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ABSTRACT2

Stochastic computing is a paradigm in which logical operations are performed on3
randomly generated bit streams. Complex arithmetic operations can be executed4
by simple logic circuits, resulting in a much smaller area footprint compared5
to conventional binary counterparts. However, the random or pseudorandom6
sources required for generating the bit streams are costly in terms of area7
and offset the advantages. Additionally, due to the inherent randomness,8
the computation lacks precision, limiting the applicability of this paradigm.9
Importantly, achieving reasonable accuracy in stochastic computing involves high10
latency. Recently, deterministic approaches to stochastic computing have been11
proposed, demonstrating that randomness is not a requirement. By structuring12
the computation deterministically, exact results can be obtained, and the latency13
greatly reduced. The bit stream generated adheres to a “unary” encoding, retaining14
the non-positional nature of the bits while discarding the random bit generation15
of traditional stochastic computing. This deterministic approach overcomes many16
drawbacks of stochastic computing, although the latency increases quadratically17
with each level of logic, becoming unmanageable beyond a few levels. In this18
paper, we present a method for approximating the results of the deterministic19
method while maintaining low latency at each level. This improvement comes at20
the cost of additional logic, but we demonstrate that the increase in area scales21
with

√
n, where n represents the equivalent number of binary bits of precision. Our22

new approach is general, efficient, composable, and applicable to all arithmetic23
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operations performed with stochastic logic. We show that this approach outperforms24
other stochastic designs for matrix multiplication (dot-product), which is an integral25
step in nearly all machine learning algorithms.26

1 INTRODUCTION

In stochastic computing, randomly generated streams of 0’s and 1’s are used to represent27
fractional numbers. The number represented by a bit stream corresponds to the probability28
of observing a 1 in the bit-stream at any given point in time. The advantage of this29
representation is that complex operations can be performed with simple logic, owing to30
the non-positional nature of the bits. For instance, multiplication can be performed with31
a single AND gate, and scaled addition can be performed with a single multiplexer. The32
simplicity and scalability of these operations make computing in this domain very appealing33
for applications that handle large amounts of data, especially in the wake of Moore’s Law34
slowing down. Machine learning models are one such application that ticks all the boxes.35

The drawbacks of the conventional stochastic model are as follows: 1) the latency is high,36
and 2) due to randomness, the accuracy is low. Latency and accuracy are related parameters:37
to achieve acceptable accuracy, high latency is required (1). Recently, a “deterministic”38
approach to stochastic computing has been proposed (2) that uses all the same structures as39
stochastic logic but on deterministically generated bit streams. Deterministic approaches40
incur lower area costs since they generate bit streams with counters instead of expensive41
pseudo-random sources such as linear feedback shift registers (LFSRs). Most importantly,42
the latency is reduced by a factor of approximately 1

2n , where n is the equivalent number of43
bits of precision. However, the latency is still an issue as it increases quadratically for each44
level of logic. Any operation involving two 2n-bit input bit streams will produce a resulting45
bit stream of length 22n bits. This is a mathematical requirement: for an operation such46
as multiplication, the range of values of the product scales with the range of values of the47
operands. However, most computing systems operate on constant precision operands and48
products. Since this is not sufficient to represent the 22n output in full precision, we will49
have approximation errors. Our primary goal is to minimize this error.50

Recent papers have discussed techniques for approximating the deterministic computation51
with quasirandom bit streams, such as Sobol sequences (3, 4, 5, 6). Unfortunately, the area52
cost of these implementations is high: the logic to generate the quasirandom bit streams is53
complex and grows quickly as the number of bit streams increases, in most cases completely54
offsetting the benefits.55
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In this paper, we present a scalable deterministic approach that maintains constant bit56
stream lengths and approximates the results. This approach has much lower area cost than57
the quasirandom sequence approach. We structure the computation by directly pairing up58
corresponding bits from the input bit streams using only simple structures such as counters.59
Not only does our approach achieve a high degree of accuracy for the given bits of precision,60
but it also maintains the length of the bit streams. This property lends composability to our61
technique, allowing multiple operations to be chained together. Maintaining a constant bit62
stream length comes at the cost of additional logic, but we demonstrate that the increase in63
area scales with

√
n, where n is the number of binary bits of precision. The new approach64

is general, efficient, and applicable to all arithmetic operations performed with stochastic65
logic. It outperforms other state-of-the-art stochastic techniques in both accuracy and66
circuit complexity. We also evaluate our approach with matrix dot-product, an integral67
set in machine learning algorithms. We demonstrate that our approach is a good fit for68
machine learning, as it allows one to increase the precision of the inputs while preserving69
the bit-length/latency at the output.70

As the bit streams are no longer random, the term “stochastic” would be an oxymoron. The71
bit streams generated for any particular operand follow a “unary” encoding, where all the72
1’s are clustered together, followed by all the 0’s (or vice versa). Hence, we shall refer to73
this approach as “unary” computing in this paper.74

This paper is structured as follows: Section 2 provides a brief overview and background75
of stochastic computing. Section 3 presents our new approach. Section 4 provides the76
mathematical reasoning behind our design. Section 5 details the gate-level implementation.77
Section 6 evaluates our method and compares and contrasts it with prior stochastic78
approaches. Finally, Section 7 outlines the implications of this work.79

2 BACKGROUND INFORMATION

2.1 Introduction to Stochastic Computation80

The paradigm of stochastic logic (sometimes called stochastic “computing”) operates on81
non-positional representations of numbers (7). Bit streams represent fractional numbers:82
a real number x in the unit interval (i.e., 0 ≤ x ≤ 1) corresponds to a bit stream X(t) of83
length L, where t = 1, 2, ..., L. If the bit stream is randomized, then for precision equivalent84
to conventional binary with precision n, the length of the bit stream L must be 22n(8).85
The probability that each bit in the stream is 1 is denoted by P (X = 1) = x. Below86
is an illustration of how the value 5

8 can be represented with bit streams. Note that the87
representation is not unique, as demonstrated by the four possibilities in the figure. There88
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also exists a bipolar format which can be used to natively represent negative numbers, but89
for the sake of simplicity, we shall restrict our discussions to the unipolar format. Although,90
the concepts which we discuss can also be applied to the bipolar format as well. In general,91
with a stochastic representation, the position of the 1’s and 0’s do not matter.92

5

8
⇒

1 0 1 1 0 1 0 1
0 1 0 1 1 1 0 1
1 1 0 1 0 0 1 1
0 0 1 1 1 1 0 1

Common arithmetic operations that operate on probabilities can be mapped efficiently to93
logical operations on unary bit-streams.94
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Figure 1.

•Multiplication. Consider a two-input AND gate whose inputs are two independent bit95
streams X1(t) and X2(t), as shown in Fig. 1(a). The output bit stream Y , is given by96

y = P (Y = 1) = P (X1 = 1 and X2 = 1)

= P (X1 = 1)P (X2 = 1) = x1x2.

•Scaled Addition. Consider a two-input multiplexer whose inputs are two independent97
stochastic bit streams X1 and X2, and its selecting input is a stochastic bit stream S, as98
shown in Fig. 1(b). The output bit stream Y , is given by99

y = P (Y = 1)

= P (S = 1)P (X1 = 1) + P (S = 0)P (X2 = 1)

= sx1 + (1− s)x2.
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Complex functions such as exponentiation, absolute value, square roots, and hyperbolic100
tangent can each be computed with a small number of gates (9, 10).101

2.2 The Deterministic Approach to Stochastic Computing102

In conventional stochastic logic, the bit streams are generated from a random source such103
as a linear feedback shift register (LFSR). The computations performed on these randomly104
generated bit streams are not always accurate. The figure below demonstrates a worst-case105
scenario where multiplying two input bit-streams corresponding to probabilities 3

5 and 2
5 ,106

results in an output of probability 0
5 .107

3
5 ⇒ 100110

2
5 ⇒ 001001

00000 ⇒
0
5

Consider instead a unary encoding, one in which all the 1’s appear consecutively at the108
start, followed by all the 0’s (or vice-versa), as shown below. This is also referred by some109
as “Thermometer encoding”.110

3

4
⇒1110    

5

8
⇒11111000

This encoding is not a requirement, but rather a consequence of the circuit used to generate111
deterministic bit streams, shown in Fig. 2. For a computation involving n-bit precision112
operands, the setup involves an n-bit register, counter, and comparator. The register stores113
the corresponding binary value of the input operand. The bit stream is generated by114
comparing the value of the counter to the value stored in the register. The counter runs from115
0 to 2n − 1 sequentially, so the resulting bit-stream inherits a thermometer encoding.116

n-bit
Register

n-bit
Counter

n-bit
Comparator

111100000

Thermometer Encoded
Bit-stream

Figure 2.
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A “deterministic” approach to stochastic computation was proposed, where the computation117
is performed on bit-streams which are generated deterministically, resulting in a unary118
encoding (2). By deterministically generating bit streams, all stochastic operations can be119
implemented efficiently by maintaining the following property: every bit of one operand120
must be matched up against every bit of the other operand(s) exactly once.121

Performing a multiply operation on unary bit-streams using the deterministic approach122
involves matching every bit of the first operand, with every bit of the second operand once.123
This is analogous to a Convolution operation, as illustrated below. Holding a bit of one124
input operand constant, the operation is repeated for each of the bits of the other input125
operand. The particular approach is known as clock-division, due to the division of the126
clock signal in the circuit for generating the input bit streams.127

𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ  𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ  𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ 𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ

𝑏଴ 𝑏଴ 𝑏଴ 𝑏଴   𝑏ଵ 𝑏ଵ 𝑏ଵ 𝑏ଵ   𝑏ଶ 𝑏ଶ 𝑏ଶ 𝑏ଶ   𝑏ଷ 𝑏ଷ 𝑏ଷ 𝑏ଷ

𝐴 = 𝑎଴𝑎ଵ𝑎ଶ𝑎ଷ 𝐵 = 𝑏଴𝑏ଵ𝑏ଶ𝑏ଷ

Fig. 3 illustrates the Multiply operation on two operands (34 and 1
4 ) performed stochastically128

and deterministically. It is evident that the deterministic method achieves perfect accuracy.129
However, for each level of logic, the bit stream lengths increase. For a multiply operation130
involving two streams of 2n bits each, the output bit stream is 22n bits. This is a131
mathematical requirement in order to represent the full range of values. However, for132
large values of n, the bit stream lengths become prohibitive. For most applications, one133
has to maintain a constant bit stream length across all the levels of logic, and hence, an134
approximation is inevitable (11). We discuss how to do this in Section 3.135
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A⇒ 1000 1000 1000 1000

B⇒ 1111 1111 1111 0000

1000 1000 1000 0000 ⇒
3

16

A⇒ 3/4 ⇒1110 B⇒ 1/4 ⇒1000

A⇒ 1011 0110 1111 1101

B⇒ 0100 0000 1001 0010

0000 0000 1001 0000 ⇒
2

16

A⇒ 3/4 B⇒ 1/4

𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑖𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑠

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑖𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑠

Figure 3.

For an operation such as multiplication, two copies of the circuit in Fig. 2 are used for136
generating the bit streams of the input operands. As shown in Fig. 4, the counter of the137
second input operand counts up only when the counter of the first input operand rolls over138
2n − 1. This can be achieved by connecting the AND of all the output lines of the first139
counter to the clock input of the second counter.140

A

B

Bit-stream A

Bit-stream B
Counter
[0,2௡)

Counter
[0,2௡)

CLK

Figure 4.
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3 SCALABLE DETERMINISTIC APPROACH

In the deterministic approach discussed in Section 2.2, the bit stream lengths grow141
quadratically with each level of logic (2). This becomes unsustainable for larger circuits.142
Our goal is to keep the length constant across multiple levels of logic.143

3.1 Downscaling144

The low-hanging fruit for approximating is simply to downscale the input operands, i.e.,145
generate bit streams of smaller length as shown in Section 3.1. Consider an input operand146
that would correspond to a bit stream of length L. We want to reduce the length of the147
generated bit stream by downscaling or approximating the input operand itself. Downscaling148
is ideally performed by reducing the bit stream by powers of 2, i.e., divide L by d = 2i,149
where d is the degree of downscaling. In other words, every set of d bits in the original150
bit stream would correspond to one bit in the downscaled bit stream. The deterministic151
multiplication operation restores the target length.152

Downscaling is easily achieved by right-shifting the value stored in the register in Fig. 2.153
For example, for an input operand with 24 = 16 bits of precision and a probability value of154
12
16 , we would store the binary equivalent of 12, i.e., 11002, in the register. To downscale the155
value by a factor of 4, we would right-shift the value of the register by 2 bits to obtain the156
binary value 112 (which corresponds to the probability value 3

4 ). In general, to downscale a157
value by a factor of d = 2i, we would right-shift by i bits. Consequently, this would also158
reduce the size of the counters used for bit generation.159

In Fig. 3, we showed that deterministically multiplying two input bit streams of length 2n160
bits each results in an output bit stream of length 22n. However, if we were to approximate161
the input operands to bit streams of length 2

n
2 , then our output bit stream would be limited162

to 2n bits. If the target value of a bit stream can be accurately represented with fewer bits,163
then there will be no errors. For example, the probability 20

32 can also be represented as 10
16164

or 5
8 . However, in general, the process of downscaling will introduce errors. We want to165

minimize the error. In a mathematical sense, we want a scheme that always generates the166
optimal approximation.167

In the context of this paper, the error is the difference between the result and the optimal168
approximation, given a target bit stream length. For example, the probability 11

16 , when169
downscaled to 4 bits, can be optimally approximated as 3

4 (but not as 1
4 , 2

4 , or 4
4 ).170

When downscaling a unary encoding, there are only two possible scenarios that can occur,171
irrespective of the length of the input bit streams. These are illustrated in the figure below,172
where we try to approximate 5

10 to be represented with just 5 bits. In both cases, a single173
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11 11 10 00 00
1   1   1   0   0 

Down-sampled 
bit-streams

11 11 10 00 00
1   1   0   0   0 

11 11 10 00 00 Original bit-stream

Sampled bit = 1 Sampled bit = 0

bit conveys the wrong information. Using either one of the downscaled bit streams as an174
input to an arithmetic operation results in an error. The method that we will present in175
this paper always opts for the right-hand side case, where the downscaled bit stream is176
an under-approximation of the actual value. The reasoning behind this will be evident in177
Section 3.3.178

For an operation involving two downscaled input operands of 2n bits each, it can be179
mathematically deduced that the error that can occur in the output bit stream is at most180
(2n − 1) bits out of 22n bits. Suppose, for example, we want to multiply two values each181
with (24) bits precision (i.e., x

16 , y
16 ), we could downscale the operands to (22) bits precision182

(e.g., p
4 , q

4 ), producing an output bit-stream of 16 bits. The error in the resulting bit-stream183
would be restricted to (2n − 1) = 3 bits, out of (22n) = 16 bits. Although this error might184
seem small, it grows as a function of the bit-stream length of the inputs as well as the185
number of logic levels. It’s worse than it appears as it grows as a function of the bit-stream186
length of the inputs, as well as the number of logic levels. We can do better.187

3.2 Error Compensation188

The basic idea of our approach is to systematically compensate for the error that we189
introduce when down-scaling. We do so during the clock division process.190

We illustrate with an example. Consider the multiply operation of two input operands, each191
of length 16 bits. To restrict the length of the output bit stream to just 16 bits, we will192
downscale the input operands that corresponds to a bit stream of 4 bits, a downscaling factor193
of 16

4 = 4. In general, if the input-operands are p bits in length, we ideally down-scale194
them to length q bits, such that q=

√
p and that the length of the output bit stream remains195

the same as the input bit steams. Consider the case where A = 5
16 and B = 15

16 as shown196
below. Neither of the two input operands can be downscaled to 4 bits without introducing197
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errors. For each input operand, we round down, shifting the value stored in the register198
by 2 bits. So A = 5

16 gets down-scaled to A′ = 1
4 , which is equivalent to 4

16 . B = 15
16 gets199

down-scaled to B′ = 3
4 , which is equivalent to 12

16 . We underestimate the value of A′ by 1
16 ,200

and B′ by 3
16 .201

Down-scaled 
bit-stream

1111 1000 0000 0000

Original bit-stream

1000

A=
5

16

A′=
1

4
 ≈

4

16

Error A′= 5 − 4 = 1
(Under -Approximation)

   

1111 1111 1111 1110

Rounding down

1110

B=
15

16

B′=
3

4
 ≈

12

16

Error B′= 15 − 12 = 3
(Under -Approximation)

   Only one bit in a downscaled bit-stream(s) is erroneous. And this erroneous bit is carrying202
partially incorrect information. In our example above, for A′, we can interpret the second203
bit which is highlighted in blue, as having 1/4th of its information “incorrect”. Likewise, for204
B′, 3/4th of its last bit (highlighted in orange) can be considered “incorrect” information.205

A′=
1

4

   
𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ  𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ  𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ 𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ

𝑏଴ 𝑏଴ 𝑏଴ 𝑏଴   𝑏ଵ 𝑏ଵ 𝑏ଵ 𝑏ଵ   𝑏ଶ 𝑏ଶ 𝑏ଶ 𝑏ଶ   𝑏ଷ 𝑏ଷ 𝑏ଷ 𝑏ଷ

⇓
1000 1000 1000 1000
1111 1111 1111 0000

B′=
3

4

   

Error A′ = 1 Error B′ = 3

In normal circumstances, we cannot correct a fractional portion of a bit; only the bit as a206
whole. However, when performing the clock division operation discussed in Section 2.2,207
each bit is repeated multiple times (in this example, four times) as shown in the figure above.208
This provides the opportunity to compensate for the error incurred during downscaling. For209
A′, we know that the second bit is erroneous, and that 1/4th of this bit is “incorrect”. This210
bit is also repeated four times during the clock division operation. So our instinct would211
be to “correct” this error by inverting that bit once, out of the four times it is repeated.212
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Similarly, for B′, we know that 3/4th of its last bit is “incorrect”. Naturally, we would want213
to invert this bit three out of the four times it is repeated.214

If the input-operands are p bits in length, we down-scale them to length q bits, such that215
q=

√
p. The down-scaled bit stream has an error of e, implying a portion e

q , of a 0, is216
incorrect. In the clock-division operation, each bit is repeated q times. To compensate for217
the error, we invert the 0 to 1, e out of the q times that it is repeated.218

We mentioned earlier in Section 3.1, that out of the two possible cases when downscaling219
(over-approximation and under-approximation), we would always under-approximate the220
value. By restricting ourselves to this case, we would cut down significantly on the circuit221
needed to perform the error compensation by omitting any comparators and control logic.222
And our tests show that this has no noticeable effect on the accuracy of the operation. We223
would know that the erroneous bit in our downscaled bit-stream is always the first 0 we224
encounter in our thermometer encoded bit-stream; and to compensate for this error, we225
would always have to invert this 0 to 1, a certain number of times during our clock division226
operation.227

We know how many bits we need to invert, but we now face the challenge of determining228
which position of the bits to invert. The erroneous bit is repeated q times, and there are q229
candidate positions to perform the e (i.e., error magnitude) bit flips. It turns out that we can230
decide these positions in a deterministic fashion by performing another multiply operation.231

3.3 Multiplication within an Operation232

The bit flips need to occur in the right proportion. In other words, each bit flip of the first233
operand should be distributed equally among all the bits of the second operand.234

Take the example discussed earlier in Section 3.2. A′ (the downscaled bit stream of A) has235
an error of 1, or in other words, one of the 0s should be flipped to 1 and this needs to be236
distributed among the bits of B’. Since B′ represents 3

4 , it makes sense for that bit flip to237
align with a 1 in the bit stream for B′. On the same line B′ has an error of 3, and needs to238
be distributed among the bits of A′. With A representing 1

4 , in order to distribute those bit239
flips uniformly, we would align only one of those bit flips with a 1 in the bit stream of A,240
and the remaining with 0s.241

Trying to figure this distribution out off the top of one’s head is easy, but we need a way to242
compute this deterministically using digital logic. We can do this with a multiply operation.243
In our example for A′, we can compute 3× 1

4 = 3
4 ≈ 1. In fact, we can do so with another244

unary multiply operation.245
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In the example shown in Section 3.2, based on the error, we would need to invert one bit of246
A and three bits of B. Since we are always under-approximating our input operands (and247
consequently, the result), we will always be changing 0’s to 1’s. For a bit stream X , let248
Error(X) be the number of bits we need to invert, and Inv(X) be the number of inverted249
bits that need to align with a 1 from the other operand. The error compensation is illustrated250
below.251

Inv(A′) = ErrorA′ ×B′

= 1× 3

4
= 1

(1)

252
Inv(B′) = ErrorB′ × A′

= 3× 1

4
= 1.

(2)

Now that we know where to align those bit flips, we perform the multiply operation with253
error compensation (bit-flips) as shown below.254

1100 1000 1000 1000
1111 1111 1111 1000

1100 1000 1000 1000

The result of this operation is an output bit-stream corresponding to the value 5
16 . This is255

our desired result, as 5
16 ×

15
16 = 4.6875

16 which is optimally represented as 5
16 .256

It is important to note that even with error compensation, it is still possible for our output257
bit-stream to not be an optimal approximation. This is because the multiply operations258
performed in Eq. (1) and Eq. (2) are carried out with the downscaled values of our original259
input operands A and B, and hence, there is an approximation involved. However, the260
error is bounded to be at most 2 bits, regardless of the length of the input operands. This is261
because, in Eq. (1) and Eq. (2), A′ and B′ can have an error of at most 1 bit (out of 2n/2262
bits) from the original values of A and B. Consequently, the values obtained for Inv(A′)263
and Inv(B′) can also differ by at most 1 from their optimal values. Stated differently, when264
performing the inversion, the maximum error that can be introduced is two bits (one for265
A, and one for B). This would translate to a maximum error of only two bits at the output,266
irrespective of the bit-precision of the inputs.267
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In fact, in our tests where we did an exhaustive simulation of all possible operations of268
operands of different bits of precision; we found that less than 0.01% of cases result in an269
error of 2 bits, as shown in Section 6.1.270

It is possible to eliminate this minor error as explained in Section 4, but the logic involved271
to do so does significantly impact the overall circuit area. And considering the low error272
to begin with, as well as fault-tolerant nature of the applications that stochastic/unary273
computation is usually employed in, we believe the increased gate cost is not justified.274

The method we propose shares a lot of similarities with multiplication using partial products275
in the binary domain. We divide the bits of the operands (A and B) into higher-order (Ah and276
BH ), and lower-order (AL and BL) bits. The higher-order bits constitute the down-scaled277
input operands, while the lower order bits represent the error. The error is compensated by278
inverting bits, and where we invert those bits is determined by two multiplications: AL×BH ,279
and BL × AH . We use these results to correct for the error in our main multiplication of280
our downscaled operands (AH ×BH). The one divergence is that we are not performing281
the multiplication of the lower-order bits, i.e., AL ×BL. This aspect was initially part of282
our design, and in fact, eliminates the minute error (max bound of 2 bits) discussed earlier.283
But this minute improvement in accuracy is accompanied by a ≈ 30% increase in gate cost.284
We believe that the trade-off is not worth it.285

In our example, we have illustrated how to perform multiplication using 16-bit length286
streams, which conveniently has a square root. However, the proposed technique can still287
be applied to bit streams of all lengths that are powers of 2, with the caveat that in the288
cases where we are down-scaling to a length that is not the square-root, there would be289
an imbalance in the pipelining due to the difference in latencies of the two stages of the290
operation.291

4 MATHEMATICAL PROOF

Let us consider two operands A and B, and let the result of the operation A × B be C.292
The two operands are both represented as fractions with the denominator being n. This293
corresponds to n bits in the bit stream for the input operands. Consequently, the output bit294
steam will have a length of n2.295

C

n2
=

A

n
× B

n
(3)

We want the output bit-stream to also be n− bits. We can rewrite the above equation as:296
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C

n
= n ·

(
A

n
× B

n

)
(4)

C

n
=

(
A√
n
× B√

n

)
(5)

A√
n

and B√
n

are not always integers, let’s represent them in terms of quotients and297

remainders.298

C

n
=

(
Quotient

[
A√
n

]
+Remainder

[
A√
n

])
·
(
Quo

[
B√
n

]
+Rem

[
B√
n

])
(6)

Expanding the double brackets, we get299

C

n
=

(
Quo

[
A√
n

]
·Quo

[
B√
n

])
+

(
Rem

[
A√
n

]
·Quo

[
B√
n

])
+

(
Quo

[
A√
n

]
·Rem

[
B√
n

])
+

(
Rem

[
A√
n

]
·Rem

[
B√
n

]) (7)

In our design, the quotients correspond to A′ and B′, while the remainders are the Error300
associated with A′ and B′ respectively. The terms in Eq. (7) also correspond to different301
parts of the operation.302

•The first term corresponds to the main multiply operation with the downscaled inputs A′303
and B′304
•The second term corresponds to how many bits of A′ that we should invert, i.e., Inv(A’)305
in Eq. (1)306
•The third term corresponds to how many bits of B′ that we should invert, i.e., Inv(B’) in307
Eq. (2)308
•The fourth term is not considered in our design, but it can be incorporated to completely309
eliminate any error with respect to the optimal approximation.310

Another way of looking at this is that our initial result of multiplying the downscaled311
inputs A′ and B′ (i.e., the first therm in Eq. (7) will always be an under-approximation312
since the inputs were under-approximated. And we correct that under-approximation by313
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inverting/flipping “0” bits to “1” bits. The matter of “how many” and “where” to perform314
these bit flips is computed by the second and third terms in Eq. (7).315

5 HARDWARE IMPLEMENTATION

The complete circuit for our method is shown in Fig. 5 and Fig. 6. By downscaling the316
input length to the square root of its original value, the binary values of A and B can be317
partitioned in half, as shown in the figure. The higher-order bits represent our downscaled318
operands, while the lower-order bits represent the error.319

Fig. 5 represents the first stage of our operation, responsible for computing Eq. (1) and320
Eq. (2). It employs two deterministic unary multiplier circuits, each with two unary bit321
stream generators. The generated bit streams are fed to an AND gate which performs the322
multiplication, and the result is accumulated using a counter.323

The results from Fig. 5 are used in Fig. 6, which carries out the second stage of the operation,324
i.e., the main multiply operation. Fig. 6 features two unary bit stream generators for our325
downscaled input operands, which are then fed to an Error Compensation Module that326
performs the bit flips, and is then fed to a AND gate.327

The Error Compensation Module consists of logic that computes the input to the selector328
line for two multiplexers: one that chooses between A and NOT(A), and the other between329
B and NOT(B). The outputs of these multipliexers serve as the final input to an AND. The330
output of the AND gate is accumulated into a n-bit counter and would be the final result of331
our multiply operation.332

Initially, we set out with the goal to deterministically compute the multiplication of two333
2n length input bit streams. We then downscale them to 2n/2 length input bit streams, to334
produce an output bit-stream of length 2n. This introduces errors in the resultant bit stream335
since we are dealing with approximations, and we want the optimal approximation for336
our result. This error can be deterministically quantified (and compensated) by two other337
multiply operations, which also involve 2n/2 bit-stream. These operations can happen in338
parallel. Therefore, to produce the desired output bit-stream of length 2n bits, the latency339
is 2n + 2n = 2n+1. However, there is another optimization that can be implemented.340
The two stages of this operation, i.e., determining the error and multiplication with error341
compensation, can be pipelined to maintain the throughput of one multiply operation every342
2n bits.343
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6 SIMULATION AND RESULTS

We first evaluated our approach with an exhaustive simulation of multiplication of all344
n− bit operands. We compare it to prior stochastic implementations which rely on pseudo-345
random or quasi-random generation of bit-streams, such as LFSRs, Sobol and Halton346
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Figure 6.

sequences (5). We can consider the Sobol sequence implementation to be representative of347
all approaches that rely on quasirandom sequences called low-discrepancy sequences, as348
they all showcase similar accuracy and area cost. We then evaluated the different stochastic349
approaches in other arithmetic functions, and Matrix dot-product to see how they fare in a350
practical application, as it is an integral aspect of machine learning models.351

6.1 Multiplication352

Table 1 shows the Mean Absolute Error (MAE) Percentage and Gate Cost of various353
implementations for the stochastic multiplication of two inputs. We set the area of the Sobol-354
Sequences approach as our reference for comparisons. It is worth mentioning that Sobol-355
sequences isn’t one specific sequence, but rather any sequence in base 2 that satisfies the low-356
discrepancy/uniformity properties demanded. For our tests, the two Sobol sequences that357
had the lowest gate cost, were chosen to generate the bitstreams for the two corresponding358
operands.359
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The output bit streams were computed for all possible values of input operands of length 2n,360
and the output was also observed for 2n cycles. The absolute error was measured against361
the ideal approximation, and not the full-precision output. Mathematically, we would need362
to observe the output from 22n cycles to obtain no error at all. And in the cases of both363
Sobol sequences (and other low-discrepancy sequences), and the deterministic approach,364
the error does converge to 0 if the output bitstream were to be generated for 22n cycles.365

Bitstream
Length

LFSR Sobol Sequence Our Approach
MAE Gate Cost MAE Gate Cost MAE Gate Cost

24 8.84% 53.29% 5.93% 100% 0.93% 68.73%
26 5.35% 47.28% 1.66% 100% 0.34% 63.16%
28 0.96% 43.05% 0.4% 100% 0.16% 57.73%

Table 1.

Our approach offers significant improvements in accuracy over both conventional stochastic366
implementations that use LFSRs and other low-discrepancy sequences. Although our367
approach does demand a slightly higher gate cost over conventional LFSRs, as shown in368
Fig. 7, the increase in area is minor. On the other hand, low-discrepancy sequences such369
as the Sobol sequence is accompanied by a large increase in area cost. The gate cost for370
such implementations scale quadratically as the precision of the input operands increase, as371
evident in Fig. 7. This is due to the fact that such low-discrepancy sequences incorporate a372
Directional Vector Array in their circuit, whose gate cost scale by a factor of n2 (6).373

One benefit that low-discrepancy sequences do offer over deterministic approaches is374
better progressive accuracy, as shown in Table 2. This is due to the innate nature of the375
distribution of the points in low-discrepancy sequences, and also because deterministic376
approaches are designed with the assumption that the output is only expected to be read377
after a certain number of cycles. However, we argue that this is irrelevant as the desired378
precision of the output is predetermined in the design phase of an application, and remains379
constant.380

6.2 Arithmetic Functions381

The proposed method can be applied to many stochastic operations. (9, 10) demonstrates382
how to perform operations such as exponent, sin, log in the stochastic domain using NAND383
gates to implement the Maclaurin series expansion of these functions. For these tests, we384
settled on bit-streams of length 28 bits, as it provides a good balance of accuracy, precision385
and latency. We do make some minor adjustments such that the coefficients in polynomial386
are approximated such that the denominator’s precision is 1

28
. The increase in error due387
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Observed Output Bitstream Length
(Bits)

Mean Absolute Error (%)
LFSR Sobol Halton Our Approach

10 31.53 18.96 19.74 23.67
11 28.36 16.34 17.21 18.45
12 24.96 13.74 14.89 12.32
13 22.87 10.8 10.33 8.61
14 18.6 7.36 8.1 3.78
15 13.5 6.84 7.47 1.52
16 8.84 5.93 6.13 0.93

Table 2.

Figure 7.

to this change is offset by increasing the degree of the polynomial, which translates to388
more levels of logic. As with multiplication, the tests were exhaustive, covering all possible389
values of 2n-bit operands.390
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Operation
LFSR Sobol Sequence Our Approach

MAE Gate Cost MAE Gate Cost MAE Gate Cost
e−x 7.2% 44.27% 3.3% 100% 1.6% 53.32%
sin x 7.9% 48.67% 3.1% 100% 1.5% 57.20%
log(1 + x) 6.7% 45.31% 3.6% 100% 1.9% 48.02%
sigmoid x 8.4% 52.76% 3.2% 100% 1.4% 60.61%

Table 3.

The Mean Absolute Error (MAE) and gate cost are shown in Table 3. The general trend391
continues; our technique offers better accuracy than the state-of-the-art Sobol sequences,392
while offering significant reductions in area. In some cases, the gate cost of Sobol sequences393
is over twice our proposed circuit. And the gap only widens as we scale the length of the394
bit-streams.395

Figure 8.
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6.3 Matrix Multiplication396

Error tolerance, combined with many low precision operations, make ML models an397
ideal candidate for stochastic computing. (12) is comprehensive survey of different neural398
networks that incorporate the technique.399

The three key computations performed in a ML model are: matrix/vector multiplication,400
accumulation (i.e., addition), and the activation function. Our focus in this paper is matrix401
dot-product multiplication. Although several designs (13)(14) have been proposed to402
perform accumulation in the stochastic domain (12), accumulation in the traditional binary403
domain generally works better. This is because stochastic logic is limited to the range [0, 1]404
so accumulation requires scaling. Activation functions are heavily reliant on the design of405
the ML model. If one wishes to compute the activation function in the stochastic domain,406
in most cases one can do so via arithmetic functions such as Btanh and Sigmoid (15)(16).407

For neural network computation, we have to address the issue of negative weights. Although408
stochastic computing can support negative values within the range [-1,1] by using the409
bipolar representation, that approach increases latency and gate cost due to additional410
processing. Furthermore, it does not scale well. Since binary adders are more efficient than411
stochastic ones, we implement positive and negative weights separately, and we perform412
accumulation in the binary domain. Fig. 9 demonstrates how a neuron can be modeled and413
implemented with positive and negative weights. The same counter can be used to generate414
the bit-streams for all elements. However, each input operand bit-stream requires exclusive415
access to a comparator circuit. The designer has the choice of how many comparator circuits416
they want to incorporate, based on the priority of latency or area for that particular design.417

We simulated the dot product with two matrices, A and B, of sizes [2048 2048] and [2048418
128], respectively. The elements were initialized to random n-bit values. The tests were419
run for 100 trials, and the results were averaged across all trials. Table 4 shows the mean420
absolute error of all the elements in the product matrix C = A ·B. The same trend observed421
in Section 6.1 continues, and in fact, the gap widens. This can be attributed to the fact that,422
unlike Table 1, this was not an exhaustive simulation across ALL n-bit values, but rather, a423
more realistic scenario with operands initialized to random values of n-bit precision.424

The design presented in (17) incorporates stochastic computing and low-discrepancy Sobol425
sequences in the first convolution layer of the LeNet-5 neural network. We reconstructed426
the test environment and substituted the stochastic operations with deterministic unary427
operations. As shown in Table 5, using a deterministic unary approach achieves better428
classification rates than other alternative random/quasirandom number generation schemes,429
at a much lower area cost.430
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Input/Output
Bit-Stream Length

Mean Absolute Error (%)
LFSR Sobol Halton Our Approach

24 10.47 6.44 7.32 0.87
26 6.83 2.16 2.85 0.31
28 3.86 1.59 1.63 0.26

Table 4.

Design Misclassification Rate for 24 operating cycles
Conventional LFSR 1.08%

Sobol sequences 0.84%
Our approach 0.79%

Table 5.

We are not advocating for a specific ML model or architecture. Instead, the goal of our431
design is to offer a flexible and scalable method for performing multiplication in the432
stochastic domain. The deterministic approach is designed to provide a cost-effective (in433
terms of gates) and adaptable framework that is well-suited for fault-tolerant and low-434
precision applications. While stochastic computing offers area savings over conventional435
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binary circuits for higher-precision operations, the associated latency proves to be limiting436
and cannot surpass the balance of area-latency offered by traditional binary computing.437

7 CONCLUSION

Recent work has demonstrated that randomness is not a requirement for “stochastic”438
computing. The deterministic approach in (2) mitigates most of the drawbacks typically439
associated with the paradigm. However, the method in these papers does not allow for440
graceful approximations when constant bit-stream lengths are required.441

In this paper, we presented an approach that builds upon this foundation. By442
deterministically downscaling the inputs and compensating for approximation errors during443
the clock division operation, we demonstrate that it is possible to produce accurate results,444
while also preserving the bit stream lengths. This makes our approach composable, allowing445
operations to be chained together. Our simulations show that our approach can achieve446
very accurate results, with the maximum error bounded as two bits for each level of447
logic, irrespective of the bit stream length. It offers significant advantages over other448
stochastic approaches that rely on random or quasi-random bit streams. And it serves as a449
viable energy/area efficient alternative to traditional binary computation in low-precision450
applications that are fault-tolerant and less latency-sensitive.451
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FIGURE CAPTIONS

•Figure 1: Stochastic implementation of common arithmetic operations: (a) Multiplication;505
(b) Scaled addition.506
•Figure 2: Unary/Thermometer code generator507
•Figure 3: Multiplication - Conventional Stochastic vs Deterministic approach508
•Figure 4: Circuit implementation of clock-division involving two counters connected in509
series.510
•Figure 5: Circuit to compute the error and which bits to invert511
•Figure 6: Circuit to perform main multiply operation512
•Figure 7: Relative gate cost for different stochastic implementations of a multiply circuit513
•Figure 8: Relative gate cost for implementation of different arithmetic functions514
•Figure 9: Structure of hybrid binary-stochastic neuron implementation515
•Table 1: Mean absolute error and gate cost % for the multiply operation of various516
stochastic implementations517
•Table 2: Progressive accuracy comparison between different stochastic approaches518
•Table 3: Mean absolute error and gate cost % for functions implemented using Maclaurin519
expansion520
•Table 4: Mean absolute error of different stochastic techniques for matrix dot-product.521
•Table 5: Misclassification rate for LeNeT-5522
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