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ABSTRACT
Recently, deterministic approaches to stochastic computing (SC)
have been proposed. These compute with the same constructs as sto-
chastic computing but operate on deterministic bit streams. These
approaches reduce the area, greatly reduce the latency (by an expo-
nential factor), and produce completely accurate results. However,
these methods do not scale well. Also, they lack the property of
progressive precision enjoyed by SC. As a result, these determin-
istic approaches are not competitive for applications where some
degree of inaccuracy can be tolerated. In this work we introduce
two fast-converging, scalable deterministic approaches to SC based
on low-discrepancy sequences. The results are completely accurate
when running the operations for the required number of cycles.
However, the computation can be truncated early if some inaccu-
racy is acceptable. Experimental results show that the proposed
approaches significantly improve both the processing time and
area-delay product compared to prior approaches.
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1 INTRODUCTION
Stochastic Computing (SC) [3, 5, 9, 11, 13] is a well-established par-
adigm for low-cost, noise-tolerant approximate computing. Recent
work has shown that the same constructs used for computation on
stochastic bitstreams can be used for computation on deterministic
bitstreams, if these bitstreams are generated in specific ways [6][8].
The results are completely accurate with no inaccuracy caused by
random fluctuation or correlation.

Three different approaches have been suggested: using relatively
prime stream lengths [8], clock dividing the streams, and rotating
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the streams [6]. So called unary bitstreams are used – stream of
bits with a sequence of 1s followed by a sequence of 0s, where
the fraction of 1’s to the bitstream length represents the value
that is being computed on. Operations must run for the product
of the length of the input bitstreams to produce the correct result.
For instance, when multiplying two n-bit precision input values
represented by two 2n-length bitstreams, the input streams are
connected to the inputs of an AND gate. (Recall that multiplication
is performed using a simple AND gate in SC.) The operation must
run for 22n cycles to produce the correct output. (This is, in fact,
exponentially fewer cycles that would be required with stochastic
bitstreams [6]).

While unary stream-based deterministic methods are able to
provide completely accurate results, they do not offer progressive
precision [2, 10]. The output converges to the expected correct value
slowly. This slow convergence makes the deterministic approaches
inefficient for applications that can tolerate some inaccuracy (e.g.,
image processing and neural network applications). Limited scala-
bility is a significant drawback of the approaches described in [8]
and [6]. See the discussion in [3]. The required number of cycles and
the cost of generating bitstreams both increase significantly with
an increasing number of inputs. These parameters also increase
with increasing precision of the input data.

Recently Najafi and Lilja [10] proposed a “down-sampling”method
for the three deterministic approaches introduced in [8] and [6],
which improves the progressive precision of these deterministic
approaches. The strategy is to modify the structure of the stream
generators by using pseudo-random stochastic bitstreams. When
run for the full length, i.e., for 22n cycles when multiplying two n-
bit precision inputs, the new method produces completely accurate
results. When slight inaccuracy is acceptable, it provides significant
improvement in the processing time and the energy consumption.

In this paper, we introduce two fast-converging scalable de-
terministic approaches for SC based on low-discrepancy (LD) se-
quences [12]. LD sequences such as Halton [1] and Sobol [7] have
been previously used for improving the speed of SC circuits. These
provide a lower error rate with fixed processing time compared to
conventional linear feedback shift register (LFSR)-based pseudo-
random sequences.

Our strategy is as follows. First we show that computation on
LD-based stochastic bitstreams can be completely accurate. We
introduce a LD-based deterministic method that converges quickly
and produces completely accurate results. We then integrate the ro-
tation method of [6] with the LD Sobol-based stochastic bitstreams.
The result is both area-delay efficient and scalable. We show that
our new LD-based deterministic methods converge significantly
faster to the expected output than the prior methods. We evaluate
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the scalability of the proposed methods. We show that the second
of our two methods scales well with increasing number of inputs.

This paper is structured as follows: In Section 2, we present back-
ground information on SC including the conventional as well as
deterministic approaches. In Section 3, we describe our proposed
deterministic methods based on LD sequences. In Section 4, we
evaluate our method. We compare the scalability of the proposed
methods to the prior methods on the operation of multiplication,
varying both the precision and number of inputs. Finally, in Sec-
tion 5, we present conclusions.

2 BACKGROUND
2.1 Stochastic Computing
SC is a computing paradigm in which numbers in the [0, 1] interval
are presented using streams of random (or unary) bits and processed
using simple logic. The input data is encoded by the probability of
obtaining a one versus a zero. A random or pseudo-random number
is compared to a constant number (based on input data) and the
output of the comparison produces one bit of the bitstream in each
cycle (see Figure 1). Pseudo-random number generators such as
LFSRs are often used as the source of generating random numbers
in SC systems [13].

Multiplication is the most common stochastic operation. Its hard-
ware implementation is orders of magnitude simpler than that of
a conventional binary radix counterpart. A single AND gate per-
forms multiplication in stochastic domain. The performance of an
AND gate used as a stochastic multiplier depends on the degree
of correlation between the input bitstreams. To produce accurate
results, the input bitstreams must be completely independent, so
completely uncorrelated. Conventionally this independence is pro-
vided by using randomness (or pseudo-randomness) when generat-
ing bitstreams. Commonly, LFSRs are used. However, this approach
suffers from random fluctuations; this results in computation that
is only approximately correct [13].

(n-bit) Number Source
(LFSR, Counter…)

(n-bit) Constant Number
(register)

(n-bit)

Comparator

0101011100100001
……..

1111111000000000

Figure 1: Structure of a stochastic stream generator.

2.2 Deterministic Approaches to SC
Recent work on SC has shown that computation on stochastic bit-
streams can be performed deterministically [6] [8]. By properly
structuring input bitstreams, completely accurate results can be
produced with no random-fluctuation or correlation errors. The re-
quired independence between input bitstreams is provided by using
relatively prime stream lengths [8], rotation, or clock division [6].
Logical computation is performed on unary streams – that is to say
sequences of 1s followed sequences 0s. To generate a unary stream,
an increasing value from a counter is compared to a constant value
corresponding to the target value in the [0,1] interval. To produce
completely accurate results with these deterministic approaches,

the operation must run for an exact number of clock cycles: the
product of the length of the input bitstreams [6]. Due to the nature
of unary representation, however, running the operation for fewer
cycles leads to a poor result with an error out of the acceptable error
bound. In the following, we see three examples of deterministic
multiplication with unary bitstreams (for the detail of each method
please refer to [6]):
Example 1. Relatively prime length method with unary streams:

1/3 = 100100100100
3/4 = 111011101110
3/12 = 100000100100

Example 2. Clock division method with unary streams:
1/4 = 1000 1000 1000 1000
3/4 = 1111 1111 1111 0000
3/16 = 1000 1000 1000 0000

Example 3. Rotation method with unary streams:
1/4 = 1000 1000 1000 1000
3/4 = 1110 0111 1011 1101
3/16 = 1000 0000 1000 1000

Note that the essential property of these deterministic methods
is that they pair every bit of one bitstream with every bit of the
other exactly once [6]. This property applies regardless of the dis-
tribution of the 1’s and 0’s in the bitstreams. The bitstreams can
in fact be randomized. Najafi and Lilja [10] proposed a modified
version of these three deterministic methods by bringing random-
ization back into the bitstream representation. Their method offers
better progressive precision. The computation is still deterministic
and completely accurate. However, when using pseudo-randomized
bitstreams, the computation converges to the correct value faster
than with unary streams. Truncating the output stream by running
for fewer clock cycles still produces high quality result. In the fol-
lowing, we see three examples of deterministic multiplication with
pseudo-randomized bitstreams:

Example 4. Relatively prime lengthmethodwith pseudo-randomized
bitstreams:

1/3 = 100100100100
3/4 = 101110111011
3/12 = 100100100000

Example 5. Clock division method with pseudo-randomized bit-
streams:

1/4 = 0010 0010 0010 0010
3/4 = 1111 0000 1111 1111
3/16 = 0010 0000 0010 0010

Example 6. Rotation method with pseudo-randomized bitstreams:
1/4 = 0100 0100 0100 0100
3/4 = 1101 1110 0111 1011
3/16 = 0100 0100 0100 0000

2.3 Low-Discrepancy Sequences in SC
Low discrepancy (LD) sequences were traditionally used to acceler-
ate the convergence in Monte-Carlo simulations [4]. Recent work
on SC [1][7] utilized these sequences in improving the speed of
computation on stochastic bitstreams. With LD sequences, 1’s and
0’s in the stochastic streams are uniformly spaced, so the streams do
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Figure 2: (a) Halton sequence generator [1] (b) Sobol se-
quence generator [4, 7].

not suffer from random fluctuations. The bitstreams can quickly and
monotonically converge to the target value, producing acceptable
results in a much shorter time [1].

Alaghi and Hayes proposed the use of LD Halton sequences for
SC [1]. A Halton sequence generator consists of a binary-coded
base-b counter, where b is a prime number. For d independent input
streams in a SC system, d counters with different prime bases must
be used. For instance, in the simplest case of multiplying two sto-
chastic bitstreams using an AND gate, one base-2 and one base-3
counter is required. The order of the counter’s output digits are
reversed and the reordered digits are converted to equivalent binary
numbers. The structure of the Halton sequence generator proposed
in [1] is shown in Figure 2.a. Stochastic bitstreams generated using
Halton-based sequences can significantly improve the processing
time of SC for achieving the same accuracy compared to the conven-
tional LFSR-based pseduo-random bitstreams. However, the base
conversion required in the structure of this sequence generator
results in additional hardware overhead [7].

Liu and Han [7] recently proposed another LD-based stochastic
stream generator based on Sobol sequences. Compared to Halton
sequence generator, generation of Sobol sequences does not need
the additional base-conversion hardware. The Sobol sequence gen-
erator, instead, consists of an address generator that detects the
position of the least significant zero, a storage array storing the
values of the direction vectors as intermediate variables for se-
quence generation, and a pair of XOR gate and D-type flip-flop for
recursively generating random numbers. The structure of the Sobol
sequence generator, shown in Figure 2.b, is proposed in [4] and
used in [7] for generating LD stochastic bitstreams. Different Sobol
sequences can be generated by changing the values of the direction
vectors.

The authors in [7] showed that the Halton sequence based sto-
chastic multiplier takes about twice the sequence length to achieve

Table 1: Comparing different sources of generating numbers
(3-bit precision) for stochastic stream generator

Counter 0 1 2 3 4 5 6 7
0 1/8 1/4 3/8 1/2 5/8 3/4 7/8

LFSR 0 3 7 1 2 6 4 5
0 3/8 7/8 1/8 1/4 3/4 1/2 5/8

Sobol Gen. 0 4 2 6 1 5 3 7
0 1/2 1/4 3/4 1/8 5/8 3/8 7/8

a similar accuracy as the Sobol sequence-based design. Thus, both
approaches consume almost the same energy for the same accu-
racy requirement. Due to the limitation of the Halton sequences to
prime bases, in this work we focus on the Sobol sequences which
can cover different precisions of the base-2 numbers.

Table 1 compares three different sources of generating numbers
for the stochastic stream generator of Figure 1. A counter is being
used to generate unary streams. An LFSR is being used to generate
pseudo-random bitstreams. A Sobol sequence generator, on the
other hand, is used to generate a LD-based stochastic stream. As
can be seen, the first 2n numbers in a Sobol sequence can be used
to precisely present all possible n-bit precision numbers in [0, 1]
interval.

3 PROPOSED FAST-CONVERGING
DETERMINISTIC APPROACHES TO SC

In this section, we propose two new deterministic methods for com-
putation with stochastic bitstreams. We first describe the proposed
methods and their hardware structures, and then evaluate their
accuracy and hardware costs compared to prior state-of-the-art
work.

3.1 First Method
The first method uses the LD Sobol sequences and is independent of
prior deterministic methods. The required independence between
the input bitstreams is guaranteed by simply using different Sobol
sequences for generating the bitstreams and processing the streams
for a specific number of cycles. The important point for this method
is that the precision of the LD sequence generator should be i times
the precision of the input data, where i is the number of independent
bitstreams. Each input data must be converted to a stream of 2in
bits by comparing the input value to 2in different numbers from the
sequence generator. For example, to multiply two n-bit precision
input data, two 2n-bit precision Sobol sequence generators are
required. Each input data is converted to a 22n length bitstream
by comparing to the first 22n numbers from one of the two Sobol
sequence generators. The generated bitstreams are then connected
to an AND gate and the deterministic accurate output bitstream is
ready after 22n cycles.

In the following, we see an example of multiplying two 2-bit
precision input values using the first proposed method. The first
input value is converted to a bitstream representation using the
simplest Sobol sequence (Sobol seq. 1 in Figure 3). The second
input value is converted using the second Sobol sequence from
the MATLAB built-in Sobol sequence generator (Sobol seq. 2 in
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Sobol Seq 1 0 1/2 1/4 3/4 1/8 5/8 3/8 7/8 1/16 9/16 5/16 13/16 3/16 11/16 7/16 15/16

𝒂𝟎 𝒂𝟐 𝒂𝟏 𝒂𝟑 𝒂𝟎 𝒂𝟐 𝒂𝟏 𝒂𝟑 𝒂𝟎 𝒂𝟐 𝒂𝟏 𝒂𝟑 𝒂𝟎 𝒂𝟐 𝒂𝟏 𝒂𝟑

Sobol Seq 2 0 1/2 3/4 1/4 5/8 1/8 3/8 7/8 15/16 7/16 3/16 11/16 5/16 13/16 9/16 1/16

𝒃𝟎 𝒃𝟐 𝒃𝟑 𝒃𝟏 𝒃𝟐 𝒃𝟎 𝒃𝟏 𝒃𝟑 𝒃𝟑 𝒃𝟏 𝒃𝟎 𝒃𝟐 𝒃𝟏 𝒃𝟑 𝒃𝟐 𝒃𝟎

Sobol Seq 3 0 1/2 1/4 3/4 7/8 3/8 5/8 1/8 11/16 3/16 15/16 7/16 5/16 13/16 1/16 9/16

𝒄𝟎 𝒄𝟐 𝒄𝟏 𝒄𝟑 𝒄𝟑 𝒄𝟏 𝒄𝟐 𝒄𝟎 𝒄𝟐 𝒄𝟎 𝒄𝟑 𝒄𝟏 𝒄𝟏 𝒄𝟑 𝒄𝟎 𝒄𝟐

Sobol Seq 4 0 1/2 3/4 1/4 7/8 3/8 1/8 5/8 7/16 15/16 11/16 3/16 9/16 1/16 5/16 13/16

𝒅𝟎 𝒅𝟐 𝒅𝟑 𝒅𝟏 𝒅𝟑 𝒅𝟏 𝒅𝟎 𝒅𝟐 𝒅𝟏 𝒅𝟑 𝒅𝟐 𝒅𝟎 𝒅𝟐 𝒅𝟎 𝒅𝟏 𝒅𝟑

𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑

1/4 1/2 3/4 10

Figure 3: First 16 numbers of the first four Sobol sequences fromMATLAB built-in Sobol sequence generator, and the category
of each one based on their position in the [0, 1] interval.

Figure 3). Note that, when converting to a bitstream representation,
a one is generated if the Sobol number is less than the input target
number.

Example 7. Deterministic 2-bit precision multiplication using the
first proposed method:

1/4 = 1000 1000 1000 1000
3/4 = 1101 1110 0111 1011
3/16 = 1000 1000 0000 1000

As can be seen, the accurate output of multiplying the two 2-bit
precision input values is obtained by directly converting the inputs
to 24-bit streams, by comparing them to the first 24 numbers of two
Sobol sequences and ANDing the generated bitstreams.

To prove why the first proposed method produces deterministic
accurate results, we use two important properties of the Sobol
sequences:

• The first 2n numbers of any Sobol sequence include all n-bit
precision values in [0, 1) interval.
• If equally split [0, 1) interval into 2n sub-intervals, in any
consecutive group of 2n Sobol numbers starting at positions
i × 2n (i = 0,1,2, . . .), there is exactly one member in each
sub-interval.

Figure 3 categorizes consecutive groups of 22 numbers in the first
four Sobol sequences. Each Sobol number in each group is labeled
with a number from 0 to 3 depending on its sub-interval. For exam-
ple 1/8 in Sobol sequence 1 is labeled with a0 because it is a member
of the first sub-interval, [0, 1/4), and 5/8 in Sobol sequence 2 is la-
beled with b2 because it is a member of the third sub-interval, [1/2,
3/4). When converting a 2-bit precision input value into a 24-bit
stream by comparing it to the first 24 numbers of a Sobol sequence,
the result is the same for the Sobol numbers with the same label. For
example, comparing 3/4 to 5/8 and 11/16 from the Sobol sequence 2
generates the same bit of ’1’ as both 5/8 and 11/16 are a member
of [1/2, 3/4) (label b2) and so are both less than the input value of
3/4. As can bee seen in Figure 3, any selected group of 22 numbers
includes all labels from 0 to 3, and as a result, all groups of the same
Sobol sequence will produce the same number of 1s. All groups can

accurately present the target input value and their difference will
only be in the order of bits (order of labels).

The result of multiplying two input values, represented by two
bitstreams, is deterministic and completely accurate if every bit of
one bitstream meets every bit of the other stream exactly once [6].
As shown in Figure 3 for n = 2, for any pair of two different
Sobol sequences, every label u (u = 0,1,2,3) in xu (x = a,b,c,d)
meets every label t (t = 0,1,2,3) in yt (y = a,b,c,d) exactly once if
considering the first 24 numbers of each sequence. So, the result
of multiplying two 2-bit precision numbers by ANDing their 24-
bit stream representation, generated based on two different Sobol
sequences, is deterministic and completely accurate.

This argument can be easily extended to multiplication of i n-
bit precision numbers when converting the input numbers to bit-
streams of 2i .n -bit length by comparing them to 2i .n numbers from
i different Sobol sequences. The generated bitstreams can be di-
vided into groups of 2n bits with different groups of a bitstream
representing same n-bit precision value but with a different order
(except the case of using Sobol sequence 1 because labels in dif-
ferent groups of Sobol sequence 1 have the same order). Every bit
(label) from a bitstream interacts with every bit (label) of the other
bitstreams exactly once, which results in a deterministic accurate
output bitstream.

Figure 4.a shows the structure of the sources of generating Sobol
sequences for the first proposed method. These are used as the
number sources in the stochastic stream generator of Figure 1. Note
that the simplest Sobol sequence is simply the reverse of the output
bits of a binary counter and so we generate the first Sobol sequence
by hard wiring the output bits of a counter at no extra hardware
cost.

3.2 Second Method
The second method is based on the prior deterministic methods in-
troduced in [6]. Inspired from the idea of using pseudo-randomized
bitstreamswith the three state-of-the-art deterministic approaches [10],
we propose to integrate the LD-sequences with the previously
proposed deterministic methods. In [10] maximal period pseudo-
random sources (i.e., maximal period LFSRs) are used to generate
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Figure 4: Structures of the sources of generating Sobol sequences based on (a) first proposed method (b) second proposed
method.

deterministic accurate bitstreams. The important point is that the
period of the pseudo-random source should be equal to the length
of the bitstream. By using such a source to generate random num-
bers, the input value could be converted into a pseudo-random but
completely accurate stochastic representation. Instead of pseudo-
random sources, in this work we use LD sequence generators.

In contrast to our first method, for the second method, the pre-
cision of the sequence generator is equal to the precision of the
input data. For example, for multiplication of two n-bit precision
inputs data, two n-bit LD sequence generators are required. In case
of using LD Halton sequences which are generated based on prime
numbers, the relatively prime length method of [8] must be used to
guarantee the required independence between the bitstreams. The
Sobol sequences, on the other hand, must be integrated with the
clock division or the rotation method of [6]. The operations then
must continue for the product of the length of the bitstreams to
produce deterministic complete accurate results.

The authors in [10] showed that the rotation method has a faster
convergence property and is more energy efficient than the clock
division deterministic method. So, for the rest of the paper, for the
second proposed method, we integrate the LD Sobol sequences
with the rotation method. While we limit our reported results to
LD Sobol sequences and the rotation approach, the proposed idea
can similarly be applied to LD Halton sequences and the relatively
prime length method.

The rotation method of [6] guarantees a deterministic accurate
output by rotating the bitstreams through inhibiting or stalling on
powers of the stream lengths. Figure 4.b shows the structure of
the sources of generating Sobol sequences for the second proposed
method based on the rotationmethod. The first Sobol source repeats

every 2n cycles but do not rotate. Other Sobol sources (source
k=2, 3, ..., i) have a period of 2n but rotate every 2(k−1) ·n cycles
by inhibiting. Additional counters in the structure of the second
method control these inhibits. We will show that due to using n-
bit Sobol generators, instead of expensive i · n-bit generators, the
structure of second proposed method has a lower hardware cost
than that of the first porposed method.

In the following, we see an example of multiplying two 2-bit
precision input values using the second proposed method based on
the first two Sobol sequences.
Example 8. Deterministic 2-bit precision multiplication using the
second proposed method:
Sobol source 1 with a period of 22 and no rotation:

0,1/2,1/4,3/4, 0,1/2,1/4,3/4, 0,1/2,1/4,3/4, 0,1/2,1/4,3/4

Sobol source 2 with a period of 22 and inhibiting after every 22
cycles:

0,1/2,3/4,1/4, 1/4,0,1/2,3/4, 3/4,1/4,0,1/2 1/2,3/4,1/4,0

2/4 = 1010 1010 1010 1010
3/4 = 1101 1110 0111 1011
6/16 = 1000 1010 0010 1010

As can be seen, by exploiting the rotation approach, every num-
ber in the first four numbers of the Sobol source 1 pairs with every
number in the first four numbers of the Sobol source 2 exactly
once. This has led to a deterministic accurate multiplication when
these rotated sequence of numbers are used in converting the input
values, 2/4 and 3/4, into bitstream representation.
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Table 2: Mean Absolute Error (%) comparison of the prior approximate and deterministic approaches to SC and the proposed
deterministic approach when multiplying two 8-bit precision stochastic streams with different numbers of operation cycles.

Design Approach Area(µm2) 216 215 214 213 212 211 210 29 28 27 26

Conv. Approx. SC [5, 13] 781 0.05 0.15 0.26 0.39 0.58 0.79 1.20 1.67 2.32 3.32 4.72
Deter. Rotation Unary [6] 492 0.00 3.10 4.84 6.15 7.08 7.66 7.99 8.17 8.26 33.1 51.8

Deter. Rotation Pseudo-Random [10] 536 0.00 0.09 0.16 0.24 0.35 0.47 0.60 0.71 0.82 2.56 4.26
This work 1- Deter. Sobol 3361 0.00 0.0003 0.0013 0.0035 0.009 0.019 0.041 0.092 0.190 0.451 0.921

This work 2- Deter. Rotation Sobol 1277 0.00 0.0013 0.0033 0.0075 0.014 0.031 0.059 0.112 0.190 0.451 0.921

3.3 Accuracy Evaluation
For accuracy comparison of the proposedmethods with prior works,
we exhaustively tested multiplication of two 8-bit precision input
data in [0, 1] interval from a large set of random input values for
the conventional approximate SC [5][13] and for the prior pseudo-
random rotation approach [10], and on every possible input value
for the unary-stream based deterministic approach [6] and on the
proposed methods. Table 2 compares the mean absolute errors
(MAEs) of the conventional approximate SC (using two different
16-bit LFSRs as the number generators), the prior deterministic
unary-stream based rotation approach (using two 8-bit counters
as the number generators), the prior deterministic pseudo-random
based rotation approach (using two different 8-bit LFSRs as the
number generators), the first introduced method based on Sobol
sequences (using two 16-bit Sobol Sequence generators), and the
second introduced Sobol-sequence based rotation approach (using
two 8-bit Sobol generators). Note that for the two required Sobol
sequences in the proposed methods we use the simplest Sobol
sequence and the second Sobol sequence from the MATLAB Sobol
sequence generator.

As can be seen in Table 2, similar to the deterministic approaches
proposed in [6] and [10], our methods could produce completely
accurate results in 216 cycles. Due to using LD-based bitstreams,
however, the MAE of the computation is significantly lower than
that of the prior approximate and deterministic approaches when
truncating the bitstreams (running the operation for fewer cycles).
For example, when running the multiplication operation for 215
cycles (processing 215-bit streams), the proposed methods have
shown a MAE of around 10−3, which is 100X lower than the MAE
of the deterministic pseudo-random rotation method of [10] and
3000X lower than that of the deterministic unary-stream based
rotation approach of [6]. Thus, our methods show a much better
progressive precision property and converge to correct result much
faster than prior methods. Note that for stream lengths of less than

2n (here, 28) the two proposed methods are essentially the same
(because rotation begins after 2n cycles) and so, they show the same
accuracy for these stream lengths.

3.4 Cost Comparison
The hardware area costs of the proposed methods for the case of
implementing a 2-input 8-bit precision multiplier are also compared
with the costs of the prior methods in Table 2. Each design includes
two (random) sequence generators and two comparators to generate
two independent stochastic bitstreams. We synthesized the designs
using the Synopsys Design Compiler vH2013.12 with a 45nm gate
library. As can be seen in the table, the proposed methods have a
higher cost than prior methods due to using costly Sobol sequence
generators. The first proposed method is even 2.6X more costly
than the second proposed method because of implementing two
expensive 16-bit Sobol sequence generators. The important metric,
however, to evaluate the efficiency of different methods is the area-
delay product as an estimation of the energy consumption. As we
will show in the next section, due to a very fast converging property,
our proposed methods could satisfy a fixed accuracy expectation
in a much shorter time, which will lead to a much lower area-
delay product than prior methods. This, in particular, makes the
proposed methods interesting for applications that can tolerate
some degree of inaccuracy such as image processing and neural
network applications.

4 SCALABILITY EVALUATION
Limited scalability has been an important challenge of prior de-
terministic methods of SC. As the authors in [3] discuss, when
many mutually independent stochastic bitstreams are needed, the
hardware cost significantly increases with the number of inputs.
Stochastic bitstreams generated via LD sequences has a faster con-
vergence than the pseudo-random sequences and of course than
the unary counter-based sequences. However, the benefits of using

Table 3: Hardware area cost (µm2) of the bitstream generator for different data precision and number of inputs (N=Input Data
Precision - i=Number of Inputs)

Design Approach N=4
i=2

N=4
i=3

N=4
i=4

N=8
i=2

N=8
i=3

N=8
i=4 Stream Generator Structure

Conv. Approx. SC [5, 13] 397 821 1394 781 1622 2799 i i*N-bit LFSRs + i N-bit Comparator
Deter. Rotation Unary [6] 224 342 459 492 754 1016 1 N-bit Counter + i-1 N-bit CounterEN + i N-bit Comp
Deter. Rotation Pseudo [10] 262 411 560 536 832 1127 1 N-bit LFSR + i-1 N-bit LFSREN + i N-bit Comp
This work 1- Deter. Sobol 1005 3740 9127 3361 13193 32406 1 i*N-bit Counter + i-1 i*N-bit Sobol Gen+ i N-bit Comp

This work 2- Deter. Rotation Sobol 456 806 1156 1277 2324 3371 i-1 N-bit Count+i-1 N-bit (CountEN+Sobol Gen)+i N-bit Comp
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LD sequences diminish as the number of inputs increases, because
the cost of generating them is much higher than pseudo-random
number generation. In this section, we evaluate the scalability of
the proposed methods compared to prior methods and show that
the second proposed method which integrates the LD sequences
with the rotation approach has the best scalability compared to
prior deterministic and also conventional approximate SC.

We implemented and synthesized 2-input, 3-input, and 4-input
stochastic multipliers with different design approaches for multi-
plication of input data with 4-bit and 8-bit data precisions. The
hardware area costs are reported in Table 3. As can be seen in the
reported numbers, the deterministic rotation approach based on
unary streams has the lowest hardware cost with the lowest cost
increase rate (2X) from the 2-input to the 4-input multiplier. The
first proposed method of this work which has the fastest converg-
ing property (see Table 2), however, has the highest hardware cost
with highest cost increase rate (9X) from the 2-input to the 4-input
multiplier implementation. The second method of this work, on the
other hand, not only has a very fast converging property, it has a
cost increase rate (X2.5) very close to the cost increase rate of the
rotation unary method.

The MAE of the implemented multipliers for different stream
lengths (different operation cycles) are presented in Figures 5 and 6.
As can be seen in Figure 5, for the 4-bit precision multipliers, the
proposed methods show a better progressive precision property
than prior deterministic methods and their computation accuracy
scales with increasing the number of inputs. Only the conventional
approximate SC approach shows a better scalability than the second
proposed method but it lacks the ability to generate completely
accurate results. For the 2-input and 3-input multipliers with 8-bit
precision (Figure 6) we achieved the best accuracy performance by
using the two proposed methods. Both methods converge to the
expected correct value very fast and scale well with increasing the
number of inputs.

Finally, we show the area-delay product of the implemented 8-bit
precision multipliers for different MAEs in Figure 7. We first exhaus-
tively tested each design approach with a large set of input values
and found the average processing time of each one to achieve a
specific MAE rate. We then multiplied the processing time with the
corresponding design hardware area cost to produce the area-delay
product. As can be seen in Figure 7, the second proposed method
(red lines) has the lowest area-delay product between different ap-
proximate and deterministic state-of-the-art methods which shows
its superiority to prior methods and its scalability when the number
of inputs increases.

5 CONCLUSION
Poor progressive precision and limited scalability are the main
challenges of the recently proposed deterministic approaches to SC.
In this workwe proposed two fast-converging scalable deterministic
approaches for processing bitstreams based on low-discrepancy
sequences. The first proposed approach provides the best accuracy
for a fixed processing timewhile the second approach has the lowest
area × delay product. Both methods produce completely accurate
results if running the operation for a specific number of cycles.
Although the hardware area cost of the proposed methods is higher
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Figure 5: MAEs of 4-bit precision multipliers for different
stream lengths.

than prior methods, a significantly better progressive precision
makes them a better choice for applications that can tolerate slight
inaccuracy (e.g., image processing and neural network applications).
In future work, we will evaluate the efficiency of the proposed
method on more complex examples from real applications. We will
explore different optimization techniques to further reduce the
hardware cost.
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Figure 6: MAEs of 8-bit precision multipliers for different
stream lengths.
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