrow[q_{max}]{q_{max}}$                                                                                                                                                                                                                                                                                                            | gateH[30] + strandB[30]<br>X80 + gateL[30]<br>strandO[30]                                                                                                                                                               |
| X80 + gateL[30]<br>gateH[30] + strandB[30]<br>W81 + gateH[30]<br>strandO[30] + gateT[30]                                                                                                                                                              | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                            | gateH[30] + strandB[30]<br>X80 + gateL[30]<br>strandO[30]<br>X80 + W81 + C0                                                                                                                                             |
| X80 + gateL[30] $gateH[30] + strandB[30]$ $W81 + gateH[30]$ $strandO[30] + gateT[30]$ $X81 + gateL[31]$                                                                                                                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                   | gateH[30] + strandB[30]<br>X80 + gateL[30]<br>strandO[30]<br>X80 + W81 + C0<br>gateH[31] + strandB[31]                                                                                                                  |
| X80 + gateL[30] $gateH[30] + strandB[30]$ $W81 + gateH[30]$ $strandO[30] + gateT[30]$ $X81 + gateL[31]$ $gateH[31] + strandB[31]$                                                                                                                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                            | gateH[30] + strandB[30] $X80 + gateL[30]$ $strandO[30]$ $X80 + W81 + C0$ $gateH[31] + strandB[31]$ $X81 + gateL[31]$                                                                                                    |
| X80 + gateL[30] $gateH[30] + strandB[30]$ $W81 + gateH[30]$ $strandO[30] + gateT[30]$ $X81 + gateL[31]$ $gateH[31] + strandB[31]$ $W80 + gateH[31]$                                                                                                   | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \end{array}$                                                                        | gateH[30] + strandB[30] $X80 + gateL[30]$ $strandO[30]$ $X80 + W81 + C0$ $gateH[31] + strandB[31]$ $X81 + gateL[31]$ $strandO[31]$                                                                                      |
| X80 + gateL[30]<br>gateH[30] + strandB[30]<br>W81 + gateH[30]<br>strandO[30] + gateT[30]<br>X81 + gateL[31]<br>gateH[31] + strandB[31]<br>W80 + gateH[31]<br>strandO[31] + gateT[31]                                                                  | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                                                                                                                           | gateH[30] + strandB[30]<br>X80 + gateL[30]<br>strandO[30]<br>X80 + W81 + C0<br>gateH[31] + strandB[31]<br>X81 + gateL[31]<br>strandO[31]<br>X81 + W80 + C0                                                              |
| X80 + gateL[30]<br>gateH[30] + strandB[30]<br>W81 + gateH[30]<br>strandO[30] + gateT[30]<br>X81 + gateL[31]<br>gateH[31] + strandB[31]<br>W80 + gateH[31]<br>strandO[31] + gateT[31]<br>X81 + gateL[32]                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{k} \\ \xrightarrow{k} \end{array}$                                                                               | gateH[30] + strandB[30]<br>X80 + gateL[30]<br>strandO[30]<br>X80 + W81 + C0<br>gateH[31] + strandB[31]<br>X81 + gateL[31]<br>strandO[31]<br>X81 + W80 + C0<br>gateH[32] + strandB[32]                                   |
| X80 + gateL[30]<br>gateH[30] + strandB[30]<br>W81 + gateH[30]<br>strandO[30] + gateT[30]<br>X81 + gateL[31]<br>gateH[31] + strandB[31]<br>W80 + gateH[31]<br>strandO[31] + gateT[31]<br>X81 + gateL[32]<br>gateH[32] + strandB[32]                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{k} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{k} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \end{array}$ | gateH[30] + strandB[30]<br>X80 + gateL[30]<br>strandO[30]<br>X80 + W81 + C0<br>gateH[31] + strandB[31]<br>X81 + gateL[31]<br>strandO[31]<br>X81 + W80 + C0<br>gateH[32] + strandB[32]<br>X81 + gateL[32]                |
| X80 + gateL[30]<br>gateH[30] + strandB[30]<br>W81 + gateH[30]<br>strandO[30] + gateT[30]<br>X81 + gateL[31]<br>gateH[31] + strandB[31]<br>W80 + gateH[31]<br>strandO[31] + gateT[31]<br>X81 + gateL[32]<br>gateH[32] + strandB[32]<br>W81 + gateH[32] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                                   | gateH[30] + strandB[30]<br>X80 + gateL[30]<br>strandO[30]<br>X80 + W81 + C0<br>gateH[31] + strandB[31]<br>X81 + gateL[31]<br>strandO[31]<br>X81 + W80 + C0<br>gateH[32] + strandB[32]<br>X81 + gateL[32]<br>strandO[32] |
| X90 + gateL[33]                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                     | gateH[33] + strandB[33]                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[33] + strandB[33]                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X90 + gateL[33]                                                                                                                                                                                                             |
| W90 + gateH[33]                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | strandO[33]                                                                                                                                                                                                                 |
| strandO[33] + gateT[33]                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X90 + W90 + C1                                                                                                                                                                                                              |
| X90 + gateL[34]                                                                                                                                                                                                                                           | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                      | gateH[34] + strandB[34]                                                                                                                                                                                                     |
| gateH[34] + strandB[34]                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X90 + gateL[34]                                                                                                                                                                                                             |
| W91 + gateH[34]                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | strandO[34]                                                                                                                                                                                                                 |
| strandO[34] + gateT[34]                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X90 + W91 + C0                                                                                                                                                                                                              |
| X91 + gateL[35]                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                     | gateH[35] + strandB[35]                                                                                                                                                                                                     |
| gateH[35] + strandB[35]                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X91 + gateL[35]                                                                                                                                                                                                             |
| W90 + gateH[35]                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | strandO[35]                                                                                                                                                                                                                 |
| strandO[35] + gateT[35]                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X91 + W90 + C0                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |
| X91 + gateL[36]                                                                                                                                                                                                                                           | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                      | gateH[36] + strandB[36]                                                                                                                                                                                                     |
| X91 + gateL[36]<br>gateH[36] + strandB[36]                                                                                                                                                                                                                | $\overset{k}{\underset{q_{\max}}{\longrightarrow}}$                                                                                                                                                                                                                 | gateH[36] + strandB[36]<br>X91 + gateL[36]                                                                                                                                                                                  |
| X91 + gateL[36]<br>gateH[36] + strandB[36]<br>W91 + gateH[36]                                                                                                                                                                                             | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                 | gateH[36] + strandB[36]<br>X91 + gateL[36]<br>strandO[36]                                                                                                                                                                   |
| X91 + gateL[36]<br>gateH[36] + strandB[36]<br>W91 + gateH[36]<br>strandO[36] + gateT[36]                                                                                                                                                                  | $\xrightarrow{k}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$                                                                                                                                                                           | gateH[36] + strandB[36]<br>X91 + gateL[36]<br>strandO[36]<br>X91 + W91 + C1                                                                                                                                                 |
| X91 + gateL[36]<br>gateH[36] + strandB[36]<br>W91 + gateH[36]<br>strandO[36] + gateT[36]<br>X100 + gateL[37]                                                                                                                                              | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{max}}{\longrightarrow} \\ \overset{q_{max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                             | gateH[36] + strandB[36]<br>X91 + gateL[36]<br>strandO[36]<br>X91 + W91 + C1<br>gateH[37] + strandB[37]                                                                                                                      |
| X91 + gateL[36]<br>gateH[36] + strandB[36]<br>W91 + gateH[36]<br>strandO[36] + gateT[36]<br>X100 + gateL[37]<br>gateH[37] + strandB[37]                                                                                                                   | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                    | gateH[36] + strandB[36]<br>X91 + gateL[36]<br>strandO[36]<br>X91 + W91 + C1<br>gateH[37] + strandB[37]<br>X100 + gateL[37]                                                                                                  |
| X91 + gateL[36]<br>gateH[36] + strandB[36]<br>W91 + gateH[36]<br>strandO[36] + gateT[36]<br>X100 + gateL[37]<br>gateH[37] + strandB[37]<br>W100 + gateH[37]                                                                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \end{array}$                                             | gateH[36] + strandB[36]<br>X91 + gateL[36]<br>strandO[36]<br>X91 + W91 + C1<br>gateH[37] + strandB[37]<br>X100 + gateL[37]<br>strandO[37]                                                                                   |
| X91 + gateL[36]<br>gateH[36] + strandB[36]<br>W91 + gateH[36]<br>strandO[36] + gateT[36]<br>X100 + gateL[37]<br>gateH[37] + strandB[37]<br>W100 + gateH[37]<br>strandO[37] + gateT[37]                                                                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                                                   | gateH[36] + strandB[36]<br>X91 + gateL[36]<br>strandO[36]<br>X91 + W91 + C1<br>gateH[37] + strandB[37]<br>X100 + gateL[37]<br>strandO[37]<br>X100 + W100 + C1                                                               |
| X91 + gateL[36]<br>gateH[36] + strandB[36]<br>W91 + gateH[36]<br>strandO[36] + gateT[36]<br>X100 + gateL[37]<br>gateH[37] + strandB[37]<br>W100 + gateH[37]<br>strandO[37] + gateT[37]<br>X100 + gateL[38]                                                | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \xrightarrow{k} \end{array}$             | gateH[36] + strandB[36]<br>X91 + gateL[36]<br>strandO[36]<br>X91 + W91 + C1<br>gateH[37] + strandB[37]<br>X100 + gateL[37]<br>strandO[37]<br>X100 + W100 + C1<br>gateH[38] + strandB[38]                                    |
| X91 + gateL[36]<br>gateH[36] + strandB[36]<br>W91 + gateH[36]<br>strandO[36] + gateT[36]<br>X100 + gateL[37]<br>gateH[37] + strandB[37]<br>W100 + gateH[37]<br>strandO[37] + gateT[37]<br>X100 + gateL[38]<br>gateH[38] + strandB[38]                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$ | gateH[36] + strandB[36]<br>X91 + gateL[36]<br>strandO[36]<br>X91 + W91 + C1<br>gateH[37] + strandB[37]<br>X100 + gateL[37]<br>strandO[37]<br>X100 + W100 + C1<br>gateH[38] + strandB[38]<br>X100 + gateL[38]                |
| X91 + gateL[36]<br>gateH[36] + strandB[36]<br>W91 + gateH[36]<br>strandO[36] + gateT[36]<br>X100 + gateL[37]<br>gateH[37] + strandB[37]<br>W100 + gateH[37]<br>strandO[37] + gateT[37]<br>X100 + gateL[38]<br>gateH[38] + strandB[38]<br>W101 + gateH[38] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$ | gateH[36] + strandB[36]<br>X91 + gateL[36]<br>strandO[36]<br>X91 + W91 + C1<br>gateH[37] + strandB[37]<br>X100 + gateL[37]<br>strandO[37]<br>X100 + W100 + C1<br>gateH[38] + strandB[38]<br>X100 + gateL[38]<br>strandO[38] |

| X101 + gateL[39]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                           | gateH[39] + strandB[39]                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[39] + strandB[39]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                    | X101 + gateL[39]                                                                                                                                                                                                               |
| W100 + gateH[39]                                                                                                                                                                                                                                            | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                     | strandO[39]                                                                                                                                                                                                                    |
| strandO[39] + gateT[39]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                    | X101 + W100 + C0                                                                                                                                                                                                               |
| X101 + gateL[40]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                           | gateH[40] + strandB[40]                                                                                                                                                                                                        |
| gateH[40] + strandB[40]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                    | X101 + gateL[40]                                                                                                                                                                                                               |
| W101 + gateH[40]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                    | strandO[40]                                                                                                                                                                                                                    |
| strandO[40] + gateT[40]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                    | X101 + W101 + C1                                                                                                                                                                                                               |
| X110 + gateL[41]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                           | gateH[41] + strandB[41]                                                                                                                                                                                                        |
| gateH[41] + strandB[41]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                    | X110 + gateL[41]                                                                                                                                                                                                               |
| W110 + gateH[41]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                    | strandO[41]                                                                                                                                                                                                                    |
| strandO[41] + gateT[41]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                    | X110 + W110 + C1                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |
| X110 + gateL[42]                                                                                                                                                                                                                                            | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                            | gateH[42] + strandB[42]                                                                                                                                                                                                        |
| X110 + gateL[42]<br>gateH[42] + strandB[42]                                                                                                                                                                                                                 | $\overset{k}{\underset{q_{\max}}{\longrightarrow}}$                                                                                                                                                                                                                                                       | gateH[42] + strandB[42]<br>X110 + gateL[42]                                                                                                                                                                                    |
| X110 + gateL[42]<br>gateH[42] + strandB[42]<br>W111 + gateH[42]                                                                                                                                                                                             | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                                                       | gateH[42] + strandB[42]<br>X110 + gateL[42]<br>strandO[42]                                                                                                                                                                     |
| $\begin{split} X110+gateL[42]\\ gateH[42]+strandB[42]\\ W111+gateH[42]\\ strandO[42]+gateT[42] \end{split}$                                                                                                                                                 | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                          | gateH[42] + strandB[42]<br>X110 + gateL[42]<br>strandO[42]<br>X110 + W111 + C0                                                                                                                                                 |
| $\begin{array}{l} X110+gateL[42]\\ gateH[42]+strandB[42]\\ W111+gateH[42]\\ strandO[42]+gateT[42]\\ X111+gateL[43] \end{array}$                                                                                                                             | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                 | gateH[42] + strandB[42] $X110 + gateL[42]$ $strandO[42]$ $X110 + W111 + C0$ $gateH[43] + strandB[43]$                                                                                                                          |
| $\begin{array}{c} X110+gateL[42]\\ gateH[42]+strandB[42]\\ W111+gateH[42]\\ strandO[42]+gateT[42]\\ X111+gateL[43]\\ gateH[43]+strandB[43] \end{array}$                                                                                                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                          | gateH[42] + strandB[42]<br>X110 + gateL[42]<br>strandO[42]<br>X110 + W111 + C0<br>gateH[43] + strandB[43]<br>X111 + gateL[43]                                                                                                  |
| X110 + gateL[42]<br>gateH[42] + strandB[42]<br>W111 + gateH[42]<br>strandO[42] + gateT[42]<br>X111 + gateL[43]<br>gateH[43] + strandB[43]<br>W110 + gateH[43]                                                                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                   | gateH[42] + strandB[42]<br>X110 + gateL[42]<br>strandO[42]<br>X110 + W111 + C0<br>gateH[43] + strandB[43]<br>X111 + gateL[43]<br>strandO[43]                                                                                   |
| X110 + gateL[42]<br>gateH[42] + strandB[42]<br>W111 + gateH[42]<br>strandO[42] + gateT[42]<br>X111 + gateL[43]<br>gateH[43] + strandB[43]<br>W110 + gateH[43]<br>strandO[43] + gateT[43]                                                                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                                                                                         | gateH[42] + strandB[42]<br>X110 + gateL[42]<br>strandO[42]<br>X110 + W111 + C0<br>gateH[43] + strandB[43]<br>X111 + gateL[43]<br>strandO[43]<br>X111 + W110 + C0                                                               |
| X110 + gateL[42]<br>gateH[42] + strandB[42]<br>W111 + gateH[42]<br>strandO[42] + gateT[42]<br>X111 + gateL[43]<br>gateH[43] + strandB[43]<br>W110 + gateH[43]<br>strandO[43] + gateT[43]<br>X111 + gateL[44]                                                | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \xrightarrow{k} \end{array}$                                      | gateH[42] + strandB[42]<br>X110 + gateL[42]<br>strandO[42]<br>X110 + W111 + C0<br>gateH[43] + strandB[43]<br>X111 + gateL[43]<br>strandO[43]<br>X111 + W110 + C0<br>gateH[44] + strandB[44]                                    |
| X110 + gateL[42]<br>gateH[42] + strandB[42]<br>W111 + gateH[42]<br>strandO[42] + gateT[42]<br>X111 + gateL[43]<br>gateH[43] + strandB[43]<br>W110 + gateH[43]<br>strandO[43] + gateT[43]<br>X111 + gateL[44]<br>gateH[44] + strandB[44]                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$                                       | gateH[42] + strandB[42]<br>X110 + gateL[42]<br>strandO[42]<br>X110 + W111 + C0<br>gateH[43] + strandB[43]<br>X111 + gateL[43]<br>strandO[43]<br>X111 + W110 + C0<br>gateH[44] + strandB[44]<br>X111 + gateL[44]                |
| X110 + gateL[42]<br>gateH[42] + strandB[42]<br>W111 + gateH[42]<br>strandO[42] + gateT[42]<br>X111 + gateL[43]<br>gateH[43] + strandB[43]<br>W110 + gateH[43]<br>strandO[43] + gateT[43]<br>X111 + gateL[44]<br>gateH[44] + strandB[44]<br>W111 + gateH[44] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$ | gateH[42] + strandB[42]<br>X110 + gateL[42]<br>strandO[42]<br>X110 + W111 + C0<br>gateH[43] + strandB[43]<br>X111 + gateL[43]<br>strandO[43]<br>X111 + W110 + C0<br>gateH[44] + strandB[44]<br>X111 + gateL[44]<br>strandO[44] |

| X120 + gateL[45]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gateH[45] + strandB[45]                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[45] + strandB[45]                                                                                                                                                                                                                                     | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X120 + gateL[45]                                                                                                                                                                                                               |
| W120 + gateH[45]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | strandO[45]                                                                                                                                                                                                                    |
| strandO[45] + gateT[45]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X120 + W120 + C1                                                                                                                                                                                                               |
| X120 + gateL[46]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gateH[46] + strandB[46]                                                                                                                                                                                                        |
| gateH[46] + strandB[46]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X120 + gateL[46]                                                                                                                                                                                                               |
| W121 + gateH[46]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | strandO[46]                                                                                                                                                                                                                    |
| strandO[46] + gateT[46]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X120 + W121 + C0                                                                                                                                                                                                               |
| X121 + gateL[47]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gateH[47] + strandB[47]                                                                                                                                                                                                        |
| gateH[47] + strandB[47]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X121 + gateL[47]                                                                                                                                                                                                               |
| W120 + gateH[47]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | strandO[47]                                                                                                                                                                                                                    |
| strandO[47] + gateT[47]                                                                                                                                                                                                                                     | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X121 + W120 + C0                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                |
| X121 + gateL[48]                                                                                                                                                                                                                                            | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gateH[48] + strandB[48]                                                                                                                                                                                                        |
| X121 + gateL[48]<br>gateH[48] + strandB[48]                                                                                                                                                                                                                 | $\stackrel{k}{\longrightarrow} \stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gateH[48] + strandB[48]<br>X121 + gateL[48]                                                                                                                                                                                    |
| X121 + gateL[48]<br>gateH[48] + strandB[48]<br>W121 + gateH[48]                                                                                                                                                                                             | $\stackrel{k}{\underset{{}}{\overset{q_{max}}{\longrightarrow}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gateH[48] + strandB[48]<br>X121 + gateL[48]<br>strandO[48]                                                                                                                                                                     |
| X121 + gateL[48]<br>gateH[48] + strandB[48]<br>W121 + gateH[48]<br>strandO[48] + gateT[48]                                                                                                                                                                  | $\xrightarrow{k} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}$ | gateH[48] + strandB[48]<br>X121 + gateL[48]<br>strandO[48]<br>X121 + W121 + C1                                                                                                                                                 |
| X121 + gateL[48] $gateH[48] + strandB[48]$ $W121 + gateH[48]$ $strandO[48] + gateT[48]$ $X130 + gateL[49]$                                                                                                                                                  | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gateH[48] + strandB[48]<br>X121 + gateL[48]<br>strandO[48]<br>X121 + W121 + C1<br>gateH[49] + strandB[49]                                                                                                                      |
| X121 + gateL[48]<br>gateH[48] + strandB[48]<br>W121 + gateH[48]<br>strandO[48] + gateT[48]<br>X130 + gateL[49]<br>gateH[49] + strandB[49]                                                                                                                   | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gateH[48] + strandB[48]<br>X121 + gateL[48]<br>strandO[48]<br>X121 + W121 + C1<br>gateH[49] + strandB[49]<br>X130 + gateL[49]                                                                                                  |
| X121 + gateL[48]<br>gateH[48] + strandB[48]<br>W121 + gateH[48]<br>strandO[48] + gateT[48]<br>X130 + gateL[49]<br>gateH[49] + strandB[49]<br>W130 + gateH[49]                                                                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gateH[48] + strandB[48]<br>X121 + gateL[48]<br>strandO[48]<br>X121 + W121 + C1<br>gateH[49] + strandB[49]<br>X130 + gateL[49]<br>strandO[49]                                                                                   |
| X121 + gateL[48]<br>gateH[48] + strandB[48]<br>W121 + gateH[48]<br>strandO[48] + gateT[48]<br>X130 + gateL[49]<br>gateH[49] + strandB[49]<br>W130 + gateH[49]<br>strandO[49] + gateT[49]                                                                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gateH[48] + strandB[48]<br>X121 + gateL[48]<br>strandO[48]<br>X121 + W121 + C1<br>gateH[49] + strandB[49]<br>X130 + gateL[49]<br>strandO[49]<br>X130 + W130 + C1                                                               |
| X121 + gateL[48]<br>gateH[48] + strandB[48]<br>W121 + gateH[48]<br>strandO[48] + gateT[48]<br>X130 + gateL[49]<br>gateH[49] + strandB[49]<br>W130 + gateH[49]<br>strandO[49] + gateT[49]<br>X130 + gateL[50]                                                | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gateH[48] + strandB[48]<br>X121 + gateL[48]<br>strandO[48]<br>X121 + W121 + C1<br>gateH[49] + strandB[49]<br>X130 + gateL[49]<br>strandO[49]<br>X130 + W130 + C1<br>gateH[50] + strandB[50]                                    |
| X121 + gateL[48]<br>gateH[48] + strandB[48]<br>W121 + gateH[48]<br>strandO[48] + gateT[48]<br>X130 + gateL[49]<br>gateH[49] + strandB[49]<br>W130 + gateH[49]<br>strandO[49] + gateT[49]<br>X130 + gateL[50]<br>gateH[50] + strandB[50]                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gateH[48] + strandB[48]<br>X121 + gateL[48]<br>strandO[48]<br>X121 + W121 + C1<br>gateH[49] + strandB[49]<br>X130 + gateL[49]<br>strandO[49]<br>X130 + W130 + C1<br>gateH[50] + strandB[50]<br>X130 + gateL[50]                |
| X121 + gateL[48]<br>gateH[48] + strandB[48]<br>W121 + gateH[48]<br>strandO[48] + gateT[48]<br>X130 + gateL[49]<br>gateH[49] + strandB[49]<br>W130 + gateH[49]<br>strandO[49] + gateT[49]<br>X130 + gateL[50]<br>gateH[50] + strandB[50]<br>W131 + gateH[50] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gateH[48] + strandB[48]<br>X121 + gateL[48]<br>strandO[48]<br>X121 + W121 + C1<br>gateH[49] + strandB[49]<br>X130 + gateL[49]<br>strandO[49]<br>X130 + W130 + C1<br>gateH[50] + strandB[50]<br>X130 + gateL[50]<br>strandO[50] |

| X131 + gateL[51]                                                                                                                                                                                                                                            | $\xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                                   | gateH[51] + strandB[51]                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[51] + strandB[51]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                              | X131 + gateL[51]                                                                                                                                                                                                               |
| W130 + gateH[51]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                              | strandO[51]                                                                                                                                                                                                                    |
| strandO[51] + gateT[51]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                              | X131 + W130 + C0                                                                                                                                                                                                               |
| X131 + gateL[52]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                     | gateH[52] + strandB[52]                                                                                                                                                                                                        |
| gateH[52] + strandB[52]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                              | X131 + gateL[52]                                                                                                                                                                                                               |
| W131 + gateH[52]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                              | strandO[52]                                                                                                                                                                                                                    |
| strandO[52] + gateT[52]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                              | X131 + W131 + C1                                                                                                                                                                                                               |
| X140 + gateL[53]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                     | gateH[53] + strandB[53]                                                                                                                                                                                                        |
| gateH[53] + strandB[53]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                              | X140 + gateL[53]                                                                                                                                                                                                               |
| W140 + gateH[53]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                              | strandO[53]                                                                                                                                                                                                                    |
| strandO[53] + gateT[53]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                              | X140 + W140 + C1                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                |
| X140 + gateL[54]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                     | gateH[54] + strandB[54]                                                                                                                                                                                                        |
| X140 + gateL[54]<br>gateH[54] + strandB[54]                                                                                                                                                                                                                 | $\stackrel{k}{\longrightarrow} \stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                | gateH[54] + strandB[54]<br>X140 + gateL[54]                                                                                                                                                                                    |
| X140 + gateL[54]<br>gateH[54] + strandB[54]<br>W141 + gateH[54]                                                                                                                                                                                             | $\stackrel{k}{\longrightarrow} \stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                | gateH[54] + strandB[54]<br>X140 + gateL[54]<br>strandO[54]                                                                                                                                                                     |
| X140 + gateL[54]<br>gateH[54] + strandB[54]<br>W141 + gateH[54]<br>strandO[54] + gateT[54]                                                                                                                                                                  | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \end{array}$                                                                                                                                                                                                                                           | gateH[54] + strandB[54]<br>X140 + gateL[54]<br>strandO[54]<br>X140 + W141 + C0                                                                                                                                                 |
| X140 + gateL[54] $gateH[54] + strandB[54]$ $W141 + gateH[54]$ $strandO[54] + gateT[54]$ $X141 + gateL[55]$                                                                                                                                                  | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                       | gateH[54] + strandB[54]<br>X140 + gateL[54]<br>strandO[54]<br>X140 + W141 + C0<br>gateH[55] + strandB[55]                                                                                                                      |
| X140 + gateL[54]<br>gateH[54] + strandB[54]<br>W141 + gateH[54]<br>strandO[54] + gateT[54]<br>X141 + gateL[55]<br>gateH[55] + strandB[55]                                                                                                                   | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                               | gateH[54] + strandB[54]<br>X140 + gateL[54]<br>strandO[54]<br>X140 + W141 + C0<br>gateH[55] + strandB[55]<br>X141 + gateL[55]                                                                                                  |
| X140 + gateL[54]<br>gateH[54] + strandB[54]<br>W141 + gateH[54]<br>strandO[54] + gateT[54]<br>X141 + gateL[55]<br>gateH[55] + strandB[55]<br>W140 + gateH[55]                                                                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                                                                                                                                                                               | gateH[54] + strandB[54]<br>X140 + gateL[54]<br>strandO[54]<br>X140 + W141 + C0<br>gateH[55] + strandB[55]<br>X141 + gateL[55]<br>strandO[55]                                                                                   |
| X140 + gateL[54]<br>gateH[54] + strandB[54]<br>W141 + gateH[54]<br>strandO[54] + gateT[54]<br>X141 + gateL[55]<br>gateH[55] + strandB[55]<br>W140 + gateH[55]<br>strandO[55] + gateT[55]                                                                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                               | gateH[54] + strandB[54]<br>X140 + gateL[54]<br>strandO[54]<br>X140 + W141 + C0<br>gateH[55] + strandB[55]<br>X141 + gateL[55]<br>strandO[55]<br>X141 + W140 + C0                                                               |
| X140 + gateL[54]<br>gateH[54] + strandB[54]<br>W141 + gateH[54]<br>strandO[54] + gateT[54]<br>X141 + gateL[55]<br>gateH[55] + strandB[55]<br>W140 + gateH[55]<br>strandO[55] + gateT[55]<br>X141 + gateL[56]                                                | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \xrightarrow{k} \end{array}$                                                                                                                             | gateH[54] + strandB[54]<br>X140 + gateL[54]<br>strandO[54]<br>X140 + W141 + C0<br>gateH[55] + strandB[55]<br>X141 + gateL[55]<br>strandO[55]<br>X141 + W140 + C0<br>gateH[56] + strandB[56]                                    |
| X140 + gateL[54]<br>gateH[54] + strandB[54]<br>W141 + gateH[54]<br>strandO[54] + gateT[54]<br>X141 + gateL[55]<br>gateH[55] + strandB[55]<br>W140 + gateH[55]<br>strandO[55] + gateT[55]<br>X141 + gateL[56]<br>gateH[56] + strandB[56]                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \end{array}$                                            | gateH[54] + strandB[54]<br>X140 + gateL[54]<br>strandO[54]<br>X140 + W141 + C0<br>gateH[55] + strandB[55]<br>X141 + gateL[55]<br>strandO[55]<br>X141 + W140 + C0<br>gateH[56] + strandB[56]<br>X141 + gateL[56]                |
| X140 + gateL[54]<br>gateH[54] + strandB[54]<br>W141 + gateH[54]<br>strandO[54] + gateT[54]<br>X141 + gateL[55]<br>gateH[55] + strandB[55]<br>W140 + gateH[55]<br>strandO[55] + gateT[55]<br>X141 + gateL[56]<br>gateH[56] + strandB[56]<br>W141 + gateH[56] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$ | gateH[54] + strandB[54]<br>X140 + gateL[54]<br>strandO[54]<br>X140 + W141 + C0<br>gateH[55] + strandB[55]<br>X141 + gateL[55]<br>strandO[55]<br>X141 + W140 + C0<br>gateH[56] + strandB[56]<br>X141 + gateL[56]<br>strandO[56] |

|                                                                                                                                                                                                                                                             | Ŀ                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X150 + gateL[57]                                                                                                                                                                                                                                            | $\xrightarrow{\kappa}$                                                                                                                                                                                                                                                                       | gateH[57] + strandB[57]                                                                                                                                                                                                        |
| gateH[57] + strandB[57]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                       | X150 + gateL[57]                                                                                                                                                                                                               |
| W150 + gateH[57]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                       | strandO[57]                                                                                                                                                                                                                    |
| strandO[57] + gateT[57]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                       | X150 + W150 + C1                                                                                                                                                                                                               |
| X150 + gateL[58]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                              | gateH[58] + strandB[58]                                                                                                                                                                                                        |
| gateH[58] + strandB[58]                                                                                                                                                                                                                                     | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                        | X150 + gateL[58]                                                                                                                                                                                                               |
| W151 + gateH[58]                                                                                                                                                                                                                                            | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                        | strandO[58]                                                                                                                                                                                                                    |
| strandO[58] + gateT[58]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                       | X150 + W151 + C0                                                                                                                                                                                                               |
| X151 + gateL[59]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                              | gateH[59] + strandB[59]                                                                                                                                                                                                        |
| gateH[59] + strandB[59]                                                                                                                                                                                                                                     | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                        | X151 + gateL[59]                                                                                                                                                                                                               |
| W150 + gateH[59]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                       | strandO[59]                                                                                                                                                                                                                    |
| strandO[59] + gateT[59]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                       | X151 + W150 + C0                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                |
| X151 + gateL[60]                                                                                                                                                                                                                                            | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                               | gateH[60] + strandB[60]                                                                                                                                                                                                        |
| X151 + gateL[60]<br>gateH[60] + strandB[60]                                                                                                                                                                                                                 | $\stackrel{k}{\longrightarrow} \stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                         | gateH[60] + strandB[60]<br>X151 + gateL[60]                                                                                                                                                                                    |
| X151 + gateL[60]<br>gateH[60] + strandB[60]<br>W151 + gateH[60]                                                                                                                                                                                             | $\stackrel{k}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\$                                                                                                                                                                             | gateH[60] + strandB[60]<br>X151 + gateL[60]<br>strandO[60]                                                                                                                                                                     |
| X151 + gateL[60]<br>gateH[60] + strandB[60]<br>W151 + gateH[60]<br>strandO[60] + gateT[60]                                                                                                                                                                  | $\xrightarrow{k}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$                                                                                                                                                                                                    | gateH[60] + strandB[60]<br>X151 + gateL[60]<br>strandO[60]<br>X151 + W151 + C1                                                                                                                                                 |
| X151 + gateL[60] $gateH[60] + strandB[60]$ $W151 + gateH[60]$ $strandO[60] + gateT[60]$ $X160 + gateL[61]$                                                                                                                                                  | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                  | gateH[60] + strandB[60] $X151 + gateL[60]$ $strandO[60]$ $X151 + W151 + C1$ $gateH[61] + strandB[61]$                                                                                                                          |
| X151 + gateL[60]<br>gateH[60] + strandB[60]<br>W151 + gateH[60]<br>strandO[60] + gateT[60]<br>X160 + gateL[61]<br>gateH[61] + strandB[61]                                                                                                                   | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                             | gateH[60] + strandB[60]<br>X151 + gateL[60]<br>strandO[60]<br>X151 + W151 + C1<br>gateH[61] + strandB[61]<br>X160 + gateL[61]                                                                                                  |
| X151 + gateL[60]<br>gateH[60] + strandB[60]<br>W151 + gateH[60]<br>strandO[60] + gateT[60]<br>X160 + gateL[61]<br>gateH[61] + strandB[61]<br>W160 + gateH[61]                                                                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                                                                                  | gateH[60] + strandB[60]<br>X151 + gateL[60]<br>strandO[60]<br>X151 + W151 + C1<br>gateH[61] + strandB[61]<br>X160 + gateL[61]<br>strandO[61]                                                                                   |
| X151 + gateL[60]<br>gateH[60] + strandB[60]<br>W151 + gateH[60]<br>strandO[60] + gateT[60]<br>X160 + gateL[61]<br>gateH[61] + strandB[61]<br>W160 + gateH[61]<br>strandO[61] + gateT[61]                                                                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \end{array}$                            | gateH[60] + strandB[60]<br>X151 + gateL[60]<br>strandO[60]<br>X151 + W151 + C1<br>gateH[61] + strandB[61]<br>X160 + gateL[61]<br>strandO[61]<br>X160 + W160 + C1                                                               |
| X151 + gateL[60]<br>gateH[60] + strandB[60]<br>W151 + gateH[60]<br>strandO[60] + gateT[60]<br>X160 + gateL[61]<br>gateH[61] + strandB[61]<br>W160 + gateH[61]<br>strandO[61] + gateT[61]<br>X160 + gateL[62]                                                | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \end{array}$                                            | gateH[60] + strandB[60]<br>X151 + gateL[60]<br>strandO[60]<br>X151 + W151 + C1<br>gateH[61] + strandB[61]<br>X160 + gateL[61]<br>strandO[61]<br>X160 + W160 + C1<br>gateH[62] + strandB[62]                                    |
| X151 + gateL[60]<br>gateH[60] + strandB[60]<br>W151 + gateH[60]<br>strandO[60] + gateT[60]<br>X160 + gateL[61]<br>gateH[61] + strandB[61]<br>W160 + gateH[61]<br>strandO[61] + gateT[61]<br>X160 + gateL[62]<br>gateH[62] + strandB[62]                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$                          | gateH[60] + strandB[60]<br>X151 + gateL[60]<br>strandO[60]<br>X151 + W151 + C1<br>gateH[61] + strandB[61]<br>X160 + gateL[61]<br>strandO[61]<br>X160 + W160 + C1<br>gateH[62] + strandB[62]<br>X160 + gateL[62]                |
| X151 + gateL[60]<br>gateH[60] + strandB[60]<br>W151 + gateH[60]<br>strandO[60] + gateT[60]<br>X160 + gateL[61]<br>gateH[61] + strandB[61]<br>W160 + gateH[61]<br>strandO[61] + gateT[61]<br>X160 + gateL[62]<br>gateH[62] + strandB[62]<br>W161 + gateH[62] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$ | gateH[60] + strandB[60]<br>X151 + gateL[60]<br>strandO[60]<br>X151 + W151 + C1<br>gateH[61] + strandB[61]<br>X160 + gateL[61]<br>strandO[61]<br>X160 + W160 + C1<br>gateH[62] + strandB[62]<br>X160 + gateL[62]<br>strandO[62] |

| $X161 \pm aateL[63]$                                                                                                                                                                                                                                        | k                                                                                                                                                                                                                                                                                | $aateH[63] \perp strandB[63]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X 101 + gale E[00]                                                                                                                                                                                                                                          | q <sub>max</sub>                                                                                                                                                                                                                                                                 | gateficior = factor |
| gateH[63] + strandB[63]                                                                                                                                                                                                                                     | $\xrightarrow{1}$                                                                                                                                                                                                                                                                | X161 + gateL[63]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| W160 + gateH[63]                                                                                                                                                                                                                                            | $\xrightarrow{q_{\max}}$                                                                                                                                                                                                                                                         | strandO[63]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| strandO[63] + gateT[63]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                           | X161 + W160 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| X161 + gateL[64]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                  | gateH[64] + strandB[64]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| gateH[64] + strandB[64]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                           | X161 + gateL[64]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| W161 + gateH[64]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                           | strandO[64]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| strandO[64] + gateT[64]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                           | X161 + W161 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| X170 + gateL[65]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                  | gateH[65] + strandB[65]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| gateH[65] + strandB[65]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                           | X170 + gateL[65]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| W170 + gateH[65]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                           | strandO[65]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| strandO[65] + gateT[65]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                           | X170 + W170 + C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| X170 + gateL[66]                                                                                                                                                                                                                                            | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                   | gateH[66] + strandB[66]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| X170 + gateL[66]<br>gateH[66] + strandB[66]                                                                                                                                                                                                                 | $\stackrel{k}{\longrightarrow} \stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                             | gateH[66] + strandB[66]<br>X170 + gateL[66]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| X170 + gateL[66]<br>gateH[66] + strandB[66]<br>W171 + gateH[66]                                                                                                                                                                                             | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                              | gateH[66] + strandB[66]<br>X170 + gateL[66]<br>strandO[66]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| X170 + gateL[66]<br>gateH[66] + strandB[66]<br>W171 + gateH[66]<br>strandO[66] + gateT[66]                                                                                                                                                                  | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                                                                                                                                           | gateH[66] + strandB[66]<br>X170 + gateL[66]<br>strandO[66]<br>X170 + W171 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| X170 + gateL[66]<br>gateH[66] + strandB[66]<br>W171 + gateH[66]<br>strandO[66] + gateT[66]<br>X171 + gateL[67]                                                                                                                                              | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                        | gateH[66] + strandB[66]<br>X170 + gateL[66]<br>strandO[66]<br>X170 + W171 + C0<br>gateH[67] + strandB[67]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| X170 + gateL[66]<br>gateH[66] + strandB[66]<br>W171 + gateH[66]<br>strandO[66] + gateT[66]<br>X171 + gateL[67]<br>gateH[67] + strandB[67]                                                                                                                   | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \end{array}$                                                            | gateH[66] + strandB[66]<br>X170 + gateL[66]<br>strandO[66]<br>X170 + W171 + C0<br>gateH[67] + strandB[67]<br>X171 + gateL[67]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X170 + gateL[66]<br>gateH[66] + strandB[66]<br>W171 + gateH[66]<br>strandO[66] + gateT[66]<br>X171 + gateL[67]<br>gateH[67] + strandB[67]<br>W170 + gateH[67]                                                                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                   | gateH[66] + strandB[66]<br>X170 + gateL[66]<br>strandO[66]<br>X170 + W171 + C0<br>gateH[67] + strandB[67]<br>X171 + gateL[67]<br>strandO[67]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| X170 + gateL[66]<br>gateH[66] + strandB[66]<br>W171 + gateH[66]<br>strandO[66] + gateT[66]<br>X171 + gateL[67]<br>gateH[67] + strandB[67]<br>W170 + gateH[67]<br>strandO[67] + gateT[67]                                                                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                                                   | gateH[66] + strandB[66]<br>X170 + gateL[66]<br>strandO[66]<br>X170 + W171 + C0<br>gateH[67] + strandB[67]<br>X171 + gateL[67]<br>strandO[67]<br>X171 + W170 + C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| X170 + gateL[66]<br>gateH[66] + strandB[66]<br>W171 + gateH[66]<br>strandO[66] + gateT[66]<br>X171 + gateL[67]<br>gateH[67] + strandB[67]<br>W170 + gateH[67]<br>strandO[67] + gateT[67]<br>X171 + gateL[68]                                                | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \end{array}$                             | gateH[66] + strandB[66]<br>X170 + gateL[66]<br>strandO[66]<br>X170 + W171 + C0<br>gateH[67] + strandB[67]<br>X171 + gateL[67]<br>strandO[67]<br>X171 + W170 + C0<br>gateH[68] + strandB[68]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| X170 + gateL[66]<br>gateH[66] + strandB[66]<br>W171 + gateH[66]<br>strandO[66] + gateT[66]<br>X171 + gateL[67]<br>gateH[67] + strandB[67]<br>W170 + gateH[67]<br>strandO[67] + gateT[67]<br>X171 + gateL[68]<br>gateH[68] + strandB[68]                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$              | gateH[66] + strandB[66]<br>X170 + gateL[66]<br>strandO[66]<br>X170 + W171 + C0<br>gateH[67] + strandB[67]<br>X171 + gateL[67]<br>strandO[67]<br>X171 + W170 + C0<br>gateH[68] + strandB[68]<br>X171 + gateL[68]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| X170 + gateL[66]<br>gateH[66] + strandB[66]<br>W171 + gateH[66]<br>strandO[66] + gateT[66]<br>X171 + gateL[67]<br>gateH[67] + strandB[67]<br>W170 + gateH[67]<br>strandO[67] + gateT[67]<br>X171 + gateL[68]<br>gateH[68] + strandB[68]<br>W171 + gateH[68] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$ | gateH[66] + strandB[66]<br>X170 + gateL[66]<br>strandO[66]<br>X170 + W171 + C0<br>gateH[67] + strandB[67]<br>X171 + gateL[67]<br>strandO[67]<br>X171 + W170 + C0<br>gateH[68] + strandB[68]<br>X171 + gateL[68]<br>strandO[68]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| X180 + gateL[69]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                 | gateH[69] + strandB[69]                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[69] + strandB[69]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                          | X180 + gateL[69]                                                                                                                                                                                                               |
| W180 + gateH[69]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                          | strandO[69]                                                                                                                                                                                                                    |
| strandO[69] + gateT[69]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                          | X180 + W180 + C1                                                                                                                                                                                                               |
| X180 + gateL[70]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                 | gateH[70] + strandB[70]                                                                                                                                                                                                        |
| gateH[70] + strandB[70]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                          | X180 + gateL[70]                                                                                                                                                                                                               |
| W181 + gateH[70]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                          | strandO[70]                                                                                                                                                                                                                    |
| strandO[70] + gateT[70]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                          | X180 + W181 + C0                                                                                                                                                                                                               |
| X181 + gateL[71]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                 | gateH[71] + strandB[71]                                                                                                                                                                                                        |
| gateH[71] + strandB[71]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                          | X181 + gateL[71]                                                                                                                                                                                                               |
| W180 + gateH[71]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                          | strandO[71]                                                                                                                                                                                                                    |
| strandO[71] + gateT[71]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                          | X181 + W180 + C0                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |
| X181 + gateL[72]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                 | gateH[72] + strandB[72]                                                                                                                                                                                                        |
| X181 + gateL[72]<br>gateH[72] + strandB[72]                                                                                                                                                                                                                 | $\stackrel{k}{\underset{q_{max}}{\longrightarrow}}$                                                                                                                                                                                                                                                                                                                                             | gateH[72] + strandB[72]<br>X181 + gateL[72]                                                                                                                                                                                    |
| X181 + gateL[72]<br>gateH[72] + strandB[72]<br>W181 + gateH[72]                                                                                                                                                                                             | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                         | gateH[72] + strandB[72]<br>X181 + gateL[72]<br>strandO[72]                                                                                                                                                                     |
| $\begin{split} X181 + gateL[72]\\ gateH[72] + strandB[72]\\ W181 + gateH[72]\\ strandO[72] + gateT[72] \end{split}$                                                                                                                                         | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                | gateH[72] + strandB[72]<br>X181 + gateL[72]<br>strandO[72]<br>X181 + W181 + C1                                                                                                                                                 |
| X181 + gateL[72] $gateH[72] + strandB[72]$ $W181 + gateH[72]$ $strandO[72] + gateT[72]$ $X190 + gateL[73]$                                                                                                                                                  | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                       | gateH[72] + strandB[72]<br>X181 + gateL[72]<br>strandO[72]<br>X181 + W181 + C1<br>gateH[73] + strandB[73]                                                                                                                      |
| X181 + gateL[72] $gateH[72] + strandB[72]$ $W181 + gateH[72]$ $strandO[72] + gateT[72]$ $X190 + gateL[73]$ $gateH[73] + strandB[73]$                                                                                                                        | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                | gateH[72] + strandB[72]<br>X181 + gateL[72]<br>strandO[72]<br>X181 + W181 + C1<br>gateH[73] + strandB[73]<br>X190 + gateL[73]                                                                                                  |
| X181 + gateL[72]<br>gateH[72] + strandB[72]<br>W181 + gateH[72]<br>strandO[72] + gateT[72]<br>X190 + gateL[73]<br>gateH[73] + strandB[73]<br>W190 + gateH[73]                                                                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                  | gateH[72] + strandB[72]<br>X181 + gateL[72]<br>strandO[72]<br>X181 + W181 + C1<br>gateH[73] + strandB[73]<br>X190 + gateL[73]<br>strandO[73]                                                                                   |
| X181 + gateL[72]<br>gateH[72] + strandB[72]<br>W181 + gateH[72]<br>strandO[72] + gateT[72]<br>X190 + gateL[73]<br>gateH[73] + strandB[73]<br>W190 + gateH[73]<br>strandO[73] + gateT[73]                                                                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                  | gateH[72] + strandB[72]<br>X181 + gateL[72]<br>strandO[72]<br>X181 + W181 + C1<br>gateH[73] + strandB[73]<br>X190 + gateL[73]<br>strandO[73]<br>X190 + W190 + C1                                                               |
| X181 + gateL[72]<br>gateH[72] + strandB[72]<br>W181 + gateH[72]<br>strandO[72] + gateT[72]<br>X190 + gateL[73]<br>gateH[73] + strandB[73]<br>W190 + gateH[73]<br>strandO[73] + gateT[73]<br>X190 + gateL[74]                                                | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                  | gateH[72] + strandB[72]<br>X181 + gateL[72]<br>strandO[72]<br>X181 + W181 + C1<br>gateH[73] + strandB[73]<br>X190 + gateL[73]<br>strandO[73]<br>X190 + W190 + C1<br>gateH[74] + strandB[74]                                    |
| X181 + gateL[72]<br>gateH[72] + strandB[72]<br>W181 + gateH[72]<br>strandO[72] + gateT[72]<br>X190 + gateL[73]<br>gateH[73] + strandB[73]<br>W190 + gateH[73]<br>strandO[73] + gateT[73]<br>X190 + gateL[74]<br>gateH[74] + strandB[74]                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                    | gateH[72] + strandB[72]<br>X181 + gateL[72]<br>strandO[72]<br>X181 + W181 + C1<br>gateH[73] + strandB[73]<br>X190 + gateL[73]<br>strandO[73]<br>X190 + W190 + C1<br>gateH[74] + strandB[74]<br>X190 + gateL[74]                |
| X181 + gateL[72]<br>gateH[72] + strandB[72]<br>W181 + gateH[72]<br>strandO[72] + gateT[72]<br>X190 + gateL[73]<br>gateH[73] + strandB[73]<br>W190 + gateH[73]<br>strandO[73] + gateT[73]<br>X190 + gateL[74]<br>gateH[74] + strandB[74]<br>W191 + gateH[74] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ q_{\max} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$ | gateH[72] + strandB[72]<br>X181 + gateL[72]<br>strandO[72]<br>X181 + W181 + C1<br>gateH[73] + strandB[73]<br>X190 + gateL[73]<br>strandO[73]<br>X190 + W190 + C1<br>gateH[74] + strandB[74]<br>X190 + gateL[74]<br>strandO[74] |

| X191 + gateL[75]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                         | gateH[75] + strandB[75]                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[75] + strandB[75]                                                                                                                                                                                                                                     | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                   | X191 + gateL[75]                                                                                                                                                                                                               |
| W190 + gateH[75]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                  | strandO[75]                                                                                                                                                                                                                    |
| strandO[75] + gateT[75]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                  | X191 + W190 + C0                                                                                                                                                                                                               |
| X191 + gateL[76]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                         | gateH[76] + strandB[76]                                                                                                                                                                                                        |
| gateH[76] + strandB[76]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                  | X191 + gateL[76]                                                                                                                                                                                                               |
| W191 + gateH[76]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                  | strandO[76]                                                                                                                                                                                                                    |
| strandO[76] + gateT[76]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                  | X191 + W191 + C1                                                                                                                                                                                                               |
| X200 + gateL[77]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                         | gateH[77] + strandB[77]                                                                                                                                                                                                        |
| gateH[77] + strandB[77]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                  | X200 + gateL[77]                                                                                                                                                                                                               |
| W200 + gateH[77]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                  | strandO[77]                                                                                                                                                                                                                    |
| strandO[77] + gateT[77]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                  | X200 + W200 + C1                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                |
| X200 + gateL[78]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                         | gateH[78] + strandB[78]                                                                                                                                                                                                        |
| X200 + gateL[78]<br>gateH[78] + strandB[78]                                                                                                                                                                                                                 | $\stackrel{k}{\longrightarrow} \stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                    | gateH[78] + strandB[78]<br>X200 + gateL[78]                                                                                                                                                                                    |
| X200 + gateL[78]<br>gateH[78] + strandB[78]<br>W201 + gateH[78]                                                                                                                                                                                             | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                                                                     | gateH[78] + strandB[78]<br>X200 + gateL[78]<br>strandO[78]                                                                                                                                                                     |
| X200 + gateL[78]<br>gateH[78] + strandB[78]<br>W201 + gateH[78]<br>strandO[78] + gateT[78]                                                                                                                                                                  | $\xrightarrow{k}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$                                                                                                                                                                                                                               | gateH[78] + strandB[78]<br>X200 + gateL[78]<br>strandO[78]<br>X200 + W201 + C0                                                                                                                                                 |
| X200 + gateL[78]<br>gateH[78] + strandB[78]<br>W201 + gateH[78]<br>strandO[78] + gateT[78]<br>X201 + gateL[79]                                                                                                                                              | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{max}}{\longrightarrow} \\ \overset{q_{max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                 | gateH[78] + strandB[78]<br>X200 + gateL[78]<br>strandO[78]<br>X200 + W201 + C0<br>gateH[79] + strandB[79]                                                                                                                      |
| X200 + gateL[78]<br>gateH[78] + strandB[78]<br>W201 + gateH[78]<br>strandO[78] + gateT[78]<br>X201 + gateL[79]<br>gateH[79] + strandB[79]                                                                                                                   | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                        | gateH[78] + strandB[78]<br>X200 + gateL[78]<br>strandO[78]<br>X200 + W201 + C0<br>gateH[79] + strandB[79]<br>X201 + gateL[79]                                                                                                  |
| X200 + gateL[78]<br>gateH[78] + strandB[78]<br>W201 + gateH[78]<br>strandO[78] + gateT[78]<br>X201 + gateL[79]<br>gateH[79] + strandB[79]<br>W200 + gateH[79]                                                                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                          | gateH[78] + strandB[78]<br>X200 + gateL[78]<br>strandO[78]<br>X200 + W201 + C0<br>gateH[79] + strandB[79]<br>X201 + gateL[79]<br>strandO[79]                                                                                   |
| X200 + gateL[78]<br>gateH[78] + strandB[78]<br>W201 + gateH[78]<br>strandO[78] + gateT[78]<br>X201 + gateL[79]<br>gateH[79] + strandB[79]<br>W200 + gateH[79]<br>strandO[79] + gateT[79]                                                                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                          | gateH[78] + strandB[78]<br>X200 + gateL[78]<br>strandO[78]<br>X200 + W201 + C0<br>gateH[79] + strandB[79]<br>X201 + gateL[79]<br>strandO[79]<br>X201 + W200 + C0                                                               |
| X200 + gateL[78]<br>gateH[78] + strandB[78]<br>W201 + gateH[78]<br>strandO[78] + gateT[78]<br>X201 + gateL[79]<br>gateH[79] + strandB[79]<br>W200 + gateH[79]<br>strandO[79] + gateT[79]<br>X201 + gateL[80]                                                | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$ | gateH[78] + strandB[78]<br>X200 + gateL[78]<br>strandO[78]<br>X200 + W201 + C0<br>gateH[79] + strandB[79]<br>X201 + gateL[79]<br>strandO[79]<br>X201 + W200 + C0<br>gateH[80] + strandB[80]                                    |
| X200 + gateL[78]<br>gateH[78] + strandB[78]<br>W201 + gateH[78]<br>strandO[78] + gateT[78]<br>X201 + gateL[79]<br>gateH[79] + strandB[79]<br>W200 + gateH[79]<br>strandO[79] + gateT[79]<br>X201 + gateL[80]<br>gateH[80] + strandB[80]                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                                  | gateH[78] + strandB[78]<br>X200 + gateL[78]<br>strandO[78]<br>X200 + W201 + C0<br>gateH[79] + strandB[79]<br>X201 + gateL[79]<br>strandO[79]<br>X201 + W200 + C0<br>gateH[80] + strandB[80]<br>X201 + gateL[80]                |
| X200 + gateL[78]<br>gateH[78] + strandB[78]<br>W201 + gateH[78]<br>strandO[78] + gateT[78]<br>X201 + gateL[79]<br>gateH[79] + strandB[79]<br>W200 + gateH[79]<br>strandO[79] + gateT[79]<br>X201 + gateL[80]<br>gateH[80] + strandB[80]<br>W201 + gateH[80] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$                            | gateH[78] + strandB[78]<br>X200 + gateL[78]<br>strandO[78]<br>X200 + W201 + C0<br>gateH[79] + strandB[79]<br>X201 + gateL[79]<br>strandO[79]<br>X201 + W200 + C0<br>gateH[80] + strandB[80]<br>X201 + gateL[80]<br>strandO[80] |

| X210 + gateL[81]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                     | gateH[81] + strandB[81]                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[81] + strandB[81]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X210 + gateL[81]                                                                                                                                                                                                               |
| W210 + gateH[81]                                                                                                                                                                                                                                            | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                               | strandO[81]                                                                                                                                                                                                                    |
| strandO[81] + gateT[81]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X210 + W210 + C1                                                                                                                                                                                                               |
| X210 + gateL[82]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                     | gateH[82] + strandB[82]                                                                                                                                                                                                        |
| gateH[82] + strandB[82]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X210 + gateL[82]                                                                                                                                                                                                               |
| W211 + gateH[82]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | strandO[82]                                                                                                                                                                                                                    |
| strandO[82] + gateT[82]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X210 + W211 + C0                                                                                                                                                                                                               |
| X211 + gateL[83]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                     | gateH[83] + strandB[83]                                                                                                                                                                                                        |
| gateH[83] + strandB[83]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X211 + gateL[83]                                                                                                                                                                                                               |
| W210 + gateH[83]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | strandO[83]                                                                                                                                                                                                                    |
| strandO[83] + gateT[83]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X211 + W210 + C0                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                |
| X211 + gateL[84]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                     | gateH[84] + strandB[84]                                                                                                                                                                                                        |
| X211 + gateL[84]<br>gateH[84] + strandB[84]                                                                                                                                                                                                                 | $\stackrel{k}{\longrightarrow} \stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                | gateH[84] + strandB[84]<br>X211 + gateL[84]                                                                                                                                                                                    |
| X211 + gateL[84]<br>gateH[84] + strandB[84]<br>W211 + gateH[84]                                                                                                                                                                                             | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                 | gateH[84] + strandB[84]<br>X211 + gateL[84]<br>strandO[84]                                                                                                                                                                     |
| X211 + gateL[84]<br>gateH[84] + strandB[84]<br>W211 + gateH[84]<br>strandO[84] + gateT[84]                                                                                                                                                                  | $\xrightarrow{k}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$                                                                                                                                                                           | gateH[84] + strandB[84]<br>X211 + gateL[84]<br>strandO[84]<br>X211 + W211 + C1                                                                                                                                                 |
| $\begin{array}{l} X211+gateL[84]\\ gateH[84]+strandB[84]\\ W211+gateH[84]\\ strandO[84]+gateT[84]\\ X220+gateL[85] \end{array}$                                                                                                                             | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                         | gateH[84] + strandB[84]<br>X211 + gateL[84]<br>strandO[84]<br>X211 + W211 + C1<br>gateH[85] + strandB[85]                                                                                                                      |
| $\begin{array}{l} X211+gateL[84]\\ gateH[84]+strandB[84]\\ W211+gateH[84]\\ strandO[84]+gateT[84]\\ X220+gateL[85]\\ gateH[85]+strandB[85] \end{array}$                                                                                                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                    | gateH[84] + strandB[84]<br>X211 + gateL[84]<br>strandO[84]<br>X211 + W211 + C1<br>gateH[85] + strandB[85]<br>X220 + gateL[85]                                                                                                  |
| X211 + gateL[84]<br>gateH[84] + strandB[84]<br>W211 + gateH[84]<br>strandO[84] + gateT[84]<br>X220 + gateL[85]<br>gateH[85] + strandB[85]<br>W220 + gateH[85]                                                                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$             | gateH[84] + strandB[84]<br>X211 + gateL[84]<br>strandO[84]<br>X211 + W211 + C1<br>gateH[85] + strandB[85]<br>X220 + gateL[85]<br>strandO[85]                                                                                   |
| X211 + gateL[84]<br>gateH[84] + strandB[84]<br>W211 + gateH[84]<br>strandO[84] + gateT[84]<br>X220 + gateL[85]<br>gateH[85] + strandB[85]<br>W220 + gateH[85]<br>strandO[85] + gateT[85]                                                                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$      | gateH[84] + strandB[84]<br>X211 + gateL[84]<br>strandO[84]<br>X211 + W211 + C1<br>gateH[85] + strandB[85]<br>X220 + gateL[85]<br>strandO[85]<br>X220 + W220 + C1                                                               |
| X211 + gateL[84]<br>gateH[84] + strandB[84]<br>W211 + gateH[84]<br>strandO[84] + gateT[84]<br>X220 + gateL[85]<br>gateH[85] + strandB[85]<br>W220 + gateH[85]<br>strandO[85] + gateT[85]<br>X220 + gateL[86]                                                | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \end{array}$                | gateH[84] + strandB[84]<br>X211 + gateL[84]<br>strandO[84]<br>X211 + W211 + C1<br>gateH[85] + strandB[85]<br>X220 + gateL[85]<br>strandO[85]<br>X220 + W220 + C1<br>gateH[86] + strandB[86]                                    |
| X211 + gateL[84]<br>gateH[84] + strandB[84]<br>W211 + gateH[84]<br>strandO[84] + gateT[84]<br>X220 + gateL[85]<br>gateH[85] + strandB[85]<br>W220 + gateH[85]<br>strandO[85] + gateT[85]<br>X220 + gateL[86]<br>gateH[86] + strandB[86]                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$ | gateH[84] + strandB[84]<br>X211 + gateL[84]<br>strandO[84]<br>X211 + W211 + C1<br>gateH[85] + strandB[85]<br>X220 + gateL[85]<br>strandO[85]<br>X220 + W220 + C1<br>gateH[86] + strandB[86]<br>X220 + gateL[86]                |
| X211 + gateL[84]<br>gateH[84] + strandB[84]<br>W211 + gateH[84]<br>strandO[84] + gateT[84]<br>X220 + gateL[85]<br>gateH[85] + strandB[85]<br>W220 + gateH[85]<br>strandO[85] + gateT[85]<br>X220 + gateL[86]<br>gateH[86] + strandB[86]<br>W221 + gateH[86] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$ | gateH[84] + strandB[84]<br>X211 + gateL[84]<br>strandO[84]<br>X211 + W211 + C1<br>gateH[85] + strandB[85]<br>X220 + gateL[85]<br>strandO[85]<br>X220 + W220 + C1<br>gateH[86] + strandB[86]<br>X220 + gateL[86]<br>strandO[86] |

| X221 + gateL[87]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                     | gateH[87] + strandB[87]                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[87] + strandB[87]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                              | X221 + gateL[87]                                                                                                                                                                                                               |
| W220 + gateH[87]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                              | strandO[87]                                                                                                                                                                                                                    |
| strandO[87] + gateT[87]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                              | X221 + W220 + C0                                                                                                                                                                                                               |
| X221 + gateL[88]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                     | gateH[88] + strandB[88]                                                                                                                                                                                                        |
| gateH[88] + strandB[88]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                              | X221 + gateL[88]                                                                                                                                                                                                               |
| W221 + gateH[88]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                              | strandO[88]                                                                                                                                                                                                                    |
| strandO[88] + gateT[88]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                              | X221 + W221 + C1                                                                                                                                                                                                               |
| X230 + gateL[89]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                     | gateH[89] + strandB[89]                                                                                                                                                                                                        |
| gateH[89] + strandB[89]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                              | X230 + gateL[89]                                                                                                                                                                                                               |
| W230 + gateH[89]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                              | strandO[89]                                                                                                                                                                                                                    |
| strandO[89] + gateT[89]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                              | X230 + W230 + C1                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                |
| X230 + gateL[90]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                     | gateH[90] + strandB[90]                                                                                                                                                                                                        |
| X230 + gateL[90]<br>gateH[90] + strandB[90]                                                                                                                                                                                                                 | $\stackrel{k}{\longrightarrow} \stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                | gateH[90] + strandB[90]<br>X230 + gateL[90]                                                                                                                                                                                    |
| X230 + gateL[90]<br>gateH[90] + strandB[90]<br>W231 + gateH[90]                                                                                                                                                                                             | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                 | gateH[90] + strandB[90]<br>X230 + gateL[90]<br>strandO[90]                                                                                                                                                                     |
| X230 + gateL[90]<br>gateH[90] + strandB[90]<br>W231 + gateH[90]<br>strandO[90] + gateT[90]                                                                                                                                                                  | $\xrightarrow{k}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$                                                                                                                                                                                                                                                                                                                           | gateH[90] + strandB[90]<br>X230 + gateL[90]<br>strandO[90]<br>X230 + W231 + C0                                                                                                                                                 |
| $\begin{array}{c} X230+gateL[90]\\gateH[90]+strandB[90]\\W231+gateH[90]\\strandO[90]+gateT[90]\\X231+gateL[91]\end{array}$                                                                                                                                  | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{max}}{\longrightarrow} \\ \overset{q_{max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                             | gateH[90] + strandB[90] $X230 + gateL[90]$ $strandO[90]$ $X230 + W231 + C0$ $gateH[91] + strandB[91]$                                                                                                                          |
| X230 + gateL[90]<br>gateH[90] + strandB[90]<br>W231 + gateH[90]<br>strandO[90] + gateT[90]<br>X231 + gateL[91]<br>gateH[91] + strandB[91]                                                                                                                   | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                    | gateH[90] + strandB[90]<br>X230 + gateL[90]<br>strandO[90]<br>X230 + W231 + C0<br>gateH[91] + strandB[91]<br>X231 + gateL[91]                                                                                                  |
| X230 + gateL[90]<br>gateH[90] + strandB[90]<br>W231 + gateH[90]<br>strandO[90] + gateT[90]<br>X231 + gateL[91]<br>gateH[91] + strandB[91]<br>W230 + gateH[91]                                                                                               | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                | gateH[90] + strandB[90]<br>X230 + gateL[90]<br>strandO[90]<br>X230 + W231 + C0<br>gateH[91] + strandB[91]<br>X231 + gateL[91]<br>strandO[91]                                                                                   |
| X230 + gateL[90]<br>gateH[90] + strandB[90]<br>W231 + gateH[90]<br>strandO[90] + gateT[90]<br>X231 + gateL[91]<br>gateH[91] + strandB[91]<br>W230 + gateH[91]<br>strandO[91] + gateT[91]                                                                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                      | gateH[90] + strandB[90]<br>X230 + gateL[90]<br>strandO[90]<br>X230 + W231 + C0<br>gateH[91] + strandB[91]<br>X231 + gateL[91]<br>strandO[91]<br>X231 + W230 + C0                                                               |
| X230 + gateL[90]<br>gateH[90] + strandB[90]<br>W231 + gateH[90]<br>strandO[90] + gateT[90]<br>X231 + gateL[91]<br>gateH[91] + strandB[91]<br>W230 + gateH[91]<br>strandO[91] + gateT[91]<br>X231 + gateL[92]                                                | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                             | gateH[90] + strandB[90]<br>X230 + gateL[90]<br>strandO[90]<br>X230 + W231 + C0<br>gateH[91] + strandB[91]<br>X231 + gateL[91]<br>strandO[91]<br>X231 + W230 + C0<br>gateH[92] + strandB[92]                                    |
| X230 + gateL[90]<br>gateH[90] + strandB[90]<br>W231 + gateH[90]<br>strandO[90] + gateT[90]<br>X231 + gateL[91]<br>gateH[91] + strandB[91]<br>W230 + gateH[91]<br>strandO[91] + gateT[91]<br>X231 + gateL[92]<br>gateH[92] + strandB[92]                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$ | gateH[90] + strandB[90]<br>X230 + gateL[90]<br>strandO[90]<br>X230 + W231 + C0<br>gateH[91] + strandB[91]<br>X231 + gateL[91]<br>strandO[91]<br>X231 + W230 + C0<br>gateH[92] + strandB[92]<br>X231 + gateL[92]                |
| X230 + gateL[90]<br>gateH[90] + strandB[90]<br>W231 + gateH[90]<br>strandO[90] + gateT[90]<br>X231 + gateL[91]<br>gateH[91] + strandB[91]<br>W230 + gateH[91]<br>strandO[91] + gateT[91]<br>X231 + gateL[92]<br>gateH[92] + strandB[92]<br>W231 + gateH[92] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$                                                                                                                        | gateH[90] + strandB[90]<br>X230 + gateL[90]<br>strandO[90]<br>X230 + W231 + C0<br>gateH[91] + strandB[91]<br>X231 + gateL[91]<br>strandO[91]<br>X231 + W230 + C0<br>gateH[92] + strandB[92]<br>X231 + gateL[92]<br>strandO[92] |

| X240 + gateL[93]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gateH[93] + strandB[93]                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[93] + strandB[93]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X240 + gateL[93]                                                                                                                                                                                                               |
| W240 + gateH[93]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | strandO[93]                                                                                                                                                                                                                    |
| strandO[93] + gateT[93]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X240 + W240 + C1                                                                                                                                                                                                               |
| X240 + gateL[94]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gateH[94] + strandB[94]                                                                                                                                                                                                        |
| gateH[94] + strandB[94]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X240 + gateL[94]                                                                                                                                                                                                               |
| W241 + gateH[94]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | strandO[94]                                                                                                                                                                                                                    |
| strandO[94] + gateT[94]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X240 + W241 + C0                                                                                                                                                                                                               |
| X241 + gateL[95]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gateH[95] + strandB[95]                                                                                                                                                                                                        |
| gateH[95] + strandB[95]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X241 + gateL[95]                                                                                                                                                                                                               |
| W240 + gateH[95]                                                                                                                                                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | strandO[95]                                                                                                                                                                                                                    |
| strandO[95] + gateT[95]                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X241 + W240 + C0                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |
| X241 + gateL[96]                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gateH[96] + strandB[96]                                                                                                                                                                                                        |
| X241 + gateL[96]<br>gateH[96] + strandB[96]                                                                                                                                                                                                                 | $\stackrel{k}{\underset{q_{\max}}{\longrightarrow}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gateH[96] + strandB[96]<br>X241 + gateL[96]                                                                                                                                                                                    |
| X241 + gateL[96]<br>gateH[96] + strandB[96]<br>W241 + gateH[96]                                                                                                                                                                                             | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gateH[96] + strandB[96]<br>X241 + gateL[96]<br>strandO[96]                                                                                                                                                                     |
| X241 + gateL[96]<br>gateH[96] + strandB[96]<br>W241 + gateH[96]<br>strandO[96] + gateT[96]                                                                                                                                                                  | $\xrightarrow{k}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gateH[96] + strandB[96]<br>X241 + gateL[96]<br>strandO[96]<br>X241 + W241 + C1                                                                                                                                                 |
| X241 + gateL[96]<br>gateH[96] + strandB[96]<br>W241 + gateH[96]<br>strandO[96] + gateT[96]<br>X250 + gateL[97]                                                                                                                                              | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gateH[96] + strandB[96]<br>X241 + gateL[96]<br>strandO[96]<br>X241 + W241 + C1<br>gateH[97] + strandB[97]                                                                                                                      |
| X241 + gateL[96]<br>gateH[96] + strandB[96]<br>W241 + gateH[96]<br>strandO[96] + gateT[96]<br>X250 + gateL[97]<br>gateH[97] + strandB[97]                                                                                                                   | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gateH[96] + strandB[96]<br>X241 + gateL[96]<br>strandO[96]<br>X241 + W241 + C1<br>gateH[97] + strandB[97]<br>X250 + gateL[97]                                                                                                  |
| X241 + gateL[96]<br>gateH[96] + strandB[96]<br>W241 + gateH[96]<br>strandO[96] + gateT[96]<br>X250 + gateL[97]<br>gateH[97] + strandB[97]<br>W250 + gateH[97]                                                                                               | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gateH[96] + strandB[96]<br>X241 + gateL[96]<br>strandO[96]<br>X241 + W241 + C1<br>gateH[97] + strandB[97]<br>X250 + gateL[97]<br>strandO[97]                                                                                   |
| X241 + gateL[96]<br>gateH[96] + strandB[96]<br>W241 + gateH[96]<br>strandO[96] + gateT[96]<br>X250 + gateL[97]<br>gateH[97] + strandB[97]<br>W250 + gateH[97]<br>strandO[97] + gateT[97]                                                                    | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gateH[96] + strandB[96]<br>X241 + gateL[96]<br>strandO[96]<br>X241 + W241 + C1<br>gateH[97] + strandB[97]<br>X250 + gateL[97]<br>strandO[97]<br>X250 + W250 + C1                                                               |
| X241 + gateL[96]<br>gateH[96] + strandB[96]<br>W241 + gateH[96]<br>strandO[96] + gateT[96]<br>X250 + gateL[97]<br>gateH[97] + strandB[97]<br>W250 + gateH[97]<br>strandO[97] + gateT[97]<br>X250 + gateL[98]                                                | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gateH[96] + strandB[96]<br>X241 + gateL[96]<br>strandO[96]<br>X241 + W241 + C1<br>gateH[97] + strandB[97]<br>X250 + gateL[97]<br>strandO[97]<br>X250 + W250 + C1<br>gateH[98] + strandB[98]                                    |
| X241 + gateL[96]<br>gateH[96] + strandB[96]<br>W241 + gateH[96]<br>strandO[96] + gateT[96]<br>X250 + gateL[97]<br>gateH[97] + strandB[97]<br>W250 + gateH[97]<br>strandO[97] + gateT[97]<br>X250 + gateL[98]<br>gateH[98] + strandB[98]                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gateH[96] + strandB[96]<br>X241 + gateL[96]<br>strandO[96]<br>X241 + W241 + C1<br>gateH[97] + strandB[97]<br>X250 + gateL[97]<br>strandO[97]<br>X250 + W250 + C1<br>gateH[98] + strandB[98]<br>X250 + gateL[98]                |
| X241 + gateL[96]<br>gateH[96] + strandB[96]<br>W241 + gateH[96]<br>strandO[96] + gateT[96]<br>X250 + gateL[97]<br>gateH[97] + strandB[97]<br>W250 + gateH[97]<br>strandO[97] + gateT[97]<br>X250 + gateL[98]<br>gateH[98] + strandB[98]<br>W251 + gateH[98] | $\begin{array}{c} k \\ \hline q_{max} \hline$ | gateH[96] + strandB[96]<br>X241 + gateL[96]<br>strandO[96]<br>X241 + W241 + C1<br>gateH[97] + strandB[97]<br>X250 + gateL[97]<br>strandO[97]<br>X250 + W250 + C1<br>gateH[98] + strandB[98]<br>X250 + gateL[98]<br>strandO[98] |

| X251 + gateL[99]                                                                                                                                                                                                                                                            | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                     | gateH[99] + strandB[99]                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[99] + strandB[99]                                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | X251 + gateL[99]                                                                                                                                                                                                                           |
| W250 + gateH[99]                                                                                                                                                                                                                                                            | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                               | strandO[99]                                                                                                                                                                                                                                |
| strandO[99] + gateT[99]                                                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | X251 + W250 + C0                                                                                                                                                                                                                           |
| X251 + gateL[100]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                     | gateH[100] + strandB[100]                                                                                                                                                                                                                  |
| gateH[100] + strandB[100]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | X251 + gateL[100]                                                                                                                                                                                                                          |
| W251 + gateH[100]                                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | strandO[100]                                                                                                                                                                                                                               |
| strandO[100] + gateT[100]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | X251 + W251 + C1                                                                                                                                                                                                                           |
| X260 + gateL[101]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                     | gateH[101] + strandB[101]                                                                                                                                                                                                                  |
| gateH[101] + strandB[101]                                                                                                                                                                                                                                                   | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                               | X260 + gateL[101]                                                                                                                                                                                                                          |
| W260 + gateH[101]                                                                                                                                                                                                                                                           | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                               | strandO[101]                                                                                                                                                                                                                               |
| strandO[101] + gateT[101]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | X260 + W260 + C1                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                            |
| X260 + gateL[102]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                     | gateH[102] + strandB[102]                                                                                                                                                                                                                  |
| X260 + gateL[102]<br>gateH[102] + strandB[102]                                                                                                                                                                                                                              | $\overset{k}{\underset{q_{\max}}{\longrightarrow}}$                                                                                                                                                                                                                                                 | gateH[102] + strandB[102]<br>X260 + gateL[102]                                                                                                                                                                                             |
| X260 + gateL[102]<br>gateH[102] + strandB[102]<br>W261 + gateH[102]                                                                                                                                                                                                         | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                                                 | gateH[102] + strandB[102]<br>X260 + gateL[102]<br>strandO[102]                                                                                                                                                                             |
| $\begin{split} X260 + gateL[102]\\ gateH[102] + strandB[102]\\ W261 + gateH[102]\\ strandO[102] + gateT[102] \end{split}$                                                                                                                                                   | $\xrightarrow{k}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$                                                                                                                                                                                                           | gateH[102] + strandB[102]<br>X260 + gateL[102]<br>strandO[102]<br>X260 + W261 + C0                                                                                                                                                         |
| X260 + gateL[102]<br>gateH[102] + strandB[102]<br>W261 + gateH[102]<br>strandO[102] + gateT[102]<br>X261 + gateL[103]                                                                                                                                                       | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                           | gateH[102] + strandB[102]<br>X260 + gateL[102]<br>strandO[102]<br>X260 + W261 + C0<br>gateH[103] + strandB[103]                                                                                                                            |
| X260 + gateL[102]<br>gateH[102] + strandB[102]<br>W261 + gateH[102]<br>strandO[102] + gateT[102]<br>X261 + gateL[103]<br>gateH[103] + strandB[103]                                                                                                                          | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                    | gateH[102] + strandB[102]<br>X260 + gateL[102]<br>strandO[102]<br>X260 + W261 + C0<br>gateH[103] + strandB[103]<br>X261 + gateL[103]                                                                                                       |
| X260 + gateL[102]<br>gateH[102] + strandB[102]<br>W261 + gateH[102]<br>strandO[102] + gateT[102]<br>X261 + gateL[103]<br>gateH[103] + strandB[103]<br>W260 + gateH[103]                                                                                                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                             | gateH[102] + strandB[102]<br>X260 + gateL[102]<br>strandO[102]<br>X260 + W261 + C0<br>gateH[103] + strandB[103]<br>X261 + gateL[103]<br>strandO[103]                                                                                       |
| X260 + gateL[102]<br>gateH[102] + strandB[102]<br>W261 + gateH[102]<br>strandO[102] + gateT[102]<br>X261 + gateL[103]<br>gateH[103] + strandB[103]<br>W260 + gateH[103]<br>strandO[103] + gateT[103]                                                                        | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                      | gateH[102] + strandB[102]<br>X260 + gateL[102]<br>strandO[102]<br>X260 + W261 + C0<br>gateH[103] + strandB[103]<br>X261 + gateL[103]<br>strandO[103]<br>X261 + W260 + C0                                                                   |
| X260 + gateL[102]<br>gateH[102] + strandB[102]<br>W261 + gateH[102]<br>strandO[102] + gateT[102]<br>X261 + gateL[103]<br>gateH[103] + strandB[103]<br>W260 + gateH[103]<br>strandO[103] + gateT[103]<br>X261 + gateL[104]                                                   | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \xrightarrow{k} \end{array}$                                | gateH[102] + strandB[102]<br>X260 + gateL[102]<br>strandO[102]<br>X260 + W261 + C0<br>gateH[103] + strandB[103]<br>X261 + gateL[103]<br>strandO[103]<br>X261 + W260 + C0<br>gateH[104] + strandB[104]                                      |
| X260 + gateL[102]<br>gateH[102] + strandB[102]<br>W261 + gateH[102]<br>strandO[102] + gateT[102]<br>X261 + gateL[103]<br>gateH[103] + strandB[103]<br>W260 + gateH[103]<br>strandO[103] + gateT[103]<br>X261 + gateL[104]<br>gateH[104] + strandB[104]                      | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$ | gateH[102] + strandB[102]<br>X260 + gateL[102]<br>strandO[102]<br>X260 + W261 + C0<br>gateH[103] + strandB[103]<br>X261 + gateL[103]<br>strandO[103]<br>X261 + W260 + C0<br>gateH[104] + strandB[104]<br>X261 + gateL[104]                 |
| X260 + gateL[102]<br>gateH[102] + strandB[102]<br>W261 + gateH[102]<br>strandO[102] + gateT[102]<br>X261 + gateL[103]<br>gateH[103] + strandB[103]<br>W260 + gateH[103]<br>strandO[103] + gateT[103]<br>X261 + gateL[104]<br>gateH[104] + strandB[104]<br>W261 + gateH[104] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$        | gateH[102] + strandB[102]<br>X260 + gateL[102]<br>strandO[102]<br>X260 + W261 + C0<br>gateH[103] + strandB[103]<br>X261 + gateL[103]<br>strandO[103]<br>X261 + W260 + C0<br>gateH[104] + strandB[104]<br>X261 + gateL[104]<br>strandO[104] |

| V270 + acto I[105]                                                                                                                                                                                                                                                          | k 、                                                                                                                                                                                                                                                                                                 | acto H[105] + atmomethy dP[105]                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A210 + gale L[105]                                                                                                                                                                                                                                                          | →<br>(Imax                                                                                                                                                                                                                                                                                          | gaten[105] + stranaD[105]                                                                                                                                                                                                                  |
| gateH[105] + strandB[105]                                                                                                                                                                                                                                                   | $\xrightarrow{qmax}$                                                                                                                                                                                                                                                                                | X270 + gateL[105]                                                                                                                                                                                                                          |
| W270 + gateH[105]                                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | strandO[105]                                                                                                                                                                                                                               |
| strandO[105] + gateT[105]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | X270 + W270 + C1                                                                                                                                                                                                                           |
| X270 + gateL[106]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                     | gateH[106] + strandB[106]                                                                                                                                                                                                                  |
| gateH[106] + strandB[106]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | X270 + gateL[106]                                                                                                                                                                                                                          |
| W271 + gateH[106]                                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | strandO[106]                                                                                                                                                                                                                               |
| strandO[106] + gateT[106]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | X270 + W271 + C0                                                                                                                                                                                                                           |
| X271 + gateL[107]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                     | gateH[107] + strandB[107]                                                                                                                                                                                                                  |
| gateH[107] + strandB[107]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | X271 + gateL[107]                                                                                                                                                                                                                          |
| W270 + gateH[107]                                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | strandO[107]                                                                                                                                                                                                                               |
| strandO[107] + gateT[107]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                              | X271 + W270 + C0                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                            |
| X271 + gateL[108]                                                                                                                                                                                                                                                           | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                      | gateH[108] + strandB[108]                                                                                                                                                                                                                  |
| X271 + gateL[108]<br>gateH[108] + strandB[108]                                                                                                                                                                                                                              | $\overset{k}{\underset{q_{\max}}{\longrightarrow}}$                                                                                                                                                                                                                                                 | gateH[108] + strandB[108]<br>X271 + gateL[108]                                                                                                                                                                                             |
| X271 + gateL[108]<br>gateH[108] + strandB[108]<br>W271 + gateH[108]                                                                                                                                                                                                         | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                                                 | gateH[108] + strandB[108]<br>X271 + gateL[108]<br>strandO[108]                                                                                                                                                                             |
| X271 + gateL[108]<br>gateH[108] + strandB[108]<br>W271 + gateH[108]<br>strandO[108] + gateT[108]                                                                                                                                                                            | $\xrightarrow{k}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$                                                                                                                                                                                                           | gateH[108] + strandB[108]<br>X271 + gateL[108]<br>strandO[108]<br>X271 + W271 + C1                                                                                                                                                         |
| X271 + gateL[108]<br>gateH[108] + strandB[108]<br>W271 + gateH[108]<br>strandO[108] + gateT[108]<br>X280 + gateL[109]                                                                                                                                                       | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                           | gateH[108] + strandB[108]<br>X271 + gateL[108]<br>strandO[108]<br>X271 + W271 + C1<br>gateH[109] + strandB[109]                                                                                                                            |
| X271 + gateL[108]<br>gateH[108] + strandB[108]<br>W271 + gateH[108]<br>strandO[108] + gateT[108]<br>X280 + gateL[109]<br>gateH[109] + strandB[109]                                                                                                                          | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                    | gateH[108] + strandB[108]<br>X271 + gateL[108]<br>strandO[108]<br>X271 + W271 + C1<br>gateH[109] + strandB[109]<br>X280 + gateL[109]                                                                                                       |
| X271 + gateL[108]<br>gateH[108] + strandB[108]<br>W271 + gateH[108]<br>strandO[108] + gateT[108]<br>X280 + gateL[109]<br>gateH[109] + strandB[109]<br>W280 + gateH[109]                                                                                                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                      | gateH[108] + strandB[108]<br>X271 + gateL[108]<br>strandO[108]<br>X271 + W271 + C1<br>gateH[109] + strandB[109]<br>X280 + gateL[109]<br>strandO[109]                                                                                       |
| X271 + gateL[108]<br>gateH[108] + strandB[108]<br>W271 + gateH[108]<br>strandO[108] + gateT[108]<br>X280 + gateL[109]<br>gateH[109] + strandB[109]<br>W280 + gateH[109]<br>strandO[109] + gateT[109]                                                                        | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                                                                      | gateH[108] + strandB[108]<br>X271 + gateL[108]<br>strandO[108]<br>X271 + W271 + C1<br>gateH[109] + strandB[109]<br>X280 + gateL[109]<br>strandO[109]<br>X280 + W280 + C1                                                                   |
| X271 + gateL[108]<br>gateH[108] + strandB[108]<br>W271 + gateH[108]<br>strandO[108] + gateT[108]<br>X280 + gateL[109]<br>gateH[109] + strandB[109]<br>W280 + gateH[109]<br>strandO[109] + gateT[109]<br>X280 + gateL[110]                                                   | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{k} \end{array}$                                                          | gateH[108] + strandB[108]<br>X271 + gateL[108]<br>strandO[108]<br>X271 + W271 + C1<br>gateH[109] + strandB[109]<br>X280 + gateL[109]<br>strandO[109]<br>X280 + W280 + C1<br>gateH[110] + strandB[110]                                      |
| X271 + gateL[108]<br>gateH[108] + strandB[108]<br>W271 + gateH[108]<br>strandO[108] + gateT[108]<br>X280 + gateL[109]<br>gateH[109] + strandB[109]<br>W280 + gateH[109]<br>strandO[109] + gateT[109]<br>X280 + gateL[110]<br>gateH[110] + strandB[110]                      | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$ | gateH[108] + strandB[108]<br>X271 + gateL[108]<br>strandO[108]<br>X271 + W271 + C1<br>gateH[109] + strandB[109]<br>X280 + gateL[109]<br>strandO[109]<br>X280 + W280 + C1<br>gateH[110] + strandB[110]<br>X280 + gateL[110]                 |
| X271 + gateL[108]<br>gateH[108] + strandB[108]<br>W271 + gateH[108]<br>strandO[108] + gateT[108]<br>X280 + gateL[109]<br>gateH[109] + strandB[109]<br>W280 + gateH[109]<br>strandO[109] + gateT[109]<br>X280 + gateL[110]<br>gateH[110] + strandB[110]<br>W281 + gateH[110] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                    | gateH[108] + strandB[108]<br>X271 + gateL[108]<br>strandO[108]<br>X271 + W271 + C1<br>gateH[109] + strandB[109]<br>X280 + gateL[109]<br>strandO[109]<br>X280 + W280 + C1<br>gateH[110] + strandB[110]<br>X280 + gateL[110]<br>strandO[110] |

| X281 + gateL[111]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                     | gateH[111] + strandB[111]                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[111] + strandB[111]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X281 + gateL[111]                                                                                                                                                                                                                          |
| W280 + gateH[111]                                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | strandO[111]                                                                                                                                                                                                                               |
| strandO[111] + gateT[111]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X281 + W280 + C0                                                                                                                                                                                                                           |
| X281 + gateL[112]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                     | gateH[112] + strandB[112]                                                                                                                                                                                                                  |
| gateH[112] + strandB[112]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X281 + gateL[112]                                                                                                                                                                                                                          |
| W281 + gateH[112]                                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | strandO[112]                                                                                                                                                                                                                               |
| strandO[112] + gateT[112]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X281 + W281 + C1                                                                                                                                                                                                                           |
| X290 + gateL[113]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                     | gateH[113] + strandB[113]                                                                                                                                                                                                                  |
| gateH[113] + strandB[113]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X290 + gateL[113]                                                                                                                                                                                                                          |
| W290 + gateH[113]                                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | strandO[113]                                                                                                                                                                                                                               |
| strandO[113] + gateT[113]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                              | X290 + W290 + C1                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                            |
| X290 + gateL[114]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                     | gateH[114] + strandB[114]                                                                                                                                                                                                                  |
| X290 + gateL[114]<br>gateH[114] + strandB[114]                                                                                                                                                                                                                              | $\overset{k}{\underset{q_{\max}}{\longrightarrow}}$                                                                                                                                                                                                                 | gateH[114] + strandB[114]<br>X290 + gateL[114]                                                                                                                                                                                             |
| X290 + gateL[114]<br>gateH[114] + strandB[114]<br>W291 + gateH[114]                                                                                                                                                                                                         | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                 | gateH[114] + strandB[114]<br>X290 + gateL[114]<br>strandO[114]                                                                                                                                                                             |
| X290 + gateL[114]<br>gateH[114] + strandB[114]<br>W291 + gateH[114]<br>strandO[114] + gateT[114]                                                                                                                                                                            | $\xrightarrow{k}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$ $\xrightarrow{q_{max}}$                                                                                                                                                                           | gateH[114] + strandB[114]<br>X290 + gateL[114]<br>strandO[114]<br>X290 + W291 + C0                                                                                                                                                         |
| X290 + gateL[114]<br>gateH[114] + strandB[114]<br>W291 + gateH[114]<br>strandO[114] + gateT[114]<br>X291 + gateL[115]                                                                                                                                                       | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \end{array}$                                                                                         | gateH[114] + strandB[114]<br>X290 + gateL[114]<br>strandO[114]<br>X290 + W291 + C0<br>gateH[115] + strandB[115]                                                                                                                            |
| X290 + gateL[114]<br>gateH[114] + strandB[114]<br>W291 + gateH[114]<br>strandO[114] + gateT[114]<br>X291 + gateL[115]<br>gateH[115] + strandB[115]                                                                                                                          | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                    | gateH[114] + strandB[114]<br>X290 + gateL[114]<br>strandO[114]<br>X290 + W291 + C0<br>gateH[115] + strandB[115]<br>X291 + gateL[115]                                                                                                       |
| X290 + gateL[114]<br>gateH[114] + strandB[114]<br>W291 + gateH[114]<br>strandO[114] + gateT[114]<br>X291 + gateL[115]<br>gateH[115] + strandB[115]<br>W290 + gateH[115]                                                                                                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$             | gateH[114] + strandB[114]<br>X290 + gateL[114]<br>strandO[114]<br>X290 + W291 + C0<br>gateH[115] + strandB[115]<br>X291 + gateL[115]<br>strandO[115]                                                                                       |
| X290 + gateL[114]<br>gateH[114] + strandB[114]<br>W291 + gateH[114]<br>strandO[114] + gateT[114]<br>X291 + gateL[115]<br>gateH[115] + strandB[115]<br>W290 + gateH[115]<br>strandO[115] + gateT[115]                                                                        | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$      | gateH[114] + strandB[114]<br>X290 + gateL[114]<br>strandO[114]<br>X290 + W291 + C0<br>gateH[115] + strandB[115]<br>X291 + gateL[115]<br>strandO[115]<br>X291 + W290 + C0                                                                   |
| X290 + gateL[114]<br>gateH[114] + strandB[114]<br>W291 + gateH[114]<br>strandO[114] + gateT[114]<br>X291 + gateL[115]<br>gateH[115] + strandB[115]<br>W290 + gateH[115]<br>strandO[115] + gateT[115]<br>X291 + gateL[116]                                                   | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \overset{q_{max}}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \end{array}$                   | gateH[114] + strandB[114]<br>X290 + gateL[114]<br>strandO[114]<br>X290 + W291 + C0<br>gateH[115] + strandB[115]<br>X291 + gateL[115]<br>strandO[115]<br>X291 + W290 + C0<br>gateH[116] + strandB[116]                                      |
| X290 + gateL[114]<br>gateH[114] + strandB[114]<br>W291 + gateH[114]<br>strandO[114] + gateT[114]<br>X291 + gateL[115]<br>gateH[115] + strandB[115]<br>W290 + gateH[115]<br>strandO[115] + gateT[115]<br>X291 + gateL[116]<br>gateH[116] + strandB[116]                      | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \xrightarrow{q_{max}} \end{array}$       | gateH[114] + strandB[114]<br>X290 + gateL[114]<br>strandO[114]<br>X290 + W291 + C0<br>gateH[115] + strandB[115]<br>X291 + gateL[115]<br>strandO[115]<br>X291 + W290 + C0<br>gateH[116] + strandB[116]<br>X291 + gateL[116]                 |
| X290 + gateL[114]<br>gateH[114] + strandB[114]<br>W291 + gateH[114]<br>strandO[114] + gateT[114]<br>X291 + gateL[115]<br>gateH[115] + strandB[115]<br>W290 + gateH[115]<br>strandO[115] + gateT[115]<br>X291 + gateL[116]<br>gateH[116] + strandB[116]<br>W291 + gateH[116] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \end{array}$ | gateH[114] + strandB[114]<br>X290 + gateL[114]<br>strandO[114]<br>X290 + W291 + C0<br>gateH[115] + strandB[115]<br>X291 + gateL[115]<br>strandO[115]<br>X291 + W290 + C0<br>gateH[116] + strandB[116]<br>X291 + gateL[116]<br>strandO[116] |

| X300 + aateL[117]                                                                                                                                                                                                                                                           | $\xrightarrow{k}$                                                                                                                                                                                                                                                                                                       | aateH[117] + strandB[117]                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aateH[117] + strandB[117]                                                                                                                                                                                                                                                   | q <sub>max</sub>                                                                                                                                                                                                                                                                                                        | $\frac{Y_{300}}{V_{300}} + \frac{gate I}{117}$                                                                                                                                                                                             |
| gate H[117] + StranaD[117]                                                                                                                                                                                                                                                  | q <sub>max</sub>                                                                                                                                                                                                                                                                                                        | $X 500 \pm gale L[117]$                                                                                                                                                                                                                    |
| W300 + gateH[117]                                                                                                                                                                                                                                                           | $\rightarrow$                                                                                                                                                                                                                                                                                                           | strandO[117]                                                                                                                                                                                                                               |
| strandO[117] + gateT[117]                                                                                                                                                                                                                                                   | $\xrightarrow{q max}$                                                                                                                                                                                                                                                                                                   | X300 + W300 + C1                                                                                                                                                                                                                           |
| X300 + gateL[118]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                         | gateH[118] + strandB[118]                                                                                                                                                                                                                  |
| gateH[118] + strandB[118]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                  | X300 + gateL[118]                                                                                                                                                                                                                          |
| W301 + gateH[118]                                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                  | strandO[118]                                                                                                                                                                                                                               |
| strandO[118] + gateT[118]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                  | X300 + W301 + C0                                                                                                                                                                                                                           |
| X301 + gateL[119]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                         | gateH[119] + strandB[119]                                                                                                                                                                                                                  |
| gateH[119] + strandB[119]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                  | X301 + gateL[119]                                                                                                                                                                                                                          |
| W300 + gateH[119]                                                                                                                                                                                                                                                           | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                   | strandO[119]                                                                                                                                                                                                                               |
| strandO[119] + gateT[119]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                  | X301 + W300 + C0                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                            |
| X301 + gateL[120]                                                                                                                                                                                                                                                           | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                          | gateH[120] + strandB[120]                                                                                                                                                                                                                  |
| X301 + gateL[120]<br>gateH[120] + strandB[120]                                                                                                                                                                                                                              | $\stackrel{k}{\longrightarrow} \stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                    | gateH[120] + strandB[120]<br>X301 + gateL[120]                                                                                                                                                                                             |
| X301 + gateL[120]<br>gateH[120] + strandB[120]<br>W301 + gateH[120]                                                                                                                                                                                                         | $\stackrel{k}{\longrightarrow} \stackrel{q_{max}}{\longrightarrow}$                                                                                                                                                                                                                                                     | gateH[120] + strandB[120]<br>X301 + gateL[120]<br>strandO[120]                                                                                                                                                                             |
| X301 + gateL[120]<br>gateH[120] + strandB[120]<br>W301 + gateH[120]<br>strandO[120] + gateT[120]                                                                                                                                                                            | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \end{array}$                                                                                                                                                                               | gateH[120] + strandB[120]<br>X301 + gateL[120]<br>strandO[120]<br>X301 + W301 + C1                                                                                                                                                         |
| $\begin{array}{c} X301+gateL[120]\\ gateH[120]+strandB[120]\\ W301+gateH[120]\\ strandO[120]+gateT[120]\\ X310+gateL[121] \end{array}$                                                                                                                                      | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                               | gateH[120] + strandB[120]<br>X301 + gateL[120]<br>strandO[120]<br>X301 + W301 + C1<br>gateH[121] + strandB[121]                                                                                                                            |
| X301 + gateL[120]<br>gateH[120] + strandB[120]<br>W301 + gateH[120]<br>strandO[120] + gateT[120]<br>X310 + gateL[121]<br>gateH[121] + strandB[121]                                                                                                                          | $\begin{array}{c} \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \end{array}$                                                                                                   | gateH[120] + strandB[120]<br>X301 + gateL[120]<br>strandO[120]<br>X301 + W301 + C1<br>gateH[121] + strandB[121]<br>X310 + gateL[121]                                                                                                       |
| X301 + gateL[120]<br>gateH[120] + strandB[120]<br>W301 + gateH[120]<br>strandO[120] + gateT[120]<br>X310 + gateL[121]<br>gateH[121] + strandB[121]<br>W310 + gateH[121]                                                                                                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                 | gateH[120] + strandB[120]<br>X301 + gateL[120]<br>strandO[120]<br>X301 + W301 + C1<br>gateH[121] + strandB[121]<br>X310 + gateL[121]<br>strandO[121]                                                                                       |
| X301 + gateL[120]<br>gateH[120] + strandB[120]<br>W301 + gateH[120]<br>strandO[120] + gateT[120]<br>X310 + gateL[121]<br>gateH[121] + strandB[121]<br>W310 + gateH[121]<br>strandO[121] + gateT[121]                                                                        | $\begin{array}{c} \overset{k}{\longrightarrow} \\ q_{\max} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ q_{\max} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                         | gateH[120] + strandB[120]<br>X301 + gateL[120]<br>strandO[120]<br>X301 + W301 + C1<br>gateH[121] + strandB[121]<br>X310 + gateL[121]<br>strandO[121]<br>X310 + W310 + C1                                                                   |
| X301 + gateL[120]<br>gateH[120] + strandB[120]<br>W301 + gateH[120]<br>strandO[120] + gateT[120]<br>X310 + gateL[121]<br>gateH[121] + strandB[121]<br>W310 + gateH[121]<br>strandO[121] + gateT[121]<br>X310 + gateL[122]                                                   | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$ | gateH[120] + strandB[120]<br>X301 + gateL[120]<br>strandO[120]<br>X301 + W301 + C1<br>gateH[121] + strandB[121]<br>X310 + gateL[121]<br>strandO[121]<br>X310 + W310 + C1<br>gateH[122] + strandB[122]                                      |
| X301 + gateL[120]<br>gateH[120] + strandB[120]<br>W301 + gateH[120]<br>strandO[120] + gateT[120]<br>X310 + gateL[121]<br>gateH[121] + strandB[121]<br>W310 + gateH[121]<br>strandO[121] + gateT[121]<br>X310 + gateL[122]<br>gateH[122] + strandB[122]                      | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \xrightarrow{q_{max}} \end{array}$                                                           | gateH[120] + strandB[120]<br>X301 + gateL[120]<br>strandO[120]<br>X301 + W301 + C1<br>gateH[121] + strandB[121]<br>X310 + gateL[121]<br>strandO[121]<br>X310 + W310 + C1<br>gateH[122] + strandB[122]<br>X310 + gateL[122]                 |
| X301 + gateL[120]<br>gateH[120] + strandB[120]<br>W301 + gateH[120]<br>strandO[120] + gateT[120]<br>X310 + gateL[121]<br>gateH[121] + strandB[121]<br>W310 + gateH[121]<br>strandO[121] + gateT[121]<br>X310 + gateL[122]<br>gateH[122] + strandB[122]<br>W311 + gateH[122] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                                  | gateH[120] + strandB[120]<br>X301 + gateL[120]<br>strandO[120]<br>X301 + W301 + C1<br>gateH[121] + strandB[121]<br>X310 + gateL[121]<br>strandO[121]<br>X310 + W310 + C1<br>gateH[122] + strandB[122]<br>X310 + gateL[122]<br>strandO[122] |

| X311 + gateL[123]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                           | gateH[123] + strandB[123]                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[123] + strandB[123]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                    | X311 + gateL[123]                                                                                                                                                                                                                          |
| W310 + gateH[123]                                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                    | strandO[123]                                                                                                                                                                                                                               |
| strandO[123] + gateT[123]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                    | X311 + W310 + C0                                                                                                                                                                                                                           |
| X311 + gateL[124]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                           | gateH[124] + strandB[124]                                                                                                                                                                                                                  |
| gateH[124] + strandB[124]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                    | X311 + gateL[124]                                                                                                                                                                                                                          |
| W311 + gateH[124]                                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                    | strandO[124]                                                                                                                                                                                                                               |
| strandO[124] + gateT[124]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                    | X311 + W311 + C1                                                                                                                                                                                                                           |
| X320 + gateL[125]                                                                                                                                                                                                                                                           | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                           | gateH[125] + strandB[125]                                                                                                                                                                                                                  |
| gateH[125] + strandB[125]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                    | X320 + gateL[125]                                                                                                                                                                                                                          |
| W320 + gateH[125]                                                                                                                                                                                                                                                           | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                    | strandO[125]                                                                                                                                                                                                                               |
| strandO[125] + gateT[125]                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                    | X320 + W320 + C1                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |
| X320 + gateL[126]                                                                                                                                                                                                                                                           | $\overset{k}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                            | gateH[126] + strandB[126]                                                                                                                                                                                                                  |
| X320 + gateL[126]<br>gateH[126] + strandB[126]                                                                                                                                                                                                                              | $\stackrel{k}{\underset{q_{\max}}{\longrightarrow}}$                                                                                                                                                                                                                                                                                                                                      | gateH[126] + strandB[126]<br>X320 + gateL[126]                                                                                                                                                                                             |
| X320 + gateL[126]<br>gateH[126] + strandB[126]<br>W321 + gateH[126]                                                                                                                                                                                                         | $\stackrel{k}{\longrightarrow} \xrightarrow{q_{max}} \xrightarrow{q_{max}}$                                                                                                                                                                                                                                                                                                               | gateH[126] + strandB[126]<br>X320 + gateL[126]<br>strandO[126]                                                                                                                                                                             |
| X320 + gateL[126]<br>gateH[126] + strandB[126]<br>W321 + gateH[126]<br>strandO[126] + gateT[126]                                                                                                                                                                            | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                                          | gateH[126] + strandB[126]<br>X320 + gateL[126]<br>strandO[126]<br>X320 + W321 + C0                                                                                                                                                         |
| X320 + gateL[126]<br>gateH[126] + strandB[126]<br>W321 + gateH[126]<br>strandO[126] + gateT[126]<br>X321 + gateL[127]                                                                                                                                                       | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                                                                                                                                                 | gateH[126] + strandB[126]<br>X320 + gateL[126]<br>strandO[126]<br>X320 + W321 + C0<br>gateH[127] + strandB[127]                                                                                                                            |
| X320 + gateL[126]<br>gateH[126] + strandB[126]<br>W321 + gateH[126]<br>strandO[126] + gateT[126]<br>X321 + gateL[127]<br>gateH[127] + strandB[127]                                                                                                                          | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{k} \\ \xrightarrow{q_{max}} \end{array}$                                                                                                                                                                                                        | gateH[126] + strandB[126]<br>X320 + gateL[126]<br>strandO[126]<br>X320 + W321 + C0<br>gateH[127] + strandB[127]<br>X321 + gateL[127]                                                                                                       |
| X320 + gateL[126]<br>gateH[126] + strandB[126]<br>W321 + gateH[126]<br>strandO[126] + gateT[126]<br>X321 + gateL[127]<br>gateH[127] + strandB[127]<br>W320 + gateH[127]                                                                                                     | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                   | gateH[126] + strandB[126]<br>X320 + gateL[126]<br>strandO[126]<br>X320 + W321 + C0<br>gateH[127] + strandB[127]<br>X321 + gateL[127]<br>strandO[127]                                                                                       |
| X320 + gateL[126]<br>gateH[126] + strandB[126]<br>W321 + gateH[126]<br>strandO[126] + gateT[126]<br>X321 + gateL[127]<br>gateH[127] + strandB[127]<br>W320 + gateH[127]<br>strandO[127] + gateT[127]                                                                        | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \\ \xrightarrow{q_{max}} \end{array}$                                                                                                                                                                         | gateH[126] + strandB[126]<br>X320 + gateL[126]<br>strandO[126]<br>X320 + W321 + C0<br>gateH[127] + strandB[127]<br>X321 + gateL[127]<br>strandO[127]<br>X321 + W320 + C0                                                                   |
| X320 + gateL[126]<br>gateH[126] + strandB[126]<br>W321 + gateH[126]<br>strandO[126] + gateT[126]<br>X321 + gateL[127]<br>gateH[127] + strandB[127]<br>W320 + gateH[127]<br>strandO[127] + gateT[127]<br>X321 + gateL[128]                                                   | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \end{array}$                                                                                            | gateH[126] + strandB[126]<br>X320 + gateL[126]<br>strandO[126]<br>X320 + W321 + C0<br>gateH[127] + strandB[127]<br>X321 + gateL[127]<br>strandO[127]<br>X321 + W320 + C0<br>gateH[128] + strandB[128]                                      |
| X320 + gateL[126]<br>gateH[126] + strandB[126]<br>W321 + gateH[126]<br>strandO[126] + gateT[126]<br>X321 + gateL[127]<br>gateH[127] + strandB[127]<br>W320 + gateH[127]<br>strandO[127] + gateT[127]<br>X321 + gateL[128]<br>gateH[128] + strandB[128]                      | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$              | gateH[126] + strandB[126]<br>X320 + gateL[126]<br>strandO[126]<br>X320 + W321 + C0<br>gateH[127] + strandB[127]<br>X321 + gateL[127]<br>strandO[127]<br>X321 + W320 + C0<br>gateH[128] + strandB[128]<br>X321 + gateL[128]                 |
| X320 + gateL[126]<br>gateH[126] + strandB[126]<br>W321 + gateH[126]<br>strandO[126] + gateT[126]<br>X321 + gateL[127]<br>gateH[127] + strandB[127]<br>W320 + gateH[127]<br>strandO[127] + gateT[127]<br>X321 + gateL[128]<br>gateH[128] + strandB[128]<br>W321 + gateH[128] | $\begin{array}{c} \overset{k}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \overset{k}{\longrightarrow} \\ \xrightarrow{q_{\max}} \end{array}$ | gateH[126] + strandB[126]<br>X320 + gateL[126]<br>strandO[126]<br>X320 + W321 + C0<br>gateH[127] + strandB[127]<br>X321 + gateL[127]<br>strandO[127]<br>X321 + W320 + C0<br>gateH[128] + strandB[128]<br>X321 + gateL[128]<br>strandO[128] |

| X330 + gateL[129]         | $\xrightarrow{k}$                      | gateH[129] + strandB[129]                          |
|---------------------------|----------------------------------------|----------------------------------------------------|
| gateH[129] + strandB[129] | $\stackrel{q_{\max}}{\longrightarrow}$ | X330 + gateL[129]                                  |
| W330 + gateH[129]         | $\stackrel{q_{\max}}{\longrightarrow}$ | strandO[129]                                       |
| strandO[129] + gateT[129] | $\overset{q_{\max}}{\longrightarrow}$  | X330 + W330 + C1                                   |
| X330 + gateL[130]         | $\stackrel{k}{\longrightarrow}$        | gateH[130] + strandB[130]                          |
| gateH[130] + strandB[130] | $\stackrel{q_{\max}}{\longrightarrow}$ | X330 + gateL[130]                                  |
| W331 + gateH[130]         | $\stackrel{q_{\max}}{\longrightarrow}$ | strandO[130]                                       |
| strandO[130] + gateT[130] | $\stackrel{q_{\max}}{\longrightarrow}$ | X330 + W331 + C0                                   |
| X331 + gateL[131]         | $\overset{k}{\longrightarrow}$         | gateH[131] + strandB[131]                          |
| gateH[131] + strandB[131] | $\stackrel{q_{\max}}{\longrightarrow}$ | X331 + gateL[131]                                  |
| W330 + gateH[131]         | $\stackrel{q_{\max}}{\longrightarrow}$ | strandO[131]                                       |
| strandO[131] + gateT[131] | $\stackrel{q_{\max}}{\longrightarrow}$ | X331 + W330 + C0                                   |
| X331 + gateL[132]         | $\stackrel{k}{\longrightarrow}$        | gateH[132] + strandB[132]                          |
| gateH[132] + strandB[132] | $\stackrel{q_{\max}}{\longrightarrow}$ | X331 + gateL[132]                                  |
| W331 + gateH[132]         | $\stackrel{q_{\max}}{\longrightarrow}$ | strandO[132]                                       |
| strandO[132] + gateT[132] | $\stackrel{q_{\max}}{\longrightarrow}$ | X331 + W331 + C1                                   |
| C0 + gate 0               | G[133]                                 | $\xrightarrow{k_2}$ strandO[133]                   |
| strandO[133] + gate2      | $\Gamma[133]$                          | $\stackrel{q_{\max}}{\longrightarrow} \varnothing$ |
| C1 + gate C               | G[134]                                 | $\xrightarrow{k_2}$ strandO[134]                   |
| strandO[134] + gate2      | $\Gamma[134]$                          | $\stackrel{q_{\max}}{\longrightarrow} \varnothing$ |
| C0 + gateL[135]           | $\stackrel{k}{\longrightarrow}$        | gateH[135] + strandB[135]                          |
| gateH[135] + strandB[135] | $\stackrel{q_{\max}}{\longrightarrow}$ | C0 + gateL[135]                                    |
| C0 + gateH[135]           | $\stackrel{q_{\max}}{\longrightarrow}$ | strandO[135]                                       |
| atmandO[125] + actoT[125] | $q_{\rm max}$                          | C11 + C0 + C0                                      |

| C0 + gateL[136]                                                                                | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                             | gateH[136] + strandB[136]                                                                                            |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| gateH[136] + strandB[136]                                                                      | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                      | C0 + gateL[136]                                                                                                      |
| C1 + gateH[136]                                                                                | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                      | strandO[136]                                                                                                         |
| strandO[136] + gateT[136]                                                                      | $\xrightarrow{q_{\max}}$                                                                                                                                                                                    | C10 + C0 + C1                                                                                                        |
| C1 + gateL[137]                                                                                | $\xrightarrow{k}$                                                                                                                                                                                           | gateH[137] + strandB[137]                                                                                            |
| gateH[137] + strandB[137]                                                                      | $\xrightarrow{q_{\max}}$                                                                                                                                                                                    | C1 + gateL[137]                                                                                                      |
| C0 + gateH[137]                                                                                | $\xrightarrow{q_{\max}}$                                                                                                                                                                                    | strandO[137]                                                                                                         |
| strandO[137] + gateT[137]                                                                      | $\xrightarrow{q_{\max}}$                                                                                                                                                                                    | C10 + C1 + C0                                                                                                        |
| C1 + gateL[138]                                                                                | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                             | gateH[138] + strandB[138]                                                                                            |
| gateH[138] + strandB[138]                                                                      | $\xrightarrow{q_{\max}}$                                                                                                                                                                                    | C1 + gateL[138]                                                                                                      |
| C1 + gateH[138]                                                                                | $\xrightarrow{q_{\max}}$                                                                                                                                                                                    | strandO[138]                                                                                                         |
| strandO[138] + gateT[138]                                                                      | $\xrightarrow{q_{\max}}$                                                                                                                                                                                    | C11 + C1 + C1                                                                                                        |
| C10 + gateG                                                                                    | [139]                                                                                                                                                                                                       | $\xrightarrow{k_2}$ strandO[139]                                                                                     |
| strandO[139] + gateT                                                                           | [139]                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow} \varnothing$                                                                   |
| C11 + gateG                                                                                    | [140]                                                                                                                                                                                                       | $\xrightarrow{k_2}$ strandO[140]                                                                                     |
| strandO[140] + gateT                                                                           | [140]                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow} \varnothing$                                                                   |
| A20 + gateL[141]                                                                               | $\stackrel{k}{\longrightarrow}$                                                                                                                                                                             | gateH[141] + strandB[141]                                                                                            |
| gateH[141] + strandB[141]                                                                      | $q_{max}$                                                                                                                                                                                                   |                                                                                                                      |
| C10 + gateH[141]                                                                               | $\rightarrow$                                                                                                                                                                                               | A20 + gateL[141]                                                                                                     |
| 6 [ ]                                                                                          | $\xrightarrow{q_{\max}}$                                                                                                                                                                                    | A20 + gateL[141]<br>strandO[141]                                                                                     |
| strandO[141] + gateT[141]                                                                      | $\xrightarrow{q_{\max}}$ $\xrightarrow{q_{\max}}$ $\xrightarrow{q_{\max}}$                                                                                                                                  | A20 + gateL[141]<br>strandO[141]<br>C20 + A20 + C10                                                                  |
| strandO[141] + gateT[141]<br>A20 + gateL[142]                                                  | $\xrightarrow{q_{\max}}$ $\xrightarrow{q_{\max}}$ $\xrightarrow{k}$                                                                                                                                         | A20 + gateL[141]<br>strandO[141]<br>C20 + A20 + C10<br>gateH[142] + strandB[142]                                     |
| strandO[141] + gateT[141]<br>A20 + gateL[142]<br>gateH[142] + strandB[142]                     | $\xrightarrow{q_{\max}}$ $\xrightarrow{q_{\max}}$ $\xrightarrow{k}$ $\xrightarrow{q_{\max}}$                                                                                                                | A20 + gateL[141]<br>strandO[141]<br>C20 + A20 + C10<br>gateH[142] + strandB[142]<br>A20 + gateL[142]                 |
| strandO[141] + gateT[141]<br>A20 + gateL[142]<br>gateH[142] + strandB[142]<br>C11 + gateH[142] | $ \xrightarrow{q_{\max}} \xrightarrow{q_{\max}} \xrightarrow{k} \xrightarrow{q_{\max}} \xrightarrow{q_{\max}} \xrightarrow{q_{\max}} \xrightarrow{q_{\max}} \xrightarrow{q_{\max}} \xrightarrow{q_{\max}} $ | A20 + gateL[141]<br>strandO[141]<br>C20 + A20 + C10<br>gateH[142] + strandB[142]<br>A20 + gateL[142]<br>strandO[142] |

 $\xrightarrow{k}$ A21 + qateL[143]gateH[143] + strandB[143] $\stackrel{q_{\max}}{\longrightarrow}$ gateH[143] + strandB[143]A21 + gateL[143] $\xrightarrow{q_{\max}}$ C10 + qateH[143]strandO[143] $\xrightarrow{q_{\max}}$ strandO[143] + gateT[143]C21 + A21 + C10 $\xrightarrow{k}$ A21 + gateL[144]gateH[144] + strandB[144] $\stackrel{q_{\max}}{\longrightarrow}$ gateH[144] + strandB[144]A21 + gateL[144] $\stackrel{q_{\max}}{\longrightarrow}$ C11 + gateH[144]strandO[144]strandO[144] + gateT[144] $\stackrel{q_{\max}}{\longrightarrow}$ C20 + A21 + C11 $\xrightarrow{k_2}$ C20 + gateG[145]strandO[145] $\stackrel{q_{\max}}{\longrightarrow}$ strandO[145] + gateT[145]Ø  $\xrightarrow{ \ \ k_2 }$ C21 + gateG[146]strandO[146] $\stackrel{q_{\max}}{\longrightarrow}$ strandO[146] + gateT[146]Ø  $\xrightarrow{k}$ A30 + gateL[147]gateH[147] + strandB[147] $\xrightarrow{q_{\max}}$ gateH[147] + strandB[147]A30 + gateL[147] $\stackrel{q_{\max}}{\longrightarrow}$ C20 + gateH[147]strandO[147] $\stackrel{q_{\max}}{\longrightarrow}$ strandO[147] + gateT[147]C30 + A30 + C20 $\stackrel{\mathrm{k}}{\longrightarrow}$ gateH[148] + strandB[148]A30 + gateL[148] $\stackrel{q_{\max}}{\longrightarrow}$ gateH[148] + strandB[148]A30 + gateL[148] $\stackrel{q_{\max}}{\longrightarrow}$ C21 + gateH[148]strandO[148] $\xrightarrow{q_{\max}}$ strandO[148] + gateT[148]C31 + A30 + C21 $\xrightarrow{k}$ gateH[149] + strandB[149]A31 + gateL[149] $\stackrel{q_{\max}}{\longrightarrow}$ gateH[149] + strandB[149]A31 + gateL[149] $\stackrel{q_{\max}}{\longrightarrow}$ B30 + qateH[149]strandO[149] $\xrightarrow{q_{\max}}$ C30 + A31 + B30strandO[149] + gateT[149]

 $\xrightarrow{k}$ A31 + qateL[150]qateH[150] + strandB[150] $\xrightarrow{q_{max}}$ gateH[150] + strandB[150]A31 + gateL[150] $\xrightarrow{q_{max}}$ B31 + qateH[150]strandO[150] $\xrightarrow{q_{max}}$ strandO[150] + gateT[150]C31 + A31 + B31 $\xrightarrow{k_2}$ C30 + gateG[151]strandO[151] $\stackrel{q_{\max}}{\longrightarrow}$ strandO[151] + gateT[151]Ø  $\stackrel{k_2}{\longrightarrow}$ C31 + gateG[152]strandO[152] $\stackrel{q_{\max}}{\longrightarrow}$ strandO[152] + gateT[152]Ø  $\xrightarrow{k}$ C10 + qateL[153]qateH[153] + strandB[153] $\stackrel{q_{\max}}{\longrightarrow}$ gateH[153] + strandB[153]C10 + gateL[153]C30 + gateH[153] $\xrightarrow{q_{\max}}$ strandO[153] $\xrightarrow{q_{\max}}$ C41 + C10 + C30strandO[153] + gateT[153] $\xrightarrow{k}$ C10 + gateL[154]gateH[154] + strandB[154] $\stackrel{q_{\max}}{\longrightarrow}$ gateH[154] + strandB[154]C10 + gateL[154] $\stackrel{q_{\max}}{\longrightarrow}$ C31 + gateH[154]strandO[154] $\stackrel{q_{\max}}{\longrightarrow}$ strandO[154] + gateT[154]C40 + C10 + C31 $\xrightarrow{k}$ gateH[155] + strandB[155]C11 + qateL[155] $\xrightarrow{q_{max}}$ qateH[155] + strandB[155]C11 + gateL[155] $\xrightarrow{q_{\max}}$ C30 + gateH[155]strandO[155] $\xrightarrow{q_{\max}}$ strandO[155] + gateT[155]C40 + C11 + C30 $\xrightarrow{k}$ C11 + qateL[156]gateH[156] + strandB[156] $\xrightarrow{q_{\max}}$ gateH[156] + strandB[156]C11 + gateL[156] $\xrightarrow{q_{max}}$ C31 + gateH[156]strandO[156] $\xrightarrow{q_{max}}$ strandO[156] + gateT[156]C41 + C11 + C31C40 + gateG[157] $\xrightarrow{k_2}$ strandO[157] $\xrightarrow{q_{\max}}$ strandO[157] + gateT[157]Ø

| C41 + gateG[158]                                  | $\xrightarrow{k_2}$ strandO[158]                   |
|---------------------------------------------------|----------------------------------------------------|
| strandO[158] + gateT[158]                         | $\stackrel{q_{\max}}{\longrightarrow} \varnothing$ |
| $A50 + gateL[159] \longrightarrow$                | gateH[159] + strandB[159]                          |
| $gateH[159] + strandB[159] \xrightarrow{q_{max}}$ | A50 + gateL[159]                                   |
| $C40 + gateH[159] \xrightarrow{q_{\max}}$         | strandO[159]                                       |
| $strandO[159] + gateT[159] \xrightarrow{q_{max}}$ | C50 + A50 + C40                                    |
| $A50 + gateL[160] \xrightarrow{k}$                | gateH[160] + strandB[160]                          |
| $gateH[160] + strandB[160] \xrightarrow{q_{max}}$ | A50 + gateL[160]                                   |
| $C41 + gateH[160] \xrightarrow{q_{\max}}$         | strandO[160]                                       |
| $strandO[160] + gateT[160] \xrightarrow{q_{max}}$ | C51 + A50 + C41                                    |
| $A51 + gateL[161] \xrightarrow{k}$                | gateH[161] + strandB[161]                          |
| $gateH[161] + strandB[161] \xrightarrow{q_{max}}$ | A51 + gateL[161]                                   |
| $B50 + gateH[161] \xrightarrow{q_{\max}}$         | strandO[161]                                       |
| $strandO[161] + gateT[161] \xrightarrow{q_{max}}$ | C50 + A51 + B50                                    |
| $A51 + gateL[162] \xrightarrow{k}$                | gateH[162] + strandB[162]                          |
| $gateH[162] + strandB[162] \xrightarrow{q_{max}}$ | A51 + gateL[162]                                   |
| $B51 + gateH[162] \xrightarrow{q_{\max}}$         | strandO[162]                                       |
| $strandO[162] + gateT[162] \xrightarrow{q_{max}}$ | C51 + A51 + B51                                    |
| C50 + gateG[163]                                  | $\xrightarrow{k_2} strandO[163]$                   |
| strandO[163] + gateT[163]                         | $\stackrel{q_{\max}}{\longrightarrow} \varnothing$ |
| C51 + gateG[164]                                  | $\xrightarrow{k_2}$ strandO[164]                   |
| strandO[164] + gateT[164]                         | $\stackrel{q_{\max}}{\longrightarrow} \varnothing$ |
| $C0 + gateL[165] \xrightarrow{k}$                 | gateH[165] + strandB[165]                          |
| $gateH[165] + strandB[165] \xrightarrow{q_{max}}$ | C0 + gateL[165]                                    |
| $C50 + gateH[165] \xrightarrow{q_{\max}}$         | strandO[165]                                       |
| $strandO[165] + gateT[165] \xrightarrow{q_{max}}$ | C60 + C0 + C50                                     |

| $C0 + gateL[166] \xrightarrow{k}$                 | gateH[166] + strandB[166]                                           |
|---------------------------------------------------|---------------------------------------------------------------------|
| $gateH[166] + strandB[166] \xrightarrow{q_{max}}$ | C0 + gateL[166]                                                     |
| $C51 + gateH[166] \xrightarrow{q_{max}}$          | strandO[166]                                                        |
| $strandO[166] + gateT[166] \xrightarrow{q_{max}}$ | C61 + C0 + C51                                                      |
| $C1 + acto I[167]^{k}$                            | aata H[167] + atmond B[167]                                         |
| $C1 + gale E[107] \longrightarrow$                | gateH[107] + stranaD[107]                                           |
| $gateH[167] + strandB[167] \longrightarrow$       | C1 + gateL[167]                                                     |
| $C50 + gateH[167] \xrightarrow{q_{\max}}$         | strandO[167]                                                        |
| $strandO[167] + gateT[167] \xrightarrow{q_{max}}$ | C61 + C1 + C50                                                      |
| $C1 + gateL[168] \xrightarrow{k}$                 | gateH[168] + strandB[168]                                           |
| $gateH[168] + strandB[168] \xrightarrow{q_{max}}$ | C1 + gateL[168]                                                     |
| $C51 + gateH[168] \xrightarrow{q_{\max}}$         | strandO[168]                                                        |
| $strandO[168] + gateT[168] \xrightarrow{q_{max}}$ | C60 + C1 + C51                                                      |
| C60 + aateG[169]                                  | $\xrightarrow{k_2} strandO[169]$                                    |
| strandO[169] + aateT[169]                         | $\stackrel{\mathrm{q}_{\mathrm{max}}}{\longrightarrow} \varnothing$ |
|                                                   | les.                                                                |
| C61 + gateG[170]                                  | $\xrightarrow{\kappa_2} strandO[170]$                               |
| strandO[170] + gateT[170]                         | $\xrightarrow{q_{\max}} \varnothing$                                |
| C60 + gateG[171]                                  | $\xrightarrow{k_2}$ strandO[171]                                    |
| strandO[171] + gateT[171]                         | $\stackrel{\mathrm{q_{max}}}{\longrightarrow} C60 + cp$             |
| C61 + gateG[172]                                  | $\xrightarrow{k_2} strandO[172]$                                    |
| strandO[172] + gateT[172]                         | $\stackrel{q_{\max}}{\longrightarrow} C61 + cp$                     |
|                                                   | k <sub>2</sub> , 10[170]                                            |
| cp + gateG[173]                                   | $\rightarrow strandO[173]$                                          |
| strandO[173] + gateT[173]                         | $ \varnothing$                                                      |
| C61 + gateG[174]                                  | $\xrightarrow{k_2}$ strandO[174]                                    |
| strandO[174] + gateT[174]                         | $\xrightarrow{q_{\max}} C61 + c$                                    |

$$\begin{array}{c} cp + gateL[175] & \stackrel{\mathbf{k}}{\longrightarrow} & gateH[175] + strandB[175] \\ gateH[175] + strandB[175] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & cp + gateL[175] \\ c + gateH[175] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & strandO[175] \\ strandO[175] + gateT[175] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & cp, \\ A20 + gateLS[A20] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[A20] + strandBS[A20] \\ gateHS[A20] + strandBS[A20] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[A21] + strandBS[A21] \\ gateHS[A21] + strandBS[A21] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[A21] + strandBS[A21] \\ gateHS[A21] + strandBS[A21] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[A30] + strandBS[A30] \\ gateHS[A30] + gateLS[A30] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[A30] + strandBS[A30] \\ gateHS[A30] + strandBS[A30] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[A31] + strandBS[A31] \\ gateHS[A31] + strandBS[A31] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[A31] + strandBS[A31] \\ gateHS[A31] + strandBS[A31] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[A50] + strandBS[A50] \\ gateHS[A50] + strandBS[A50] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[A50] + strandBS[A50] \\ gateHS[A50] + strandBS[A50] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[A51] + strandBS[A51] \\ gateHS[A51] + strandBS[A51] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[A51] + strandBS[A51] \\ gateHS[A51] + strandBS[A51] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[B30] + strandBS[B30] \\ gateHS[B30] + strandBS[B30] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & gateHS[B30] + strandBS[B31] \\ gateHS[B30] + strandBS[B30] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & gateHS[B31] + strandBS[B31] \\ gateHS[B31] + strandBS[B31] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & gateHS[B50] + strandBS[B50] \\ gateHS[B50] + strandBS[B50] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & gateHS[B50] + strandBS[B50] \\ gateHS[B50] + strandBS[B50] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & gateHS[B50] + strandBS[B50] \\ gateHS[B50] + strandBS[B50] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & gateHS[B50] + strandBS[B50] \\ gateHS[B50] + strandBS[B50] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & gateHS[B51] + strandBS[B51] \\ gateHS[B51] + strandBS[B51] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & B51 + gateLS[B51] \\ gateHS[B51] + strandBS[B51] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & B51 + gateLS[B51] \\ gateHS[B51] + strandBS[B51] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & B51 + gateLS[B51] \\ gateHS[B51] + strandBS[B51] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & B51 + gateLS[B51] \\ gateHS[B51] + strandBS[B51] & \stackrel{\mathbf{q}_{maxy}}{\longrightarrow} & B51 +$$

 $gateHS[B51] + strandBS[B51] \xrightarrow{\text{quinax}} B51 + gateLS[B51]$ 

| c + gateLS[c]               | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[c] + strandBS[c]     |
|-----------------------------|----------------------------------------|-----------------------------|
| gateHS[c] + strandBS[c]     | $\stackrel{q_{\max}}{\longrightarrow}$ | c + gateLS[c]               |
| C10 + gateLS[C10]           | $\xrightarrow{k_1}$                    | gateHS[C10] + strandBS[C10] |
| gateHS[C10] + strandBS[C10] | $\stackrel{q_{\max}}{\longrightarrow}$ | C10 + gateLS[C10]           |
| C11 + gateLS[C11]           | $\stackrel{k_1}{\longrightarrow}$      | gateHS[C11] + strandBS[C11] |
| gateHS[C11] + strandBS[C11] | $\stackrel{q_{\max}}{\longrightarrow}$ | C11 + gateLS[C11]           |
| C20 + gateLS[C20]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[C20] + strandBS[C20] |
| gateHS[C20] + strandBS[C20] | $\stackrel{q_{\max}}{\longrightarrow}$ | C20 + gateLS[C20]           |
| C21 + gateLS[C21]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[C21] + strandBS[C21] |
| gateHS[C21] + strandBS[C21] | $\stackrel{q_{\max}}{\longrightarrow}$ | C21 + gateLS[C21]           |
| C30 + gateLS[C30]           | $\overset{q_{\max}}{\longrightarrow}$  | gateHS[C30] + strandBS[C30] |
| gateHS[C30] + strandBS[C30] | $\stackrel{q_{\max}}{\longrightarrow}$ | C30 + gateLS[C30]           |
| C31 + gateLS[C31]           | $\overset{q_{\max}}{\longrightarrow}$  | gateHS[C31] + strandBS[C31] |
| gateHS[C31] + strandBS[C31] | $\stackrel{q_{\max}}{\longrightarrow}$ | C31 + gateLS[C31]           |
| C40 + gateLS[C40]           | $\overset{q_{\max}}{\longrightarrow}$  | gateHS[C40] + strandBS[C40] |
| gateHS[C40] + strandBS[C40] | $\stackrel{q_{\max}}{\longrightarrow}$ | C40 + gateLS[C40]           |
| C41 + gateLS[C41]           | $\overset{q_{\max}}{\longrightarrow}$  | gateHS[C41] + strandBS[C41] |
| gateHS[C41] + strandBS[C41] | $\stackrel{q_{\max}}{\longrightarrow}$ | C41 + gateLS[C41]           |
| C50 + gateLS[C50]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[C50] + strandBS[C50] |
| gateHS[C50] + strandBS[C50] | $\stackrel{q_{\max}}{\longrightarrow}$ | C50 + gateLS[C50]           |
| C51 + gateLS[C51]           | $\overset{q_{\max}}{\longrightarrow}$  | gateHS[C51] + strandBS[C51] |
| gateHS[C51] + strandBS[C51] | $\stackrel{q_{\max}}{\longrightarrow}$ | C51 + gateLS[C51]           |

- - $C60 + gateLS[C60] \xrightarrow{q_{\max}}$
- $gateHS[C60] + strandBS[C60] \quad \stackrel{\rm q_{max}}{\longrightarrow} \quad C60 + gateLS[C60]$
- $\stackrel{\rm q_{max}}{\longrightarrow} gateHS[C60] + strandBS[C60]$

| C61 + gateLS[C61]                                                                                                                                                                                                                                                         | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gateHS[C61] + strandBS[C61]                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateHS[C61] + strandBS[C61]                                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C61 + gateLS[C61]                                                                                                                                                                                                                                                                                            |
| cp+gateLS[cp]                                                                                                                                                                                                                                                             | $\overset{k_{3}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gateHS[cp]+strandBS[cp]                                                                                                                                                                                                                                                                                      |
| gateHS[cp] + strandBS[cp]                                                                                                                                                                                                                                                 | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cp + gateLS[cp]                                                                                                                                                                                                                                                                                              |
| $\varnothing + gateLS[\varnothing]$                                                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $gateHS[\varnothing] + strandBS[\varnothing]$                                                                                                                                                                                                                                                                |
| $gateHS[\varnothing] + strandBS[\varnothing]$                                                                                                                                                                                                                             | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\varnothing + gateLS[\varnothing]$                                                                                                                                                                                                                                                                          |
| W10 + gateLS[W10]                                                                                                                                                                                                                                                         | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gateHS[W10] + strandBS[W10]                                                                                                                                                                                                                                                                                  |
| gateHS[W10] + strandBS[W10]                                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W10 + gateLS[W10]                                                                                                                                                                                                                                                                                            |
| W100 + gateLS[W100]                                                                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gateHS[W100] + strandBS[W100]                                                                                                                                                                                                                                                                                |
| gateHS[W100] + strandBS[W100]                                                                                                                                                                                                                                             | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W100 + gateLS[W100]                                                                                                                                                                                                                                                                                          |
| W101 + gateLS[W101]                                                                                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gateHS[W101] + strandBS[W101]                                                                                                                                                                                                                                                                                |
| gateHS[W101] + strandBS[W101]                                                                                                                                                                                                                                             | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W101 + gateLS[W101]                                                                                                                                                                                                                                                                                          |
| W11 + gateLS[W11]                                                                                                                                                                                                                                                         | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aateHS[W11] + strandBS[W11]                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gaterino [, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                              |
| gateHS[W11] + strandBS[W11]                                                                                                                                                                                                                                               | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W11 + gateLS[W11]                                                                                                                                                                                                                                                                                            |
| gateHS[W11] + strandBS[W11]<br>W110 + gateLS[W110]                                                                                                                                                                                                                        | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gateHS[W110] + strandBS[W110] $gateHS[W110] + strandBS[W110]$                                                                                                                                                                                                                                                |
| gateHS[W11] + strandBS[W11]<br>W110 + gateLS[W110]<br>gateHS[W110] + strandBS[W110]                                                                                                                                                                                       | $\stackrel{q_{\max}}{\longrightarrow}$ $\stackrel{q_{\max}}{\longrightarrow}$ $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gateHS[W11] + eta atabb [W11] $W11 + gateLS[W11]$ $gateHS[W110] + strandBS[W110]$ $W110 + gateLS[W110]$                                                                                                                                                                                                      |
| gateHS[W11] + strandBS[W11]<br>W110 + gateLS[W110]<br>gateHS[W110] + strandBS[W110]<br>W111 + gateLS[W111]                                                                                                                                                                | $\begin{array}{c} q_{\max} \\ \hline \\ q_{\max} \\ \hline \\ q_{\max} \\ \hline \\ \hline \\ q_{\max} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gateHS[W11] + etrandBS[W11] $W11 + gateLS[W11]$ $gateHS[W110] + strandBS[W110]$ $W110 + gateLS[W110]$ $gateHS[W111] + strandBS[W111]$                                                                                                                                                                        |
| gateHS[W11] + strandBS[W11]<br>W110 + gateLS[W110]<br>gateHS[W110] + strandBS[W110]<br>W111 + gateLS[W111]<br>gateHS[W111] + strandBS[W111]                                                                                                                               | $\begin{array}{c} q_{\max} \\ \hline \\ q_{\max} \\ \hline \\ q_{\max} \\ \hline \\ q_{\max} \\ \hline \\ q_{\max} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gateHS[W11] + etrandBS[W11] $gateHS[W110] + strandBS[W110]$ $W110 + gateLS[W110]$ $gateHS[W111] + strandBS[W111]$ $W111 + gateLS[W111]$                                                                                                                                                                      |
| gateHS[W11] + strandBS[W11] $W110 + gateLS[W110]$ $gateHS[W110] + strandBS[W110]$ $W111 + gateLS[W111]$ $gateHS[W111] + strandBS[W111]$ $W120 + gateLS[W120]$                                                                                                             | $\begin{array}{c} q_{\max} \\ \hline \\ q_{\max} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gateHS[W11] + etrandBS[W11] $gateHS[W110] + strandBS[W110]$ $W110 + gateLS[W110]$ $gateHS[W111] + strandBS[W111]$ $W111 + gateLS[W111]$ $gateHS[W120] + strandBS[W120]$                                                                                                                                      |
| gateHS[W11] + strandBS[W11]<br>W110 + gateLS[W110]<br>gateHS[W110] + strandBS[W110]<br>W111 + gateLS[W111]<br>gateHS[W111] + strandBS[W111]<br>W120 + gateLS[W120]<br>gateHS[W120] + strandBS[W120]                                                                       | $\begin{array}{c} q_{\max} \\ \hline \\ q_{\max} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gateHS[W11] + etrandBS[W11] $gateHS[W110] + strandBS[W110]$ $W110 + gateLS[W110]$ $gateHS[W111] + strandBS[W111]$ $W111 + gateLS[W111]$ $gateHS[W120] + strandBS[W120]$ $W120 + gateLS[W120]$                                                                                                                |
| gateHS[W11] + strandBS[W11] $W110 + gateLS[W110]$ $gateHS[W110] + strandBS[W110]$ $W111 + gateLS[W111]$ $gateHS[W111] + strandBS[W111]$ $W120 + gateLS[W120]$ $gateHS[W120] + strandBS[W120]$ $W121 + gateLS[W121]$                                                       | $\begin{array}{c} q_{\max} \\ q_{\max} \\$ | $gateHS[W11] + etrandBS[W11] \\ W11 + gateLS[W11] \\ gateHS[W110] + strandBS[W110] \\ W110 + gateLS[W110] \\ gateHS[W111] + strandBS[W111] \\ W111 + gateLS[W111] \\ gateHS[W120] + strandBS[W120] \\ W120 + gateLS[W120] \\ gateHS[W121] + strandBS[W121] \\ \end{cases}$                                   |
| gateHS[W11] + strandBS[W11]<br>W110 + gateLS[W110]<br>gateHS[W110] + strandBS[W110]<br>W111 + gateLS[W111]<br>gateHS[W111] + strandBS[W111]<br>W120 + gateLS[W120]<br>gateHS[W120] + strandBS[W120]<br>W121 + gateLS[W121]<br>gateHS[W121] + strandBS[W121]               | $\begin{array}{c} q_{\max} \\ \hline \\ q_{\max} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $gateHS[W11] + etrandBS[W11] \\ W11 + gateLS[W11] \\ gateHS[W110] + strandBS[W110] \\ W110 + gateLS[W110] \\ gateHS[W111] + strandBS[W111] \\ W111 + gateLS[W111] \\ gateHS[W120] + strandBS[W120] \\ W120 + gateLS[W120] \\ gateHS[W121] + strandBS[W121] \\ W121 + gateLS[W121] \\ \end{cases}$            |
| gateHS[W11] + strandBS[W11] $W110 + gateLS[W110]$ $gateHS[W110] + strandBS[W110]$ $W111 + gateLS[W111]$ $gateHS[W111] + strandBS[W111]$ $W120 + gateLS[W120]$ $gateHS[W120] + strandBS[W120]$ $W121 + gateLS[W121]$ $gateHS[W121] + strandBS[W121]$ $W130 + gateLS[W130]$ | $\begin{array}{c} q_{\max} \\ \hline \\ q_{\max} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $gateHS[W11] + etrandBS[W11] \\W11 + gateLS[W11] \\gateHS[W110] + strandBS[W110] \\W110 + gateLS[W110] \\gateHS[W111] + strandBS[W111] \\W111 + gateLS[W111] \\gateHS[W120] + strandBS[W120] \\W120 + gateLS[W120] \\gateHS[W121] + strandBS[W121] \\W121 + gateLS[W121] \\gateHS[W130] + strandBS[W130] \\$ |

| W131 + gateLS[W131]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W131] + strandBS[W131] |
|-------------------------------|----------------------------------------|-------------------------------|
| gateHS[W131] + strandBS[W131] | $\stackrel{q_{\max}}{\longrightarrow}$ | W131 + gateLS[W131]           |
| W140 + gateLS[W140]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W140] + strandBS[W140] |
| gateHS[W140] + strandBS[W140] | $\stackrel{q_{\max}}{\longrightarrow}$ | W140 + gateLS[W140]           |
| W141 + gateLS[W141]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W141] + strandBS[W141] |
| gateHS[W141] + strandBS[W141] | $\stackrel{q_{\max}}{\longrightarrow}$ | W141 + gateLS[W141]           |
| W150 + gateLS[W150]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W150] + strandBS[W150] |
| gateHS[W150] + strandBS[W150] | $\stackrel{q_{\max}}{\longrightarrow}$ | W150 + gateLS[W150]           |
| W151 + gateLS[W151]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W151] + strandBS[W151] |
| gateHS[W151] + strandBS[W151] | $\stackrel{q_{\max}}{\longrightarrow}$ | W151 + gateLS[W151]           |
| W160 + gateLS[W160]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W160] + strandBS[W160] |
| gateHS[W160] + strandBS[W160] | $\stackrel{q_{\max}}{\longrightarrow}$ | W160 + gateLS[W160]           |
| W161 + gateLS[W161]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W161] + strandBS[W161] |
| gateHS[W161] + strandBS[W161] | $\stackrel{q_{\max}}{\longrightarrow}$ | W161 + gateLS[W161]           |
| W170 + gateLS[W170]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W170] + strandBS[W170] |
| gateHS[W170] + strandBS[W170] | $\stackrel{q_{\max}}{\longrightarrow}$ | W170 + gateLS[W170]           |
| W171 + gateLS[W171]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W171] + strandBS[W171] |
| gateHS[W171] + strandBS[W171] | $\stackrel{q_{\max}}{\longrightarrow}$ | W171 + gateLS[W171]           |
| W180 + gateLS[W180]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W180] + strandBS[W180] |
| gateHS[W180] + strandBS[W180] | $\stackrel{q_{\max}}{\longrightarrow}$ | W180 + gateLS[W180]           |
| W181 + gateLS[W181]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W181] + strandBS[W181] |
| gateHS[W181] + strandBS[W181] | $\stackrel{q_{\max}}{\longrightarrow}$ | W181 + gateLS[W181]           |
| W190 + gateLS[W190]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W190] + strandBS[W190] |

 $gateHS[W190] + strandBS[W190] \quad \stackrel{\mathbf{q}_{\mathrm{max}}}{\longrightarrow} \quad W190 + gateLS[W190]$ 

| W191 + gateLS[W191]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W191] + strandBS[W191] |
|-------------------------------|----------------------------------------|-------------------------------|
| gateHS[W191] + strandBS[W191] | $\stackrel{q_{\max}}{\longrightarrow}$ | W191 + gateLS[W191]           |
| W20 + gateLS[W20]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W20] + strandBS[W20]   |
| gateHS[W20] + strandBS[W20]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W20 + gateLS[W20]             |
| W200 + gateLS[W200]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W200] + strandBS[W200] |
| gateHS[W200] + strandBS[W200] | $\stackrel{q_{\max}}{\longrightarrow}$ | W200 + gateLS[W200]           |
| W201 + gateLS[W201]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W201] + strandBS[W201] |
| gateHS[W201] + strandBS[W201] | $\stackrel{q_{\max}}{\longrightarrow}$ | W201 + gateLS[W201]           |
| W21 + gateLS[W21]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W21] + strandBS[W21]   |
| gateHS[W21] + strandBS[W21]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W21 + gateLS[W21]             |
| W210 + gateLS[W210]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W210] + strandBS[W210] |
| gateHS[W210] + strandBS[W210] | $\stackrel{q_{\max}}{\longrightarrow}$ | W210 + gateLS[W210]           |
| W211 + gateLS[W211]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W211] + strandBS[W211] |
| gateHS[W211] + strandBS[W211] | $\stackrel{q_{\max}}{\longrightarrow}$ | W211 + gateLS[W211]           |
| W220 + gateLS[W220]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W220] + strandBS[W220] |
| gateHS[W220] + strandBS[W220] | $\stackrel{q_{\max}}{\longrightarrow}$ | W220 + gateLS[W220]           |
| W221 + gateLS[W221]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W221] + strandBS[W221] |
| gateHS[W221] + strandBS[W221] | $\stackrel{q_{\max}}{\longrightarrow}$ | W221 + gateLS[W221]           |
| W230 + gateLS[W230]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W230] + strandBS[W230] |
| gateHS[W230] + strandBS[W230] | $\stackrel{q_{\max}}{\longrightarrow}$ | W230 + gateLS[W230]           |
| W231 + gateLS[W231]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W231] + strandBS[W231] |
| gateHS[W231] + strandBS[W231] | $\stackrel{q_{\max}}{\longrightarrow}$ | W231 + gateLS[W231]           |
| W240 + gateLS[W240]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W240] + strandBS[W240] |
| gateHS[W240] + strandBS[W240] | $\overset{q_{\max}}{\longrightarrow}$  | W240 + gateLS[W240]           |

| W241 + gateLS[W241]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W241] + strandBS[W241] |
|-------------------------------|----------------------------------------|-------------------------------|
| gateHS[W241]+strandBS[W241]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W241 + gateLS[W241]           |
| W250 + gateLS[W250]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W250] + strandBS[W250] |
| gateHS[W250] + strandBS[W250] | $\stackrel{q_{\max}}{\longrightarrow}$ | W250 + gateLS[W250]           |
| W251 + gateLS[W251]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W251] + strandBS[W251] |
| gateHS[W251] + strandBS[W251] | $\stackrel{q_{\max}}{\longrightarrow}$ | W251 + gateLS[W251]           |
| W260 + gateLS[W260]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W260] + strandBS[W260] |
| gateHS[W260] + strandBS[W260] | $\stackrel{q_{\max}}{\longrightarrow}$ | W260 + gateLS[W260]           |
| W261 + gateLS[W261]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W261] + strandBS[W261] |
| gateHS[W261] + strandBS[W261] | $\stackrel{q_{\max}}{\longrightarrow}$ | W261 + gateLS[W261]           |
| W270 + gateLS[W270]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W270] + strandBS[W270] |
| gateHS[W270] + strandBS[W270] | $\stackrel{q_{\max}}{\longrightarrow}$ | W270 + gateLS[W270]           |
| W271 + gateLS[W271]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W271] + strandBS[W271] |
| gateHS[W271] + strandBS[W271] | $\stackrel{q_{\max}}{\longrightarrow}$ | W271 + gateLS[W271]           |
| W280 + gateLS[W280]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W280] + strandBS[W280] |
| gateHS[W280] + strandBS[W280] | $\stackrel{q_{\max}}{\longrightarrow}$ | W280 + gateLS[W280]           |
| W281 + gateLS[W281]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W281] + strandBS[W281] |
| gateHS[W281] + strandBS[W281] | $\stackrel{q_{\max}}{\longrightarrow}$ | W281 + gateLS[W281]           |
| W290 + gateLS[W290]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W290] + strandBS[W290] |
| gateHS[W290] + strandBS[W290] | $\stackrel{q_{\max}}{\longrightarrow}$ | W290 + gateLS[W290]           |
| W291 + gateLS[W291]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W291] + strandBS[W291] |
| gateHS[W291] + strandBS[W291] | $\stackrel{q_{\max}}{\longrightarrow}$ | W291 + gateLS[W291]           |
| W30 + gateLS[W30]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W30] + strandBS[W30]   |

 $gateHS[W30] + strandBS[W30] \quad \stackrel{\mathbf{q}_{\mathrm{max}}}{\longrightarrow} \quad W30 + gateLS[W30]$ 

| W300 + gateLS[W300]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W300] + strandBS[W300] |
|-------------------------------|----------------------------------------|-------------------------------|
| gateHS[W300] + strandBS[W300] | $\stackrel{q_{\max}}{\longrightarrow}$ | W300 + gateLS[W300]           |
| W301 + gateLS[W301]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W301] + strandBS[W301] |
| gateHS[W301] + strandBS[W301] | $\stackrel{q_{\max}}{\longrightarrow}$ | W301 + gateLS[W301]           |
| W31 + gateLS[W31]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W31] + strandBS[W31]   |
| gateHS[W31] + strandBS[W31]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W31 + gateLS[W31]             |
| W310 + gateLS[W310]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W310] + strandBS[W310] |
| gateHS[W310] + strandBS[W310] | $\stackrel{q_{\max}}{\longrightarrow}$ | W310 + gateLS[W310]           |
| W311 + gateLS[W311]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W311] + strandBS[W311] |
| gateHS[W311] + strandBS[W311] | $\stackrel{q_{\max}}{\longrightarrow}$ | W311 + gateLS[W311]           |
| W320 + gateLS[W320]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W320] + strandBS[W320] |
| gateHS[W320] + strandBS[W320] | $\stackrel{q_{\max}}{\longrightarrow}$ | W320 + gateLS[W320]           |
| W321 + gateLS[W321]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W321] + strandBS[W321] |
| gateHS[W321] + strandBS[W321] | $\stackrel{q_{\max}}{\longrightarrow}$ | W321 + gateLS[W321]           |
| W330 + gateLS[W330]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W330] + strandBS[W330] |
| gateHS[W330] + strandBS[W330] | $\stackrel{q_{\max}}{\longrightarrow}$ | W330 + gateLS[W330]           |
| W331 + gateLS[W331]           | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W331] + strandBS[W331] |
| gateHS[W331] + strandBS[W331] | $\stackrel{q_{\max}}{\longrightarrow}$ | W331 + gateLS[W331]           |
| W40 + gateLS[W40]             | $\overset{q_{\max}}{\longrightarrow}$  | gateHS[W40] + strandBS[W40]   |
| gateHS[W40] + strandBS[W40]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W40 + gateLS[W40]             |
| W41 + gateLS[W41]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W41] + strandBS[W41]   |
| gateHS[W41] + strandBS[W41]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W41 + gateLS[W41]             |
| W50 + gateLS[W50]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W50] + strandBS[W50]   |

 $gateHS[W50] + strandBS[W50] \quad \stackrel{\text{q}_{\text{max}}}{\longrightarrow} \quad W50 + gateLS[W50]$ 

| W51 + gateLS[W51]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W51] + strandBS[W51]   |
|-------------------------------|----------------------------------------|-------------------------------|
| gateHS[W51] + strandBS[W51]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W51 + gateLS[W51]             |
| W60 + gateLS[W60]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W60] + strandBS[W60]   |
| gateHS[W60] + strandBS[W60]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W60 + gateLS[W60]             |
| W61 + gateLS[W61]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W61] + strandBS[W61]   |
| gateHS[W61] + strandBS[W61]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W61 + gateLS[W61]             |
| W70 + gateLS[W70]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W70] + strandBS[W70]   |
| gateHS[W70] + strandBS[W70]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W70 + gateLS[W70]             |
| W71 + gateLS[W71]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W71] + strandBS[W71]   |
| gateHS[W71] + strandBS[W71]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W71 + gateLS[W71]             |
| W80 + gateLS[W80]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W80] + strandBS[W80]   |
| gateHS[W80] + strandBS[W80]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W80 + gateLS[W80]             |
| W81 + gateLS[W81]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W81] + strandBS[W81]   |
| gateHS[W81] + strandBS[W81]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W81 + gateLS[W81]             |
| W90 + gateLS[W90]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W90] + strandBS[W90]   |
| gateHS[W90] + strandBS[W90]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W90 + gateLS[W90]             |
| W91 + gateLS[W91]             | $\stackrel{q_{\max}}{\longrightarrow}$ | gateHS[W91] + strandBS[W91]   |
| gateHS[W91] + strandBS[W91]   | $\stackrel{q_{\max}}{\longrightarrow}$ | W91 + gateLS[W91]             |
| X10 + gateLS[X10]             | $\stackrel{k_1}{\longrightarrow}$      | gateHS[X10] + strandBS[X10]   |
| gateHS[X10] + strandBS[X10]   | $\stackrel{q_{\max}}{\longrightarrow}$ | X10 + gateLS[X10]             |
| X100 + gateLS[X100]           | $\overset{k_1}{\longrightarrow}$       | gateHS[X100] + strandBS[X100] |
| gateHS[X100] + strandBS[X100] | $\stackrel{q_{\max}}{\longrightarrow}$ | X100 + gateLS[X100]           |
| X101 + gateLS[X101]           | $\overset{k_1}{\longrightarrow}$       | gateHS[X101] + strandBS[X101] |
|                               |                                        |                               |

 $gateHS[X101] + strandBS[X101] \quad \stackrel{\mathbf{q}_{\max}}{\longrightarrow} \quad X101 + gateLS[X101]$ 

| X11 + gateLS[X11]                                                                                                                                                                                                                                                                    | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                          | gateHS[X11] + strandBS[X11]                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateHS[X11] + strandBS[X11]                                                                                                                                                                                                                                                          | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                      | X11 + gateLS[X11]                                                                                                                                                                                                                                                           |
| X110 + gateLS[X110]<br>gateHS[X110] + strandBS[X110]                                                                                                                                                                                                                                 | $\stackrel{k_1}{\longrightarrow} \qquad \qquad$                                                                                                                                                                                                     | gateHS[X110] + strandBS[X110]<br>X110 + gateLS[X110]                                                                                                                                                                                                                        |
| <u>.</u>                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                             |
| X111 + gateLS[X111]                                                                                                                                                                                                                                                                  | $\xrightarrow{k_1}$                                                                                                                                                                                                                                                                                                                                                        | gateHS[X111] + strandBS[X111]                                                                                                                                                                                                                                               |
| gateHS[X111] + strandBS[X111]                                                                                                                                                                                                                                                        | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                     | X111 + gateLS[X111]                                                                                                                                                                                                                                                         |
| X120 + gateLS[X120]                                                                                                                                                                                                                                                                  | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                          | gateHS[X120] + strandBS[X120]                                                                                                                                                                                                                                               |
| gateHS[X120] + strandBS[X120]                                                                                                                                                                                                                                                        | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                     | X120 + gateLS[X120]                                                                                                                                                                                                                                                         |
| X121 + gateLS[X121]                                                                                                                                                                                                                                                                  | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                          | gateHS[X121] + strandBS[X121]                                                                                                                                                                                                                                               |
| gateHS[X121] + strandBS[X121]                                                                                                                                                                                                                                                        | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                     | X121 + gateLS[X121]                                                                                                                                                                                                                                                         |
| X130 + gateLS[X130]                                                                                                                                                                                                                                                                  | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                          | gateHS[X130] + strandBS[X130]                                                                                                                                                                                                                                               |
| qateHS[X130] + strandBS[X130]                                                                                                                                                                                                                                                        | $\xrightarrow{q_{\max}}$                                                                                                                                                                                                                                                                                                                                                   | X130 + aateLS[X130]                                                                                                                                                                                                                                                         |
| 5 [ ], [ ]                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                             |
| X131 + gateLS[X131]                                                                                                                                                                                                                                                                  | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                          | gateHS[X131] + strandBS[X131]                                                                                                                                                                                                                                               |
| X131 + gateLS[X131]<br>gateHS[X131] + strandBS[X131]                                                                                                                                                                                                                                 | $\stackrel{k_1}{\underset{q_{\max}}{\longrightarrow}}$                                                                                                                                                                                                                                                                                                                     | gateHS[X131] + strandBS[X131]<br>X131 + gateLS[X131]                                                                                                                                                                                                                        |
| X131 + gateLS[X131]<br>gateHS[X131] + strandBS[X131]<br>X140 + gateLS[X140]                                                                                                                                                                                                          | $\xrightarrow{k_1} \xrightarrow{q_{\max}} \xrightarrow{k_1}$                                                                                                                                                                                                                                                                                                               | gateHS[X131] + strandBS[X131] $X131 + gateLS[X131]$ $gateHS[X140] + strandBS[X140]$                                                                                                                                                                                         |
| X131 + gateLS[X131]<br>gateHS[X131] + strandBS[X131]<br>X140 + gateLS[X140]<br>gateHS[X140] + strandBS[X140]                                                                                                                                                                         | $\xrightarrow{k_1} \xrightarrow{q_{max}} \xrightarrow{k_1} \xrightarrow{q_{max}} \xrightarrow{q_{max}}$                                                                                                                                                                                                                                                                    | gateHS[X131] + strandBS[X131] $X131 + gateLS[X131]$ $gateHS[X140] + strandBS[X140]$ $X140 + gateLS[X140]$                                                                                                                                                                   |
| X131 + gateLS[X131] $gateHS[X131] + strandBS[X131]$ $X140 + gateLS[X140]$ $gateHS[X140] + strandBS[X140]$ $X141 + gateLS[X141]$                                                                                                                                                      | $\begin{array}{c} \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \end{array}$                                                                                                                                                                                            | gateHS[X131] + strandBS[X131] $X131 + gateLS[X131]$ $gateHS[X140] + strandBS[X140]$ $X140 + gateLS[X140]$ $gateHS[X141] + strandBS[X141]$                                                                                                                                   |
| X131 + gateLS[X131]<br>gateHS[X131] + strandBS[X131]<br>X140 + gateLS[X140]<br>gateHS[X140] + strandBS[X140]<br>X141 + gateLS[X141]<br>gateHS[X141] + strandBS[X141]                                                                                                                 | $\begin{array}{c} \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \end{array}$                                                                                                                                                     | gateHS[X131] + strandBS[X131] $X131 + gateLS[X131]$ $gateHS[X140] + strandBS[X140]$ $X140 + gateLS[X140]$ $gateHS[X141] + strandBS[X141]$ $X141 + gateLS[X141]$                                                                                                             |
| X131 + gateLS[X131]<br>gateHS[X131] + strandBS[X131]<br>X140 + gateLS[X140]<br>gateHS[X140] + strandBS[X140]<br>X141 + gateLS[X141]<br>gateHS[X141] + strandBS[X141]<br>X150 + gateLS[X150]                                                                                          | $\begin{array}{c} \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \end{array}$                                                                               | gateHS[X131] + strandBS[X131] $X131 + gateLS[X131]$ $gateHS[X140] + strandBS[X140]$ $X140 + gateLS[X140]$ $gateHS[X141] + strandBS[X141]$ $X141 + gateLS[X141]$ $gateHS[X150] + strandBS[X150]$                                                                             |
| X131 + gateLS[X131]<br>gateHS[X131] + strandBS[X131]<br>X140 + gateLS[X140]<br>gateHS[X140] + strandBS[X140]<br>X141 + gateLS[X141]<br>gateHS[X141] + strandBS[X141]<br>X150 + gateLS[X150]<br>gateHS[X150] + strandBS[X150]                                                         | $\begin{array}{c} \stackrel{k_1}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \stackrel{k_1}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \end{array}$                                                                                                                                        | gateHS[X131] + strandBS[X131] $X131 + gateLS[X131]$ $gateHS[X140] + strandBS[X140]$ $X140 + gateLS[X140]$ $gateHS[X141] + strandBS[X141]$ $X141 + gateLS[X141]$ $gateHS[X150] + strandBS[X150]$ $X150 + gateLS[X150]$                                                       |
| X131 + gateLS[X131]<br>gateHS[X131] + strandBS[X131]<br>X140 + gateLS[X140]<br>gateHS[X140] + strandBS[X140]<br>X141 + gateLS[X141]<br>gateHS[X141] + strandBS[X141]<br>X150 + gateLS[X150]<br>gateHS[X150] + strandBS[X150]<br>X151 + gateLS[X151]                                  | $\begin{array}{c} \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \end{array}$ | gateHS[X131] + strandBS[X131] $X131 + gateLS[X131]$ $gateHS[X140] + strandBS[X140]$ $X140 + gateLS[X140]$ $gateHS[X141] + strandBS[X141]$ $X141 + gateLS[X141]$ $gateHS[X150] + strandBS[X150]$ $X150 + gateLS[X150]$ $gateHS[X151] + strandBS[X151]$                       |
| X131 + gateLS[X131]<br>gateHS[X131] + strandBS[X131]<br>X140 + gateLS[X140]<br>gateHS[X140] + strandBS[X140]<br>X141 + gateLS[X141]<br>gateHS[X141] + strandBS[X141]<br>X150 + gateLS[X150]<br>gateHS[X150] + strandBS[X150]<br>X151 + gateLS[X151]<br>gateHS[X151] + strandBS[X151] | $\begin{array}{c} \stackrel{k_1}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \stackrel{k_1}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \stackrel{k_1}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{k_1} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{q_{\max}} \end{array}$                                                      | gateHS[X131] + strandBS[X131] $X131 + gateLS[X131]$ $gateHS[X140] + strandBS[X140]$ $X140 + gateLS[X140]$ $gateHS[X141] + strandBS[X141]$ $X141 + gateLS[X141]$ $gateHS[X150] + strandBS[X150]$ $X150 + gateLS[X150]$ $gateHS[X151] + strandBS[X151]$ $X151 + gateLS[X151]$ |

 $gateHS[X160] + strandBS[X160] \xrightarrow{q_{max}} X160 + gateLS[X160]$ 

| X161 + gateLS[X161]           | $\stackrel{k_1}{\longrightarrow}$      | gateHS[X161] + strandBS[X161] |
|-------------------------------|----------------------------------------|-------------------------------|
| gateHS[X161] + strandBS[X161] | $\stackrel{q_{\max}}{\longrightarrow}$ | X161 + gateLS[X161]           |
| X170 + gateLS[X170]           | $\stackrel{k_1}{\longrightarrow}$      | gateHS[X170] + strandBS[X170] |
| gateHS[X170] + strandBS[X170] | $\stackrel{q_{\max}}{\longrightarrow}$ | X170 + gateLS[X170]           |
| X171 + gateLS[X171]           | $\overset{k_1}{\longrightarrow}$       | gateHS[X171] + strandBS[X171] |
| gateHS[X171] + strandBS[X171] | $\stackrel{q_{\max}}{\longrightarrow}$ | X171 + gateLS[X171]           |
| X180 + gateLS[X180]           | $\overset{k_1}{\longrightarrow}$       | gateHS[X180] + strandBS[X180] |
| gateHS[X180] + strandBS[X180] | $\stackrel{q_{\max}}{\longrightarrow}$ | X180 + gateLS[X180]           |
| X181 + gateLS[X181]           | $\overset{k_1}{\longrightarrow}$       | gateHS[X181] + strandBS[X181] |
| gateHS[X181] + strandBS[X181] | $\stackrel{q_{\max}}{\longrightarrow}$ | X181 + gateLS[X181]           |
| X190 + gateLS[X190]           | $\stackrel{k_1}{\longrightarrow}$      | gateHS[X190] + strandBS[X190] |
| gateHS[X190] + strandBS[X190] | $\stackrel{q_{\max}}{\longrightarrow}$ | X190 + gateLS[X190]           |
| X191 + gateLS[X191]           | $\stackrel{k_1}{\longrightarrow}$      | gateHS[X191] + strandBS[X191] |
| gateHS[X191] + strandBS[X191] | $\stackrel{q_{\max}}{\longrightarrow}$ | X191 + gateLS[X191]           |
| X20 + gateLS[X20]             | $\overset{k_1}{\longrightarrow}$       | gateHS[X20] + strandBS[X20]   |
| gateHS[X20] + strandBS[X20]   | $\stackrel{q_{\max}}{\longrightarrow}$ | X20 + gateLS[X20]             |
| X200 + gateLS[X200]           | $\stackrel{k_1}{\longrightarrow}$      | gateHS[X200] + strandBS[X200] |
| gateHS[X200] + strandBS[X200] | $\stackrel{q_{\max}}{\longrightarrow}$ | X200 + gateLS[X200]           |
| X201 + gateLS[X201]           | $\overset{k_1}{\longrightarrow}$       | gateHS[X201] + strandBS[X201] |
| gateHS[X201] + strandBS[X201] | $\stackrel{q_{\max}}{\longrightarrow}$ | X201 + gateLS[X201]           |
| X21 + gateLS[X21]             | $\overset{k_1}{\longrightarrow}$       | gateHS[X21] + strandBS[X21]   |
| gateHS[X21] + strandBS[X21]   | $\stackrel{q_{\max}}{\longrightarrow}$ | X21 + gateLS[X21]             |
| X210 + gateLS[X210]           | $\stackrel{k_1}{\longrightarrow}$      | gateHS[X210] + strandBS[X210] |

 $gateHS[X210] + strandBS[X210] \quad \stackrel{\mathbf{q}_{\mathrm{max}}}{\longrightarrow} \quad X210 + gateLS[X210]$ 

| X211 + gateLS[X211]                                                                                                                      | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                             | gateHS[X211] + strandBS[X211]                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| gateHS[X211]+strandBS[X211]                                                                                                              | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                        | X211 + gateLS[X211]                                                                                          |
| X220 + gateLS[X220]                                                                                                                      | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                             | gateHS[X220] + strandBS[X220]                                                                                |
| gateHS[X220] + strandBS[X220]                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                        | X220 + gateLS[X220]                                                                                          |
| X221 + gateLS[X221]                                                                                                                      | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                             | gateHS[X221] + strandBS[X221]                                                                                |
| gateHS[X221] + strandBS[X221]                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                        | X221 + gateLS[X221]                                                                                          |
| X230 + gateLS[X230]                                                                                                                      | $\overset{k_1}{\longrightarrow}$                                                                                                                                              | gateHS[X230] + strandBS[X230]                                                                                |
| gateHS[X230] + strandBS[X230]                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                        | X230 + gateLS[X230]                                                                                          |
| X231 + gateLS[X231]                                                                                                                      | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                             | gateHS[X231] + strandBS[X231]                                                                                |
| gateHS[X231] + strandBS[X231]                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                        | X231 + gateLS[X231]                                                                                          |
| X240 + gateLS[X240]                                                                                                                      | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                             | gateHS[X240] + strandBS[X240]                                                                                |
| gateHS[X240] + strandBS[X240]                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                        | X240 + gateLS[X240]                                                                                          |
| X241 + gateLS[X241]                                                                                                                      | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                             | gateHS[X241] + strandBS[X241]                                                                                |
| gateHS[X241] + strandBS[X241]                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                        | X241 + gateLS[X241]                                                                                          |
| X250 + gateLS[X250]                                                                                                                      | $\overset{k_1}{\longrightarrow}$                                                                                                                                              | gateHS[X250] + strandBS[X250]                                                                                |
| gateHS[X250] + strandBS[X250]                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                        | X250 + gateLS[X250]                                                                                          |
| X251 + gateLS[X251]                                                                                                                      | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                             | gateHS[X251] + strandBS[X251]                                                                                |
| gateHS[X251] + strandBS[X251]                                                                                                            | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                        | X251 + gateLS[X251]                                                                                          |
|                                                                                                                                          |                                                                                                                                                                               |                                                                                                              |
| X260 + gateLS[X260]                                                                                                                      | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                             | gateHS[X260] + strandBS[X260]                                                                                |
| X260 + gateLS[X260]<br>gateHS[X260] + strandBS[X260]                                                                                     | $\stackrel{k_1}{\underset{q_{max}}{\longrightarrow}}$                                                                                                                         | gateHS[X260] + strandBS[X260]<br>X260 + gateLS[X260]                                                         |
| $\begin{split} X260 + gateLS[X260] \\ gateHS[X260] + strandBS[X260] \\ X261 + gateLS[X261] \end{split}$                                  | $\stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\$                                                                | gateHS[X260] + strandBS[X260]<br>X260 + gateLS[X260]<br>gateHS[X261] + strandBS[X261]                        |
| $\begin{split} X260 + gateLS[X260] \\ gateHS[X260] + strandBS[X260] \\ X261 + gateLS[X261] \\ gateHS[X261] + strandBS[X261] \end{split}$ | $\begin{array}{c} \overset{k_1}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k_1}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array}$ | gateHS[X260] + strandBS[X260]<br>X260 + gateLS[X260]<br>gateHS[X261] + strandBS[X261]<br>X261 + gateLS[X261] |

- $gateHS[X270] + strandBS[X270] \xrightarrow{q_{max}} X270 + gateLS[X270]$

| X271 + gateLS[X271]                                                                                                                                                                                                                                                                                                           | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                  | gateHS[X271] + strandBS[X271]                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateHS[X271] + strandBS[X271]                                                                                                                                                                                                                                                                                                 | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                             | X271 + gateLS[X271]                                                                                                                                                                                                                                         |
| X280 + gateLS[X280]                                                                                                                                                                                                                                                                                                           | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                  | gateHS[X280] + strandBS[X280]                                                                                                                                                                                                                               |
| gateHS[X280] + strandBS[X280]                                                                                                                                                                                                                                                                                                 | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                             | X280 + gateLS[X280]                                                                                                                                                                                                                                         |
| X281 + gateLS[X281]                                                                                                                                                                                                                                                                                                           | $\overset{k_1}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                   | gateHS[X281] + strandBS[X281]                                                                                                                                                                                                                               |
| gateHS[X281] + strandBS[X281]                                                                                                                                                                                                                                                                                                 | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                             | X281 + gateLS[X281]                                                                                                                                                                                                                                         |
| X290 + gateLS[X290]                                                                                                                                                                                                                                                                                                           | $\overset{k_1}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                   | gateHS[X290] + strandBS[X290]                                                                                                                                                                                                                               |
| gateHS[X290] + strandBS[X290]                                                                                                                                                                                                                                                                                                 | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                             | X290 + gateLS[X290]                                                                                                                                                                                                                                         |
| X291 + gateLS[X291]                                                                                                                                                                                                                                                                                                           | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                  | gateHS[X291] + strandBS[X291]                                                                                                                                                                                                                               |
| gateHS[X291] + strandBS[X291]                                                                                                                                                                                                                                                                                                 | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                             | X291 + gateLS[X291]                                                                                                                                                                                                                                         |
| X30 + gateLS[X30]                                                                                                                                                                                                                                                                                                             | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                  | gateHS[X30] + strandBS[X30]                                                                                                                                                                                                                                 |
| aateHS[X30] + strandBS[X30]                                                                                                                                                                                                                                                                                                   | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                             | X30 + aateLS[X30]                                                                                                                                                                                                                                           |
| gateris [1100] + othantabs [1100]                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                             |
| X300 + gateLS[X300]                                                                                                                                                                                                                                                                                                           | $\stackrel{k_1}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                  | gateHS[X300] + strandBS[X300]                                                                                                                                                                                                                               |
| X300 + gateLS[X300] $gateHS[X300] + strandBS[X300]$                                                                                                                                                                                                                                                                           | $\stackrel{k_1}{\underset{q_{\max}}{\longrightarrow}}$                                                                                                                                                                                                                                                                                                                                                             | gateHS[X300] + strandBS[X300]<br>X300 + gateLS[X300]                                                                                                                                                                                                        |
| X300 + gateLS[X300] $gateHS[X300] + strandBS[X300]$ $X301 + gateLS[X301]$                                                                                                                                                                                                                                                     | $\xrightarrow{k_1} \xrightarrow{q_{\max}} \xrightarrow{k_1}$                                                                                                                                                                                                                                                                                                                                                       | gateHS[X300] + strandBS[X300]<br>X300 + gateLS[X300]<br>gateHS[X301] + strandBS[X301]                                                                                                                                                                       |
| $\begin{array}{c} X300+gateLS[X300]\\ gateHS[X300]+strandBS[X300]\\ X301+gateLS[X301]\\ gateHS[X301]+strandBS[X301]\\ \end{array}$                                                                                                                                                                                            | $ \begin{array}{c} \overset{k_1}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \\ \overset{k_1}{\longrightarrow} \\ \overset{q_{\max}}{\longrightarrow} \end{array} $                                                                                                                                                                                                                                    | gateHS[X300] + strandBS[X300] $X300 + gateLS[X300]$ $gateHS[X301] + strandBS[X301]$ $X301 + gateLS[X301]$                                                                                                                                                   |
| $\begin{array}{l} X300+gateLS[X300]\\ gateHS[X300]+strandBS[X300]\\ X301+gateLS[X301]\\ gateHS[X301]+strandBS[X301]\\ X31+gateLS[X31]\\ \end{array}$                                                                                                                                                                          | $\begin{array}{c} \overset{k_1}{\longrightarrow} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{k_1} \\ \xrightarrow{q_{\max}} \\ \xrightarrow{k_1} \end{array}$                                                                                                                                                                                                                                                        | gateHS[X300] + strandBS[X300] $X300 + gateLS[X300]$ $gateHS[X301] + strandBS[X301]$ $X301 + gateLS[X301]$ $gateHS[X31] + strandBS[X31]$                                                                                                                     |
| $\begin{array}{l} X300+gateLS[X300]\\ gateHS[X300]+strandBS[X300]\\ X301+gateLS[X301]\\ gateHS[X301]+strandBS[X301]\\ X31+gateLS[X31]\\ gateHS[X31]+strandBS[X31]\\ \end{array}$                                                                                                                                              | $\begin{array}{c} \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \end{array}$                                                                                                                                                                                          | gateHS[X300] + strandBS[X300] $X300 + gateLS[X300]$ $gateHS[X301] + strandBS[X301]$ $X301 + gateLS[X301]$ $gateHS[X31] + strandBS[X31]$ $X31 + gateLS[X31]$                                                                                                 |
| X300 + gateLS[X300] $gateHS[X300] + strandBS[X300]$ $X301 + gateLS[X301]$ $gateHS[X301] + strandBS[X301]$ $X31 + gateLS[X31]$ $gateHS[X31] + strandBS[X31]$ $X310 + gateLS[X310]$                                                                                                                                             | $\begin{array}{c} \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \end{array}$                                                                                                                    | gateHS[X300] + strandBS[X300] $X300 + gateLS[X300]$ $gateHS[X301] + strandBS[X301]$ $X301 + gateLS[X301]$ $gateHS[X31] + strandBS[X31]$ $X31 + gateLS[X31]$ $gateHS[X310] + strandBS[X310]$                                                                 |
| $\begin{split} X300 + gateLS[X300] \\ gateHS[X300] + strandBS[X300] \\ X301 + gateLS[X301] \\ gateHS[X301] + strandBS[X301] \\ X31 + gateLS[X31] \\ gateHS[X31] + strandBS[X31] \\ X310 + gateLS[X310] \\ gateHS[X310] + strandBS[X310] \\ \end{split}$                                                                       | $\begin{array}{c} \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \\ \stackrel{q_{max}}{\longrightarrow} \end{array}$                                                                                                                   | gateHS[X300] + strandBS[X300]<br>gateHS[X300] + strandBS[X300]<br>gateHS[X301] + strandBS[X301]<br>gateHS[X31] + strandBS[X31]<br>X31 + gateLS[X31]<br>gateHS[X310] + strandBS[X310]<br>X310 + gateLS[X310]                                                 |
| X300 + gateLS[X300]<br>gateHS[X300] + strandBS[X300]<br>X301 + gateLS[X301]<br>gateHS[X301] + strandBS[X301]<br>X31 + gateLS[X31]<br>gateHS[X31] + strandBS[X31]<br>X310 + gateLS[X310]<br>gateHS[X310] + strandBS[X310]<br>gateHS[X310] + strandBS[X310]                                                                     | $\begin{array}{c} \underbrace{k_{1}} \\ q_{max} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                     | gateHS[X300] + strandBS[X300] $gateHS[X300] + strandBS[X300]$ $gateHS[X301] + strandBS[X301]$ $gateHS[X31] + strandBS[X31]$ $X31 + gateLS[X31]$ $gateHS[X310] + strandBS[X310]$ $X310 + gateLS[X310]$ $gateHS[X311] + strandBS[X311]$                       |
| $\begin{array}{c} X300 + gateLS[X300] \\ gateHS[X300] + strandBS[X300] \\ X301 + gateLS[X301] \\ gateHS[X301] + strandBS[X301] \\ X31 + gateLS[X301] \\ gateHS[X31] + strandBS[X31] \\ X310 + gateLS[X310] \\ gateHS[X310] + strandBS[X310] \\ gateHS[X311] + strandBS[X311] \\ gateHS[X311] + strandBS[X311] \\ \end{array}$ | $\begin{array}{c} \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \\ \stackrel{k_1}{\longrightarrow} \\ \stackrel{q_{\max}}{\longrightarrow} \end{array}$ | gateHS[X300] + strandBS[X300] $gateHS[X300] + strandBS[X300]$ $gateHS[X301] + strandBS[X301]$ $gateHS[X31] + strandBS[X31]$ $X31 + gateLS[X31]$ $gateHS[X310] + strandBS[X310]$ $X310 + gateLS[X310]$ $gateHS[X311] + strandBS[X311]$ $X311 + gateLS[X311]$ |

 $gateHS[X320] + strandBS[X320] \xrightarrow{q_{\max}} X320 + gateLS[X320]$ 

| X321 + gateLS[X321]<br>gateHS[X321] + strandBS[X321] | $\stackrel{k_1}{{\overset{q_{\max}}{\longrightarrow}}}$  | gateHS[X321] + strandBS[X321]<br>X321 + gateLS[X321] |
|------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|
| X330 + gateLS[X330]<br>gateHS[X330] + strandBS[X330] | $\stackrel{k_1}{\underset{q_{max}}{\longrightarrow}}$    | gateHS[X330] + strandBS[X330]<br>X330 + gateLS[X330] |
| X331 + gateLS[X331]<br>gateHS[X331] + strandBS[X331] | $\stackrel{k_1}{\underset{q_{max}}{\longrightarrow}}$    | gateHS[X331] + strandBS[X331]<br>X331 + gateLS[X331] |
| X40 + gateLS[X40]<br>gateHS[X40] + strandBS[X40]     | $\stackrel{k_1}{\underset{q_{max}}{\longrightarrow}}$    | gateHS[X40] + strandBS[X40]<br>X40 + gateLS[X40]     |
| X41 + gateLS[X41]<br>gateHS[X41] + strandBS[X41]     | $\stackrel{k_1}{\underset{q_{max}}{\longrightarrow}}$    | gateHS[X41] + strandBS[X41]<br>X41 + gateLS[X41]     |
| X50 + gateLS[X50]<br>gateHS[X50] + strandBS[X50]     | $\stackrel{k_1}{\underset{q_{max}}{\longrightarrow}}$    | gateHS[X50] + strandBS[X50]<br>X50 + gateLS[X50]     |
| X51 + gateLS[X51]<br>gateHS[X51] + strandBS[X51]     | $\stackrel{k_1}{\underset{q_{max}}{\longrightarrow}}$    | gateHS[X51] + strandBS[X51]<br>X51 + gateLS[X51]     |
| X60 + gateLS[X60]<br>gateHS[X60] + strandBS[X60]     | $\stackrel{k_1}{\underset{q_{max}}{\longrightarrow}}$    | gateHS[X60] + strandBS[X60]<br>X60 + gateLS[X60]     |
| X61 + gateLS[X61]<br>gateHS[X61] + strandBS[X61]     | $\stackrel{k_1}{\underset{q_{max}}{\longrightarrow}}$    | gateHS[X61] + strandBS[X61]<br>X61 + gateLS[X61]     |
| X70 + gateLS[X70]<br>gateHS[X70] + strandBS[X70]     | $\stackrel{k_1}{\underset{q_{max}}{\longrightarrow}}$    | gateHS[X70] + strandBS[X70]<br>X70 + gateLS[X70]     |
| X71 + gateLS[X71]<br>gateHS[X71] + strandBS[X71]     | $\stackrel{k_1}{\underset{q_{max}}{\longrightarrow}}$    | gateHS[X71] + strandBS[X71]<br>X71 + gateLS[X71]     |
| X80 + gateLS[X80]<br>gateHS[X80] + strandBS[X80]     | $\stackrel{k_1}{\longrightarrow} \xrightarrow{q_{\max}}$ | gateHS[X80] + strandBS[X80]<br>X80 + gateLS[X80]     |

$$\begin{array}{rcl} X81 + gateLS[X81] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[X81] + strandBS[X81] \\ gateHS[X81] + strandBS[X81] & \stackrel{\mathbf{q}_{\max}}{\longrightarrow} & X81 + gateLS[X81] \\ & X90 + gateLS[X90] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[X90] + strandBS[X90] \\ gateHS[X90] + strandBS[X90] & \stackrel{\mathbf{q}_{\max}}{\longrightarrow} & X90 + gateLS[X90] \\ & X91 + gateLS[X91] & \stackrel{\mathbf{k}_{1}}{\longrightarrow} & gateHS[X91] + strandBS[X91] \\ & gateHS[X91] + strandBS[X91] & \stackrel{\mathbf{q}_{\max}}{\longrightarrow} & X91 + gateLS[X91] \end{array}$$

## A.2.2 ADC-3bit DNA

$$\begin{split} & i1 + gateL[1] \quad \stackrel{k}{\longrightarrow} \quad gateH[1] + strandB[1] \\ gateH[1] + strandB[1] \quad \stackrel{k}{\longrightarrow} \quad i1 + gateL[1] \\ & T1 + gateH[1] \quad \stackrel{k}{\longrightarrow} \quad strandO[1] \\ strandO[1] + gateT[1] \quad \stackrel{k}{\longrightarrow} \quad W1 \\ & i1 + gateL[2] \quad \stackrel{k}{\longrightarrow} \quad gateH[2] + strandB[2] \\ gateH[2] + strandB[2] \quad \stackrel{k}{\longrightarrow} \quad i1 + gateL[2] \\ & x2n + gateH[2] \quad \stackrel{k}{\longrightarrow} \quad strandO[2] \\ strandO[2] + gateT[2] \quad \stackrel{k}{\longrightarrow} \quad i1 + x2p \\ & T1 + gateL[3] \quad \stackrel{k}{\longrightarrow} \quad gateH[3] + strandB[3] \\ gateH[3] + strandB[3] \quad \stackrel{k}{\longrightarrow} \quad T1 + gateL[3] \\ & x2p + gateH[3] \quad \stackrel{k}{\longrightarrow} \quad strandO[3] \\ strandO[3] + gateT[3] \quad \stackrel{k}{\longrightarrow} \quad T1 + x2n \\ & x2p + i1 + T2 \quad \stackrel{k}{\longrightarrow} \quad W2 + x2p \\ & x2n + gateL[5] \quad \stackrel{k}{\longrightarrow} \quad gateH[5] + strandB[5] \\ gateH[5] + strandB[5] \quad \stackrel{k}{\longrightarrow} \quad x2n + gateL[5] \\ & W2 + gateH[5] \quad \stackrel{k}{\longrightarrow} \quad strandO[5] \\ strandO[5] + gateT[5] \quad \stackrel{k}{\longrightarrow} \quad T2 + x2n + i1 \\ \end{split}$$
$$\begin{array}{cccc} q1 + gateL[13] & \stackrel{k}{\longrightarrow} & gateH[13] + strandB[13] \\ gateH[13] + strandB[13] & \stackrel{k}{\longrightarrow} & q1 + gateL[13] \\ q1 + gateH[13] & \stackrel{k}{\longrightarrow} & strandO[13] \\ strandO[13] + gateT[13] & \stackrel{k}{\longrightarrow} & nth \\ & i1 + gateL[14] & \stackrel{k}{\longrightarrow} & gateH[14] + strandB[14] \\ gateH[14] + strandB[14] & \stackrel{k}{\longrightarrow} & i1 + gateL[14] \\ & T3 + gateH[14] & \stackrel{k}{\longrightarrow} & strandO[14] \\ strandO[14] + gateT[14] & \stackrel{k}{\longrightarrow} & q2 \\ & q1 + gateL[15] & \stackrel{k}{\longrightarrow} & gateH[15] + strandB[15] \\ gateH[15] + strandB[15] & \stackrel{k}{\longrightarrow} & q1 + gateL[15] \\ & q2 + gateH[15] & \stackrel{k}{\longrightarrow} & strandO[15] \\ strandO[15] + gateT[15] & \stackrel{k}{\longrightarrow} & strandO[15] \\ strandO[16] + gateT[16] & \stackrel{k}{\longrightarrow} & gateH[16] + strandB[16] \\ gateH[16] + strandB[16] & \stackrel{k}{\longrightarrow} & strandO[16] \\ strandO[16] + gateT[16] & \stackrel{k}{\longrightarrow} & strandO[16] \\ strandO[16] + gateT[16] & \stackrel{k}{\longrightarrow} & strandO[16] \\ strandO[16] + gateT[16] & \stackrel{k}{\longrightarrow} & strandO[17] \\ gateH[17] + strandB[17] & \stackrel{k}{\longrightarrow} & gateH[17] + strandB[17] \\ gateH[17] + strandB[17] & \stackrel{k}{\longrightarrow} & strandO[17] \\ strandO[17] + gateT[17] & \stackrel{k}{\longrightarrow} & strandO[17] \\ strandO[17] + gateT[17] & \stackrel{k}{\longrightarrow} & i1 + T3 + x2n \\ & q2 + gateL[18] & \stackrel{k}{\longrightarrow} & gateH[18] + strandB[18] \\ gateH[18] + strandB[18] & \stackrel{k}{\longrightarrow} & strandO[18] \\ strandO[18] + gateT[18] & \stackrel{k}{\longrightarrow} & i1 + T3 + x1n \end{array}$$

$$\begin{array}{cccc} q2 + gateL[19] & \stackrel{k}{\mapsto} & gateH[19] + strandB[19] \\ gateH[19] + strandB[19] & \stackrel{k}{\mapsto} & q2 + gateL[19] \\ x2n + gateH[19] & \stackrel{k}{\mapsto} & strandO[19] \\ strandO[19] + gateT[19] & \stackrel{k}{\mapsto} & i1 + T3 + x2n \\ & x1n + gateL[20] & \stackrel{k}{\mapsto} & gateH[20] + strandB[20] \\ gateH[20] + strandB[20] & \stackrel{k}{\mapsto} & strandO[20] \\ W3 + gateH[20] & \stackrel{k}{\mapsto} & strandO[20] \\ strandO[20] + gateT[20] & \stackrel{k}{\mapsto} & strandO[20] \\ strandO[20] + gateT[20] & \stackrel{k}{\mapsto} & gateH[21] + strandB[21] \\ gateH[21] + strandB[21] & \stackrel{k}{\mapsto} & strandO[21] \\ W3 + gateH[21] & \stackrel{k}{\mapsto} & strandO[21] \\ W3 + gateH[21] & \stackrel{k}{\mapsto} & strandO[21] \\ strandO[21] + gateT[21] & \stackrel{k}{\mapsto} & strandO[21] \\ strandO[21] + gateT[21] & \stackrel{k}{\mapsto} & strandO[21] \\ gateH[22] + strandB[22] & \stackrel{k}{\mapsto} & i1 + gateL[22] \\ x0n + gateH[22] & \stackrel{k}{\mapsto} & strandO[22] \\ strandO[22] + gateT[22] & \stackrel{k}{\mapsto} & strandO[22] \\ strandO[22] + gateT[22] & \stackrel{k}{\mapsto} & gateH[23] + strandB[23] \\ gateH[23] + strandB[23] & \stackrel{k}{\mapsto} & T3 + gateL[23] \\ q3 + gateH[23] & \stackrel{k}{\mapsto} & strandO[23] \\ strandO[23] + gateT[23] & \stackrel{k}{\mapsto} & strandO[23] \\ strandO[23] + gateT[23] & \stackrel{k}{\mapsto} & strandO[23] \\ \end{array}$$

## A.2.3 DAC-3bit DNA

$$\begin{array}{rll} b3+gateL[1] & \stackrel{\mathrm{k_{fl}}}{\longrightarrow} & gateH[1]+strandB[1]\\ gateH[1]+strandB[1] & \stackrel{\mathrm{q_{fmax1}}}{\longrightarrow} & b3+gateL[1]\\ o3+gateH[1] & \stackrel{\mathrm{q_{fmax1}}}{\longrightarrow} & strandO[1]\\ strandO[1]+gateT[1] & \stackrel{\mathrm{q_{fmax1}}}{\longrightarrow} & out+b3+m3\\ u3+m3+out & \stackrel{\mathrm{k}}{\longrightarrow} & o3+u3\\ b2+gateL[3] & \stackrel{\mathrm{k_{fl}}}{\longrightarrow} & gateH[3]+strandB[3]\\ gateH[3]+strandB[3] & \stackrel{\mathrm{q_{fmax1}}}{\longrightarrow} & b2+gateL[3]\\ o2+gateH[3] & \stackrel{\mathrm{q_{fmax1}}}{\longrightarrow} & strandO[3]\\ strandO[3]+gateT[3] & \stackrel{\mathrm{q_{fmax1}}}{\longrightarrow} & out+b2+m2\\ \end{array}$$

 $u2 + m2 + out \xrightarrow{k}$ o2 + u2 $\xrightarrow{k_{f1}}$ b1 + gateL[5]gateH[5] + strandB[5] $\stackrel{q_{fmax1}}{\longrightarrow}$ gateH[5] + strandB[5]b1 + gateL[5] $\stackrel{q_{fmax1}}{\longrightarrow}$ o1 + gateH[5]strandO[5] $\stackrel{q_{\text{fmax}1}}{\longrightarrow}$ strandO[5] + gateT[5]out + b1 + m1 $\stackrel{k}{\longrightarrow}$ u1 + m1 + outo1 + u1 $\xrightarrow{k_{f1}}$ gateH[7] + strandB[7]i1 + gateL[7] $\stackrel{q_{fmax1}}{\longrightarrow}$ gateH[7] + strandB[7]i1 + gateL[7] $\stackrel{q_{fmax1}}{\longrightarrow}$ T1 + gateH[7]strandO[7] $\stackrel{q_{fmax1}}{\longrightarrow}$ strandO[7] + gateT[7]W1 $\xrightarrow{k_{f1}}$ i1 + gateL[8]gateH[8] + strandB[8] $\stackrel{q_{fmax1}}{\longrightarrow}$ gateH[8] + strandB[8]i1 + gateL[8] $\stackrel{q_{fmax1}}{\longrightarrow}$ u1 + gateH[8]strandO[8] $\stackrel{q_{\text{fmax}1}}{\longrightarrow}$ strandO[8] + gateT[8]i1 + b1 $\xrightarrow{k_{f1}}$ T1 + gateL[9]gateH[9] + strandB[9] $\stackrel{q_{\text{fmax}1}}{\longrightarrow}$ gateH[9] + strandB[9]T1 + gateL[9] $\stackrel{q_{fmax1}}{\longrightarrow}$ b1 + gateH[9]strandO[9] $\stackrel{q_{fmax1}}{\longrightarrow}$ strandO[9] + gateT[9]T1 + u1 $\xrightarrow{k}$ b1 + i1 + T2W2 + b1 $\stackrel{k_{f1}}{\longrightarrow}$ gateH[11] + strandB[11]u1 + gateL[11] $\stackrel{q_{fmax1}}{\longrightarrow}$ gateH[11] + strandB[11]u1 + gateL[11] $\stackrel{q_{fmax1}}{\longrightarrow}$ W2 + gateH[11]strandO[11] $\stackrel{q_{fmax1}}{\longrightarrow}$ strandO[11] + gateT[11]T2 + u1 + i1

## $b1 + i1 + u2 \xrightarrow{k}$ b2 + i1 + b1 $\stackrel{k}{\longrightarrow}$ b1 + b2 + T2T2 + u2 + b1 $\stackrel{k}{\longrightarrow}$ u1 + W1 + Tp2Wp2 + u1 $\xrightarrow{k_{f1}}$ b1 + gateL[15]gateH[15] + strandB[15] $\stackrel{q_{\text{fmax}1}}{\longrightarrow}$ gateH[15] + strandB[15]b1 + gateL[15] $\stackrel{q_{fmax1}}{\longrightarrow}$ Wp2 + gateH[15]strandO[15] $\xrightarrow{q_{fmax1}}$ strandO[15] + gateT[15]Tp2 + b1 + W1 $\xrightarrow{k}$ u1 + W1 + u2b2 + W1 + u1 $\xrightarrow{k}$ Tp2 + u2 + u1u1 + b2 + Tp2 $\stackrel{k}{\longrightarrow}$ b1 + b2 + i1 + T3W3 + b1 + b2 $\xrightarrow{k_{f1}}$ u2 + qateL[19]gateH[19] + strandB[19] $\stackrel{q_{fmax1}}{\longrightarrow}$ gateH[19] + strandB[19]u2 + gateL[19] $\stackrel{q_{fmax1}}{\longrightarrow}$ W3 + gateH[19]strandO[19] $\stackrel{q_{fmax1}}{\longrightarrow}$ strandO[19] + gateT[19]T3 + i1 + u2 $\xrightarrow{k_{f1}}$ u1 + gateL[20]gateH[20] + strandB[20] $\stackrel{q_{fmax1}}{\longrightarrow}$ gateH[20] + strandB[20]u1 + gateL[20] $\stackrel{q_{fmax1}}{\longrightarrow}$ W3 + gateH[20]strandO[20] $\stackrel{q_{fmax1}}{\longrightarrow}$ strandO[20] + gateT[20]T3 + i1 + u1 $\xrightarrow{k}$ b1 + b2 + i1 + u3b3 + b1 + b2 + i1 $\xrightarrow{k}$ b1 + b2 + T3 + b3u3 + b1 + b2 + T3 $\stackrel{k}{\longrightarrow}$ b1 + u2 + W2 + Tp3Wp3 + b1 + u2 $\xrightarrow{k_{f1}}$ u1 + gateL[24]gateH[24] + strandB[24] $\stackrel{q_{fmax1}}{\longrightarrow}$ gateH[24] + strandB[24]u1 + gateL[24] $\stackrel{q_{fmax1}}{\longrightarrow}$ strandO[24]Wp3 + gateH[24] $\stackrel{q_{fmax^1}}{\longrightarrow}$ strandO[24] + gateT[24]Tp3 + W2 + u1

$$u1 + u2 + Wp2 + u3 \xrightarrow{k} b3 + u1 + u2 + Wp2$$
$$u1 + u2 + Tpp3 + b3 \xrightarrow{k} u3 + u1 + u2 + Tpp3$$

## A.2.4 Markov Chain DNA

$$\begin{array}{rcl} AV + gate L[1] & \stackrel{k}{\rightarrow} & gate H[1] + strand B[1] \\ gate H[1] + strand B[1] & \stackrel{k}{\rightarrow} & AV + gate L[1] \\ A1 + gate H[1] & \stackrel{k}{\rightarrow} & strand O[1] \\ strand O[1] + gate T[1] & \stackrel{k}{\rightarrow} & BV + A1 \\ AV + gate L[2] & \stackrel{k}{\rightarrow} & gate H[2] + strand B[2] \\ gate H[2] + strand B[2] & \stackrel{k}{\rightarrow} & AV + gate L[2] \\ A2 + gate H[2] & \stackrel{k}{\rightarrow} & strand O[2] \\ strand O[2] + gate T[2] & \stackrel{k}{\rightarrow} & SV + A2 \\ BV + gate L[3] & \stackrel{k}{\rightarrow} & gate H[3] + strand B[3] \\ gate H[3] + strand B[3] & \stackrel{k}{\rightarrow} & gate H[3] + strand B[3] \\ gate H[3] + gate H[3] & \stackrel{k}{\rightarrow} & strand O[3] \\ strand O[3] + gate T[3] & \stackrel{k}{\rightarrow} & CV + B1 \\ BV + gate L[4] & \stackrel{k}{\rightarrow} & gate H[4] + strand B[4] \\ gate H[4] + strand B[4] & \stackrel{k}{\rightarrow} & strand O[4] \\ strand O[4] + gate T[4] & \stackrel{k}{\rightarrow} & aV + B2 \\ CV + gate L[5] & \stackrel{k}{\rightarrow} & gate H[5] + strand B[5] \\ gate H[5] + strand B[5] & \stackrel{k}{\rightarrow} & CV + gate L[5] \\ C1 + gate H[5] & \stackrel{k}{\rightarrow} & DV + C1 \\ \end{array}$$

$$\begin{array}{ccccc} CV + gateL[6] & \stackrel{k}{\mapsto} & gateH[6] + strandB[6] \\ gateH[6] + strandB[6] & \stackrel{k}{\mapsto} & CV + gateL[6] \\ & C2 + gateH[6] & \stackrel{k}{\mapsto} & strandO[6] \\ strandO[6] + gateT[6] & \stackrel{k}{\mapsto} & BV + C2 \\ & DV + gateL[7] & \stackrel{k}{\mapsto} & gateH[7] + strandB[7] \\ gateH[7] + strandB[7] & \stackrel{k}{\mapsto} & DV + gateL[7] \\ & D1 + gateH[7] & \stackrel{k}{\mapsto} & strandO[7] \\ strandO[7] + gateT[7] & \stackrel{k}{\mapsto} & EV + D1 \\ & DV + gateL[8] & \stackrel{k}{\mapsto} & gateH[8] + strandB[8] \\ gateH[8] + strandB[8] & \stackrel{k}{\mapsto} & DV + gateL[8] \\ & D2 + gateH[8] & \stackrel{k}{\mapsto} & strandO[8] \\ strandO[8] + gateT[8] & \stackrel{k}{\mapsto} & CV + D2 \\ & EV + gateL[9] & \stackrel{k}{\mapsto} & gateH[9] + strandB[9] \\ gateH[9] + strandB[9] & \stackrel{k}{\mapsto} & EV + gateL[9] \\ & E1 + gateH[9] & \stackrel{k}{\mapsto} & strandO[9] \\ strandO[9] + gateT[9] & \stackrel{k}{\mapsto} & FV + E1 \\ & EV + gateL[10] & \stackrel{k}{\mapsto} & gateH[10] + strandB[10] \\ & gateH[10] + strandB[10] & \stackrel{k}{\mapsto} & EV + gateL[10] \\ & E2 + gateH[10] & \stackrel{k}{\mapsto} & DV + E2 \\ & FV + gateL[11] & \stackrel{k}{\mapsto} & gateH[11] + strandB[11] \\ & gateH[11] + strandB[11] & \stackrel{k}{\mapsto} & FV + gateL[11] \\ & F1 + gateH[11] & \stackrel{k}{\mapsto} & GV + F1 \end{array}$$

$$FV + gate L[12] \xrightarrow{k} gate H[12] + strandB[12]$$

$$gate H[12] + strandB[12] \xrightarrow{k} FV + gate L[12]$$

$$F2 + gate H[12] \xrightarrow{k} strandO[12]$$

$$strandO[12] + gateT[12] \xrightarrow{k} EV + F2$$

$$GV + gate L[13] \xrightarrow{k} gate H[13] + strandB[13]$$

$$gate H[13] + strandB[13] \xrightarrow{k} GV + gate L[13]$$

$$G1 + gate H[13] \xrightarrow{k} strandO[13]$$

$$strandO[13] + gateT[13] \xrightarrow{k} HV + G1$$

$$GV + gate L[14] \xrightarrow{k} gate H[14] + strandB[14]$$

$$gate H[14] + strandB[14] \xrightarrow{k} GV + gate L[14]$$

$$G2 + gate H[14] \xrightarrow{k} strandO[14]$$

$$strandO[14] + gateT[14] \xrightarrow{k} FV + G2$$

$$HV + gate L[15] \xrightarrow{k} gate H[15] + strandB[15]$$

$$gate H[15] + strandB[15] \xrightarrow{k} HV + gate L[15]$$

$$H1 + gate H[15] \xrightarrow{k} StrandO[15]$$

$$strandO[15] + gateT[16] \xrightarrow{k} gate H[16] + strandB[16]$$

$$gate H[16] + strandB[16] \xrightarrow{k} StrandO[16]$$

$$strandO[16] + gateT[16] \xrightarrow{k} GV + H2$$

**A.2.5**  $y(x) = \frac{3}{4}x^2 - x + \frac{3}{4}$  **DNA** 

$$\begin{array}{rcl} X10 + gateL[1] & \stackrel{\mathbf{q}_{\max 1}}{\longrightarrow} & gateH[1] + strandB[1] \\ gateH[1] + strandB[1] & \stackrel{\mathbf{q}_{\max 2}}{\longrightarrow} & X10 + gateL[1] \\ & X00 + gateH[1] & \stackrel{\mathbf{q}_{\max 2}}{\longrightarrow} & strandO[1] \\ strandO[1] + gateT[1] & \stackrel{\mathbf{q}_{\max 2}}{\longrightarrow} & S0 \end{array}$$

| X10 + gateL[2]                                                                                                                                                                                                                     | $\stackrel{q_{max1}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gateH[2] + strandB[2]                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gateH[2] + strandB[2]                                                                                                                                                                                                              | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X10 + gateL[2]                                                                                                                                                                      |
| X01 + gateH[2]                                                                                                                                                                                                                     | $\overset{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | strandO[2]                                                                                                                                                                          |
| strandO[2] + gateT[2]                                                                                                                                                                                                              | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S1                                                                                                                                                                                  |
| X11 + gateL[3]                                                                                                                                                                                                                     | $\stackrel{q_{max1}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gateH[3] + strandB[3]                                                                                                                                                               |
| gateH[3] + strandB[3]                                                                                                                                                                                                              | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X11 + gateL[3]                                                                                                                                                                      |
| X00 + gateH[3]                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | strandO[3]                                                                                                                                                                          |
| strandO[3] + gateT[3]                                                                                                                                                                                                              | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S1                                                                                                                                                                                  |
| X11 + gateL[4]                                                                                                                                                                                                                     | $\stackrel{q_{max1}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gateH[4] + strandB[4]                                                                                                                                                               |
| gateH[4] + strandB[4]                                                                                                                                                                                                              | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X11 + gateL[4]                                                                                                                                                                      |
| X01 + gateH[4]                                                                                                                                                                                                                     | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | strandO[4]                                                                                                                                                                          |
| strandO[4] + gateT[4]                                                                                                                                                                                                              | $\stackrel{q_{\max}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S2                                                                                                                                                                                  |
|                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                     |
| C00 + gateL[5]                                                                                                                                                                                                                     | $\stackrel{q_{max1}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gateH[5] + strandB[5]                                                                                                                                                               |
| C00 + gateL[5]<br>gateH[5] + strandB[5]                                                                                                                                                                                            | $\stackrel{q_{\max 1}}{\overset{q_{\max }}{\longrightarrow}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gateH[5] + strandB[5]<br>C00 + gateL[5]                                                                                                                                             |
| C00 + gateL[5]<br>gateH[5] + strandB[5]<br>S0 + gateH[5]                                                                                                                                                                           | $\stackrel{q_{\max 1}}{\longrightarrow}$ $\stackrel{q_{\max }}{\longrightarrow}$ $\stackrel{q_{\max }}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gateH[5] + strandB[5]<br>C00 + gateL[5]<br>strandO[5]                                                                                                                               |
| C00 + gateL[5]<br>gateH[5] + strandB[5]<br>S0 + gateH[5]<br>strandO[5] + gateT[5]                                                                                                                                                  | $\begin{array}{c} q_{\max 1} \\ \longrightarrow \\ q_{\max} \\ \longrightarrow \\ q_{\max} \\ q_{\max} \\ \longrightarrow \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gateH[5] + strandB[5]<br>C00 + gateL[5]<br>strandO[5]<br>Y0                                                                                                                         |
| C00 + gateL[5]<br>gateH[5] + strandB[5]<br>S0 + gateH[5]<br>strandO[5] + gateT[5]<br>C01 + gateL[6]                                                                                                                                | $\begin{array}{c} q_{\max 1} \\ \hline q_{\max} \\ \hline q_{\max} \\ \hline \end{array} \\ \hline q_{\max} \\ \hline q_{\max 1} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gateH[5] + strandB[5]<br>C00 + gateL[5]<br>strandO[5]<br>Y0<br>gateH[6] + strandB[6]                                                                                                |
| C00 + gateL[5]<br>gateH[5] + strandB[5]<br>S0 + gateH[5]<br>strandO[5] + gateT[5]<br>C01 + gateL[6]<br>gateH[6] + strandB[6]                                                                                                       | $\begin{array}{c} q_{\max 1} \\ \hline q_{\max} \\ \hline q_{\max} \\ \hline q_{\max} \\ \hline q_{\max} \\ \hline q_{\max 1} \\ \hline q_{\max} \\ \hline q_{\max} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gateH[5] + strandB[5]<br>C00 + gateL[5]<br>strandO[5]<br>Y0<br>gateH[6] + strandB[6]<br>C01 + gateL[6]                                                                              |
| C00 + gateL[5]<br>gateH[5] + strandB[5]<br>S0 + gateH[5]<br>strandO[5] + gateT[5]<br>C01 + gateL[6]<br>gateH[6] + strandB[6]<br>S0 + gateH[6]                                                                                      | $\begin{array}{c} q_{\max} \\ \hline q_{\max} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gateH[5] + strandB[5]<br>C00 + gateL[5]<br>strandO[5]<br>Y0<br>gateH[6] + strandB[6]<br>C01 + gateL[6]<br>strandO[6]                                                                |
| C00 + gateL[5]<br>gateH[5] + strandB[5]<br>S0 + gateH[5]<br>strandO[5] + gateT[5]<br>C01 + gateL[6]<br>gateH[6] + strandB[6]<br>S0 + gateH[6]<br>strandO[6] + gateT[6]                                                             | $\begin{array}{c} q_{\max} \\ \hline q_{\max} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gateH[5] + strandB[5]<br>C00 + gateL[5]<br>strandO[5]<br>Y0<br>gateH[6] + strandB[6]<br>C01 + gateL[6]<br>strandO[6]<br>Y1                                                          |
| C00 + gateL[5]<br>gateH[5] + strandB[5]<br>S0 + gateH[5]<br>strandO[5] + gateT[5]<br>C01 + gateL[6]<br>gateH[6] + strandB[6]<br>S0 + gateH[6]<br>strandO[6] + gateT[6]<br>C10 + gateL[7]                                           | $\begin{array}{c} q_{\max} \\ \hline q_{\max} \hline q_{\max} \\ \hline q$                              | gateH[5] + strandB[5]<br>C00 + gateL[5]<br>strandO[5]<br>Y0<br>gateH[6] + strandB[6]<br>C01 + gateL[6]<br>strandO[6]<br>Y1<br>gateH[7] + strandB[7]                                 |
| C00 + gateL[5]<br>gateH[5] + strandB[5]<br>S0 + gateH[5]<br>strandO[5] + gateT[5]<br>C01 + gateL[6]<br>gateH[6] + strandB[6]<br>S0 + gateH[6]<br>strandO[6] + gateT[6]<br>C10 + gateL[7]<br>gateH[7] + strandB[7]                  | $\begin{array}{c} q_{\max} \\ \hline q_{\max} \hline q_{\max} \\ \hline q$                              | gateH[5] + strandB[5] $C00 + gateL[5]$ $strandO[5]$ $Y0$ $gateH[6] + strandB[6]$ $C01 + gateL[6]$ $strandO[6]$ $Y1$ $gateH[7] + strandB[7]$ $C10 + gateL[7]$                        |
| C00 + gateL[5]<br>gateH[5] + strandB[5]<br>S0 + gateH[5]<br>strandO[5] + gateT[5]<br>C01 + gateL[6]<br>gateH[6] + strandB[6]<br>S0 + gateH[6]<br>strandO[6] + gateT[6]<br>C10 + gateL[7]<br>gateH[7] + strandB[7]<br>S1 + gateH[7] | $\begin{array}{c} q_{\max} \\ \hline q_{\max} \hline q_{\max} \\ \hline q_{\max} \hline q_{\max} \\ \hline q_{\max} \hline$ | gateH[5] + strandB[5]<br>C00 + gateL[5]<br>strandO[5]<br>Y0<br>gateH[6] + strandB[6]<br>C01 + gateL[6]<br>strandO[6]<br>Y1<br>gateH[7] + strandB[7]<br>C10 + gateL[7]<br>strandO[7] |

| C11 + gateL[8]          | $\stackrel{q_{max1}}{\longrightarrow}$ | gateH[8] + strandB[8]   |
|-------------------------|----------------------------------------|-------------------------|
| gateH[8] + strandB[8]   | $\stackrel{q_{\max}}{\longrightarrow}$ | C11 + gateL[8]          |
| S1 + gateH[8]           | $\stackrel{q_{\max}}{\longrightarrow}$ | strandO[8]              |
| strandO[8] + gateT[8]   | $\overset{q_{\max}}{\longrightarrow}$  | Y1                      |
| C20 + gateL[9]          | $\stackrel{q_{max1}}{\longrightarrow}$ | gateH[9] + strandB[9]   |
| gateH[9] + strandB[9]   | $\stackrel{q_{\max}}{\longrightarrow}$ | C20 + gateL[9]          |
| S2 + gateH[9]           | $\stackrel{q_{\max}}{\longrightarrow}$ | strandO[9]              |
| strandO[9] + gateT[9]   | $\stackrel{q_{\max}}{\longrightarrow}$ | Y0                      |
| C21 + gateL[10]         | $\stackrel{q_{max1}}{\longrightarrow}$ | gateH[10] + strandB[10] |
| gateH[10] + strandB[10] | $\stackrel{q_{\max}}{\longrightarrow}$ | C21 + gateL[10]         |
| S2 + gateH[10]          | $\stackrel{q_{\max}}{\longrightarrow}$ | strandO[10]             |
| strandO[10] + gateT[10] | $\stackrel{q_{\max}}{\longrightarrow}$ | Y1                      |

## A.2.6 Function $e^{-x}$ DNA

|                       | ,                                      |                       |
|-----------------------|----------------------------------------|-----------------------|
| A10 + gateL[1]        | $\xrightarrow{k}$                      | gateH[1] + strandB[1] |
| gateH[1] + strandB[1] | $\stackrel{q_{\max}}{\longrightarrow}$ | A10 + gateL[1]        |
| Ap10 + gateH[1]       | $\overset{q_{\max}}{\longrightarrow}$  | strandO[1]            |
| strandO[1] + gateT[1] | $\stackrel{q_{\max}}{\longrightarrow}$ | C11 + A10 + Ap10      |
|                       | ,                                      |                       |
| A10 + gateL[2]        | $\xrightarrow{k}$                      | gateH[2] + strandB[2] |
| gateH[2] + strandB[2] | $\stackrel{q_{\max}}{\longrightarrow}$ | A10 + gateL[2]        |
| Ap11 + gateH[2]       | $\stackrel{q_{\max}}{\longrightarrow}$ | strandO[2]            |
| strandO[2] + gateT[2] | $\stackrel{q_{\max}}{\longrightarrow}$ | C11 + A10 + Ap11      |
|                       |                                        |                       |
| A11 + gateL[3]        | $\xrightarrow{k}$                      | gateH[3] + strandB[3] |
| gateH[3] + strandB[3] | $\stackrel{q_{\max}}{\longrightarrow}$ | A11 + gateL[3]        |
| Ap10 + gateH[3]       | $\stackrel{q_{\max}}{\longrightarrow}$ | strandO[3]            |
|                       |                                        |                       |
| strandO[3] + gateT[3] | $\stackrel{q_{\max}}{\longrightarrow}$ | C11 + A11 + Ap10      |

| $A11 + gateL[4] \xrightarrow{k}$                             | gateH[4] + strandB[4]                                       |
|--------------------------------------------------------------|-------------------------------------------------------------|
| $gateH[4] + strandB[4] \xrightarrow{q_{\max}}$               | A11 + gateL[4]                                              |
| $Ap11 + gateH[4] \xrightarrow{q_{\max}}$                     | strandO[4]                                                  |
| $strandO[4] + gateT[4] \stackrel{q_{\max}}{\longrightarrow}$ | C10 + A11 + Ap11                                            |
| C10 + gateG[5]                                               | $\xrightarrow{q_{m}}$ strandO[5]                            |
| strandO[5] + gateT[5]                                        | $\stackrel{\mathrm{q}_{\mathrm{max}}}{\longrightarrow} nth$ |
| C11 + gateG[6]                                               | $\xrightarrow{q_{\rm m}} strandO[6]$                        |
| strandO[6] + gateT[6]                                        | $\stackrel{\mathrm{q}_{\mathrm{max}}}{\longrightarrow} nth$ |
| $A20 + gateL[7] \xrightarrow{k}$                             | gateH[7] + strandB[7]                                       |
| $gateH[7] + strandB[7] \stackrel{q_{\max}}{\longrightarrow}$ | A20 + gateL[7]                                              |
| $C10 + gateH[7] \xrightarrow{q_{\max}}$                      | strandO[7]                                                  |
| $strandO[7] + gateT[7] \xrightarrow{q_{max}}$                | C20 + A20 + C10                                             |
| $A20 + gateL[8] \xrightarrow{k}$                             | gateH[8] + strandB[8]                                       |
| $gateH[8] + strandB[8] \xrightarrow{q_{max}}$                | A20 + gateL[8]                                              |
| $C11 + gateH[8] \xrightarrow{q_{\max}}$                      | strandO[8]                                                  |
| $strandO[8] + gateT[8] \xrightarrow{q_{max}}$                | C20 + A20 + C11                                             |
| $A21 + gateL[9] \xrightarrow{k}$                             | gateH[9] + strandB[9]                                       |
| $gateH[9] + strandB[9] \xrightarrow{q_{\max}}$               | A21 + gateL[9]                                              |
| $C10 + gateH[9] \xrightarrow{q_{\max}}$                      | strandO[9]                                                  |
| $strandO[9] + gateT[9] \xrightarrow{q_{max}}$                | C20 + A21 + C10                                             |
| $A21 + gateL[10] \xrightarrow{k}$                            | gateH[10] + strandB[10]                                     |
| $gateH[10] + strandB[10] \xrightarrow{q_{\max}}$             | A21 + gateL[10]                                             |
| $C11 + gateH[10] \xrightarrow{q_{\max}}$                     | strandO[10]                                                 |
| $strandO[10] + gateT[10] \xrightarrow{q_{max}}$              | C21 + A21 + C11                                             |
| C20 + gateG[11]                                              | $\xrightarrow{q_{m}}$ strandO[11]                           |
| strandO[11] + gateT[11]                                      | $\stackrel{	ext{q}_{	ext{max}}}{\longrightarrow} nth$       |

| C21 + gateG[12]                                                | $\xrightarrow{q_{m}}$ strandO[12]                           |
|----------------------------------------------------------------|-------------------------------------------------------------|
| strandO[12] + gateT[12]                                        | $\stackrel{\mathrm{q}_{\mathrm{max}}}{\longrightarrow} nth$ |
| $A10 + gateL[13] \xrightarrow{k}$                              | gateH[13] + strandB[13]                                     |
| $gateH[13] + strandB[13] \xrightarrow{q_{max}}$                | A10 + gateL[13]                                             |
| $C20 + gateH[13] \xrightarrow{q_{max}}$                        | strandO[13]                                                 |
| $strandO[13] + gateT[13] \xrightarrow{q_{max}}$                | C31 + A10 + C20                                             |
| $A10 + gateL[14] \xrightarrow{k}$                              | gateH[14] + strandB[14]                                     |
| $gateH[14] + strandB[14] \xrightarrow{q_{max}}$                | A10 + gateL[14]                                             |
| $C21 + gateH[14] \xrightarrow{q_{\max}}$                       | strandO[14]                                                 |
| $strandO[14] + gateT[14] \xrightarrow{q_{max}}$                | C31 + A10 + C21                                             |
| $A11 + gateL[15] \xrightarrow{k}$                              | gateH[15] + strandB[15]                                     |
| $gateH[15] + strandB[15] \xrightarrow{q_{max}}$                | A11 + gateL[15]                                             |
| $C20 + gateH[15] \xrightarrow{q_{\max}}$                       | strandO[15]                                                 |
| $strandO[15] + gateT[15] \stackrel{q_{\max}}{\longrightarrow}$ | C31 + A11 + C20                                             |
| $A11 + gateL[16] \xrightarrow{k}$                              | gateH[16] + strandB[16]                                     |
| $gateH[16] + strandB[16] \xrightarrow{q_{max}}$                | A11 + gateL[16]                                             |
| $C21 + gateH[16] \xrightarrow{q_{\max}}$                       | strandO[16]                                                 |
| $strandO[16] + gateT[16] \xrightarrow{q_{\max}}$               | C30 + A11 + C21                                             |
| C30 + gateG[17]                                                | $\xrightarrow{q_{m}}$ strandO[17]                           |
| strandO[17] + gateT[17]                                        | $\stackrel{\mathrm{q_{max}}}{\longrightarrow} nth$          |
| C31 + gateG[18]                                                | $\xrightarrow{q_{m}}$ strandO[18]                           |
| strandO[18] + gateT[18]                                        | $\stackrel{\mathrm{q}_{\mathrm{max}}}{\longrightarrow} nth$ |
| $A40 + gateL[19] \xrightarrow{k}$                              | gateH[19] + strandB[19]                                     |
| $gateH[19] + strandB[19] \xrightarrow{q_{max}}$                | A40 + gateL[19]                                             |
| $C30 + gateH[19] \xrightarrow{q_{\max}}$                       | strandO[19]                                                 |
| $strandO[19] + gateT[19] \xrightarrow{q_{max}}$                | C40 + A40 + C30                                             |

| $A40 + gateL[20] \xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                           | gateH[20] + strandB[20]                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $gateH[20] + strandB[20] \xrightarrow{q_{max}}$                                                                                                                                                                                                                                                                                                                                             | A40 + gateL[20]                                                                                                                                                                                                                                                                                                                                                                                                        |
| $C31 + gateH[20] \xrightarrow{q_{\max}}$                                                                                                                                                                                                                                                                                                                                                    | strandO[20]                                                                                                                                                                                                                                                                                                                                                                                                            |
| $strandO[20] + gateT[20] \xrightarrow{q_{max}}$                                                                                                                                                                                                                                                                                                                                             | C40 + A40 + C31                                                                                                                                                                                                                                                                                                                                                                                                        |
| $A41 + gateL[21] \xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                           | gateH[21] + strandB[21]                                                                                                                                                                                                                                                                                                                                                                                                |
| $gateH[21] + strandB[21] \xrightarrow{q_{\max}}$                                                                                                                                                                                                                                                                                                                                            | A41 + gateL[21]                                                                                                                                                                                                                                                                                                                                                                                                        |
| $C30 + gateH[21] \xrightarrow{q_{\max}}$                                                                                                                                                                                                                                                                                                                                                    | strandO[21]                                                                                                                                                                                                                                                                                                                                                                                                            |
| $strandO[21] + gateT[21] \xrightarrow{q_{max}}$                                                                                                                                                                                                                                                                                                                                             | C40 + A41 + C30                                                                                                                                                                                                                                                                                                                                                                                                        |
| $A41 + gateL[22] \xrightarrow{k}$                                                                                                                                                                                                                                                                                                                                                           | gateH[22] + strandB[22]                                                                                                                                                                                                                                                                                                                                                                                                |
| $gateH[22] + strandB[22] \xrightarrow{q_{\max}}$                                                                                                                                                                                                                                                                                                                                            | A41 + gateL[22]                                                                                                                                                                                                                                                                                                                                                                                                        |
| $C31 + gateH[22] \xrightarrow{q_{\max}}$                                                                                                                                                                                                                                                                                                                                                    | strandO[22]                                                                                                                                                                                                                                                                                                                                                                                                            |
| $strandO[22] + gateT[22] \xrightarrow{q_{max}}$                                                                                                                                                                                                                                                                                                                                             | C41 + A41 + C31                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C40 + gateG[23]                                                                                                                                                                                                                                                                                                                                                                             | $\xrightarrow{\text{qm}} strandO[23]$                                                                                                                                                                                                                                                                                                                                                                                  |
| C40 + gateG[23]<br>strandO[23] + gateT[23]                                                                                                                                                                                                                                                                                                                                                  | $\xrightarrow{q_{\text{m}}} strandO[23]$ $\xrightarrow{q_{\text{max}}} nth$                                                                                                                                                                                                                                                                                                                                            |
| C40 + gateG[23]<br>strandO[23] + gateT[23]<br>C41 + gateG[24]                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} \stackrel{\text{qm}}{\longrightarrow}  strandO[23] \\ \stackrel{\text{qmax}}{\longrightarrow}  nth \\ \stackrel{\text{qm}}{\longrightarrow}  strandO[24] \end{array} $                                                                                                                                                                                                                              |
| C40 + gateG[23]<br>strandO[23] + gateT[23]<br>C41 + gateG[24]<br>strandO[24] + gateT[24]                                                                                                                                                                                                                                                                                                    | $ \begin{array}{ccc} \stackrel{\text{qm}}{\longrightarrow} & strandO[23] \\ \stackrel{\text{qmax}}{\longrightarrow} & nth \\ \stackrel{\text{qm}}{\longrightarrow} & strandO[24] \\ \stackrel{\text{qmax}}{\longrightarrow} & nth \end{array} $                                                                                                                                                                        |
| $C40 + gateG[23]$ $strandO[23] + gateT[23]$ $C41 + gateG[24]$ $strandO[24] + gateT[24]$ $A10 + gateL[25] \xrightarrow{k}{\rightarrow}$                                                                                                                                                                                                                                                      | $\begin{array}{ccc} \stackrel{\text{qm}}{\longrightarrow} & strandO[23] \\ \stackrel{\text{qmax}}{\longrightarrow} & nth \\ \stackrel{\text{qm}}{\longrightarrow} & strandO[24] \\ \stackrel{\text{qmax}}{\longrightarrow} & nth \\ gateH[25] + strandB[25] \end{array}$                                                                                                                                               |
| $C40 + gateG[23]$ $strandO[23] + gateT[23]$ $C41 + gateG[24]$ $strandO[24] + gateT[24]$ $A10 + gateL[25] \xrightarrow{k}$ $gateH[25] + strandB[25] \xrightarrow{q_{max}}$                                                                                                                                                                                                                   | $\begin{array}{l} \stackrel{\text{qm}}{\longrightarrow}  strandO[23] \\ \stackrel{\text{qmax}}{\longrightarrow}  nth \\ \stackrel{\text{qm}}{\longrightarrow}  strandO[24] \\ \stackrel{\text{qmax}}{\longrightarrow}  nth \\ gateH[25] + strandB[25] \\ A10 + gateL[25] \end{array}$                                                                                                                                  |
| $C40 + gateG[23]$ $strandO[23] + gateT[23]$ $C41 + gateG[24]$ $strandO[24] + gateT[24]$ $A10 + gateL[25] \xrightarrow{k}$ $gateH[25] + strandB[25] \xrightarrow{q_{max}}$ $C40 + gateH[25] \xrightarrow{q_{max}}$                                                                                                                                                                           | $\begin{array}{l} \stackrel{\text{qm}}{\longrightarrow}  strandO[23] \\ \stackrel{\text{qmax}}{\longrightarrow}  nth \\ \stackrel{\stackrel{\text{qm}}{\longrightarrow}}{\longrightarrow}  strandO[24] \\ \stackrel{\text{qmax}}{\longrightarrow}  nth \\ gateH[25] + strandB[25] \\ A10 + gateL[25] \\ strandO[25] \end{array}$                                                                                       |
| $C40 + gateG[23]$ $strandO[23] + gateT[23]$ $C41 + gateG[24]$ $strandO[24] + gateT[24]$ $A10 + gateL[25] \xrightarrow{k}$ $gateH[25] + strandB[25] \xrightarrow{q_{max}}$ $C40 + gateH[25] \xrightarrow{q_{max}}$ $strandO[25] + gateT[25] \xrightarrow{q_{max}}$                                                                                                                           | $\begin{array}{l} \stackrel{\text{qm}}{\longrightarrow}  strandO[23] \\ \stackrel{\text{qmax}}{\longrightarrow}  nth \\ \stackrel{\stackrel{\text{qm}}{\longrightarrow}}{\longrightarrow}  strandO[24] \\ \stackrel{\text{qmax}}{\longrightarrow}  nth \\ gateH[25] + strandB[25] \\ A10 + gateL[25] \\ strandO[25] \\ c51 + A10 + c40 \end{array}$                                                                    |
| $C40 + gateG[23]$ $strandO[23] + gateT[23]$ $C41 + gateG[24]$ $strandO[24] + gateT[24]$ $A10 + gateL[25] \xrightarrow{k}$ $gateH[25] + strandB[25] \xrightarrow{q_{max}}$ $C40 + gateH[25] \xrightarrow{q_{max}}$ $strandO[25] + gateT[25] \xrightarrow{q_{max}}$ $A10 + gateL[26] \xrightarrow{k}$                                                                                         | $\begin{array}{l} \stackrel{\text{qm}}{\longrightarrow}  strandO[23] \\ \stackrel{\text{qmax}}{\longrightarrow}  nth \\ \stackrel{\stackrel{\text{qm}}{\longrightarrow}}{\longrightarrow}  strandO[24] \\ \stackrel{\text{qmax}}{\longrightarrow}  nth \\ gateH[25] + strandB[25] \\ A10 + gateL[25] \\ strandO[25] \\ C51 + A10 + C40 \\ gateH[26] + strandB[26] \end{array}$                                         |
| $C40 + gateG[23]$ $strandO[23] + gateT[23]$ $C41 + gateG[24]$ $strandO[24] + gateT[24]$ $A10 + gateL[25] \xrightarrow{k}$ $gateH[25] + strandB[25] \xrightarrow{q_{max}}$ $C40 + gateH[25] \xrightarrow{q_{max}}$ $strandO[25] + gateT[25] \xrightarrow{q_{max}}$ $A10 + gateL[26] \xrightarrow{k}$ $gateH[26] + strandB[26] \xrightarrow{q_{max}}$                                         | $\begin{array}{l} \stackrel{\text{qm}}{\longrightarrow}  strandO[23] \\ \stackrel{\text{qmax}}{\longrightarrow}  nth \\ \stackrel{\text{qm}}{\longrightarrow}  strandO[24] \\ \stackrel{\text{qmax}}{\longrightarrow}  nth \\ \\ gateH[25] + strandB[25] \\ A10 + gateL[25] \\ strandO[25] \\ C51 + A10 + C40 \\ \\ gateH[26] + strandB[26] \\ A10 + gateL[26] \end{array}$                                            |
| $C40 + gateG[23]$ $strandO[23] + gateT[23]$ $C41 + gateG[24]$ $strandO[24] + gateT[24]$ $A10 + gateL[25] \xrightarrow{k}$ $gateH[25] + strandB[25] \xrightarrow{q_{max}}$ $C40 + gateH[25] \xrightarrow{q_{max}}$ $strandO[25] + gateT[25] \xrightarrow{q_{max}}$ $A10 + gateL[26] \xrightarrow{k}$ $gateH[26] + strandB[26] \xrightarrow{q_{max}}$ $C41 + gateH[26] \xrightarrow{q_{max}}$ | $\begin{array}{l} \stackrel{\text{qm}}{\longrightarrow}  strandO[23] \\ \stackrel{\text{qmax}}{\longrightarrow}  nth \\ \stackrel{\stackrel{\text{qm}}{\longrightarrow}}{\longrightarrow}  strandO[24] \\ \stackrel{\text{qmax}}{\longrightarrow}  nth \\ \\ gateH[25] + strandB[25] \\ A10 + gateL[25] \\ strandO[25] \\ C51 + A10 + C40 \\ \\ gateH[26] + strandB[26] \\ A10 + gateL[26] \\ strandO[26] \end{array}$ |

 $\stackrel{k}{\longrightarrow}$ A11 + gateL[27]gateH[27] + strandB[27] $\stackrel{q_{\max}}{\longrightarrow}$ gateH[27] + strandB[27]A11 + gateL[27] $\stackrel{q_{\max}}{\longrightarrow}$ C40 + qateH[27]strandO[27] $\stackrel{q_{\max}}{\longrightarrow}$ strandO[27] + gateT[27]C51 + A11 + C40 $\stackrel{k}{\longrightarrow}$ A11 + gateL[28]gateH[28] + strandB[28] $\stackrel{q_{\max}}{\longrightarrow}$ gateH[28] + strandB[28]A11 + gateL[28] $\stackrel{q_{\max}}{\longrightarrow}$ C41 + gateH[28]strandO[28]strandO[28] + gateT[28] $\stackrel{q_{\max}}{\longrightarrow}$ C50 + A11 + C41 $\xrightarrow{q_m}$ C50 + gateG[29]strandO[29] $\stackrel{q_{\max}}{\longrightarrow}$ strandO[29] + gateT[29]nth $\xrightarrow{q_m}$ C51 + gateG[30]strandO[30] $\xrightarrow{q_{\max}}$ strandO[30] + gateT[30]nth $\xrightarrow{k}$ A50 + gateL[31]gateH[31] + strandB[31] $\stackrel{q_{\max}}{\longrightarrow}$ gateH[31] + strandB[31]A50 + gateL[31] $\stackrel{q_{\max}}{\longrightarrow}$ C50 + gateH[31]strandO[31] $\xrightarrow{q_{\max}}$ strandO[31] + gateT[31]C60 + A50 + C50 $\stackrel{k}{\longrightarrow}$ A50 + gateL[32]gateH[32] + strandB[32] $\stackrel{q_{\max}}{\longrightarrow}$ A50 + gateL[32]gateH[32] + strandB[32] $\stackrel{q_{\max}}{\longrightarrow}$ C51 + gateH[32]strandO[32] $\xrightarrow{q_{\max}}$ strandO[32] + gateT[32]C60 + A50 + C51 $\stackrel{k}{\longrightarrow}$ gateH[33] + strandB[33]A51 + gateL[33] $\stackrel{q_{\max}}{\longrightarrow}$ gateH[33] + strandB[33]A51 + gateL[33] $\stackrel{q_{\max}}{\longrightarrow}$ C50 + gateH[33]strandO[33] $\xrightarrow{q_{\max}}$ strandO[33] + gateT[33]C60 + A51 + C50

| $A51 + gateL[34] \xrightarrow{k}$                | gateH[34] + strandB[34]                               |
|--------------------------------------------------|-------------------------------------------------------|
| $gateH[34] + strandB[34] \xrightarrow{q_{max}}$  | A51 + gateL[34]                                       |
| $C51 + gateH[34] \xrightarrow{q_{\max}}$         | strandO[34]                                           |
| $strandO[34] + gateT[34] \xrightarrow{q_{max}}$  | C61 + A51 + C51                                       |
| C60 + gateG[35]                                  | $\xrightarrow{q_{m}}$ strandO[35]                     |
| strandO[35] + gateT[35]                          | $\xrightarrow{\mathrm{q}_{\mathrm{max}}} nth$         |
| C61 + gateG[36]                                  | $\xrightarrow{q_{m}}$ strandO[36]                     |
| strandO[36] + gateT[36]                          | $\xrightarrow{\mathrm{q}_{\mathrm{max}}} nth$         |
| $A10 + gateL[37] \xrightarrow{k}$                | gateH[37] + strandB[37]                               |
| $gateH[37] + strandB[37] \xrightarrow{q_{max}}$  | A10 + gateL[37]                                       |
| $C60 + gateH[37] \xrightarrow{q_{\max}}$         | strandO[37]                                           |
| $strandO[37] + gateT[37] \xrightarrow{q_{max}}$  | C71 + A10 + C60                                       |
| $A10 + gateL[38] \xrightarrow{k}$                | gateH[38] + strandB[38]                               |
| $gateH[38] + strandB[38] \xrightarrow{q_{max}}$  | A10 + gateL[38]                                       |
| $C61 + gateH[38] \xrightarrow{q_{\max}}$         | strandO[38]                                           |
| $strandO[38] + gateT[38] \xrightarrow{q_{max}}$  | C71 + A10 + C61                                       |
| $A11 + gateL[39] \xrightarrow{k}$                | gateH[39] + strandB[39]                               |
| $gateH[39] + strandB[39] \xrightarrow{q_{\max}}$ | A11 + gateL[39]                                       |
| $C60 + gateH[39] \xrightarrow{q_{\max}}$         | strandO[39]                                           |
| $strandO[39] + gateT[39] \xrightarrow{q_{max}}$  | C71 + A11 + C60                                       |
| $A11 + gateL[40] \xrightarrow{k}$                | gateH[40] + strandB[40]                               |
| $gateH[40] + strandB[40] \xrightarrow{q_{\max}}$ | A11 + gateL[40]                                       |
| $C61 + gateH[40] \xrightarrow{q_{\max}}$         | strandO[40]                                           |
| $strandO[40] + gateT[40] \xrightarrow{q_{max}}$  | C70 + A11 + C61                                       |
| C70 + gateG[41]                                  | $\xrightarrow{q_{m}}$ strandO[41]                     |
| strandO[41] + gateT[41]                          | $\stackrel{	ext{q}_{	ext{max}}}{\longrightarrow} nth$ |

| C71 + gateG[4                                 | 42]                        | $\xrightarrow{q_{m}}$ strandO[42]                           |
|-----------------------------------------------|----------------------------|-------------------------------------------------------------|
| strandO[42] + gateT[4]                        | 42]                        | $\stackrel{\mathrm{q}_{\mathrm{max}}}{\longrightarrow} nth$ |
| A10 + gateL[43] -                             | $\xrightarrow{k}$          | gateH[43] + strandB[43]                                     |
| $gateH[43] + strandB[43] \stackrel{q_m}{=}$   | $\xrightarrow{nax}$        | A10 + gateL[43]                                             |
| $C70 + gateH[43] = \frac{q_m}{2}$             | $\xrightarrow{nax}$        | strandO[43]                                                 |
| $strandO[43] + gateT[43]  \stackrel{q_m}{=}$  | $\xrightarrow{nax}$        | C81 + A10 + C70                                             |
| A10 + gateL[44] -                             | $\xrightarrow{k}$          | gateH[44] + strandB[44]                                     |
| $gateH[44] + strandB[44] \stackrel{q_m}{=}$   | $\xrightarrow{nax}$        | A10 + gateL[44]                                             |
| $C71 + gateH[44]  \stackrel{\text{qm}}{=}$    | $\xrightarrow{\text{nax}}$ | strandO[44]                                                 |
| $strandO[44] + gateT[44]  \stackrel{q_m}{=}$  | $\xrightarrow{nax}$        | C81 + A10 + C71                                             |
| A11 + gateL[45] -                             | $\xrightarrow{k}$          | gateH[45] + strandB[45]                                     |
| $gateH[45] + strandB[45] \stackrel{q_m}{=}$   | $\xrightarrow{nax}$        | A11 + gateL[45]                                             |
| $C70 + gateH[45]  \stackrel{\mathrm{q_m}}{=}$ | $\xrightarrow{nax}$        | strandO[45]                                                 |
| $strandO[45] + gateT[45]  \stackrel{q_m}{=}$  | $\xrightarrow{nax}$        | C81 + A11 + C70                                             |
| A11 + gateL[46] -                             | $\xrightarrow{k}$          | gateH[46] + strandB[46]                                     |
| $gateH[46] + strandB[46] \stackrel{q_m}{=}$   | $\xrightarrow{\text{nax}}$ | A11 + gateL[46]                                             |
| C71 + gateH[46] =                             | $\xrightarrow{nax}$        | strandO[46]                                                 |
| $strandO[46] + gateT[46] \stackrel{q_m}{=}$   | $\xrightarrow{\text{nax}}$ | C80 + A11 + C71                                             |