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Abstract—The results of modern synthesis tools are heavily
influenced by the initial structure of the designs they are given.
Many synthesis tools use And-Inverter Graphs (AIGs) as the
underlying representation in the technology-independent phase
of synthesis. Generally, AIGs can be compacted through a series
of operations that merge equivalent nodes. Proving nodes to be
equivalent can be a done with efficient SAT-based algorithms.
However, when an AIG consists of very sparse logic, compaction
is ineffective; few equivalent nodes are found.

Recently, techniques for generating functional dependencies
via Craig Interpolation have been proposed. Such methods first
generate a resolution proof from a SAT instance. Interpolation
is performed on the resolution proof to generate the dependency
function. Unlike nodes in an AIG, determining whether an
equivalent resolution node can be generated from other resolution
nodes is a simple task. In this work, we study the use of
resolution proofs as an underlying data structure for performing
technology-independent synthesis, as opposed to just the front-
end step. In order to represent multiple functions, we merge
separate resolution proofs into a single, monolithic resolution
proof and then perform restructuring operations. We analyze
the effectiveness of our method on standard benchmark circuits.
The results suggest that resolution proofs could be a very effective
data structure for representing multiple target functions.

I. INTRODUCTION

Many problems in logic synthesis and verification can be
naturally translated to Boolean Satisfiability (SAT). Modern
SAT solvers are remarkably efficient computational engines,
solving problems with thousands of variables with ease. When
a SAT instance is satisfiable, the solver returns a satisfying
assignment of the instance’s variables. When a problem is
unsatisfiable, the solver returns a resolution proof of unsat-
isfiability.

Algorithms based on Craig Interpolation exploit these reso-
lution proofs to generate Boolean functions that satisfy certain
properties [6], [10], [13]. These Boolean functions are referred
to as Craig Interpolants or just interpolants. Such interpolants
can be used to generate functional dependencies [1], [9]. With
this approach, a SAT instance is created that asks whether
or not a target function can be implemented with a specified
support set. If the instance is unsatisfiable, the answer to
this question is affirmative. The interpolant generated from
the resolution proof of unsatisfiability is the target function;
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its support set contains variables in the target support set.
The structure of this interpolant is heavily influenced by the
structure of the resolution proof. The structure of the resolution
proof, in turn, is heavily influenced by the order of decision
variables used by the SAT solver.

When interpolation is used to generate functional dependen-
cies, often the goal is to generate dependencies for multiple
target functions. In this case, target functions that are able to
share gates in their transitive fanin are ideal. However, large
differences in the resolution proofs can lead to little logic
sharing between interpolants. Consider the example illustrated
in Figures 1 and 2. Both resolution proofs have many of their
root clauses in common. However, the resolution proofs in
Figure 1 have few of their intermediate clauses in common.
As a result, after the interpolants are generated for each proof,
none of the gates compute the same Boolean function. In
contrast, the resolution proofs in Figure 2 share many of the
same intermediate clauses. The interpolants generated for these
proofs share more logic compared to those in Figure 1.

Many modern synthesis tools use And-Inverter Graphs
(AIGs) as their underlying data structure. With AIGs, equiv-
alence between nodes can be asserted with SAT-based al-
gorithms, combined with structural hashing [14]. When two
nodes are proved to be equivalent, one node can be substituted
in place of the other, and any dangling logic can be removed
from the netlist.

A related but more difficult problem is determining whether
or not certain nodes can be expressed as a function of other
nodes (sometimes called substitution or resubstitution [4]).
For this task, the application of SAT-based methods is not
so straightforward. In contrast, it can be easily determined if
nodes in a resolution proof can be resolved from a subset of
other nodes. Accordingly, Craig Interpolation provides a new
approach to performing substitution in logical synthesis.

In this paper, we propose an algorithm for merging res-
olution proofs and then restructuring them. The structure in
the resulting interpolant is then less sparse. This interpolant
can be further minimized with traditional minimization algo-
rithms. Trials on benchmarks suggest that there is significant
potential for restructuring in the proofs of target function sets
encountered in practice.
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Fig. 1. A conceptual example of two resolution proofs with very few shared clauses. The resulting interpolants do not contain any shared logic.� �� �� �� �� �� �� �� �� �� �� �� �� �� �
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Fig. 2. An conceptual example of two resolution proofs that share many of the same clauses. The resulting interpolants share some of same logic.

II. RELATED WORK AND CONTEXT

In [9], a method for generating functional dependencies
based on Craig Interpolation was proposed. This method was
shown to scale much better with circuit size than previous
methods based on binary decision diagrams (BDDs) [8]. While
the process of finding and generating the dependencies with
this method is efficient, in many cases, the resulting logic
is poor. This is because the interpolant that implements the
dependency function is often large and redundant. The struc-
ture of the interpolant is heavily dependent on the structure
of the proof of unsatisfiability generated by the SAT solver.
Generally, solvers strive for speed without regard to the proof
structure. Some methods for reducing the size of interpolants
in specific application domains have been proposed [5]. Meth-
ods for adjusting and reducing the size of resolution proofs
have been discussed [2], [7]. Unfortunately, it is difficult to
predict or measure how these algorithms affect the structure
of the interpolants that are generated from the proofs.

In [1], an algorithm for augmenting a resolution proof
with the goal of reducing the size of the proof’s interpolant
was proposed. The authors showed that changing the order in
which clauses were resolved could greatly reduce the size of
the corresponding interpolant. In this paper, we expand on this
idea by showing how multiple resolution proofs can be merged
into a single, monolithic proof. We show how this monolithic
resolution proof can be restructured in order to increase the
amount of shared logic in the resulting interpolant.

III. BACKGROUND AND DEFINITIONS

A Boolean formula maps an assignment of Boolean vari-
ables to a Boolean value (Bm → B). We use the convention
that addition denotes an OR operation, multiplication or a “∧”
denotes the AND operation, a “→” denotes implication, and
an over-bar (e.g., x̄) denotes negation. An occurrence of a
Boolean variable in a Boolean formula, either negated or non-
negated, is referred to as a literal. A disjunction of literals is
referred to as a clause. A Boolean formula is in conjunctive
normal form (CNF) if it is represented by a conjunction
of clauses. Boolean Satisfiability (SAT) is the problem of
determining whether or not a CNF formula can evaluate to
true for some assignment of its variables. If there is some
variable assignment that causes the formula to evaluate to true,
then the formula is said to be satisfiable. If there is no variable
assignment that causes the formula to be true, then the formula
is said to be unsatisfiable. We will sometimes use the term SAT
instance when referring to a CNF formula whose satisfiability
we are trying to solve.

Given the conjunction of two clauses that share a literal
that is negated in one but not the other, a third clause that
is a disjunction of their remaining literals is implied. This
identity is known as Boolean resolution. The common literal
that is negated in one clause but not the other is called the
pivot variable and the resulting clause is called the resolvent.
Consider the identity

(z0 + x1 + · · ·+ xn)(z̄0 + y1 + · · ·+ ym)→
(x1 + · · ·+ xn + y1 + · · ·+ ym)



Here the pivot variable is z0. A set of clauses can be proved to
be unsatisfiable through a series of resolutions that lead to an
empty clause. This results in a directed acyclic graph (DAG):
the roots are the original clauses, the intermediate nodes are
clauses proved by resolution, and the single leaf is the empty
clause. This structure is called a resolution proof. We will
sometimes use the words “node” and “clause” interchangeably
when we are discussing resolution proofs.

When two clauses c1 and c2 resolve a clause c3, c1 and c2

are said to be the parents of c3; c3 is said to be a child of
c1 and c2. Clauses that were used to resolve c1 or c2 are said
to be ancestors of c3. When we say that a node is towards
the beginning of a proof, we are declaring that there were few
resolutions steps taken from the leaves of the proof to reach
this node. When we say that a node is towards the end of a
proof, we are declaring that there are few resolution steps that
need to be taken to reach the empty clause from this node.

Given an unsatisfiable instance of SAT and a bi-partition
of its clauses, set A and set B, Craig’s Interpolation theorem
states that there exists an intermediate formula I, called an
interpolant, such that A → I and I → B. A variable in the
SAT instance is said to be a global variable if it is present in
both clause sets A and B. Likewise, a variable is said to be
local to a clause partition if it is only present in that clause
partition. An interpolant only contains variables that are global
to A and B. We say that a set of clauses is satisfied for some
assignment of the set’s variables if every clause in the set
evaluates to true.

The algorithm in Figure 3, presented in [10], is a procedure
for generating a circuit that implements an interpolant from a
resolution proof and a clause partition. It was adapted from a
procedure presented in [13] to find the Boolean value for an
interpolant given a variable assignment.

p(c):
if c is a leaf clause

if c is in A
return g(c)

else
return 1

else let v be the pivot variable
if v is local to A

return p(c1) + p(c2)
else

return (p(c1))(p(c2))

Fig. 3. The algorithm proposed in [10] to produce a circuit that implements
an interpolant of a given clause partition, via a proof of unsatisfiability.

The procedure g(c) takes a clause c as input and returns
clause c with only its global literals present. Let c1 and c2

refer to c’s parent clauses. Procedure p(c) is defined in Figure
3. Calling p(c) on the empty clause of a resolution proof will
return a DAG whose nodes represent Boolean functions. In
this DAG, the node with no fanout, corresponding to the empty
clause in the resolution proof, computes a Boolean function
in terms of the global variables of A and B. This Boolean
function is an interpolant of the given clause partition. When
we refer to the size of an interpolant, we mean the number of
gates that are needed to represent it. It should be clear that the

size of the interpolant is bounded by the number of nodes in
the resolution proof.

A. Functional Dependencies with Craig Interpolation
A method for synthesizing functional dependencies based

on Craig interpolation was proposed in [9]. The formulation
of our algorithm relies on this construction so we provide a
brief review of it here.

The method constructs a miter, as shown Figure 4. Here f0

is the target function. The satisfiability of the primary output of
this circuit indicates whether or not there exists a dependency
function h(f1,f2,f3) that can be used to represent f0 for some
network. Here f0 Left and f0 Right are two copies of the same
network. The primary inputs x0, x1, . . . , xn (referred to as X)
are the primary inputs to f0 Left. The primary inputs x0*, x1*,
. . . , xn* (referred to as X*) are the primary inputs to f0 Right;
these are distinct sets of variables, but in direct correspondence
with one another: fi(X) is equivalent to fi*(X*) where the
assignment of X is equal to the assignment of X*.

If the primary output of this circuit is satisfied, then this
indicates that f0 evaluates to a different value from f0* while
functions f1, f2, and f3 evaluate to the same values of f1*,
f2*, f3*, respectively, on each side of the circuit for some
assignment of X and X*. Clearly this indicates that the ON set
f0(f1,f2,f3)1 is not disjoint from the OFF set f0(f1,f2,f3)0.
Accordingly, there is no function h(f1,f2,f3) that is equivalent
to f0(X) (or to f0*(X*)).

If the primary output of the circuit is unsatisfiable for all
assignments of X and X*, this indicates that either f0 (or f0*)
is a constant 1 or 0, or that the ON set f0(f1,f2,f3)1 is disjoint
from the OFF set f0(f1,f2,f3)0. This indicates that there is
some function h(f1,f2,f3) that is functionally equivalent to
f0(X).

If the clauses representing the logic surrounded by the box
in Figure 4 are partitioned into a set A and the rest of the
clauses are partitioned into a set B then the resulting inter-
polant of this clause partition will be a valid implementation
of the function f0(f1,f2,f3).

IV. GENERAL METHOD

Consider using the approach described in the previous sec-
tion for generating functional dependencies in the case where
many of functions contain the same support variables. Let
functions g0, g1, . . . , gn be the target functions and functions
x0, x1, . . . , xn be the variables in the potential support sets for
these functions. Then the SAT instance to verify the existence
of the ith functional dependency takes the following form:

A = (gi) ∧ (CNFleft)
B = (x0 ≡ x∗0) ∧ (x1 ≡ x∗1) ∧ . . .
∧(xn ≡ x∗n) ∧ (CNFright) ∧ (ḡi

∗)
(1)

Eq. 1: A SAT instance that checks the existence of target function gi with
support set x0, x1, . . . , xn.

Here CNFleft and CNFright represent the clauses for the
circuit elements in the left and right halves of the circuit,
respectively, as shown in Figure 4. The common variables
between sets A and B (x0, x1, . . . , xn) remain the same
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Fig. 4. A miter that checks to see if f0 can be specified in terms of f1, f2,
and f3.

for each SAT instance. Also, the only clauses that differ
among each of the individual SAT instances are the (gi)
and (ḡi*) terms. We refer to these terms as the “on” and
“off” assertion clauses, respectively. Such large similarity
between SAT instances can be leveraged to create similarities
in the proofs of unsatisfiability. Structural similarities in the
resolution proofs can then lead to structural similarities in the
interpolants. Using these properties, we propose the following
general method for creating a circuit structure that contains
shared logic.

1) For each primary output, create a SAT instance verifying
that the primary output can be expressed in terms of the
circuit’s primary inputs (Equation 1).

2) Generate a proof of unsatisfiability for each SAT in-
stance created in the previous step.

3) For each node in each proof, color the node black if it
has an assertion clause as an ancestor; otherwise color
the node white.

4) Check to see if any black node in any proof can be
resolved from any set of white nodes. If it can, color
the node white.

5) Restructure the proofs so that the black nodes that were
re-colored in step 4 are only resolved from white nodes.

6) Generate the interpolant for each proof.

Step 4 of the algorithm is illustrated graphically in Figures 5
and 6. Figure 5 contains two proofs whose interpolants are an
implementation of functions g0 and g1, respectively. Figure 6
shows that two black nodes can be resolved from only white
nodes present in both of the proofs.

����� �� �� ����� �� ��

Fig. 5. Two resolution proofs without any shared nodes.����� �� �� ����� �� ��

Fig. 6. Two resolution proofs with a shared node. An additional white node
is added to the proof, but two black nodes can then be removed. The gray
nodes are nodes that were black but can now be colored white.

V. CORRECTNESS

In this section, we argue the correctness of our method and
elucidate it with examples. First we discuss our mechanism for
deciding whether or not a node in a resolution proof can be
resolved from other nodes. This mechanism was discussed by
Gershman in [7] and was used to reduce the size of interpolants
in [1].

Proposition 1
Let c be some clause and W be some set of clauses. Then c can
be resolved from W if W ∧ c̄ is unsatisfiable

Proof: The statement c can be resolved from W iff W →
c is a tautology. Therefore, if there is no assignment of the
variables present in W and c such that every clause in W
evaluates to true and c evaluates to false, then c can be resolved
from the clauses of W .

To perform Step 4 of our algorithm, we can simply repeat-
edly solve the SAT instance W ∧ c̄, where W is the set of all
the white clauses present in all of the resolution proofs and c
is a black clause whose color we wish to change. If W ∧ c̄
is unsatisfiable, a resolution proof of unsatisfiability will be
returned by the SAT solver. This proof can then be modified
by a procedure known as bubble transformation, described
in [7], to show how c can be resolved by the clauses of W .
The bubble transformation can then used to implement Step 5
of our algorithm.

Example 1
Figure 7 shows a portion of a resolution proof. Let clauses (a+



b), (a+b+c̄), and (a+b+c) be colored black and the remaining
clauses be colored white. In Step 3 of the algorithm we want to
determine if clause (a+ b) can be colored white. Clause (a+ b)
can be resolved from clauses (a + ē + d̄), (a + b + d) and
(a+b+ d̄+e) iff (a+ ē+ d̄)(a+b+d)(a+b+ d̄+e)→ (a+b)
is a tautology. Solving the SAT instance: (a + ē + d̄)(a + b +
d)(a + b + d̄ + e)(ā)(b̄) verifies that (a + b) can indeed be
resolved from only white clauses.

The bubble transformation method described in [7] can then
be used to show the resolution steps needed to resolve (a + b)
from the white nodes. These resolution steps can then be used
to restructure the proof as shown in Figure 8.
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Fig. 7. A portion of a resolution proof
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Fig. 8. A portion of a resolution proof that has been restructured. Clause
(a+b) can be resolved from clauses (a+ē+d̄), (a+b+d) and (a+b+d̄+e).
Restructuring the proof this way adds one clause and removes two others.

After the proofs are restructured, the interpolants are gener-
ated by calling the recursive procedure described in Figure 3
on each of the empty clauses present in the resolution proofs.
We assert that these interpolants are valid in the sense that
they still fulfill the same properties as interpolants generated
from the non-modified resolution proofs.

Proposition 2
The interpolants generated from the restructured proofs are still
valid.

Proof: As described in the previous section, the only root
clauses that differ among each resolution proof are the “on”
and “off” assertion clauses. Therefore all the white root clauses
are shared between the proofs. Step 5 of our algorithm only
restructures the proof such that a previously black node is
resolved from only white clauses. Therefore any white node
present in the restructured proof is resolved from only root
clauses that are common between each of the original proofs.
Because the set of root clauses remains the same between each
proof, the clauses present in A and B remain the same. Also,
for each resolution proof, the common variables of A and B
remain the same; therefore the interpolants generated in Step
6 are valid.

VI. IMPLEMENTATION AND RESULTS

We implemented steps 1 through 4 of our method in Berke-
ley ABC [12]. To test the potential savings of our algorithm,
we performed trials on benchmarks in the IWLS benchmark
collection [3]. Trials were run on a AMD PhenomTM II X6
1090T machine with 3GB of RAM running 32-bit Linux. Only
one core was utilized. In Table I, we present numbers on
how many of the black nodes can be re-expressed in terms of
only white nodes present in the proofs. These numbers allow
us to gauge the potential for restructuring resolution proofs.
The column “Orig. Num. White” lists the number of white
nodes originally present in the proofs. If a white node has
an identical set of literals as another white node, these nodes
are merged and counted as only one white node. The column
“Orig. Num. Black” lists the number of black nodes originally
present in the proofs. The column “Num. Checked” lists the
number of black nodes that we checked to see if they could
be considered white. The column “Num. Fixable” lists the
number of nodes that could be colored white out of the number
of black nodes that we checked. The column “Percent Fixable”
lists the percentage of the ratios of the “Num. Fixable” to
“Num. Checked” columns. The “Time” column lists the time
spent checking to see if black nodes could be colored white.

The time spent on each benchmark was limited to 200
seconds. In this experiment, all white nodes present in the
proofs were considered when checking to see if a black node
could be colored white (Step 4 of the algorithm). The more
white nodes considered, the larger the SAT instance that needs
to be solved in Step 4. Reducing this number to be a subset of
the white nodes present in the proof will reduce the runtime;
however this may also reduce the number of black nodes
that can be colored white. This is a tradeoff that we plan to
investigate in the future.

For most of the benchmarks, the percentage of black nodes
that could be colored white was around 20–30%. The table3
and table5 benchmarks were two exceptions to this trend.
Since trials on both of these benchmarks reached the timeout,
only a subset of nodes were checked. The percentage was
calculated as the number of fixable nodes divided by the
number of nodes that were checked. It is likely that if a
longer timeout had been used, then these percentages would
be similar to the other benchmarks.

Perhaps the most salient result is that our algorithm scales
well with the number of nodes in the resolution proof. Note
that, unlike previous implementations, we are not applying
interpolation to individual functions; rather we are applying it
to each circuit in its entirety. For cases where we reach the
computational limit, runtimes could be improved by applying
the algorithm to smaller windows of logic within the circuit.

VII. CONCLUSIONS

Given a resolution proof, determining whether or not a given
node in the proof can be resolved from a set of other nodes
is an easy task. Given an AIG, determining whether a given
node in the graph can be expressed in terms of other nodes
is difficult task. Accordingly, algorithms like AIG Rewriting
and SAT-Sweeping can only make incremental improvements
to small windows within an AIG [11], [14]. In contrast, the



Number of Black Nodes That Can Be Colored White
Benchmark Orig. Num. White Orig. Num. Black Num. Checked Num. Fixable Percent Fixable Time (s)

dk15 1743 581 581 175 30.12 0.04
5xp1 3203 1636 1636 275 16.81 0.18

sse 3848 2650 2650 563 21.25 0.28
ex6 4055 2731 2731 588 21.53 0.29

s641 6002 5148 5148 2269 44.08 0.46
s510 7851 5092 5092 1155 22.68 0.74
s832 15359 14826 14826 3358 22.65 3.67

planet 40516 43387 43387 10640 24.52 26.39
styr 44079 54128 54128 16578 30.63 33.88

s953 49642 46239 46239 12252 26.50 31.99
bcd 96385 109167 103514 34349 33.18 200.00

table5 137607 288461 69070 27848 40.32 200.00
table3 177410 283066 47279 24454 51.72 200.00

TABLE I
RESULTS OF STEPS 1 THROUGH 4 OF OUR ALGORITHM APPLIED TO A SET OF BENCHMARKS. THE TIMEOUT WAS SET TO 200 SECONDS.

properties of resolution proofs allow for large transformations
of the initial structure. The results presented in this paper
suggest that there is significant potential for clause sharing
among resolution proofs for multiple target functions. Given
an abundance of shared clauses, we expect interpolants with
significant structural similarities. Even if these structures lead
to logic that suboptimal, it will be much less sparse than
traditional AIG representations; accordingly, such logic might
be a promising starting point for the application of traditional
logic synthesis.
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