A Scalable Approach to Performing Multiplication and Matrix Dot-Products in Unary

Yadu Kiran ${ }^{1}$, Marc Riedel ${ }^{1}$
${ }^{1}$ University of Minnesota, Department of Electrical and Computer Engineering, Minneapolis, Minnesota, United States
Correspondence*:
Yadu Kiran, 200 Union St. S.E., Minneapolis, Minnesota 55455
kiran013@umn.edu

Abstract

Stochastic computing is a paradigm in which logical operations are performed on randomly generated bit streams. Complex arithmetic operations can be executed by simple logic circuits, resulting in a much smaller area footprint compared to conventional binary counterparts. However, the random or pseudorandom sources required for generating the bit streams are costly in terms of area and offset the advantages. Additionally, due to the inherent randomness, the computation lacks precision, limiting the applicability of this paradigm. Importantly, achieving reasonable accuracy in stochastic computing involves high latency. Recently, deterministic approaches to stochastic computing have been proposed, demonstrating that randomness is not a requirement. By structuring the computation deterministically, exact results can be obtained, and the latency greatly reduced. The bit stream generated adheres to a "unary" encoding, retaining the non-positional nature of the bits while discarding the random bit generation of traditional stochastic computing. This deterministic approach overcomes many drawbacks of stochastic computing, although the latency increases quadratically with each level of logic, becoming unmanageable beyond a few levels. In this paper, we present a method for approximating the results of the deterministic method while maintaining low latency at each level. This improvement comes at the cost of additional logic, but we demonstrate that the increase in area scales with \sqrt{n}, where n represents the equivalent number of binary bits of precision. Our new approach is general, efficient, composable, and applicable to all arithmetic

1 INTRODUCTION

operations performed with stochastic logic. We show that this approach outperforms other stochastic designs for matrix multiplication (dot-product), which is an integral step in nearly all machine learning algorithms.

In stochastic computing, randomly generated streams of 0 's and 1 's are used to represent fractional numbers. The number represented by a bit stream corresponds to the probability of observing a 1 in the bit-stream at any given point in time. The advantage of this representation is that complex operations can be performed with simple logic, owing to the non-positional nature of the bits. For instance, multiplication can be performed with a single AND gate, and scaled addition can be performed with a single multiplexer. The simplicity and scalability of these operations make computing in this domain very appealing for applications that handle large amounts of data, especially in the wake of Moore's Law slowing down. Machine learning models are one such application that ticks all the boxes.

The drawbacks of the conventional stochastic model are as follows: 1) the latency is high, and 2) due to randomness, the accuracy is low. Latency and accuracy are related parameters: to achieve acceptable accuracy, high latency is required (1). Recently, a "deterministic" approach to stochastic computing has been proposed (2) that uses all the same structures as stochastic logic but on deterministically generated bit streams. Deterministic approaches incur lower area costs since they generate bit streams with counters instead of expensive pseudo-random sources such as linear feedback shift registers (LFSRs). Most importantly, the latency is reduced by a factor of approximately $\frac{1}{2^{n}}$, where n is the equivalent number of bits of precision. However, the latency is still an issue as it increases quadratically for each level of logic. Any operation involving two 2^{n}-bit input bit streams will produce a resulting bit stream of length $2^{2 n}$ bits. This is a mathematical requirement: for an operation such as multiplication, the range of values of the product scales with the range of values of the operands. However, most computing systems operate on constant precision operands and products. Since this is not sufficient to represent the $2^{2 n}$ output in full precision, we will have approximation errors. Our primary goal is to minimize this error.

Recent papers have discussed techniques for approximating the deterministic computation with quasirandom bit streams, such as Sobol sequences (3, 4, 5, 6). Unfortunately, the area cost of these implementations is high: the logic to generate the quasirandom bit streams is complex and grows quickly as the number of bit streams increases, in most cases completely offsetting the benefits.

Kiran and Riedel

In this paper, we present a scalable deterministic approach that maintains constant bit stream lengths and approximates the results. This approach has much lower area cost than the quasirandom sequence approach. We structure the computation by directly pairing up corresponding bits from the input bit streams using only simple structures such as counters. Not only does our approach achieve a high degree of accuracy for the given bits of precision, but it also maintains the length of the bit streams. This property lends composability to our technique, allowing multiple operations to be chained together. Maintaining a constant bit stream length comes at the cost of additional logic, but we demonstrate that the increase in area scales with \sqrt{n}, where n is the number of binary bits of precision. The new approach is general, efficient, and applicable to all arithmetic operations performed with stochastic logic. It outperforms other state-of-the-art stochastic techniques in both accuracy and circuit complexity. We also evaluate our approach with matrix dot-product, an integral set in machine learning algorithms. We demonstrate that our approach is a good fit for machine learning, as it allows one to increase the precision of the inputs while preserving the bit-length/latency at the output.

As the bit streams are no longer random, the term "stochastic" would be an oxymoron. The bit streams generated for any particular operand follow a "unary" encoding, where all the 1 's are clustered together, followed by all the 0 's (or vice versa). Hence, we shall refer to this approach as "unary" computing in this paper.

This paper is structured as follows: Section 2 provides a brief overview and background of stochastic computing. Section 3 presents our new approach. Section 4 provides the mathematical reasoning behind our design. Section 5 details the gate-level implementation. Section 6 evaluates our method and compares and contrasts it with prior stochastic approaches. Finally, Section 7 outlines the implications of this work.

2 BACKGROUND INFORMATION

2.1 Introduction to Stochastic Computation

The paradigm of stochastic logic (sometimes called stochastic "computing") operates on non-positional representations of numbers (7). Bit streams represent fractional numbers: a real number x in the unit interval (i.e., $0 \leq x \leq 1$) corresponds to a bit stream $X(t)$ of length L, where $t=1,2, \ldots, L$. If the bit stream is randomized, then for precision equivalent to conventional binary with precision n, the length of the bit stream L must be $2^{2 n}(8)$. The probability that each bit in the stream is 1 is denoted by $P(X=1)=x$. Below is an illustration of how the value $\frac{5}{8}$ can be represented with bit streams. Note that the representation is not unique, as demonstrated by the four possibilities in the figure. There

Kiran and Riedel

89 also exists a bipolar format which can be used to natively represent negative numbers, but 90 for the sake of simplicity, we shall restrict our discussions to the unipolar format. Although, 91 the concepts which we discuss can also be applied to the bipolar format as well. In general, 92 with a stochastic representation, the position of the 1 's and 0 's do not matter.

$$
\frac{5}{8} \Rightarrow \begin{array}{llllllll}
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1
\end{array}
$$

93 Common arithmetic operations that operate on probabilities can be mapped efficiently to
94 logical operations on unary bit-streams.

Figure 1.

-Multiplication. Consider a two-input AND gate whose inputs are two independent bit streams $X_{1}(t)$ and $X_{2}(t)$, as shown in Fig. 1 (a). The output bit stream Y, is given by

$$
\begin{aligned}
y & =P(Y=1)=P\left(X_{1}=1 \text { and } X_{2}=1\right) \\
& =P\left(X_{1}=1\right) P\left(X_{2}=1\right)=x_{1} x_{2} .
\end{aligned}
$$

-Scaled Addition. Consider a two-input multiplexer whose inputs are two independent stochastic bit streams X_{1} and X_{2}, and its selecting input is a stochastic bit stream S, as shown in Fig. 1(b). The output bit stream Y, is given by

$$
\begin{aligned}
y & =P(Y=1) \\
& =P(S=1) P\left(X_{1}=1\right)+P(S=0) P\left(X_{2}=1\right) \\
& =s x_{1}+(1-s) x_{2}
\end{aligned}
$$

Frontiers

Kiran and Riedel

Complex functions such as exponentiation, absolute value, square roots, and hyperbolic tangent can each be computed with a small number of gates (9, 10).

2.2 The Deterministic Approach to Stochastic Computing

In conventional stochastic logic, the bit streams are generated from a random source such as a linear feedback shift register (LFSR). The computations performed on these randomly generated bit streams are not always accurate. The figure below demonstrates a worst-case scenario where multiplying two input bit-streams corresponding to probabilities $\frac{3}{5}$ and $\frac{2}{5}$, results in an output of probability $\frac{0}{5}$.

$$
\begin{aligned}
& \frac{3}{5} \Rightarrow 100110 \\
& \frac{2}{5} \Rightarrow 001001
\end{aligned}
$$

Consider instead a unary encoding, one in which all the 1's appear consecutively at the start, followed by all the 0 's (or vice-versa), as shown below. This is also referred by some as "Thermometer encoding".

$$
\frac{3}{4} \Rightarrow 1110 \quad \frac{5}{8} \Rightarrow 11111000
$$

This encoding is not a requirement, but rather a consequence of the circuit used to generate deterministic bit streams, shown in Fig. 2. For a computation involving n-bit precision operands, the setup involves an n-bit register, counter, and comparator. The register stores the corresponding binary value of the input operand. The bit stream is generated by comparing the value of the counter to the value stored in the register. The counter runs from 0 to $2^{n}-1$ sequentially, so the resulting bit-stream inherits a thermometer encoding.

Figure 2.

Kiran and Riedel

A "deterministic" approach to stochastic computation was proposed, where the computation is performed on bit-streams which are generated deterministically, resulting in a unary encoding (2). By deterministically generating bit streams, all stochastic operations can be implemented efficiently by maintaining the following property: every bit of one operand must be matched up against every bit of the other operand(s) exactly once.

Performing a multiply operation on unary bit-streams using the deterministic approach involves matching every bit of the first operand, with every bit of the second operand once. This is analogous to a Convolution operation, as illustrated below. Holding a bit of one input operand constant, the operation is repeated for each of the bits of the other input operand. The particular approach is known as clock-division, due to the division of the clock signal in the circuit for generating the input bit streams.

$$
b_{2} b_{2} b_{2} b_{2} \text { b } b_{3} b_{3} b_{3} b_{3} .
$$

Fig. 3 illustrates the Multiply operation on two operands ($\frac{3}{4}$ and $\frac{1}{4}$) performed stochastically and deterministically. It is evident that the deterministic method achieves perfect accuracy. However, for each level of logic, the bit stream lengths increase. For a multiply operation involving two streams of 2^{n} bits each, the output bit stream is $2^{2 n}$ bits. This is a mathematical requirement in order to represent the full range of values. However, for large values of n, the bit stream lengths become prohibitive. For most applications, one has to maintain a constant bit stream length across all the levels of logic, and hence, an approximation is inevitable (11). We discuss how to do this in Section3.

Kiran and Riedel

Randomly generated bit streams
$\mathrm{A} \Rightarrow 3 / 4 \quad \mathrm{~B} \Rightarrow 1 / 4$

Deterministically generated bit streams

$$
A \Rightarrow 3 / 4 \Rightarrow 1110 \quad B \Rightarrow 1 / 4 \Rightarrow 1000
$$

Figure 3.

136 For an operation such as multiplication, two copies of the circuit in Fig. 2 are used for generating the bit streams of the input operands. As shown in Fig. 4, the counter of the second input operand counts up only when the counter of the first input operand rolls over $2^{n}-1$. This can be achieved by connecting the AND of all the output lines of the first counter to the clock input of the second counter.

Figure 4.

Kiran and Riedel

3 SCALABLE DETERMINISTIC APPROACH

In the deterministic approach discussed in Section 2.2, the bit stream lengths grow quadratically with each level of logic (2). This becomes unsustainable for larger circuits. Our goal is to keep the length constant across multiple levels of logic.

3.1 Downscaling

The low-hanging fruit for approximating is simply to downscale the input operands, i.e., generate bit streams of smaller length as shown in Section 3.1. Consider an input operand that would correspond to a bit stream of length L. We want to reduce the length of the generated bit stream by downscaling or approximating the input operand itself. Downscaling is ideally performed by reducing the bit stream by powers of 2 , i.e., divide L by $d=2^{i}$, where d is the degree of downscaling. In other words, every set of d bits in the original bit stream would correspond to one bit in the downscaled bit stream. The deterministic multiplication operation restores the target length.
Downscaling is easily achieved by right-shifting the value stored in the register in Fig. 2. For example, for an input operand with $2^{4}=16$ bits of precision and a probability value of $\frac{12}{16}$, we would store the binary equivalent of 12 , i.e., 1100_{2}, in the register. To downscale the value by a factor of 4 , we would right-shift the value of the register by 2 bits to obtain the binary value 11_{2} (which corresponds to the probability value $\frac{3}{4}$). In general, to downscale a value by a factor of $d=2^{i}$, we would right-shift by i bits. Consequently, this would also reduce the size of the counters used for bit generation.
In Fig. 33, we showed that deterministically multiplying two input bit streams of length 2^{n} bits each results in an output bit stream of length $2^{2 n}$. However, if we were to approximate the input operands to bit streams of length $2^{\frac{n}{2}}$, then our output bit stream would be limited to 2^{n} bits. If the target value of a bit stream can be accurately represented with fewer bits, then there will be no errors. For example, the probability $\frac{20}{32}$ can also be represented as $\frac{10}{16}$ or $\frac{5}{8}$. However, in general, the process of downscaling will introduce errors. We want to minimize the error. In a mathematical sense, we want a scheme that always generates the optimal approximation.

In the context of this paper, the error is the difference between the result and the optimal approximation, given a target bit stream length. For example, the probability $\frac{11}{16}$, when downscaled to 4 bits, can be optimally approximated as $\frac{3}{4}$ (but not as $\frac{1}{4}, \frac{2}{4}$, or $\frac{4}{4}$).
When downscaling a unary encoding, there are only two possible scenarios that can occur, irrespective of the length of the input bit streams. These are illustrated in the figure below, where we try to approximate $\frac{5}{10}$ to be represented with just 5 bits. In both cases, a single

bit conveys the wrong information. Using either one of the downscaled bit streams as an input to an arithmetic operation results in an error. The method that we will present in this paper always opts for the right-hand side case, where the downscaled bit stream is an under-approximation of the actual value. The reasoning behind this will be evident in Section 3.3 .

For an operation involving two downscaled input operands of 2^{n} bits each, it can be mathematically deduced that the error that can occur in the output bit stream is at most $\left(2^{n}-1\right)$ bits out of $2^{2 n}$ bits. Suppose, for example, we want to multiply two values each with $\left(2^{4}\right)$ bits precision (i.e., $\frac{x}{16}, \frac{y}{16}$), we could downscale the operands to $\left(2^{2}\right)$ bits precision (e.g., $\frac{p}{4}, \frac{q}{4}$), producing an output bit-stream of 16 bits. The error in the resulting bit-stream would be restricted to $\left(2^{n}-1\right)=3$ bits, out of $\left(2^{2 n}\right)=16$ bits. Although this error might seem small, it grows as a function of the bit-stream length of the inputs as well as the number of logic levels. It's worse than it appears as it grows as a function of the bit-stream length of the inputs, as well as the number of logic levels. We can do better.

3.2 Error Compensation

The basic idea of our approach is to systematically compensate for the error that we introduce when down-scaling. We do so during the clock division process.

We illustrate with an example. Consider the multiply operation of two input operands, each of length 16 bits. To restrict the length of the output bit stream to just 16 bits, we will downscale the input operands that corresponds to a bit stream of 4 bits, a downscaling factor of $\frac{16}{4}=4$. In general, if the input-operands are p bits in length, we ideally down-scale them to length q bits, such that $\mathrm{q}=\sqrt{p}$ and that the length of the output bit stream remains the same as the input bit steams. Consider the case where $A=\frac{5}{16}$ and $B=\frac{15}{16}$ as shown below. Neither of the two input operands can be downscaled to 4 bits without introducing

Kiran and Riedel

$\mathrm{A}=\frac{5}{16}$	Original bit-stream	$\mathrm{B}=\frac{15}{16}$
$11111000: 0000$		$\text { 1111! 1111! 1111! } 1110!$
\downarrow	Rounding down	\downarrow
1000	Down-scaled	1110
$A^{\prime}=\frac{1}{4}\left(\approx \frac{4}{16}\right)$	bit-stream	$\mathrm{B}^{\prime}=\frac{3}{4}\left(\approx \frac{12}{16}\right)$
Error A ${ }^{\prime}=5-4=1$ (Under-Approximation)		Error $\mathrm{B}^{\prime}=15-12=3$ (Under -Approximation)

202 Only one bit in a downscaled bit-stream(s) is erroneous. And this erroneous bit is carrying
errors. For each input operand, we round down, shifting the value stored in the register by 2 bits. So $A=\frac{5}{16}$ gets down-scaled to $A^{\prime}=\frac{1}{4}$, which is equivalent to $\frac{4}{16}$. $B=\frac{15}{16}$ gets down-scaled to $B^{\prime}=\frac{3}{4}$, which is equivalent to $\frac{12}{16}$. We underestimate the value of A^{\prime} by $\frac{1}{16}$, and B^{\prime} by $\frac{3}{16}$.
 partially incorrect information. In our example above, for A^{\prime}, we can interpret the second bit which is highlighted in blue, as having 1/4th of its information "incorrect". Likewise, for $B^{\prime}, 3 / 4$ th of its last bit (highlighted in orange) can be considered "incorrect" information.

$$
\begin{gathered}
\mathrm{A}^{\prime}=\frac{1}{4} \quad \text { Error } \mathrm{A}^{\prime}=1 \quad \mathrm{~B}^{\prime}=\frac{3}{4} \quad \text { Error } \mathrm{B}^{\prime}=3 \\
\begin{array}{c}
a_{0} a_{1} a_{2} a_{2} a_{3} a_{0} a_{1} a_{2} a_{3} \\
b_{0}
\end{array} a_{1} a_{2} a_{3} a_{0} a_{1} a_{2} a_{3} \\
b_{0} b_{0} b_{0} \quad b_{1} b_{1} b_{1} b_{1} b_{2} b_{2} b_{2} b_{2} b_{3} b_{3} b_{3} b_{3} \\
\Downarrow \\
1000100010001000 \\
111111111110000
\end{gathered}
$$

In normal circumstances, we cannot correct a fractional portion of a bit; only the bit as a whole. However, when performing the clock division operation discussed in Section 2.2, each bit is repeated multiple times (in this example, four times) as shown in the figure above. This provides the opportunity to compensate for the error incurred during downscaling. For A^{\prime}, we know that the second bit is erroneous, and that $1 / 4$ th of this bit is "incorrect". This bit is also repeated four times during the clock division operation. So our instinct would be to "correct" this error by inverting that bit once, out of the four times it is repeated.

Kiran and Riedel

Similarly, for B^{\prime}, we know that $3 / 4$ th of its last bit is "incorrect". Naturally, we would want to invert this bit three out of the four times it is repeated.

If the input-operands are p bits in length, we down-scale them to length q bits, such that $\mathrm{q}=\sqrt{p}$. The down-scaled bit stream has an error of e, implying a portion $\frac{e}{q}$, of a 0 , is incorrect. In the clock-division operation, each bit is repeated q times. To compensate for the error, we invert the 0 to $1, e$ out of the q times that it is repeated.

We mentioned earlier in Section 3.1, that out of the two possible cases when downscaling (over-approximation and under-approximation), we would always under-approximate the value. By restricting ourselves to this case, we would cut down significantly on the circuit needed to perform the error compensation by omitting any comparators and control logic. And our tests show that this has no noticeable effect on the accuracy of the operation. We would know that the erroneous bit in our downscaled bit-stream is always the first 0 we encounter in our thermometer encoded bit-stream; and to compensate for this error, we would always have to invert this 0 to 1 , a certain number of times during our clock division operation.

We know how many bits we need to invert, but we now face the challenge of determining which position of the bits to invert. The erroneous bit is repeated q times, and there are q candidate positions to perform the e (i.e., error magnitude) bit flips. It turns out that we can decide these positions in a deterministic fashion by performing another multiply operation.

3.3 Multiplication within an Operation

The bit flips need to occur in the right proportion. In other words, each bit flip of the first operand should be distributed equally among all the bits of the second operand.

Take the example discussed earlier in Section 3.2. A^{\prime} (the downscaled bit stream of A) has an error of 1 , or in other words, one of the 0 s should be flipped to 1 and this needs to be distributed among the bits of B^{\prime}. Since B^{\prime} represents $\frac{3}{4}$, it makes sense for that bit flip to align with a 1 in the bit stream for B^{\prime}. On the same line B^{\prime} has an error of 3 , and needs to be distributed among the bits of A^{\prime}. With A representing $\frac{1}{4}$, in order to distribute those bit flips uniformly, we would align only one of those bit flips with a 1 in the bit stream of A, and the remaining with 0 s .

Trying to figure this distribution out off the top of one's head is easy, but we need a way to compute this deterministically using digital logic. We can do this with a multiply operation. In our example for A^{\prime}, we can compute $3 \times \frac{1}{4}=\frac{3}{4} \approx 1$. In fact, we can do so with another unary multiply operation.

Kiran and Riedel

Now that we know where to align those bit flips, we perform the multiply operation with error compensation (bit-flips) as shown below.

$$
1100100010001000
$$

255

In the example shown in Section 3.2, based on the error, we would need to invert one bit of A and three bits of B. Since we are always under-approximating our input operands (and consequently, the result), we will always be changing 0 's to 1 's. For a bit stream X, let $\operatorname{Error}(X)$ be the number of bits we need to invert, and $\operatorname{Inv}(X)$ be the number of inverted bits that need to align with a 1 from the other operand. The error compensation is illustrated below.

$$
\begin{align*}
\operatorname{Inv}\left(A^{\prime}\right) & =\operatorname{Error} A^{\prime} \times B^{\prime} \\
& =1 \times \frac{3}{4}=1 \tag{1}
\end{align*}
$$

$$
\begin{align*}
\operatorname{Inv}\left(B^{\prime}\right) & =\operatorname{Error} B^{\prime} \times A^{\prime} \\
& =3 \times \frac{1}{4}=1 \tag{2}
\end{align*}
$$

$$
1111111111111000
$$

$$
1100100010001000
$$

5 The result of this operation is an output bit-stream corresponding to the value $\frac{5}{16}$. This is our desired result, as $\frac{5}{16} \times \frac{15}{16}=\frac{4.6875}{16}$ which is optimally represented as $\frac{5}{16}$.

It is important to note that even with error compensation, it is still possible for our output bit-stream to not be an optimal approximation. This is because the multiply operations performed in Eq. (1) and Eq. (2) are carried out with the downscaled values of our original input operands A and B, and hence, there is an approximation involved. However, the error is bounded to be at most 2 bits, regardless of the length of the input operands. This is because, in Eq. (1) and Eq. (2), A^{\prime} and B^{\prime} can have an error of at most 1 bit (out of $2^{n / 2}$ bits) from the original values of A and B. Consequently, the values obtained for $\operatorname{Inv}\left(A^{\prime}\right)$ and $\operatorname{Inv}\left(B^{\prime}\right)$ can also differ by at most 1 from their optimal values. Stated differently, when performing the inversion, the maximum error that can be introduced is two bits (one for A, and one for B). This would translate to a maximum error of only two bits at the output, irrespective of the bit-precision of the inputs.

Kiran and Riedel

4 MATHEMATICAL PROOF

Kiran and Riedel

$$
\begin{align*}
& \frac{C}{n}=n \cdot\left(\frac{A}{n} \times \frac{B}{n}\right) \tag{4}\\
& \frac{C}{n}=\left(\frac{A}{\sqrt{n}} \times \frac{B}{\sqrt{n}}\right) \tag{5}
\end{align*}
$$

$297 \frac{A}{\sqrt{n}}$ and $\frac{B}{\sqrt{n}}$ are not always integers, let's represent them in terms of quotients and remainders.

$$
\begin{equation*}
\frac{C}{n}=\left(\text { Quotient }\left[\frac{A}{\sqrt{n}}\right]+\text { Remainder }\left[\frac{A}{\sqrt{n}}\right]\right) \cdot\left(\text { Quo }\left[\frac{B}{\sqrt{n}}\right]+\operatorname{Rem}\left[\frac{B}{\sqrt{n}}\right]\right) \tag{6}
\end{equation*}
$$

Expanding the double brackets, we get

$$
\begin{align*}
\frac{C}{n} & =\left(Q u o\left[\frac{A}{\sqrt{n}}\right] \cdot Q u o\left[\frac{B}{\sqrt{n}}\right]\right)+\left(\operatorname{Rem}\left[\frac{A}{\sqrt{n}}\right] \cdot Q u o\left[\frac{B}{\sqrt{n}}\right]\right) \tag{7}\\
& +\left(Q u o\left[\frac{A}{\sqrt{n}}\right] \cdot \operatorname{Rem}\left[\frac{B}{\sqrt{n}}\right]\right)+\left(\operatorname{Rem}\left[\frac{A}{\sqrt{n}}\right] \cdot \operatorname{Rem}\left[\frac{B}{\sqrt{n}}\right]\right)
\end{align*}
$$

In our design, the quotients correspond to A^{\prime} and B^{\prime}, while the remainders are the Error associated with A^{\prime} and B^{\prime} respectively. The terms in Eq. (7) also correspond to different parts of the operation.
-The first term corresponds to the main multiply operation with the downscaled inputs A^{\prime} and B^{\prime}
-The second term corresponds to how many bits of A^{\prime} that we should invert, i.e., $\operatorname{Inv}\left(\mathrm{A}^{\prime}\right)$ in Eq. (1)

- The third term corresponds to how many bits of B^{\prime} that we should invert, i.e., $\operatorname{Inv}\left(B^{\prime}\right)$ in Eq. (2)
-The fourth term is not considered in our design, but it can be incorporated to completely eliminate any error with respect to the optimal approximation.

Another way of looking at this is that our initial result of multiplying the downscaled inputs A^{\prime} and B^{\prime} (i.e., the first therm in Eq. (7) will always be an under-approximation since the inputs were under-approximated. And we correct that under-approximation by

Kiran and Riedel

5 HARDWARE IMPLEMENTATION

inverting/flipping " 0 " bits to " 1 " bits. The matter of "how many" and "where" to perform these bit flips is computed by the second and third terms in Eq. (7).

The complete circuit for our method is shown in Fig. 5] and Fig. 6. By downscaling the input length to the square root of its original value, the binary values of A and B can be partitioned in half, as shown in the figure. The higher-order bits represent our downscaled operands, while the lower-order bits represent the error.

Fig. 5 represents the first stage of our operation, responsible for computing Eq. (1) and Eq. (2). It employs two deterministic unary multiplier circuits, each with two unary bit stream generators. The generated bit streams are fed to an AND gate which performs the multiplication, and the result is accumulated using a counter.

The results from Fig. 5 are used in Fig. 6, which carries out the second stage of the operation, i.e., the main multiply operation. Fig. 6 features two unary bit stream generators for our downscaled input operands, which are then fed to an Error Compensation Module that performs the bit flips, and is then fed to a AND gate.

The Error Compensation Module consists of logic that computes the input to the selector line for two multiplexers: one that chooses between A and $\operatorname{NOT}(A)$, and the other between B and $\operatorname{NOT}(B)$. The outputs of these multipliexers serve as the final input to an AND. The output of the AND gate is accumulated into a n-bit counter and would be the final result of our multiply operation.

Initially, we set out with the goal to deterministically compute the multiplication of two 2^{n} length input bit streams. We then downscale them to $2^{n / 2}$ length input bit streams, to produce an output bit-stream of length 2^{n}. This introduces errors in the resultant bit stream since we are dealing with approximations, and we want the optimal approximation for our result. This error can be deterministically quantified (and compensated) by two other multiply operations, which also involve $2^{n / 2}$ bit-stream. These operations can happen in parallel. Therefore, to produce the desired output bit-stream of length 2^{n} bits, the latency is $2^{n}+2^{n}=2^{n+1}$. However, there is another optimization that can be implemented. The two stages of this operation, i.e., determining the error and multiplication with error compensation, can be pipelined to maintain the throughput of one multiply operation every 2^{n} bits.

Kiran and Riedel

Figure 5.

6 SIMULATION AND RESULTS

344 We first evaluated our approach with an exhaustive simulation of multiplication of all random or quasi-random generation of bit-streams, such as LFSRs, Sobol and Halton

Kiran and Riedel

Figure 6.

347 sequences (5). We can consider the Sobol sequence implementation to be representative of they all showcase similar accuracy and area cost. We then evaluated the different stochastic approaches in other arithmetic functions, and Matrix dot-product to see how they fare in a practical application, as it is an integral aspect of machine learning models.

6.1 Multiplication

Table 1 shows the Mean Absolute Error (MAE) Percentage and Gate Cost of various implementations for the stochastic multiplication of two inputs. We set the area of the SobolSequences approach as our reference for comparisons. It is worth mentioning that Sobolsequences isn't one specific sequence, but rather any sequence in base 2 that satisfies the lowdiscrepancy/uniformity properties demanded. For our tests, the two Sobol sequences that had the lowest gate cost, were chosen to generate the bitstreams for the two corresponding operands.

Kiran and Riedel

Bitstream Length	LFSR		Sobol Sequence		Our Approach	
	MAE	Gate Cost	MAE	Gate Cost	MAE	Gate Cost
2^{4}	8.84%	53.29%	5.93%	100%	0.93%	68.73%
2^{6}	5.35%	47.28%	1.66%	100%	0.34%	63.16%
2^{8}	0.96%	43.05%	0.4%	100%	0.16%	57.73%

Table 1.

The output bit streams were computed for all possible values of input operands of length 2^{n}, and the output was also observed for 2^{n} cycles. The absolute error was measured against the ideal approximation, and not the full-precision output. Mathematically, we would need to observe the output from $2^{2 n}$ cycles to obtain no error at all. And in the cases of both Sobol sequences (and other low-discrepancy sequences), and the deterministic approach, the error does converge to 0 if the output bitstream were to be generated for $2^{2 n}$ cycles.

Our approach offers significant improvements in accuracy over both conventional stochastic implementations that use LFSRs and other low-discrepancy sequences. Although our approach does demand a slightly higher gate cost over conventional LFSRs, as shown in Fig. 7, the increase in area is minor. On the other hand, low-discrepancy sequences such as the Sobol sequence is accompanied by a large increase in area cost. The gate cost for such implementations scale quadratically as the precision of the input operands increase, as evident in Fig. 7. This is due to the fact that such low-discrepancy sequences incorporate a Directional Vector Array in their circuit, whose gate cost scale by a factor of n^{2} (6).

One benefit that low-discrepancy sequences do offer over deterministic approaches is better progressive accuracy, as shown in Table 2. This is due to the innate nature of the distribution of the points in low-discrepancy sequences, and also because deterministic approaches are designed with the assumption that the output is only expected to be read after a certain number of cycles. However, we argue that this is irrelevant as the desired precision of the output is predetermined in the design phase of an application, and remains constant.

6.2 Arithmetic Functions

The proposed method can be applied to many stochastic operations. (9, 10) demonstrates how to perform operations such as exponent, sin, log in the stochastic domain using NAND gates to implement the Maclaurin series expansion of these functions. For these tests, we settled on bit-streams of length 2^{8} bits, as it provides a good balance of accuracy, precision and latency. We do make some minor adjustments such that the coefficients in polynomial are approximated such that the denominator's precision is $\frac{1}{2^{8}}$. The increase in error due

Kiran and Riedel

Observed Output Bitstream Length	Mean Absolute Error (\%)			
(Bits)	LFSR	Sobol	Halton	Our Approach
10	31.53	18.96	19.74	23.67
11	28.36	16.34	17.21	18.45
12	24.96	13.74	14.89	12.32
13	22.87	10.8	10.33	8.61
14	18.6	7.36	8.1	3.78
15	13.5	6.84	7.47	1.52
16	8.84	5.93	6.13	0.93

Table 2.

Gate Cost scalability with Bit Stream Lengths

Figure 7.

Kiran and Riedel

Operation	LFSR		Sobol Sequence		Our Approach	
	MAE	Gate Cost	MAE	Gate Cost	MAE	Gate Cost
e^{-x}	7.2%	44.27%	3.3%	100%	1.6%	53.32%
$\sin x$	7.9%	48.67%	3.1%	100%	1.5%	57.20%
$\log (1+x)$	6.7%	45.31%	3.6%	100%	1.9%	48.02%
$\operatorname{sigmoid} x$	8.4%	52.76%	3.2%	100%	1.4%	60.61%

Table 3.

391 The Mean Absolute Error (MAE) and gate cost are shown in Table 3. The general trend bit-streams.

Figure 8.

Kiran and Riedel

6.3 Matrix Multiplication

Error tolerance, combined with many low precision operations, make ML models an ideal candidate for stochastic computing. (12) is comprehensive survey of different neural networks that incorporate the technique.

The three key computations performed in a ML model are: matrix/vector multiplication, accumulation (i.e., addition), and the activation function. Our focus in this paper is matrix dot-product multiplication. Although several designs $(13)(14)$ have been proposed to perform accumulation in the stochastic domain (12), accumulation in the traditional binary domain generally works better. This is because stochastic logic is limited to the range $[0,1]$ so accumulation requires scaling. Activation functions are heavily reliant on the design of the ML model. If one wishes to compute the activation function in the stochastic domain, in most cases one can do so via arithmetic functions such as Btanh and Sigmoid (15)(16).

For neural network computation, we have to address the issue of negative weights. Although stochastic computing can support negative values within the range $[-1,1]$ by using the bipolar representation, that approach increases latency and gate cost due to additional processing. Furthermore, it does not scale well. Since binary adders are more efficient than stochastic ones, we implement positive and negative weights separately, and we perform accumulation in the binary domain. Fig. 9 demonstrates how a neuron can be modeled and implemented with positive and negative weights. The same counter can be used to generate the bit-streams for all elements. However, each input operand bit-stream requires exclusive access to a comparator circuit. The designer has the choice of how many comparator circuits they want to incorporate, based on the priority of latency or area for that particular design.

We simulated the dot product with two matrices, A and B, of sizes [2048 2048] and [2048 128], respectively. The elements were initialized to random n-bit values. The tests were run for 100 trials, and the results were averaged across all trials. Table 4 shows the mean absolute error of all the elements in the product matrix $C=A \cdot B$. The same trend observed in Section 6.1 continues, and in fact, the gap widens. This can be attributed to the fact that, unlike Table 1, this was not an exhaustive simulation across ALL n-bit values, but rather, a more realistic scenario with operands initialized to random values of n-bit precision.
The design presented in (17) incorporates stochastic computing and low-discrepancy Sobol sequences in the first convolution layer of the LeNet-5 neural network. We reconstructed the test environment and substituted the stochastic operations with deterministic unary operations. As shown in Table 5, using a deterministic unary approach achieves better classification rates than other alternative random/quasirandom number generation schemes, at a much lower area cost.

Kiran and Riedel

Figure 9.

Input/Output	Mean Absolute Error (\%)			
	LFSR	Sobol	Halton	Our Approach
2^{4}	10.47	6.44	7.32	0.87
2^{6}	6.83	2.16	2.85	0.31
2^{8}	3.86	1.59	1.63	0.26

Table 4.

Design	Misclassification Rate for 2^{4} operating cycles
Conventional LFSR	1.08%
Sobol sequences	0.84%
Our approach	0.79%

Table 5.

We are not advocating for a specific ML model or architecture. Instead, the goal of our design is to offer a flexible and scalable method for performing multiplication in the stochastic domain. The deterministic approach is designed to provide a cost-effective (in terms of gates) and adaptable framework that is well-suited for fault-tolerant and lowprecision applications. While stochastic computing offers area savings over conventional

Kiran and Riedel

7 CONCLUSION

 the manuscript. YK and MR reviewed the manuscript.
FUNDING

 graceful approximations when constant bit-stream lengths are required. applications that are fault-tolerant and less latency-sensitive.
AUTHOR CONTRIBUTIONS

The authors are funded by DARPA grant \#W911NF-18-2-0032.

REFERENCES

 Computing. 12 (2013). doi:10.1145/2966986.2966988. Proceedings of the Design Automation Conference (2009) 480-487.binary circuits for higher-precision operations, the associated latency proves to be limiting and cannot surpass the balance of area-latency offered by traditional binary computing.

Recent work has demonstrated that randomness is not a requirement for "stochastic" computing. The deterministic approach in (2) mitigates most of the drawbacks typically associated with the paradigm. However, the method in these papers does not allow for

In this paper, we presented an approach that builds upon this foundation. By deterministically downscaling the inputs and compensating for approximation errors during the clock division operation, we demonstrate that it is possible to produce accurate results, while also preserving the bit stream lengths. This makes our approach composable, allowing operations to be chained together. Our simulations show that our approach can achieve very accurate results, with the maximum error bounded as two bits for each level of logic, irrespective of the bit stream length. It offers significant advantages over other stochastic approaches that rely on random or quasi-random bit streams. And it serves as a viable energy/area efficient alternative to traditional binary computation in low-precision

YK and MR led discussions on this research. YK conducted the data analyses and wrote

1 .Alaghi A, Hayes JP. Survey of stochastic computing. ACM Transactions on Embedded
2 .Jenson D, Riedel M. A deterministic approach to stochastic computation. 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2016), 1-8.

3 .Qian W, Riedel MD. Synthesizing logical computation on stochastic bit streams.

Kiran and Riedel

4 .Alaghi A, Hayes JP. Fast and accurate computation using stochastic circuits. 2014 Design, Automation and Test in Europe Conference Exhibition (DATE) (2014), 1-4. doi:10.7873/DATE.2014.089.
5 .Najafi MH, Lilja DJ, Riedel M. Deterministic methods for stochastic computing using low-discrepancy sequences. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2018), 1-8. doi:10.1145/3240765.3240797.
6 .Liu S, Han J. Toward energy-efficient stochastic circuits using parallel sobol sequences. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26 (2018) 13261339.

7 .Gaines BR. Stochastic computing (Association for Computing Machinery) (1967), AFIPS '67 (Spring), 149-156.
8 .Qian W. Digital yet Deliberately Random: Synthesizing Logical Computation on Stochastic Bit Streams. Ph.D. thesis, University of Minnesota (2011).
9 .Parhi KK, Liu Y. Computing arithmetic functions using stochastic logic by series expansion. IEEE Transactions on Emerging Topics in Computing 7 (2019) 44-59. doi:10.1109/TETC.2016.2618750.
10 .Salehi SA, Liu Y, Riedel MD, Parhi KK. Computing polynomials with positive coefficients using stochastic logic by double-nand expansion. Proceedings of the on Great Lakes Symposium on VLSI 2017 (Association for Computing Machinery) (2017), 471-474.

11 .Giordano R, Aloisio A. Fixed-latency, multi-gigabit serial links with xilinx fpgas. IEEE Transactions on Nuclear Science 58 (2011) 194-201.
12 .Liu Y, Liu S, Wang Y, Lombardi F, Han J. A survey of stochastic computing neural networks for machine learning applications. IEEE Transactions on Neural Networks and Learning Systems 32 (2021) 2809-2824. doi:10.1109/TNNLS.2020.3009047.
13 .Ting PS, Hayes JP. Stochastic logic realization of matrix operations. 2014 17th Euromicro Conference on Digital System Design (2014), 356-364. doi:10.1109/DSD. 2014.75.

14 .Lee VT, Alaghi A, Hayes JP, Sathe V, Ceze L. Energy-efficient hybrid stochastic-binary neural networks for near-sensor computing. Design, Automation and Test in Europe Conference and Exhibition (DATE), 2017 (2017), 13-18. doi:10.23919/DATE.2017. 7926951.

15 .Liu Y, Wang Y, Lombardi F, Han J. An energy-efficient stochastic computational deep belief network. 2018 Design, Automation and Test in Europe Conference and Exhibition (DATE) (2018), 1175-1178. doi:10.23919/DATE.2018.8342191.
16 .Li Z, Li J, Ren A, Cai R, Ding C, Qian X, et al. Heif: Highly efficient stochastic computing-based inference framework for deep neural networks. IEEE Transactions

Kiran and Riedel

FIGURE CAPTIONS

-Figure 1: Stochastic implementation of common arithmetic operations: (a) Multiplication; (b) Scaled addition.
-Figure 2: Unary/Thermometer code generator
-Figure 3: Multiplication - Conventional Stochastic vs Deterministic approach
-Figure 4: Circuit implementation of clock-division involving two counters connected in series.
-Figure 5: Circuit to compute the error and which bits to invert
-Figure 6: Circuit to perform main multiply operation
-Figure 7: Relative gate cost for different stochastic implementations of a multiply circuit
-Figure 8: Relative gate cost for implementation of different arithmetic functions
-Figure 9: Structure of hybrid binary-stochastic neuron implementation
-Table 1: Mean absolute error and gate cost $\%$ for the multiply operation of various stochastic implementations
-Table 2: Progressive accuracy comparison between different stochastic approaches
-Table 3: Mean absolute error and gate cost \% for functions implemented using Maclaurin expansion
-Table 4: Mean absolute error of different stochastic techniques for matrix dot-product.
-Table 5: Misclassification rate for LeNeT-5

