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Abstract11

Bias in neural network model training datasets has been observed to decrease pre-12

diction accuracy for groups underrepresented in training data. Thus, investigating13

the composition of training datasets used in machine learning models with health-14

care applications is vital to ensure equity. Two such machine learning models are15

NetMHCpan-4.1 and NetMHCIIpan-4.0, used to predict antigen binding scores to ma-16

jor histocompatibility complex class I and II molecules, respectively. As antigen pre-17

sentation is a critical step in mounting the adaptive immune response, previous work18

has used these or similar predictions models in a broad array of applications, from ex-19

plaining asymptomatic viral infection to cancer neoantigen prediction. However, these20

models have also been shown to be biased toward hydrophobic peptides, suggesting21

the network could also contain other sources of bias. Here, we report the composi-22

tion of the networks’ training datasets are heavily biased toward European Caucasian23

individuals and against Asian and Pacific Islander individuals. We test the ability of24

NetMHCpan-4.1 and NetMHCpan-4.0 to distinguish true binders from randomly gen-25

erated peptides on alleles not included in the training datasets. Unexpectedly, we fail26

to find evidence that the disparities in training data lead to a meaningful difference in27

prediction quality for alleles not present in the training data. We attempt to explain28

this result by mapping the HLA sequence space to determine the sequence diversity29

of the training dataset. Furthermore, we link the residues which have the greatest im-30

pact on NetMHCpan predictions to structural features for three alleles (HLA-A*34:01,31
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HLA-C*04:03, HLA-DRB1*12:02).32

Keywords: NetMHCpan, training bias, MHC, HLA, peptide, machine learning,33

neural networks34

1 Introduction35

Antigen presentation by the major histocompatibility complex (MHC) class I and II proteins36

(referred to as HLA in humans) is one of the crucial steps to activating the adaptive immune37

response, and the genes which encode these proteins are some of the most polymorphic38

genes in humans [1]. As a result, the epitopes presented to T cells are determined partly39

by the binding affinity between the peptide fragment of the antigen and the host-specific40

MHC protein, which is determined by the amino acid sequences of both peptide and MHC.41

Because of the central role of this process in adaptive immunity, the ability to predict which42

peptides will bind to a given MHC allele has utility in diverse fields. For example, peptide-43

MHC binding predictions have been used to select peptides for a cancer neoantigen vaccine44

and to explain asymptotic SARS-CoV-2 infection in individuals with a specific HLA-B allele45

[2][3]. While molecular dynamics (MD) systems exists for modelling these complexes [4][5],46

the current consensus is that neural network prediction models are accurate enough at47

predicting binding affinity to be used in clinical settings [6]. Many such tools have been48

developed to predict peptide binding to both MHC class I and MHC class II [7][8][9][10].49

Two of neural-network based predictors, NetMHCpan-4.1 and NetMHCIIpan-4.0 (here on50

out collectively referred to as NetMHCpan) are hosted on a popular web server and are fast51

to return predictions, making them popular choices for predicting peptide-MHC binding52

[11].53

However, NetMHCpan does not rely on any structural information about the peptide or54

MHC molecule, and only takes an amino acid sequences for the peptide and MHC protein55

as input, which limits the model’s ability to generate mechanistic explanations for its bind-56

ing predictions Additionally, the tool is closed-source, exacerbating its “black box” nature57

and prompting investigations into potential hidden biases. A previous study has shown58

NetMHCpan-4.1 has a previously unreported bias toward predicting hydrophobic peptides59

as strong binders, suggesting the predictions of these models need to be examined closely60

[12].61

Many times when medical and biological neural network based prediction systems have62

been evaluated, researchers have uncovered numerous examples of racial bias in machine63

learning algorithms [13][14][15]. Furthermore, datasets from prior genomic studies often fail64

to capture the genetic diversity of the human population, often focusing on individuals of65

European descent, [16][17][18]. As these two significant effects intersect to produce models66

that overfit to overrepresented populations, it is vital that neural-network models be care-67
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fully investigated to determine the extent to which there is bias in the training dataset, and68

if it exists, the extent to which this bias affects the model predictions.69

To determine the impact of training dataset bias on NetMHCpan’s predictions, we exam-70

ined the geographic distribution of NetMHCpan’s training dataset and determined which71

populations are likely to have alleles not represented in NetMHCpan’s training dataset.72

We then measured the performance of NetMHCpan on alleles not present in its training73

dataset, and compared the performance to binding predictions for alleles present in its74

training dataset. To better understand these predictions, we created a map of HLA se-75

quence space to determine the diversity of the dataset at the sequence level. Finally, for76

each of three MHC molecules not in NetMHCpan’s training dataset, we determined the77

residues of that molecule that have disproportionate impact on NetMHCpan’s predictions.78

This paper presents a geographic imbalance in the HLA types present in NetMHCpan’s79

training data, yet fails to find a significant drop in the accuracy of the network’s peptide80

binding predictions for alleles not present in the training data compared to the accuracy of81

the models’ prediction on alleles present in the training dataset. Furthermore, the results82

suggest two possible explanations for this finding. First, while the model may be lacking83

in geographic diversity, the alleles represented in the training dataset cover a large range84

of HLA sequences. Second, the model gives attention to residues structurally involved in85

peptide-MHC complexes for novel alleles.86

2 Materials and Methods87

2.1 MHC Allele Population Demographics88

Data on HLA allele population frequencies were downloaded from the National Marrow89

Donor Program (NMDP) [19]. The dataset contains HLA-A/B/C/DRB1 population fre-90

quencies from n =6.59 million subjects from 21 self-reported racial groups, which are91

combined into six larger ethnicity categories, given in Supplementary Table S1. Because92

NetMHCpan uses a motif deconvolution algorithm for training, there exist data points in93

the eluted ligand dataset where a peptide corresponds to multiple MHC alleles [11]. In this94

case, we conservatively counted an allele as present in the training dataset if there is at least95

one positive example of a peptide binding to the associated cell line.96

2.2 Evaluating NetMHCpan Performance97

2.2.1 Evaluation Datasets98

In order to evaluate the performance of NetMHCpan, we used a dataset from Sarkizova99

et. al. [20]. The dataset consists of eluted ligand (EL) data for 31 HLA-A alleles, 40100

HLA-B alleles, and 21 HLA-C alleles, with a median of 1,860 peptides per allele, generated101
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by cell lines engineered to express only one HLA type. We excluded HLA-B alleles, as102

all forty of the HLA-B alleles had some presence in the NetMHCpan training data. We103

filtered the remaining peptides to only include 9-mers, and removed any 9-mers included in104

NetMHCpan’s training data from the evaluation set. Of these alleles, 7 (A*24:07, A*34:01,105

A*34:02, A*36:01, C*03:02, C*04:03, and C*14:03) have no representation in NetMHCpan’s106

training data (binding affinity or eluted ligand).107

As no similar dataset exists for MHC class II, we created an evaluation set by download-108

ing peptides from IEDB [21]. For each allele, the filters used were “Include Positive Assays”,109

“No T cell assays”, “No B cell assays”, and “MHC Restriction Type: [allele] protein com-110

plex.” To choose DRB1 alleles of interest, we selected alleles for which NetMHCIIpan-4.0111

had eluted ligand data from a cell line engineered to express only one HLA-DRB1 allele. To112

obtain data for HLA-DRB1*12:02, we use a eluted ligand dataset from cell line C1R express-113

ing HLA-DR12/DQ7/DP4 [22]. Because the cell line expressed both HLA-DRB1*12:02 and114

HLA-DRB3*02:02:01, Gibbs Cluster was used to separate the two groups [23] (Supplemen-115

tary Figure S1). The group belonging to DRB1*12:02 was identified by the absence of F at116

P1, the absence of N at P4, and the presence of Y/F at P9.117

To provide negative controls for both MHC class I and II, the real peptides were combined118

with randomly generated peptides so that the ground truth peptides made up 1% of the119

final evaluation set. For the MHC class II dataset, the length distribution of the randomly120

generated peptides was fixed to be equal to the length distribution of the ground truth121

peptides. Peptides were generated by choosing each amino acid at random with frequencies122

corresponding to amino acid frequencies in the human proteome.123

2.2.2 Log Rank Predictions, Motif Entropy Correction, and AUC124

As a result of the above preprocessing steps, we obtained a dataset for 31 HLA-A alleles,125

21 HLA-C alleles, and 11 HLA-DRB1 alleles, each dataset being made up of 1% pep-126

tides experimentally verified to bind to the HLA allele in eluted ligand assays, and 99%127

randomly generated peptides (to serve as a control). Random peptides are generated by128

randomly sampling amino acids using all organism amino acid frequencies [24]. Testing the129

methods with randomly generated peptides sampled directly from the human proteome did130

not significantly change the results (Supplementary Figure S2). For each allele, we used131

NetMHCpan-4.1 or NetMHCIIpan-4.0 to generate an eluted ligand score for each peptide132

in the training dataset, and ranked all peptides by their EL scores. We then measured133

performance based on the distribution of log ranks for the experimentally verified peptides.134

For example, if the model is a perfect predictor, all real peptides will have a log10 rank135

below -2, and if the model is a random predictor, 90% of real peptides will have a log10 rank136

between 0 and -1.137

To correct for any discrepancies in difficulty predicting ligands based on selectivity of138
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the MHC binding motif, we calculated the Shannon entropy of the binding motif for each139

allele as −
∑

a pa log2(pa), where pa is the frequency of amino acid a in the allele-specific140

experimentally verified binding peptides. We then performed a linear regression for the log-141

rank against the entropy, shown in Supplementary Figures S3 and S4. For both MHC class142

I and class II, we found alleles with lower entropy (more predictable) motifs were associated143

with better predictions, as expected. Therefore, we created a correction factor for each allele144

measuring the expected difference in predictions compared to the mean, and subtracted that145

from the distributions to be able to compare alleles with different binding motif entropies.146

Additionally, because MHC class II proteins bind a core motif that can contain additional147

amino acids on the ends that do not affect the binding prediction, we encountered cases in148

the MHC class II dataset where multiple versions of a peptide contained the same core149

seqeunce, with minor discrepancies at the start and end of the peptide. Therefore, in this150

case, we chose to weight the MHC class II peptides based on NetMHCIIpan-4.0’s reported151

binding core, such that each core was weighted equally.152

To determine a 95% confidence interval for the difference between the median of the153

ranks of the alleles with and without training data, a bootstrap procedure was used. Data154

were sampled with replacement for a number of times equal to the size of the data, and the155

difference between the medians of the bootstrap samples was calculated. This was repeated156

106 times, and the 0.025 and 0.975 quantiles were reported as the 95% confidence interval.157

Finally, we calculate AUC as the area under the ROC (TPR-FPR) curve. The true158

positive rate (TPR) is defined by TPR = TP/(TP + FN), and the false positive rate159

(FPR) is defined by FPR = FP/(FP + TN). True positives are defined as experimentally160

verified peptides with a score greater than a given cutoff, and false positives as randomly161

generated peptides with a score greater than a given cutoff. True negatives are defined as162

as randomly generated peptides with a score less than a give cutoff, and false negatives as163

experimentally verified peptides with a score less than a given cutoff.164

2.3 MDS of HLA Alleles165

Using the NMDP frequency database, HLA-A, B, C, and DRB1 alleles with a frequency166

greater than 0.01% in any population were selected (n = 135 HLA-A, n = 258 HLA-B,167

n = 66 HLA-C, n = 118 HLA-DRB1). The IPD-IMGT/HLA alignment tool was used to168

create an alignment of the selected HLA full protein sequences [25]. In cases where large169

gaps occurred at the beginning or end of the alignment, gaps were filled with the most com-170

mon amino acid occurring at that residue. Similarity between sequences was measured by171

summing the values of the PAM100 matrix for each pair of amino acids in the two sequences172

[26]. Distance was then measured as the difference between the maximum similarity and the173

computed similarity, normalized so that the maximum distance was reported. Scikit-learn’s174

MDS algorithm with default parameters was used to compute the MDS [27][28].175
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2.4 NetMHCpan Residue Substitution Sensitivity176

Here, we describe a technique similar to the occlusion sensitivity technique common in the177

field of computer vision. We chose the alleles HLA-A*34:01, HLA-C*04:04. and HLA-178

DRB1*12:02 for the following experiments, as NetMHCpan performed the poorest on these179

three alleles. For each allele, we used NetMHCpan to predict the eluted ligand score for180

all the experimentally verified peptides, using an unmodified version of the MHC sequence.181

Next, for residues 1-205 (29-125 for DRB1*12:02), we asked NetMHCpan to predict the182

eluted ligand score for all experimentally verified peptides, using a version of the MHC183

sequence where for each residue, each of the other 19 amino acids was substituted. From this,184

we took the 5 amino acids for which NetMHCpan predicted the lowest scores, and calculated185

the mean difference between EL scores for the mutated and unmutated predictions, as to186

investigate the effect of replacing residues with dissimilar amino acids. Repeating this187

for every residue, we then obtained a metric for the relative importance of the residue to188

NetMHCpan’s predictions. HLA tertiary structures were generated using PANDORA and189

visualized using PyMOL [4], [29].190

2.5 Software Versions191

The following software versions were used: NetMHCpan (4.1), NetMHCIIpan (4.0), PAN-192

DORA (2.0), GibbsCluster (2.0), PyMol (2.6.0a0), sklearn (1.3.0). For any software that193

had options for a web-based and local version, a local version was always used.194

3 Results195

3.1 Common European Caucasian HLA Types are Overrepresented196

in NetMHCpan Training Data197

As neural network prediction biases are often enforced by disparities in the amount of model198

training data, we first investigate NetMHCpan’s training dataset to determine whether the199

data is representative of the global population. To do this, we used allele distribution data200

from the National Marrow Donor Project (NMDP) [19]. Codes for population groups can be201

found in Supplementary Table S1. For each population, we calculated the fraction of people202

who have at least one HLA-A/B/C/DRB1 allele for which there is no data in NetMHCpan’s203

training set.204

There exists a substantial disparity between the most and least represented populations205

in NetMHCpan’s training dataset. European Caucasian individuals are most likely to see206

their genotypes represented in the training set, while Southeast Asian, Pacific Islander,207

South Asian, and East Asian individuals are least likely to have genotypes represented in208
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the training set (Figure 1). Using the NMDP categories, only 0.4%/0.9%/0.6%/2.6% of Eu-209

ropean Caucasian individuals have an HLA-A/B/C/DRB1 allele not found in NetMHCpan’s210

training data, while 5.1%/27.7%/12.1%/33.6% of Vietnamese individuals and 30.1%/39.3%/10.8%/16.1%211

of Filipino individuals have an HLA-A/B/C/DRB1 allele not found in NetMHCpan’s train-212

ing data.213

These disparities are not likely to have arisen by chance alone, given the fractions of the214

populations for which no data exists are correlated between HLA groups (Supplementary215

Table S2). For all pairs of groups there exists a positive correlation, with the strongest216

correlation between HLA-A and HLA-B (0.750) and the weakest correlation between HLA-A217

and HLA-DRB1 (0.238). Because the disparities are found in all four HLA groups examined218

and are correlated with each other, this suggests a common systemic factor driving the219

extreme imbalance of the training dataset.220

3.2 NetMHCpan-4.1 and NetMHCIIpan-4.0 Accurately Predict Pep-221

tide Binding to Novel Alleles222

Because there exists such a vast disparity in the representation of populations in NetMHC-223

pan’s training data, we hypothesized NetMHCpan is overfitting to the training set, making224

the model unable to make accurate predictions for peptides binding to novel MHC proteins.225

Therefore, we investigated whether there is a decrease in prediction quality for HLA se-226

quences not found in the training data. To do this, we performed an experiment in which227

NetMHCpan was tasked to predict eluted ligand binding scores for a dataset consisting of228

1% peptides experimentally verified to bind to their corresponding MHC proteins and 99%229

randomly generated peptides, as has been commonly used in the literature [30]. We then230

measured the rank of the predictions for the experimentally verified peptides, which we use231

as our metric for the accuracy of the predictions (after a correction for motif binding entropy232

described in the Methods section), as well as the area under the ROC curve for each set of233

predictions (AUC).234

We ran the MHC class I peptide experiment on a large HLA class I eluted ligand dataset235

[20]. In the dataset are n = 39617 peptides for 27 HLA-A and 18 HLA-C alleles with236

training data in NetMHCpan-4.1’s training set, and n = 8652 peptides for 4 HLA-A alleles237

and 3 HLA-C alleles without data in NetMHCpan-4.1’s training set. All together, these238

novel alleles represent up to 28.8% of HLA-A alleles, and up to 11.7% of HLA-C alleles for239

some populations (Supplementary Figure S5). Because there are no HLA-B alleles present240

in the dataset but absent from NetMHCpan-4.1’s training set, we omit HLA-B from this241

analysis.242

NetMHCpan-4.1 accurately recalls experimentally validated peptides from a training243

dataset containing validated peptides and randomly generated peptides for these 7 alleles.244

For both HLA-A and HLA-C, the allele for which NetMHCpan-4.1 best recalled experimen-245
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tally validated peptides was an allele for which NetMHCpan-4.1 had no data in its training246

set (A*24:07 and C*14:03) (Figure 2). Overall, the predictions of binding peptides for the247

alleles for which NetMHCpan-4.1 has no training data slightly outperform the predictions248

for alleles for which it does have data (Supplementary Figure S6), with a 95% bootstrap249

confidence interval for the difference in the medians of the two sets being (0.037, 0.063)250

(Supplementary Figure S7). On average, NetMHCpan-4.1 ranks experimentally verified251

peptides for alleles for which data does not exist 1.12 times higher than it ranks peptides252

which correspond to alleles in its training dataset. In summary, we fail to find evidence that253

the imbalance in the training dataset leads a decrease in the quality of NetMHCpan-4.1254

predictions for novel alleles.255

In the case of MHC class II predictions, we focus exclusively on DRB1 because HLA-256

DR is the only MHC class II protein to vary only in the beta chain, which simplifies the257

testing process, as we do not have to test combinations of alleles. While a comprehensive258

eluted ligand dataset exists for the MHC class I peptidome, no analogous dataset exists259

for HLA-DRB1. Therefore, we used IEDB to gather data for alleles which were present260

in NetMHCIIpan-4.0’s training data, and data from a recent C1R cell line eluted ligand261

study for peptides binding to DRB1*12:02, an allele not represented in NetMHCIIpan-4.0’s262

training set [21][22]. All together, we have n = 45286 peptides from 10 alleles with training263

data in NetMHCIIpan-4.0, and n = 32402 peptides from allele DRB1*12:02.264

In contrast to NetMHCpan-4.1, the predictions generated by NetMHCIIpan-4.0 for pep-265

tides corresponding to alleles for which it has no data are slightly worse than average,266

when measured by median log-rank (Supplementary Figure S6). However, when measured267

by AUC, DRB1*!2:02 ranks around average, greater than 6 alleles and less than 4 alle-268

les. A 95% bootstrap confidence interval for the difference in the medians between pep-269

tides corresponding to alleles with and without data in NetMHCIIpan-4.0’s training set is270

(-0.260, -0.232), with NetMHCIIpan-4.0 on average ranking experimentally validated pep-271

tides 1.8 times lower for the DRB1*12:02 allele (Supplementary Figure S7). However, while272

NetMHCIIpan-4.0 makes statistically significantly worse predictions for DRB1*12:02 than273

for the other alleles, the discrepancy between the median log rank of the best performing274

allele (DRB1*15:01) and the median log rank of DRB1*12:02 is less than half the interquar-275

tile range of the log-ranks of predictions for DRB1*12:02, suggesting the the difference in276

prediction quality is relatively minor compared to the variability in predictions for a given277

allele. Furthermore, there exists an allele with data in NetMHCIIpan-4.0’s training dataset,278

DRB1*04:04, for which NetMHCIIpan-4.0 is less accurate at distinguishing real peptides279

than for DRB1*12:02.280

While problems of skewed datasets have affected quality of numerous other machine281

learning based predictions algorithms, we find no evidence this is true of NetMHCpan. By282

testing the ability of NetMHCpan to recall experimentally verified binding peptides to alleles283
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for which the algorithm has no training data, we fail to conclude there exists a meaningful284

difference between alleles for which NetMHCpan has training data, and those for which it285

does not.286

3.3 NetMHCpan Training Data Covers a Large Subset of HLA287

Allele Space288

As a lack of diversity in training data often leads machine learning models to overfit to their289

training set, we seek to understand why this does not appear to be true for NetMHCpan.290

Therefore, we visualize the training dataset by measuring sequence similarity between HLA291

alleles with frequency greater than 0.01% in any population, and use these computed simi-292

larities to perform multidimensional scaling (MDS) in order to visualize the sequence space293

as a two-dimensional map [28].294

For all four HLA types measured, alleles tend to organize into clusters, a majority which295

contain at least one allele with data in NetMHCpan’s training dataset (Figure 4a). This296

suggests that while NetMHCpan may be missing data for many alleles common in non-297

European populations, the alleles for which it has data are sufficiently similar to the missing298

alleles as to allow the model to make reasonable inference about the biochemical properties299

of alleles without data.300

Furthermore, measuring pairwise distances between all alleles provides context for the301

performance of NetMHCpan on novel alleles reported above. While a sample size of n =302

8 is not large enough to provide numerical estimates with any sort of power, the data303

qualitatively indicate a potential positive correlation between distance to the nearest allele304

and performance (Supplementary Figure S8). To measure the extent to which an allele is305

novel, we calculate the distance to the nearest allele in the training data for each allele306

not in NetMHCpan’s training data (4b). Of the eight alleles tested, seven are further from307

the nearest allele present in training data than a majority of the untested alleles, with the308

exception being C*14:03 (Supplementary Table S3). Therefore, while the choices of which309

alleles without training data to test were driven by data availability, we demonstrate the310

alleles tested are less similar to the training data than other HLA alleles. Thus, the accuracy311

of NetMHCpan’s predictions for these alleles is not driven by greater than average similarity312

of these alleles to alleles found in the training dataset.313

3.4 NetMHCpan Correctly Identifies MHC Residues Involved in314

Peptide Binding315

Finally, we aim to understand the extent to which NetMHCpan identifies residues struc-316

turally involved in peptide binding. As NetMHCpan allows for direct input of an MHC317

protein sequence, we perform an experiment in which we mutate each residue of a given318
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HLA sequence individually, and measure how much NetMHCpan’s EL scores for experi-319

mentally verified peptides change compared to the unmodified sequence. We focus on three320

case studies, HLA-A*34:01, HLA-C*04:03, and HLA-DRB1*12:02, as these alleles constitute321

the worst-performing allele for each HLA type.322

In each case, the MHC residues which have the greatest impact on NetMHCpan’s predic-323

tion are all residues that make physical contact with the peptide (Figure 5, Supplementary324

Tables S4-S6). This suggests that the accuracy of NetMHCpan’s predictions on novel alle-325

les is partly driven by its ability to selectively pay attention to residues involved with the326

physical process of binding. Of special interest is the observation that many residues which327

affect the predictions for peptides binding to DRB1*12:02 are residues previously identi-328

fied to determine the binding motif of DR12, namely, 13G, 57V, 70D, 71R, 74A, and 86V329

[22]. Therefore, we conclude NetMHCpan implicitly learns the MHC residues structurally330

involved in binding, and its ability to generalize these findings to novel alleles increases its331

prediction accuracy.332

4 Discussion333

We report NetMHCpan fails to include a geographically diverse set of HLA alleles in its334

training data. We find individuals from underrepresented populations, predominantly from335

Asia, are twenty times more likely to carry HLA alleles not present in NetMHCpan’s train-336

ing data. Furthermore, we observe correlation between population representation between337

all four alleles measured, suggesting that the dataset bias is a result of systemic underrep-338

resentation of minority groups in the NetMHCpan training dataset.339

Numerous previous examples of training dataset racial bias affecting machine learning340

model predictions led us to hypothesize NetMHCpan would make less accurate predictions341

on alleles which were not present in its training dataset [13][14][15]. Furthermore, previous342

work showed NetMHCpan is subject to systemic biases regarding hydrophobicity, suggesting343

that other biases may be lurking [12]. Unexpectedly, we fail to find evidence that there is a344

substantial difference in the ability of NetMHCpan to discriminate experimentally verified345

binding peptides from randomly generated peptides. Instead, we observe a slight increase346

in the prediction ability for MHC class I alleles with no data present in the training set, and347

only a slight decrease for MHC class II alleles. While both effects are statistically significant,348

we allege neither is large enough to have a substantial effect on prediction quality.349

To explain this unexpected result, we characterize the sequence space of common HLA350

alleles. While NetMHCpan’s training dataset fails to include many alleles common in un-351

derrepresented populations, we show that the alleles for which training data exist are well-352

distributed throughout sequence space. We thus hypothesize that MHC sequence diversity353

in the training dataset partially explains the failure to observe a drop in prediction quality.354
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Furthermore, we establish a connection between the residues that impact NetMHCpan’s355

predictions and the residues that physically contact the peptide for three HLA alleles not356

present in NetMHCpan’s training data.357

The discrepancies in the diversity of HLA eluted ligand datasets that compelled this358

study also constitute a major limitation, as only eight novel HLA alleles were tested, with359

no novel HLA-B alleles. Furthermore, our study design was limited to only testing one360

allele at a time, and so we did not investigate complex effects that could be associated with361

linkage disequilibrium in MHC class II molecules formed by two interacting chains, including362

HLA-DQ and HLA-DP [31]. We only tested the ability of NetMHCpan to distinguish363

experimentally verified peptides from randomly generated peptides, and did not perform364

any experiments to characterize the model’s ability to predict binding affinity. Finally,365

NetMHCpan is closed source, and so we were unable to view the internal network structure,366

needing to rely on an occlusion sensitivity-like metric to determine how the network makes367

predictions.368

We present evidence of a strong bias in NetMHCpan’s training dataset toward Euro-369

pean Caucasian individuals. While we fail to find evidence this bias affects the accuracy370

of NetMHCpan’s predictions, the bias in the training dataset highlights the need for MHC371

eluted ligand datasets that contain data for alleles for underrepresented populations. Fur-372

thermore, given the outsized impact of NetMHCpan on the training data generated for other373

MHC binding prediction tools, future work must investigate the composition of training374

datasets and potential bias in other tools [32]. Finally, we recommend all tools that utilize a375

dataset involving HLA alleles as part of their pipeline clearly report the composition of any376

datasets they utilize for training, and perform additional testing in the presence of biased377

training data to ensure model predictions do not substantially decline for underrepresented378

groups.379
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Figure 1: NetMHCpan training data fails to cover common HLA alleles: Pro-
portion of populations (as defined by the National Marrow Donor Program) that have
at least one HLA class A, B, C, or DRB1 allele with no data in the NetMHCpan-4.1 or
NetMHCIIpan-4.0 training datasets.
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Figure 2: Evaluating NetMHCpan-4.1 performance on novel alleles: NetMHCpan-
4.1 was tasked with separating peptides identified as true binders using LC-MS/MS (from
Sarkizova et. al.) from randomly generated peptides for 52 HLA class I alleles. (A) Alleles
with training data in NetMHCpan-4.1’s training dataset are shown in blue, alleles without
are shown in pink. Performance is measured by the distribution of log ranks of the true
peptides, corrected for entropy of the allele binding motif (lower is better). (B) Area under
the ROC curve (AUC) for each allele.
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Figure 3: Evaluating NetMHCIIpan-4.0 performance on novel alleles:
NetMHCIIpan-4.0 was tasked with separating peptides identified as true binders using LC-
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Figure 4: Visualizing the training space of NetMHCpan: (A) MDS plot of HLA
alleles, with smaller distances corresponding to greater sequence similarity. Alleles included
in NetMHCpan’s training data are marked with pink triangles, alleles tested in Figures 2
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population (log scale). (B) Histogram of distance to closest allele to data in NetMHCpan’s
training set for all alleles without training data. Alleles previously tested are shown with
vertical dashed blue lines.

Figure 5: Impact of substituting residues on NetMHCpan predictions for HLA
alleles of interest: Structure of (A) HLA-A*34:01 (B) HLA-C*04:03 and (C) HLA-
DRB1*12:02. Residues are colored by impact of substitution on NetMHCpan predictions.
Yellow resides indicate a large change to NetMHCpan predictions when replaced, purple
resides indicate a small change. Sidechains are shown for residues of interest
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