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1 Introduction

Humans are accustomed to counting in a positional number system – decimal radix. Nearly all computer
systems operate on another positional number system – binary radix. From the standpoint of representation,
such positional systems are compact: given a radix b, one can represent bn distinct numbers with n digits.
Each choice of the digits di ∈ {0, . . . , b−1}, i = 0, . . . , n−1, results in a different number N in [0, . . . , bn−1]:

N =
n−1∑
i=0

bidi.

However, from the standpoint of computation, positional systems impose a burden: for each operation such as
addition or multiplication, the signal must be “decoded,” with each digit weighted according to its position.
The result must be “re-encoded” back in positional form. Any student who has designed a binary multiplier
in a course on logic design can appreciate all the complexity that goes into wiring up such an operation.
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Figure 1: Stochastic representation: (a) A stochastic bit
stream; (b) A stochastic wire bundle. A real value x in
the unit interval [0, 1] is represented as a bit stream or a
bundle. For each bit in the bit stream or the bundle, the
probability that it is one is x.

Consider instead digital computation that is
based on a stochastic representation of data: each
real-valued number x (0 ≤ x ≤ 1) is represented by
a sequence of random bits, each of which has prob-
ability x of being one and probability 1 − x of be-
ing zero. These bits can either be serial streaming
on a single wire or in parallel on a bundle of wires.
When serially streaming, the signals are probabilis-
tic in time, as illustrated in Figure 1(a); when in
parallel, they are probabilistic in space, as illustrated
in Figure 1(b). Throughout this proposal, we frame
the discussion in terms of serial bit streams. How-
ever, our approach is equally applicable to parallel
wire bundles. Indeed, we have advocated this sort
of stochastic representation for technologies such as
nanowire crossbar arrays [27].

Consider the operation of multiplication implemented conventionally versus stochastically. Figure 2(a)
shows a conventional design for a 3-bit carry-save multiplier, operating on binary radix-encoded numbers. It
consists of 9 AND gates, 3 half adders and 3 full adders, for a total of perhaps 30 gates. Figure 2(b) shows a
stochastic multiplier: it consists of but a single AND gate. The inputs are two independent input stochastic
bit streams A and B. The number represented by the output stochastic bit stream C is

c = P (C = 1) = P (A = 1 and B = 1)
= P (A = 1)P (B = 1)
= a · b.

(1)

The probability of getting a one at the output, P (C = 1), is equal to the probability of simultaneously
getting ones at the inputs, namely, P (A = 1) times P (B = 1). So the AND gate multiplies the two values
represented by the stochastic bit streams. In the figure, with bit streams of length 8, the values have a
resolution of 1/8. Multiplication is simple and efficient in the stochastic representation precisely because the
representation is uniform; no decoding and no re-encoding are required to operate on the values.
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(a) Multiplication with a conventional representation:
a carry-save multiplier, operating on 3-bit binary radix en-
coded inputs A and B. Each full adder (FA) module can be
implemented with two XOR gates, two AND gates, and one
OR gate. Each half adder (HA) can be implemented with
one XOR gate and one AND gate.
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(b) Multiplication with a stochastic rep-
resentation: an AND gate. The inputs are
stochastic bit streams A and B and the out-
put is a stochastic bit stream C. Here, the
probability of A is 6/8 and that of B is 4/8.
The probability of C = 6/8× 4/8 = 3/8, as
expected.

Figure 2: Multiplication Operation: A × B = C. (a) A conventional implementation of multiplication.
(b) A stochastic implementation of multiplication.
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Figure 3: Scaled addition on stochastic bit streams,
with a multiplexer (MUX). Here the inputs are 1/8, 5/8,
and 2/8. The output is 2/8×1/8+(1−2/8)×5/8 = 4/8,
as expected.

Consider the operation of addition implemented
stochastically. It is not feasible to add two probabil-
ity values directly; this could result in a value greater
than one, which cannot be represented as a probability
value. However, we can perform scaled addition. Fig-
ure 3 shows a scaled adder operating on real numbers
in the stochastic representation. It consists of a mul-
tiplexer (MUX), a digital construct that selects one of
its two input values to be the output value, based on
a third “selecting” input value. For the multiplexer
shown in Figure 3, S is the selecting input. When
S = 1, the output C = A. Otherwise, when S = 0, the
output C = B. The Boolean function implemented by
the multiplexer is C = (A ∧ S) ∨ (B ∧ ¬S). With the
assumption that the three input stochastic bit streams
A, B, and S are independent, the number represented
by the output stochastic bit stream C is

c = P (C = 1)
= P (S = 1 and A = 1) + P (S = 0 and B = 1)
= P (S = 1)P (A = 1) + P (S = 0)P (B = 1)
= s · a + (1− s) · b.

(2)

Thus, with this stochastic representation, the computation performed by a multiplexer is the scaled addition
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of the two input values a and b, with a scaling factor of s for a and 1− s for b.
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Figure 4: An example of logical computation on stochastic
bit streams, implementing the arithmetic function y = x1x2 +
x3 − x1x2x3. We see that, with inputs x1 = 1/2, x2 = 1 and
x3 = 1/4, the output is 5/8, as expected.

Now consider the problem of designing dig-
ital circuits that operate on stochastic bit
streams. We focus on combinational circuits,
that is to say, memoryless digital circuits built
with logic gates such as AND, OR, and NOT.
For such circuits, suppose that we supply
stochastic bit streams as the inputs; we will ob-
serve stochastic bit streams at the outputs. Ac-
cordingly, combinational circuits can be viewed
as constructs that accept real-valued probabili-
ties as inputs and compute real-valued probabil-
ities as outputs.1 An illustration of such com-
putation is shown Figure 4. The circuit, consist-
ing of an AND gate and an OR gate, accepts
ones and zeros and produces ones and zeros, as
any digital circuit does. If we set the input bits
x1, x2 and x3 to be one randomly and indepen-
dently with specific probabilities, then we will get an output y that is one with a specific probability. For
instance, given input probabilities x1 = 1/2, x2 = 1 and x3 = 1/4, the circuit in Figure 4 produces an output
y with probability 5/8. The figure illustrates computations with bit lengths of 8.

Compared to a binary radix representation, a stochastic representation is not very compact. With M
bits, a binary radix representation can represent 2M distinct numbers. To represent real numbers with a
resolution of 2−M , i.e., numbers of the form a

2M for integers a between 0 and 2M , a stochastic representation
requires a stream of 2M bits. The two representations are at opposite ends of the spectrum: conventional
binary radix is a maximally compressed, positional encoding; a stochastic representation is an uncompressed,
uniform encoding.

2 Fault Tolerance

A stochastic representation, although not very compact, has an advantage over binary radix in terms
of error tolerance. Suppose that the environment is noisy: bit flips occur and these afflict all the bits with
equal probability. Compare the two representations for a fractional number of the form a

2M for integers
a between 0 and 2M . With a binary radix representation, in the worst case, the most significant bit gets
flipped, resulting in a change of 2M−1

2M = 1
2 . In contrast, with a stochastic representation, all the bits in a

stream of length 2M have equal weight. Thus, a single bit flip always results in a change of 1
2M , which is

small in comparison.
Figure 5 illustrates the fault tolerance that our approach provides. The circuit in Figure 5(a) is a

stochastic implementation while the circuit in Figure 5(b) is a conventional implementation. Both circuits
compute the function:

y = x1x2s + x3(1− s).

Consider the stochastic implementation. Suppose that the inputs are x1 = 4/8, x2 = 6/8, x3 = 7/8, and
s = 2/8. The corresponding bit streams are shown above the wires. Suppose that the environment is noisy
and bit flips occur at a rate of 10%; this will result in approximately three bit flips for the stream lengths
shown. A random choice of three bit flips is shown in the figure. The modified streams are shown below the
wires. With these bit flips, the output value changes but by a relatively small amount: from 6/8 to 5/8.

In contrast, Figure 5(b) shows a conventional implementation of the function with multiplication and
addition modules operating on a binary radix representation: the real numbers x1 = 4/8, x2 = 6/8, x3 = 7/8,
and s = 2/8 are encoded as (0.100)2, (0.110)2, (0.111)2, and (0.010)2, respectively. The correct result is
y = (0.110)2, which equals 6/8. In the same situation as above, with a 10% rate of bit flips, approximately

1Throughout the proposal, when we say “logical computation” or just “computation” on stochastic bit streams we
mean combinational logic operating on such bit streams. When we say “probability” without further qualification,
we mean the probability of obtaining a one.
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one bit will get flipped. Suppose that, unfortunately, this is the most significant bit of x3. As a result, x3

changes to (0.011)2 = 3/8 and the output y becomes (0.0112) = 3/8. This is a much larger error than we
expect with the stochastic implementation.
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(a) Stochastic implementation of the function y = x1x2s + x3(1− s).
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(b) Conventional implementation of the function y = x1x2s+x3(1− s),
using binary radix multiplier, adder and subtractor units.

Figure 5: A comparison of the fault tolerance of stochastic logic to that of conventional logic. The original
bit sequence is shown above each wire. A bit flip is indicated with a solid rectangle. The modified bit
sequence resulting from the bit flip is shown below each wire and indicated with a dotted rectangle.

With the stochastic representation, noise does not introduce more randomness. The bit streams are
random to begin with, biased to specific probability values. Rather, noise distorts the bias, producing
streams with different probabilities than intended. However, this change is small. With a bit flip rate of ε,
the change is bounded by ε.2

The task of analyzing combinational circuitry operating on stochastic bit streams is well understood [26].
For instance, it can be shown that, given an input x, an inverter (i.e., a NOT gate) implements the operation
1 − x. Given inputs x and y, an OR gate implements the operation x + y − xy. Analyzing the circuit in
Figure 4, we see that it implements the function x1x2 + x3 − x1x2x3. Aspects such as signal correlations of
reconvergent paths must be taken into account. Algorithmic details for such analysis were first fleshed out
by the testing community [36]. They have also found mainstream application for tasks such as timing and
power analysis [20,23].

3 Synthesis

In this proposal, we will explore the more challenging task of synthesizing logical computation on stochas-
tic bit streams that implements the functionality that we want. Naturally, since we are mapping probabilities
to probabilities, we can only implement functions that map the unit interval [0, 1] onto the unit interval [0, 1].
Based on the constructs for multiplication and scaled addition shown in Figures 2(b) and 3, we can readily

2In fact, with a bit flip rate of ε, a number p in the stochastic representation is biased to a number p(1−ε)+(1−p)ε,
a change of (1− 2p)ε in the value.
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implement polynomial functions of a specific form, namely polynomials with non-negative coefficients that
sum up to a value no more than one:

g(t) =
n∑

i=0

ait
i

where, for all i = 0, . . . , n, ai ≥ 0 and
∑n

i=0 ai ≤ 1.
For example, suppose that we want to implement the polynomial g(t) = 0.3t2 +0.3t+0.2 through logical

computation on stochastic bit streams. We first decompose it in terms of multiplications of the form a · b
and scaled additions of the form sa + (1− s)b, where s is a constant:

g(t) = 0.8(0.75(0.5t2 + 0.5t) + 0.25 · 1).

Then, we reconstruct it with the following sequence of multiplications and scaled additions:

w1 = t · t,
w2 = 0.5w1 + (1− 0.5)t,
w3 = 0.75w2 + (1− 0.75) · 1,

w4 = 0.8 · w3.

The circuit implementing this sequence of operations is shown in Figure 6. In the figure, the inputs are
labeled with the probabilities of the bits of the corresponding stochastic streams. Some of the inputs have
fixed probabilities and the others have variable probabilities t. Note that the different lines with the input t
are each fed with independent stochastic streams with bits that have probability t.
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Figure 6: Computation on stochastic bit streams imple-

menting the polynomial g(t) = 0.3t2 + 0.3t + 0.2.

What if the target function is a polynomial that
is not decomposable this way? Suppose that it maps
the unit interval onto the unit interval but it has some
coefficients less than zero or some greater than one.
For instance, consider the polynomial g(t) = 3

4 − t +
3
4 t2. It is not apparent how to construct a network
of stochastic multipliers and adders to implement it.

In prior work, we have proposed a general
method for synthesizing arbitrary univariate polyno-
mial functions on stochastic bit streams [31]. A nec-
essary condition is that the target polynomial maps
the unit interval onto the unit interval. Our major
contribution is to show that this condition is also sufficient: we provide a constructive method for imple-
menting any polynomial that satisfies this condition. Our method is based on some novel mathematics for
manipulating polynomials in a special form called a Bernstein polynomial. In [34] we showed how to convert
a general power-form polynomial into a Bernstein polynomial with coefficients in the unit interval. In [29]
we showed how to realize such a polynomial with a form of “generalized multiplexing.”
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1
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Figure 7: A generalized multiplexing circuit implement-

ing the polynomial g(t) = 3
4
− t + 3

4
t2.

We illustrate the basic steps of our synthesis
method with the example of g(t) = 3

4 − t + 3
4 t2.

1. Manipulate the polynomial into a form with
coefficients that are all in the unit interval:

g(t) =
3
4
· [(1− t)2] +

1
4
· [2t(1− t)] +

1
2
· [t2].

Note that the coefficients are 3
4 , 1

4 and 1
2 , all of

which are in the unit interval.

2. Implement the polynomial with a multiplexing
circuit, as shown in Figure 7. The block labeled
“+” counts the number of ones among its two
inputs; this is either 0, 1, or 2. The multiplexer
selects one of its three inputs as its output according to this value. Note that the inputs with probability
t are each fed with independent stochastic streams with bits that have probability t.
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Figure 8: Combinational logic that implements a general
polynomial of the form Bn(t) =

Pn
i=0 bi,nBi,n(t)

.

Generalizing the last example, we claim that we
can implement any polynomial with the construct
shown in Figure 8. The block labeled “+” has n
inputs X1, . . . , Xn and dlog2(n+1)e outputs. It con-
sists of combinational logic that computes the weight
of the inputs, that is to say, it counts the number of
ones in the n Boolean inputs X1, . . . , Xn. The mul-
tiplexer (MUX) shown in the figure has “data” in-
puts Z0, . . . , Zn and the dlog2(n + 1)e outputs of the
weight counter as the selecting inputs. If the outputs
of the weight counter are valued k (0 ≤ k ≤ n), then
the output Y of the multiplexer is set to Zk. The
constructs implements a polynomial of the form

Bn(t) =
n∑

i=0

bi,nBi,n(t),

where

Bk,n(t) =
(

n

k

)
tk(1− t)n−k,

with all coefficients bi,n in the unit interval. (This is a Bernstein polynomial representation.)

4 A Case Study: Synthesizing Fault-Tolerant Circuits

The gamma correction function is a nonlinear operation used to code and decode luminance and tri-
stimulus values in video and still-image systems. It is defined by a power-law expression

Vout = V γ
in,

where Vin is normalized between zero and one [19]. We apply a value of γ = 0.45, which is the value used in
most TV cameras. Consider the non-polynomial function

f2(x) = x0.45.

We can approximate this function by a polynomial of degree 6 with the coefficients:

b0 = 0.0955, b1 = 0.7207, b2 = 0.3476, b3 = 0.9988,

b4 = 0.7017, b5 = 0.9695, b6 = 0.9939. �

Setting the corresponding probabilities of obtain a one to these values in the multiplexing construct in
Figure 8, we obtain a stochastic implementation of the gamma correction function.

To evaluate the robustness of our method, we analyze the effect of soft errors. These are simulated by
independently flipping the input bits for a given percentage of the computing elements. For example, if
5% noise was added to the circuit, this implies that 5% of the total number of input bits are randomly
chosen and flipped. We compare the effect of soft errors on our implementation to that on conventional
implementations.

The images in Figure 9 illustrate the fault tolerance of stochastic computation. When soft errors are
injected at rate of 15%, the image generated by the conventional method is full of noisy pixels, while the
image generated by the stochastic method is still recognizable.

5 Input/Output Interface

The premise for the synthesis method in this project is that the inputs and outputs to combinational
circuitry consist of stochastic bit streams (or, equivalently, of stochastic bits on parallel wire bundles). Either
the inputs are presented in this form or else they must be encoded this way, say from binary radix. Either
the outputs are usable in this form or they must be decoded, say back into binary radix.
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Figure 9: Fault tolerance for the gamma correction function. The images in the top row are generated by a
conventional implementation. The images in the bottom row are generated by our stochastic implementation.
Soft errors are injected at a rate of (a) 0%; (b) 1%; (c) 2%; (d) 5%; (e) 10%; (f) 15%.
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Figure 10: Block diagram for a sigma-delta A/D and the resulting noise shaping and decimation used

5.1 A/D and D/A Interfaces via Sigma-Delta Modulation

For a variety of circuit applications, for instance in sensors and embedded systems, the inputs are ob-
tained from physical measurements in analog form, so as real-valued numbers. For our stochastic framework,
we must transform such inputs into stochastic bit streams. The obvious technique for this task is to use a
conventional analog-to-digital (A/D) converter followed by a multi-bit digital to single-bit stochastic con-
verter [9].

In this project, we will develop an alternate, more elegant method that directly converts analog quanti-
ties to stochastic digital (A/SD) and stochastic digital to analog (SD/A). The A/SD and SD/A converters
proposed here are based on single-bit oversampled converters that are oven called sigma-delta (Σ∆) convert-
ers [8, 12,13,24,37,46].

Sigma-delta converters utilize feedback to introduce noise shaping in the frequency domain such that
quantization noise, which is inversely proportional to the conversion resolution, decreases rapidly with in-
creased oversampling (OSR). Figure 10 shows the block diagram for a 1st-order Σ∆ A/D. The modulator is
usually followed by a low-pass filter and decimation stage. The resulting noise shaping and reduction in the
in-band quantization noise is also shown on the right-hand side of Figure 10. In Figure 11 we have plotted
the probability density function of the output voltage of integrator, i.e., before the quantizer, for a 2nd order
Σ∆ modulator, for a input voltage equal to 0.277350. The comparator basically quantizes this signal over
time to give a mean value of 0.277340. We note that this voltage “looks” like a stochastic value. In Figure 12
we plot the Fast Fourier Transform (FFT) of 1 bit output of the Σ∆ modulator in dB and log(frequency).
We note that the quantization noise is moved to the higher frequencies. The flattening from 10−4 to 10−2
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is due the inclusion of KT/C thermal noise in our model. Additionally, the peak at lower frequencies, near
DC, is due to the windowing impact of the DC quantity of 0.277350 at the input.

In our framework, we represent values stochastically, i.e., a value of 0.25 is represented by 25% of 1 and
75% of zeros. To represent this value accurately we need to over sample, i.e., operate the 1 bit stochastic value
at a higher rate than our original value being represented. This is exactly what a modulator within a Σ∆
converter does. The Σ∆ modulator effectively use pulse-density modulation, i.e., a value of 0.5 is represented
by an equal number of ones and zeros in the time domain. However, it exploits the frequency domain to
reduce the oversampling ratio (OSR). This reduction in OSR compared to conventional randomization can
significantly reduce the power consumption of the overall system.

We envision the overall system to look as follows: a Σ∆ analog-to-digital modulator, followed by the
stochastic engine, which in turn in followed by a Σ∆ digital-to-analog modulator. To ensure that this entire
setup is workable we need to ensure that no mathematical manipulation alters the frequency property of the
signal at the final output so that we are able to use a simple Σ∆ digital-to-analog modulator.

In comparison to a tradition Σ∆ converter there is one unique property that needs to be presented by
any A/SD converter. When two stochastic values that represent the same analog or multi-level digital value
their stochastic representatives need to be uncorrelated. Unlike digital pseudo random generators analog
circuits have ”real noise” therefore Σ∆ modulator outputs for the same value are likely to have some variance.
However, to ensure that the correlation is small we may be required to add additional randomness to these
converters. There have been many method proposed over time including dithering and chaos to decorrelate
the quantization noise from the input in Σ∆ converter [14,37], including random dither at the input, at the
quantizer, partial positive feedback etc. We will exploit these techniques to develop novel A/SD and SD/A
converters that provide the correct translation including the additional decorrelation properties.

Part of the research explorations necessary to develop successful A/SD and SD/A converters include
developing low power, low area designs for the Σ∆ analog-to-digital and digital-to-analog modulators, un-
derstanding the interplay between the modulators and the mathematical manipulations within the stochastic
framework and developing dithering and chaotic techniques that result in stochastic representations of same
value being sufficiently uncorrelated.

5.2 Stochastic Bit Streams from Physical Sources

Vin

Vdd

CL

noise

Figure 13: A PCMOS switch. It consists of an in-
verter with its input coupled to a noise source.

For a variety of novel technologies, it may be possi-
ble to generate stochastic bit streams directly from ran-
dom sources. For example, in [6], the authors describe
a scheme for exploiting the intrinsic thermal noise of
nanoscale CMOS devices as the random source. They
call their approach Probabilistic CMOS (PCMOS). A
PCMOS switch is an inverter with the input coupled to
a noise source, as shown in Figure 13. With the input
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Vin set to 0 volts, the output of the inverter has a certain probability p (0 ≤ p ≤ 1) of being at logical one.
Suppose that the probability density function of the noise voltage V is f(V ) and that the trip point of the
inverter is Vdd/2, where Vdd is the supply voltage. Then, the probability that the output is one equals the
probability that the input to the inverter is below Vdd/2, or

p =
∫ Vdd/2

−∞
f(V ) dV.

Thus, with a given noise distribution, p can be modulated by changing Vdd.
Figure 14 illustrates the process of generating stochastic bit streams in a more general context. In each

clock cycle, a random source generates a value R obeying a certain probability density function f(R). A
comparator compares the value R with a constant value C: it outputs a one if R < C and a zero otherwise.
The output of the comparator is a stream of random bits that have probability

p =
∫ C

−∞
f(R) dR (3)

of being one.

Random 

Source

Constant 

Value

0,1,0,1,1,0,1,...<

C

Shaded area: Probability 

of the output being one
R

pdf of R

R

pdf of R

C

Figure 14: Generating stochastic bit streams from random or
pseudo-random sources.

With such physical mechanisms, the ran-
dom source may be cheap but the constant
value may be expensive to implement. With
PCMOS, the constant value C corresponds to
a supply voltage [6]. Providing different sup-
ply voltages is comparatively expensive. If
the application requires many stochastic bit
streams with different probabilities, many con-
stant values are required. The cost of gener-
ating these directly might be prohibitive.

In this proposal, we will explore synthesis
strategy to mitigate this issue: we we develop
a method for synthesizing combinational logic
to transform a set of stochastic bit streams
representing a limited number of probabilities
into stochastic bit streams representing other
target probabilities.

P(x = 1) = 0.4
x z

P(z = 1) = 0.6

(a)

AND

P(x = 1) = 0.4

P(y = 1) = 0.5

x

y
z

P(z = 1) = 0.2

(b)

NOR

P(x = 1) = 0.4

P(y = 1) = 0.5

x

y
z

P(z = 1) = 0.3

(c)

Figure 15: An illustration of transforming a set of source probabilities into new probabilities with logic gates. (a):
An inverter implementing pz = 1−px. (b): An AND gate implementing pz = px ·py. (c): A NOR gate implementing
pz = (1− px) · (1− py).

Example 1
Suppose that we have a set of source probabilities S = {0.4, 0.5}. As illustrated in Figure 15, we can
transform this set into new probabilities:

1. Given an input x with probability 0.4, an inverter will have an output z with probability 0.6 since

P (z = 1) = P (x = 0) = 1− P (x = 1). (4)
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2. Given inputs x and y with independent probabilities 0.4 and 0.5, an AND gate will have an output z
with probability 0.2 since

P (z = 1) = P (x = 1, y = 1)
= P (x = 1)P (y = 1).

(5)

3. Given inputs x and y with independent probabilities 0.4 and 0.5, a NOR gate will have an output z
with probability 0.3 since

P (z = 1) = P (x = 0, y = 0) = P (x = 0)P (y = 0)
= (1− P (x = 1))(1− P (y = 1)).

Thus, using combinational logic, we obtain the set of probabilities {0.2, 0.3, 0.6} from the set {0.4, 0.5}. �

Motivated by these examples, we consider the general problem of synthesizing combinational logic that
transforms a set of source probabilities into different target probabilities.

Example 2
Suppose that the target probability value 0.757. With our method, we synthesize the circuit shown in
Figure 16.

0.4

0.5

0.6 0.7

0.5

0.35

0.4

0.86

0.5

0.5

0.43

0.785

0.6075

0.5

0.4

0.757

AND

AND

AND

AND

AND

AND

AND

Figure 16: A circuit transforming the set of source probabilities
{0.4, 0.5} into a decimal output probability of 0.757. (Note that
here we use a black dot to represent an inverter.)

In prior work, we considered different sce-
narios in terms of whether the source probabil-
ities are specified and whether they can be du-
plicated [33]. In the case that the source proba-
bilities are not specified and can be duplicated,
we provide a specific choice, the set {0.4, 0.5};
we show how to synthesize logic that transforms
probabilities from this set into arbitrary decimal
probabilities. In this project, we will consider
the more general problem of how to synthesize
combinational logic to transform a set of source
probabilities S = {p1, p2, . . . , pn} into a target
probability q.

6 Trading off Fault Tolerance vs. Bit Stream Length

In the introduction, we pointed out two major disadvantages of positional number systems compared
to a unary representation: (1) the encoding / decoding overhead and the complexity of operations, and
(2) poor fault tolerance, especially when most significant digits are faulty. The major issue causing the
complexity of operations stems from costly carry propagation operations to convert the results of addition
and multiplication into the canonical representation of the number. Conceptually, issues (1) and (2) are not
tightly intertwined and one could come up with alternative encodings that harness the advantages of both
unary and positional systems.

6.1 Positional Probabilities Number System

We propose a hybrid representation called positional probabilities that addresses a major shortcoming of
the unary system: its poor representation compactness (linear vs. logarithmic in positional systems). As
an example, consider number N representing a real number between 0 and 1 with an accuracy of 2−10. To
represent this number, we need 10 binary digits in a positional system and 210 = 1024 bits to represent it
using the unary system. A hybrid encoding can be built using the following encoding:

N = p−1.b
−1 + p−2.b

−2 + p−3.b
−3 + · · · p−k.b−k (6)
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where b is the base (e.g., b = 2), k is the number of digits, and 0 ≤ pi ≤ 1 are real digits approximated by
fractions. The physical implementation of numbers in this system could be a combination of the bundle and
the stream models of Figure 1. Each pi is represented using a stream of zeros and ones, and k bundles of
wires are used to carry the digits’ bit streams. We can tradeoff the level of fault tolerance vs. representation
compactness.

1101011100110010 

0001010010110000 

1010011000001101 

p-1 = 9/16 

p-2= 5/16 

p-3= 7/16 

stream length = 16 bits 

k=
3

 b
u

n
d

le
s 

Figure 17: Three bundles of wire representing the number

9/16× b−1 + 5/16× b−2 + 7/16× b−3

Figure 17 shows an example in which a real num-
ber between 0 and 1 is represented using base b = 2
and k = 3 with bit stream length of 16. However, for
an accuracy of 2−10, we have to wait for 210/23 = 128
bits on each wire before deciding the value being
transmitted (compare this to 1024 bits needed for
a unary encoding). Hence to transmit the number,
we need to wait for 128 clock cycles, each called a
slice, containing three 0/1 bits on the k = 3 wires.
After the end of the 128 cycles, the summation of
1’s on wire i divided by 128 is the value of pi. It is
important to note that a single slice does not carry
much useful information about the original number
in the same way as a single bit in a unary system does not. It is the aggregate of the bit streams over many
slices that provides an accurate value of the number.

In terms of fault tolerance, the positional probabilities system is better than binary, but worse than
unary. In the example above, if we assume 10% bit flips, then the positional probabilities system is going to
see an expected 128 × 3 × 0.1 = 38.4 bit flips, the binary positional system is going to see one bit flip, and
the unary system is going to see an expected 1024×0.1 = 102.4 bit flips. In the worst case for the positional
probabilities encoding and the binary, all bit flips happen on the most significant digits. The absolute worst
case error values will be 0.5, 38.4/128 × 2−1 = 0.15, and 102.4/1024 = 0.1 for the binary, the positional
probabilities, and the unary systems respectively. Changing k helps us tradeoff fault tolerance for better
representation compactness.

Since our operations are performed on probabilities, no costly carry propagation operations are required.
In the new encoding we can perform scaled addition and multiplication as:

b−1(X + Y ) = b−1[x−1.b
−1 + x−2.b

−2 + x−3.b
−3 + · · ·+ y−1.b

−1 + y−2.b
−2 + y−3.b

−3 + · · · ]
= (x−1 + y−1).b−2 + (x−2 + y−2).b−3 + · · ·

(7)

X × Y = [x−1.b
−1 + x−2.b

−2 + x−3.b
−3 + · · · ].[y−1.b

−1 + y−2.b
−2 + y−3.b

−3 + · · · ]
= (x−1.y−1).b−2 + (x−1.y−2 + x−2.y−1).b−3 + (x−1.y−3 + x−2.y−2 + x−3.y−1).b−4 · · ·

(8)

Both scaled addition and multiplication operations are equivalent to the single bit stream model, hence
all techniques listed in Sections 3 and 4 can still be used with the new encoding. It is important to note that
the scaled addition involves performing independent scaled additions on corresponding bit streams of the
two numbers with no carry propagation between the k lines. Similarly, the multiplication operation involves
large AND-OR gates the size of which grows asymptotically at a rate of O(k2), but does not involve carry
propagation between the lines. The AND-OR logic can be broken down into smaller gates and pipelined,
which may not be necessary given the limited number of wire bundles. Furthermore, one can easily cut on
the number of terms, as one would in a binary multiplication with limited number of digits (e.g., if we only
keep k = 3 bundles, then the terms with the multiplier b−4 get eliminated).

6.2 Non-Integer Base

We can further tune the tradeoff between fault tolerance and compactness by changing the base b to
a real value between 1 and 2. In the positional probabilities encoding examples above, we used k = 3 to
represent a number using 128 slices to meet the 2−10 resolution requirement. As we decrease b, the number
of digits (wires) needed to represent a number in one slice increases. For example, using b = 1.5, we need
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d− logb(2−10)e = 18 digits to represent a number between 0 and 1 with an accuracy of 2−10 using only 0/1
digits.

The extra digits compared to k = 10 when b = 2 provide spatial redundancy that can tolerate permanent
faults if random encoding of bits are used. Unlike b = 2 where b−j >

∑k
i=j+1 b−i, in 1 < b < 2, we have

b−j <
∑k

i=j+1 b−i, which means if a line i is stuck at 0, then the less significant digits can collectively add up
to compensate the faulty line. Considering the fact that number representations in fractional bases are not
unique, the effect of faults can be diminished over large samples of randomized encodings. As an example,
the number 0.5 can be represented as 0.10002 with an accuracy of 1/16. If the most significant digit is
stuck at 0, then the closest we can get to 0.5 is 0.01112 = 0.4375. However, if base b = 1.5 is used, then
7 digits are required for an accuracy of 1/16, and many encodings of 0.5 satisfy the accuracy requirement,
including 0.01000011.5, 0.00110011.5, 0.00011111.5, and many more. Given the non-unique representations
of a number, even if one or more lines are faulty, other representations of the number that do not use that
particular line can partially compensate for the error caused by the faulty line.

Our goal is to study the exact relationship between parameters b, k and bit stream length so that we
can formulate the synthesis of any combinational computations with specific resolution and fault tolerance
requirements as an optimization problem and synthesize the circuit for it. Extending the number system to
a signed-digit is another area that we intend to study. If instead of sending 0’s and 1’s we send +1’s and
-1’s, we can represent numbers in the range [-1,+1]. Scaled addition and multiplication have to be defined
in such a way that they be closed on the range [-1,+1] absent any bit flips. If bit flips cause the value to
saturate beyond ±1, the stochastic computations on individual bit streams are still valid, but the output
unit has to detect an overflow or underflow due to errors.

7 Sequential Constructs

S0 S1 SN-2 SN-1

…… 

…… 

…… 

X

X’

X’ X

X’

X

X’

X

X’

X

Figure 18: A generic linear state transition diagram.

Prior research has has explored finite-state ma-
chines (FSMs) as sequential constructs for compu-
tation on stochastic bit streams Brown and Card
proposed the stochastic computation of arithmetic
functions with sequential logic, in the form of a one-
dimensional, or linear, finite state machine (FSM) [4].
The basic topology is shown in Fig. 18. The machine
has a set of states S0, S1, . . . , SN−1 arranged in a linear sequence. X is the input of the state machine. X ′

represents the negation of X. Given the current state Si (0 < i < N−1), the next state will be Si−1 if X = 0
and will be Si+1 if X = 1 (assuming that the machine is not in state S0 or in state SN−1, respectively).

With a stochastic encoding, X takes the form of a stochastic bit stream. As a result the state transition
process is a special type of a Markov chain. The output Y of this state machine, not shown in Fig. 18, is a
function of the current state: for some states the output Y is one and for the others it is zero. Thus, the
output Y is also a stochastic bit stream. Based on different choices of the set of states that set the output
Y to one, this linear FSM can be used to implement different functions.

For example, suppose that the output Y is one when the current state is in the set {SN/2, . . . , SN−1}
and is zero when the current state is in the set {S0, . . . , SN/2−1}. Then the functional relation between X
and Y is approximately a tanh function [4],

y ≈ e
N
2 x − e−

N
2 x

e
N
2 x + e−

N
2 x

, (9)

Through quadratic programming, the parameters of the linear FSM proposed by Brown and Card can
be set so that it computes other functions, such as the absolute value function. However, due to the
limited degree of freedom, relatively few target functions can be implemented efficiently with the linear FSM
topology. For example, the target function,

T (x) = e−3x,

cannot be implemented efficiently by a linear FSM. Here the optimal solution obtained through quadratic
programming for a 32-state linear FSM. The approximation error of this optimal solution is 2.0×10−3. Even
if we use a 64-state, a 128-state, or a 256-state FSM, the approximation error is still greater than 1.8×10−3.
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This project will explore a 2D mesh FSM topology for logical computation on stochastic bit streams,
shown in Fig. 19. By adding an extra dimension in the state transition diagram, we significantly increase
the degree of freedom when it comes to synthesizing functions.
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Figure 19: The state transition diagram of the 2D
mesh FSM.

The proposed topology has in total M ×N = 2R

states, where R is a positive integer. We set M =
2b

R
2 c, and N = 2d

R
2 e. Both X and K are inputs of

this state machine. X ′ and K ′ indicate the nega-
tion of X and K, respectively. The output Y of this
state machine, not shown in Fig. 19, is a function
of the current state. The inputs X and K consist
of stochastic bit streams. We define the probabil-
ity that each bit in the input stream X is one to
be PX , the probability that each bit in the input
stream K is one to be PK , the probability that each
bit in the corresponding output stream Y is one to
be PY , and the probability that the current state is
Si,j(0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1) under the input
probability PX and PK to be Pi,j(PX , PK).

Based on the theory of Markov chains, the sys-
tem shown in Fig. 19 is ergodic and will have a single
stable hyperstate. The individual state probabilities
Pi,j(PX , PK) in the hyperstate must sum to unity
over all Si,j . Additionally, in the steady-state the
probability of transitioning from state Si,j to its ad-
jacent state in the next row, Si+1,j , must equal the
probability of transitioning from state Si+1,j to state
Si,j , and the probability of transitioning from state Si,j to its adjacent state in the next column, Si,j+1,
must equal the probability of transitioning from state Si,j+1 to state Si,j .

With a greater degree of freedom, we expect that 2D FSMs can implement functions that cannot be
accurately implemented by 1D FSMs. Compared to stochastic implementations based on combinational
logic, we expect those based on 2D mesh FSMs will require less hardware. We will also study different
topologies of FSMs, including hypercubes and circulant graphs.

8 Context and Impact of Proposed Research

In a sense, the approach that we are advocating here is simply a highly redundant, probabilistic encoding
of data. And yet, our synthesis methodology is a radical departure from conventional approaches. By
transforming computations from the deterministic Boolean domain into arithmetic computations in the
probabilistic domain, circuits can be designed with very simple logic. Such stochastic circuits are much more
tolerant of errors. Since the accuracy depends only on the statistical distributions of the random bit streams,
this fault tolerances scales gracefully to very large numbers of errors.

The proposed research builds upon significant prior work, but it is broad and transformative in scope
because it establishes a new paradigm for synthesis. A sequence of early papers established the concept
of logical computation on stochastic bit streams [11, 35]. These papers discussed basic operations such
as multiplication and addition. Later papers delved into more complex operations, including exponential
functions and square roots [15, 44]. In [4], the authors discuss the implementation of basic arithmetic
operations as well as complex ones, including hyperbolic functions, with stochastic bit streams. They also
discuss different forms of stochastic representation, including a “bipolar” representation for negative values.
Much of the interest in computing with stochastic bit streams stems from the field of neural networks, where
the concept is known as “pulsed” or “pulse-coded” computation [3, 7].

In fact, the general concept of stochastic computing dates back even earlier, to work by J. von Neumann
in the 1950’s [45]. He applied probabilistic logic to the study of thresholding and multiplexing operations on
bundles of wires with stochastic signals. As he eloquently states in the introduction to his seminal paper,
“Error is viewed not as an extraneous and misdirected or misdirecting accident, but as an essential part of
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the [design].” We find this view, that randomness and noise are integral to computation, to be compelling
in the modern era of nanoscale electronics.

We point to two recent research efforts that embrace randomness in circuit and system design. In [6],
the authors propose a construct that they call probabilistic CMOS (PCMOS) that generates random bits
from intrinsic sources of noise. In [5], PCMOS switches are applied to form a probabilistic system-on-a-chip
(PSOC); this system provides intrinsic randomness to the application layer, so that it can be exploited
by probabilistic algorithms. In [25] and [10], the authors propose a methodology for designing stochastic
processors, that is to say, processors that can tolerate computational errors caused by hardware uncertainties.
They strive for a favorable trade-off between reliability and power consumption.

In contrast to architectural and system-level approaches, we are proposing a fundamentally new strategy
for structuring logical computation. The strategy for computation has a pseudo analog character, reminiscent
of computations performed by physical systems such as electronics on continuously variable signals such as
voltage. In our case, the variable signal is the probability of obtaining a one in a stochastic yet digital bit
stream. Indeed, our system could be built from ordinary, cheap digital electronics such as CMOS.

This is certainly counterintuitive: why impose an analog view on digital values? As we have outlined in
this proposal, it might often be advantageous to do so, both from the standpoint of the hardware resources
required as well as the error tolerance of the computation. Many of the functions that we seek to implement
for computational systems such as signal processing are arithmetic functions, consisting of operations like
addition and multiplication. Complex functions, such as exponentials and trigonometric functions, are
generally computed through polynomial approximations, so through multiplications and additions. As we
have argued, these operations are very natural and efficient when performed on stochastic bit streams.

We are the first to tackle the problem of synthesizing arbitrary polynomial functions through logical
computation on stochastic bit streams. The synthesis results for our stochastic implementations of a variety
of functions are convincing. The area-delay product is comparable to that of conventional implementations
with adders and multipliers. Since stochastic bit streams are uniform, with no bit privileged above any other,
the computation is highly error tolerant. As higher and higher rates of bit flips occur, the accuracy degrades
gracefully.

Indeed, computation on stochastic bit streams could offer tunable precision: as the length of the stochas-
tic bit stream increases, the precision of the value represented by it also increases. Thus, without hardware
redesign, we have the flexibility to tradeoff precision and computation time. In contrast, with a conven-
tional binary-radix implementation, when a higher precision is required, the underlying hardware has to be
redesigned. Note that we have been evaluating our stochastic implementations under the conservative as-
sumption that the clock rate will be the same as that of a conventional implementation. However, with much
simpler hardware we could potentially implement computation with much higher clock rates, particularly if
it is pipelined.

9 Educational and Outreach Plan

In a debate with an alchemist in 1628, the great French mathematician René Descartes denied the
claim that probabilities are as good as certainties in science. Ever since, there has been a lingering stigma
associated with estimations and approximations. Those who can, calculate things exactly. Those who
can’t, simulate and guess. Of course, in many disciplines of science and engineering, probabilistic analysis
has become indispensable. However, it is generally applied as a tool for characterizing uncertainty: one
postulates a definite model and then affixes uncertainties and error margins. In the physical and biological
sciences, statistical analysis of data is pervasive. However, such analysis generally is applied as a tool for
inference: given noisy experimental data, one attempts to extract information that is beyond the reach of
direct measurements.

This project advocates stochastic methodologies for design. An important goal is to incorporate this
viewpoint into the teaching curriculum in electrical and computer computer engineering. Starting with
our undergraduate classes – computer engineering, logic design, microcontrollers, and electronics – to our
graduate-level classes – VLSI CAD, architecture, analog, and “circuits and biology” – we will teach the
students basic probability and develop stochastic concepts such as fault-tolerance, redundancy, and error-
correction. Specifically, through these courses, we will we develop the broad theme of computing reliably
with unreliable components and computing in terms of statistical distributions.
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9.1 Minority Involvement Plan

The PIs will work with the University of Minnesotas College of Science and Engineering Diversity and
Outreach program to involve underrepresented students in research. This program manages the NSF-funded
North Star STEM Alliance–Minnesotas Louis Stokes Alliance for Minority Participation (LSAMP). One of
the core principles of the Diversity and Outreach program is that Mentoring and introduction of research
opportunities early in the undergraduate career is the best practice for retention. Through participation in
the North Star programs, the students will present their research to North Star fellows to demonstrate their
research. They can choose from a selection of outreach events that are provided by the North Star program
including a Kickoff Day at the beginning of each year and a spring symposium in the spring semester to
showcase research opportunities at the university. Each student will participate in one of these events during
their fellowship. The undergraduate students attending these presentations are encouraged by North Star
program to seek research positions in labs. North Star also supplies funding for underrepresented students
to attend conferences when mentored by a graduate student to increase the exposure of the students to the
research community beyond the Universitys laboratories.

9.2 Undergraduate Involvement in Research

The University of Minnesota offers many research opportunities for undergraduate research. Undergrad-
uate research is supported by the university through the Undergraduate Research Opportunity Program.
This is a competitive program that requires the students to write a proposal which gets reviewed and scored.
The UROP program funds approximately 80% of the applications providing the students with $1400 stipend
and $300 for lab supplies. These students generally are mentored by a graduate student in the lab. This pro-
vides graduate students the opportunity to learn mentoring skills and to develop interest in their field. The
undergraduates can present their research at the end of the year in an undergraduate research symposium.

9.3 K-12 Outreach Plan

The College of Science Engineering (CSE) offers a summer high school student outreach program, Ex-
ploring Careers in Engineering and Physical Science (ECEPS). This program offers students a handson
introduction to engineering, science and math opportunities on the University of Minnesota Twin Cities
campus by providing the students tours, along with short projects, in different labs around the campus.
This program is designed to appeal to and reach both girls and underrepresented minorities with an interest
in the STEM disciplines. In particular, two of the four possible oneweek sessions are devoted to girls only.

10 Results of Prior NSF Support

Marc Riedel has two active NSF grants: 1) CAREER Award 0845650: “Computing with Things Small,
Wet, and Random – Design Automation for Digital Computation with Nanoscale Technologies and Biological
Processes.” ($500,000 from Sept. 2009 to Aug. 2014). 2) EAGER grant CCF-0946601 “Synthesizing Signal
Processing Functions with Biochemical Reactions” (with Keshab Parhi – $200,000 from Aug. 2009 to July,
2011). These awards have established novel and transformative approaches to design automation guided
by physical views of computation. A broad theme is the application of expertise from an established field,
digital circuit design, to new fields, such as nanotechnology and synthetic biology. The results have been
published in [1, 2, 16–18,27,28,30–32,34,38,39].

Kia Bazargan had the NSF grant CCF-0347891, “CAREER: Computer-Aided Design of Mixed ASIC/
Reconfigurable Fabrics of the Nanometer Era.” ($400,000 from January 15, 2005 to December 31, 2008).
The HARP project was partially funded by this grant. The work was very well received at the FPGA05
conference [43], and later at Xilinx. The developed CAD algorithms in this effort have been distributed widely
through the web (http://www.ece.umn.edu/users/kia/Download). Researchers from many universities and
companies within and outside the US have downloaded our tool. The work was extended and published
in the IEEE TCAD journal [47], and the method ultimately adopted in Xilinxs Virtex-V chips. Other
projects partially funded by this grant include: statistical routing for FPGAs [40], statistical skew assignment
algorithm for FPGAs [40, 41], estimation and optimization of noise reliability in circuits [42], and SPFD
rewiring of FPGAs [21,22].
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Ramesh Harjani has not had NSF funding in the past five years, but had significant support up until
1996.

David J. Lilja has been PI or co-PI on numerous NSF-supported projects. A project related to the
research in this proposal is, “NER: Designing Reliable Computers Using Molecular Nanotechnology” (CCR-
0210197, 8/02 – 7/04, $70,000). This exploratory project introduced the concept of NanoBoxes as a possible
abstraction for constructing reliable finite state machines for use in computer systems fabricated from future
nano-devices. It provided partial support for one recently graduated Ph.D. student and partial support for
another current Ph.D. student and spin-off projects for several M.S. students. This one-year effort resulted
in two conference publications, two workshop presentations, a journal publication, and led to a three-year
contract from the Semiconductor Research Corporation (SRC) to continue and expand this work. This
project also led directly to the PI’s current project, NER: Characterizing and Modeling Magnetic Tunnel
Junction Devices for a Spintronics-based Processor (ECS-0609023, 6/06 – 5/08, $100,000, co-PI: Jianping
Wang).
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Project Summary
SHF Medium: Digital Yet Deliberately Random –

Synthesizing Logical Computation on Stochastic Bit Streams

Most digital systems operate on a positional representation of data, such as binary radix. A positional
representation is a compact way to encode signal values: in binary radix, 2n distinct values can be repre-
sented with n bits. However, operating on it requires complex logic: in each operation such as addition or
multiplication, the signal must be “decoded,” with the higher order bits weighted more than the lower order
bits. This project advocates an alternative representation: random bit streams where the signal value is
encoded by the probability of obtaining a one versus a zero. This representation is much less compact than
binary radix. However, complex operations can be performed with very simple logic. In particular, arith-
metic functions, consisting of operations like addition and multiplication can be implemented very efficiently.
Complex functions, such as exponentials and trigonometric functions, can be computed through polynomial
approximations.

Because a stochastic representation is uniform, with all bits weighted equally, it is highly tolerant of soft
errors (i.e., bit flips). Computation on stochastic bit streams offers tunable precision: as the length of the
stochastic bit stream increases, the precision of the value represented by it also increases. Thus, without
hardware redesign, one has the flexibility to tradeoff precision and computation time. In contrast, with a
conventional binary-radix implementation, when a higher precision is required, the underlying hardware has
to be redesigned.

This project will develop and apply a unified framework for synthesizing such computation from the
circuit level to the architectural and system level. A synthesis strategy for combinational constructs will will
be developed, based on polynomial approximations. A synthesis strategy for sequential constructs will be
developed based on mesh and circulant topologies for finite-state machines. Hybrid encoding schemes, in
which multiple stochastic bit streams are assigned positional weighting, will be explored. Analog expertise
will be applied to the task of converting analog input and output signals into and out of stochastic bit
streams: specifically, a method will be developed that directly converts analog quantities to bit streams
based on single-bit oversampling with sigma-delta converters. Also, techniques for transforming probability
values with combinational logic will be developed. Architectures that are tailored to specific domains such as
scientific computing will be explored; in particular the project will target applications that are data-intensive
yet probabilistic in nature.

Intellectual Merit: This new approach to circuit design forms the basis of a novel view of computation:
instead of transforming definite inputs into definite outputs, circuits and systems transform probability val-
ues into probability values; so, conceptually, real-valued probabilities are both the inputs and the outputs.
The computation has a pseudo analog character, reminiscent of computations performed by physical systems
such as electronics on continuously variable signals such as voltage. In the new paradigm, the variable signal
is the probability of obtaining a one versus a zero in a stochastic yet digital bit stream. Indeed, the system
can be built from ordinary digital electronics such as CMOS. Thus, the design methodology imposes an
analog view on top digital values. (Of course, the digital values themselves are an abstraction sitting on top
of analog voltages values.) With this paradigm change, expertise in analog computation can be brought to
bear on the design of robust digital systems.

Broader Impact: If successful, the proposed research will provide an integrated design paradigm for robust
digital computation, applicable to both existing technologies such as CMOS as well novel nanoscale tech-
nologies. An important goal of the project is to communicate the goals and the impetus for interdisciplinary
research to a wide audience. A new course will be developed, titled “Circuits, Computation, and Biology”
offered jointly through the ECE Department and the new Biomedical Informatics and Computational Bi-
ology Program at the University of Minnesota. Building upon current research efforts that include female
students, underrepresented students will be recruited into the project.

Keywords: Stochastic Computing, Probabilistic Circuits, Fault-Tolerant Circuits, Analog Circuits


	main
	Introduction
	Fault Tolerance
	Synthesis
	A Case Study: Synthesizing Fault-Tolerant Circuits
	Input/Output Interface
	A/D and D/A Interfaces via Sigma-Delta Modulation
	Stochastic Bit Streams from Physical Sources

	Trading off Fault Tolerance vs. Bit Stream Length
	Positional Probabilities Number System
	Non-Integer Base

	Sequential Constructs
	Context and Impact of Proposed Research
	Educational and Outreach Plan
	Minority Involvement Plan
	Undergraduate Involvement in Research
	K-12 Outreach Plan

	Results of Prior NSF Support

	summary

