Deterministic Methods for Stochastic Computing using Low-Discrepancy Sequences

M. Hassan Najafi, David Lilja, and Marc Riedel

najafi@louisiana.edu

ICCAD 2018, San Diego, CA

UNIVERSITY OF MINNESOTA Driven to Discover*

Overview

Introduction to SC

- Advantages, weaknesses
- Stochastic bitstream generation

Deterministic Approaches to SC

- Relatively prime length, clock division, Rotation
- From unary-streams to pseudo-random streams

Low-discrepancy sequences

Sobol sequences

Proposed LD deterministic methods

• Method 1, Method 2, Proposed structures

Evaluation

- Accuracy evaluation, Scalability evaluation
- Conclusion

Introduction

Stochastic computing (SC)

- An **approximate** computing approach for many years
- Logical computation on **random** bit-streams
- All digits have the same weight, numbers limited to the [0, 1]
- Value: probability of obtaining a one versus a zero

e.g. 101010, 1011011100 -> 0.6

Advantages

- Noise tolerance e.g., 0010000011000000 3/16 -> 4/16
- Low hardware cost
- Skew tolerance [Najafi et al, TC'17]
- Progressive precision [Alaghi et al, DAC'13]

Weaknesses

- Random fluctuation: inaccuracy of computation
- Long processing time -> high energy consumption

e.g., multiplication using an AND gate

Introduction

- Stochastic computing (SC)
 - Common operations such as multiplication (using AND gate) or Scaled addition (using multiplexer) require independent inputs
 - Conventionally independence is provided by randomness

 Converting input data in binary domain into random bitstreams using random or pseudorandom constructs: e.g. LFSR

Introduction

- Deterministic approaches to SC
 - Recent progress in SC has revolutionized the paradigm [Najafi et al. TVLSI'17] [Jenson and Riedel ICCAD'16]
 - If properly structured, random fluctuation can be removed
 - Producing deterministic and completely accurate results
 - Improving the processing time and hardware cost
 - compared to conventional random-based stochastic for high accuracy
 - Logical computation is performed on **unary bit-streams** 111110000 -> 0.6
 - Independence between the input unary streams is provided by three approaches:
 - 1) Rel. prime stream length 2) clock division 3) rotation

• Example. Rel. prime length method with unary bit-streams

 $\begin{array}{c} a_0 \, a_1 \, a_2 \, a_3 \, a_0 \, a_1 \, a_2 \, a_3 \, a_0 \, a_1 \, a_2 \, a_3 \\ b_0 \, b_1 \, b_2 \, b_0 \, b_1 \, b_2 \, b_0 \, b_1 \, b_2 \, b_0 \, b_1 \, b_2 \end{array}$

[Jenson and Riedel, ICCAD'16]

 $\frac{1/3}{3/4} = 100100100100$ $\frac{3/4}{3/12} = 100000100100$

• Example. Clock division method with unary bit-streams

 $a_0 a_1 a_2 a_3 a_0 a_1 a_2 a_3 a_0 a_1 a_2 a_3 a_0 a_1 a_2 a_3 a_0 a_1 a_2 a_3$ $b_0 b_0 b_0 b_0 b_1 b_1 b_1 b_1 b_2 b_2 b_2 b_2 b_2 b_3 b_3 b_3 b_3 b_3$ $\frac{1/4}{3/4} = 1000 \ 1000 \ 1000 \ 1000 \ 3/4 = 1111 \ 1111 \ 1111 \ 0000 \ 3/16 = 1000 \ 1000 \ 1000 \ 0000$

• Example. Rotation method with unary bit-streams

 $a_0 a_1 a_2 a_3 a_0 a_1 a_2 a_3 a_0 a_1 a_2 a_3 a_0 a_1 a_2 a_3 a_0 a_1 a_2 a_3$ $b_0 b_1 b_2 b_3 b_3 b_0 b_1 b_2 b_2 b_3 b_0 b_1 b_1 b_2 b_3 b_0$ $\frac{1}{4} = 1000 \ 1000 \ 1000 \ 1000$ $\frac{3}{4} = 1110 \ 0111 \ 1011 \ 1101$ $\frac{3}{16} = 1000 \ 0000 \ 1000 \ 1000$

Deterministic Approaches to SC

- Important challenge with unary stream-based deterministic approaches
 - Poor progressive precision
 - Running the operation for fewer cycles leads to a poor result

MAE of multiplying two 8-bit precision input values

2^16 cycles:

completely accurate with deter. **2^15 cycles:**

a MAE of 3.12% for deter. rotation

a MAE of **7.98%** for deter. clk div.

a MAE of **0.11%** for prior random

2^10 cycles:

a MAE of **12.3%** for deter. rotation a MAE of **24.4%** for deter. clk div. a MAE of **0.89%** for prior random

Much longer processing time than random SC when slightly inaccuracy is acceptable

Energy in-efficient for many applications

Deterministic Approaches to SC

- Essential property of three prior deterministic methods
 - Every bit of one bitstream pairs with every bit of the other **exactly once**
- This property applies regardless of the distribution of the 1's and 0's in the bit streams
 - The bit streams can in fact be randomized [Najafi and Lilja, ICCD'17]
 - Maximal period pseudo-random sources can be used to generate the bit-streams accurately
 - The **period** should be equal to the **length** of bit-stream

 Unary bit-stream:
 111111100000000:
 8/16

 Pseudo-randomized bit-stream:
 1000110100010111:
 8/16

• Example. Rel. prime length method with pseudo-randomized bit-streams

 $\frac{1/3}{3/4} = 100100100100$ $\frac{3/4}{3/12} = 1001001000000$

• Example. Clock division method with pseudo-randomized bit-streams

• Example. Rotation method with pseudo-randomized bit-streams

 $a_0 a_3 a_1 a_2 a_0 a_3 a_1 a_2 a_0 a_3 a_1 a_2 a_0 a_3 a_1 a_2 a_0 a_3 a_1 a_2$ $b_1 b_0 b_3 b_2 b_2 b_1 b_0 b_3 b_3 b_2 b_1 b_0 b_0 b_3 b_2 b_1$ $\frac{1/4}{3/4} = \frac{0100}{100} \frac{0100}{0100} \frac{0100}{0100} \frac{0100}{0111} \frac{0100}{1011} \frac{0100}{0100} \frac{0100}{0000}$

Low-Discrepancy Sequences

- Low discrepancy (LD) sequences such as Sobol have been used in improving the speed of computation on stochastic bit-streams.
 - 1s and 0s in the bit-streams are uniformly spaced
 - So removing random fluctuations.
 - Bit-streams can quickly converge to the target value.
 - Acceptable results in a much shorter time

Sobol Sequence Generator [Liu and Han, DATE'17]

- The first 2ⁿ numbers in any Sobol sequence can precisely present all possible n-bit precision numbers in the [0, 1] interval
- e.g., simplest Sobol Seq:

- Directly uses LD Sobol sequences
 - The method is independent of prior deterministic methods (e.g., rotation, clk div)
- Independence between the input bit-streams is guaranteed by
 - Using different Sobol sequences in generating the bitstreams
- The precision of the seq. generator should be *i* times the precision of the input data
 - i = number of input data
- Convert each input data to a stream of 2^{i.n} bits
 - Comparing the input value to 2^{*i.n*} different Sobol numbers
- Deterministic accurate output is ready after 2^{*i.n*} cycles
 - The product of the length of the bit-streams

Sobol Seq 1	0	1/2	1/4	3/4	1/8	5/8	3/8	7/8	1/16	9/16	5/16	13/16	3/16	11/16	7/16	15/16
Sobol Seq 2	0	1/2	3/4	1/4	5/8	1/8	3/8	7/8	15/16	7/16	3/16	11/16	5/16	13/16	9/16	1/16

• Example. Deterministic 2-bit precision multiplication: 1/4 x 3/4

In converting to bitstream	$1/4 = 1000 \ 1000 \ 1000 \ 1000$
a '1' is generated if	3/4 = 1101 1110 0111 1011
Sobol number < target value	$3/16 = 1000 \ 1000 \ 0000 \ 1000$

- Two important properties of the Sobol sequences:
 - The first 2^n numbers of any Sobol sequence include all *n*-bit precision values in [0, 1) interval.
 - If equally split [0, 1) interval into 2^n sub-intervals, in any consecutive group of 2^n Sobol numbers starting at positions $i \times 2^n$ (i = 0,1,2, . .) there is exactly one member in each sub-interval

- We categorize consecutive groups of 2² numbers in the first four Sobol seq.
- Each Sobol number is **labeled** depending on its **sub-interval**

Sobol Seq 1	0	1/2	1/4	3/4	1/8	5/8	3/8	7/8	1/16	9/16	5/16	13/16	3/16	11/16	7/16	15/16
	a_0	<i>a</i> ₂	<i>a</i> ₁	a_3	a_0	a_2	<i>a</i> ₁	a_3	a_0	<i>a</i> ₂	<i>a</i> ₁	<i>a</i> ₃	a_0	a_2	<i>a</i> ₁	a_3
Sobol Seq 2	0	1/2	3/4	1/4	5/8	1/8	3/8	7/8	15/16	7/16	3/16	11/16	5/16	13/16	9/16	1/16
	b 0	b ₂	b ₃	b ₁	b ₂	b ₀	b ₁	b ₃	b ₃	b ₁	b 0	b ₂	b ₁	b ₃	b ₂	b_0
Sobol Seq 3	0	1/2	1/4	3/4	7/8	3/8	5/8	1/8	11/16	3/16	15/16	7/16	5/16	13/16	1/16	9/16
	c_0	<i>c</i> ₂	<i>c</i> ₁	<i>c</i> ₃	<i>c</i> ₃	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₀	<i>c</i> ₂	<i>c</i> ₀	<i>c</i> ₃	<i>c</i> ₁	<i>c</i> ₁	<i>c</i> ₃	<i>c</i> ₀	<i>c</i> ₂
Sobol Seq 4	0	1/2	3/4	1/4	7/8	3/8	1/8	5/8	7/16	15/16	11/16	3/16	9/16	1/16	5/16	13/16
	d_0	d_2	d_3	d_1	d_3	<i>d</i> ₁	d_0	d_2	<i>d</i> ₁	d_3	d_2	d_0	d_2	d_0	d_1	<i>d</i> ₃
			0		1/	4	1	/2	3	3/4		1				
			H	x_0)	x	1		<i>x</i> ₂	+	<i>x</i> ₃	-1				

- Each group of 2^n numbers includes all labels from 0 to $2^n 1$
- The difference is only in the order of labels

- The result of multiplying two bit-streams was deterministic and accurate if
 - Every bit of one bit-stream meets every bit of the other stream exactly once
- As shown in the figure, for any pair of two different Sobol sequences,

every label u (u=0,1,2,3) in $x_u(x = a, b, c, d)$ meets

every label t (t=0,1,2,3) in $y_t(y = a, b, c, d)$ exactly once.

So, the result of multiplication by ANDing the two bitstreams is deterministic and completely accurate.

- The argument can be extended to multiplication of *i n*-bit precision numbers
- The generated bitstreams can be divided into groups of 2ⁿ bits with different groups of a bitstream representing same n-bit precision

- Rotating LD Sobol sequences
 - The method depends on prior deterministic methods
- Independence between the input bit-streams is guaranteed by
 - Rotating the bit-streams by stalling on powers of the stream lengths
- The precision of the seq. generator is equal to the precision of the input data
 - In contrast to the first method that depends on the number of inputs *i*
- Convert each input data to a stream of 2^n bits and repeat
 - Comparing the input value to 2ⁿ different Sobol numbers
- Deterministic accurate output is ready after 2^{*i.n*} cycles
 - The product of the length of the bit-streams

Proposed Deter. Method 2

• Example. Deterministic 2-bit precision multiplication: 2/4 x 3/4

Sobol source 1 with a period of 2^2 and no rotation: 0, 1/2,1/4, 3/4 0,1/2,1/4,3/4, 0,1/2,1/4,3/4, 0,1/2,1/4,3/4 Sobol source 2 with a period of 2^2 and inhibiting after every 2^2 cycles: 0,1/2,3/4,1/4, 1/4,0,1/2,3/4, 3/4,1/4,0,1/2 1/2,3/4,1/4,0

> $2/4 = 1010 \ 1010 \ 1010 \ 1010$ $3/4 = 1101 \ 1110 \ 0111 \ 1011$ $6/16 = 1000 \ 1010 \ 0010 \ 1010$

• Structures of the sources of generating Sobol sequences for the proposed methods

• Structures of the sources of generating Sobol sequences for the proposed methods

• Exhaustively tested multiplication of two 8-bit precision input data in [0,1]

Design Approach	Area (μm^2)	2^{16}	2^{15}	2^{14}	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}
Conv. Approx. SC [5], [11]	781	0.05	0.15	0.26	0.39	0.58	0.79	1.20	1.67	2.32	3.32	4.72
Deter. Rotation Unary [6]	492	0.00	3.10	4.84	6.15	7.08	7.66	7.99	8.17	8.26	33.1	51.8
Deter. Rotation Pseudo-Random [9]	536	0.00	0.09	0.16	0.24	0.35	0.47	0.60	0.71	0.82	2.56	4.26
This work 1- Deter. Sobol	3361	0.00	0.0003	0.0013	0.0035	0.009	0.019	0.041	0.092	0.190	0.451	0.921
This work 2- Deter. Rotation Sobol	1277	0.00	0.0013	0.0033	0.0075	0.014	0.031	0.059	0.112	0.190	0.451	0.921

Mean Absolute Error (%) for different operation cycles

- Both proposed methods could produce **completely accurate results**
- A significantly lower MAE when truncating the streams
 - E.g., When running for 2¹⁵ cycles, a MAE
 - 100X lower than the MAE of the deter. pseudo-random rotation method
 - 3000X lower than the MAE of the deter. unary rotation approach

- An important challenge
 - Limited Scalability
 - Hardware cost significantly increases with the number of inputs

Hardware Area Cost (μm^2) of the Bitstream Generators (N=Input data precision, I=Number of inputs)

Design Approach	N=4	N=4	N=4	N=8	N=8	N=8
Design Approach	i=2	i=3	i=4	i=2	i=3	i=4
Conv. Approx. SC [5], [11]	397	821	1394	781	1622	2799
Deter. Rotation Unary [6]	224	342	459	492	754	1016
Deter. Rotation Pseudo [9]	262	411	560	536	832	1127
This work 1- Deter. Sobol	1005	3740	9127	3361	13193	32406
This work 2- Deter. Rotation Sobol	456	806	1156	1277	2324	3371

	Converging Speed	Hardware Cost	Cost increase from I=2 to I=4
Rotation Unary	Very Slow	Lowest	Lowest increase rate (2X)
Prop. Method 1	Very Fast	Highest	Highest increase rate (9X)
Prop. Method 2	Very Fast	Medium	Low increase rate (2.5X)

Deterministic Methods for Stochastic Computing using Low-Discrepancy Sequences

Scalability Evaluation

• Mean Absolute Error (%) of the implemented **4-bit precision** multipliers

Blue = First method Red = Second method

 The computation accuracy of the proposed methods scales with increasing the number of inputs

Scalability Evaluation

• Mean Absolute Error (%) of the implemented **8-bit precision** multipliers

• We achieved the best accuracy performance by using the two proposed methods

Scalability Evaluation

• Area x Delay of the implemented **8-bit precision** multipliers for different MAEs

• The second proposed method (red lines) has the lowest area delay product

Summary

- Two main challenges with the recently developed deterministic methods of processing bitstreams
 - Poor progressive precision
 - Limited scalability
- We proposed two fast-converging scalable deterministic approaches for processing bitstreams based on LD sequences
 - First method: best accuracy for a fixed processing time
 - Second method: lowest area x delay product
- Both methods can produce **completely accurate results**
- A higher hardware area cost than prior methods, but a significantly better progressive precision makes them a better choice for applications that can tolerate slight inaccuracy
 - e.g., image processing, neural networks

Questions?

M. Hassan Najafi najafi@louisiana.edu

25 / 25

Deterministic Methods for Stochastic Computing using Low-Discrepancy Sequences

ICCAD 2018