
1Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

www.nature.com/scientificreports

Computing Mathematical
Functions using DNA via
Fractional Coding
Sayed Ahmad Salehi, Xingyi Liu, Marc D. Riedel & Keshab K. Parhi

This paper discusses the implementation of mathematical functions such as exponentials,
trigonometric functions, the sigmoid function and the perceptron function with molecular reactions
in general, and DNA strand displacement reactions in particular. The molecular constructs for these
functions are predicated on a novel representation for input and output values: a fractional encoding,
in which values are represented by the relative concentrations of two molecular types, denoted
as type-1 and type-0. This representation is inspired by a technique from digital electronic design,
termed stochastic logic, in which values are represented by the probability of 1’s in a stream of
randomly generated 0’s and 1’s. Research in the electronic realm has shown that a variety of complex
functions can be computed with remarkably simple circuitry with this stochastic approach. This paper
demonstrates how stochastic electronic designs can be translated to molecular circuits. It presents
molecular implementations of mathematical functions that are considerably more complex than any
shown to date. All designs are validated using mass-action simulations of the chemical kinetics of DNA
strand displacement reactions.

Molecular computing holds the promise for transforming research in areas such as disease monitoring and drug
delivery. Since early, pioneering work by Adleman1, the field has evolved significantly. A particularly promising
strategy for molecular computation is based on the mechanism of DNA strand displacement2–6.

Various computational structures have been proposed for DNA-based systems, as well as in other contexts.
Simple logic primitives, such as AND, OR, NAND, NOR, and XOR have been demonstrated7–14. These circuits
have been used as building blocks for both digital signal processing15–20, and mixed-signal (i.e., analog and digital)
computation17,21. Using these simple circuits, complex genetic circuits have been constructed to perform compu-
tation in cells22. To automate the design of genetic and DNA circuits, computer-aided design (CAD) systems have
been presented22,23. There has been interest in activating and inhibiting pathways by “filtering” concentrations of
molecular types in different frequency bands24–26.

The theory of computing with abstract chemical reactions, termed chemical reaction networks (CRNs), has
evolved into a bona fide computer programming framework. Work on CRNs includes programs for computing
different sorts of mathematical functions such as polynomials27,28, and logarithms29,30.

In prior work, different approaches to compute complex functions such as exponentials and sigmoids have
been presented. For example, it has been shown that CRNs describing covalent modification cycle can realize
exponential, logarithm and sigmoid functions29,31. The hyperbolic regime can be used to realize exponential and
logarithm while ultrasensitive regime can be used to realize sigmoid function. The CRNs in29,31 describe analog
behavior of the system while the CRNs described by the proposed approach describe digital behavior. In29,31, each
region of operation is described by a specific input-output characteristic. This implies that the exponential and
sigmoid functions are realized for specific ranges of input concentrations. Furthermore, the sigmoid function
in29 describes a hard-limit response. On the other hand, the proposed approach realizes digital circuits and the
function behavior is not limited to a specific range of input concentrations (only the ratio of two concentrations
used to represent a variable is important not their concentrations).

This paper presents a method for designing CRNs that compute a wide range of mathematical functions,
ranging from simple to complex. The building blocks in the proposed methodology are units composed of four
chemical reactions. All chemical reactions in the proposed system have exactly two reactants. Such bimolecu-
lar chemical reactions can be implemented as DNA strand-displacement reactions in a robust way32. Thus, our

Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St. S.E., Minneapolis, MN,
55455, USA. Correspondence and requests for materials should be addressed to K.K.P. (email: parhi@umn.edu)

Received: 26 May 2017

Accepted: 18 May 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-6543-2793
mailto:parhi@umn.edu

www.nature.com/scientificreports/

2Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

method provides a systematic way to design DNA reactions that compute mathematical functions. These com-
putational constructs are central to the topic of perceptrons, that represent simple machine learning algorithm.

Machine learning classifiers have become ubiquitous in the computational sciences. Their physical realization
using different technologies has been considered33,34. Molecular implementations of machine learning classifiers
could have important applications. One can imagine instances where inference and learning might be an integral
part of tasks such as biochemical sensing. For example, genetic logic circuits for cell classification can sense
features of mRNAs; they can detect their expression patterns and selectively respond to specific cell types35–38.
Such circuits could enable the production of personalized “smart” drugs that target specific diseases for specific
patients39.

Past work on neural computation with molecular reactions includes40–44. As early theoretical research on the
topic, Hjelmfelt et al. presented chemical reactions that, based on the ordinary differential equations of mass
action kinetics model, can emulate so-called McClulloch-Pitts neurons44. These chemical neurons can be cou-
pled together to build chemical neural networks or finite-state machine45. Also in a theoretical vein, Mills et al.
described a DNA implementation of a Hopfield neural network as well as a DNA implementation of a multi-layer
perceptron46,47. The authors speculated that networks containing as many as 109 neurons might be feasible.

Laplante et al. performed pattern recognition with chemical (as opposed to biomolecular) reactions, in a
continuous flow stirred tank reactors48. Lim et al. implemented pattern recognition with differentially-labeled
probe DNA molecules that competitively hybridized to compute the decisions49. Zhang and Seelig described
an implementation of a linear classifier using DNA strand displacement50. Design of DNA circuits for super-
vised learning of a class of linear functions using buffered strand displacement reactions has been presented in51.
Finally, Qian et al. demonstrated a complete artificial neural network, implemented experimentally using DNA
strand displacement52.

In general, an artificial neural network consists of one or more layers where, in each layer, a neuron com-
putes a weighted sum followed by a nonlinear activation (transfer) function. Typically the activation function
corresponds to a sigmoid function. Prior work on molecular implementations of ANNs has considered either a
hard-threshold52 or linear transfer function50 as the activation function.

This paper discusses the implementation of mathematical functions such as exponentials, trigonometric func-
tions, the sigmoid function and a perceptron function with the limitation that the weighted sum of the inputs is
scaled down by the dimension of the input vector.

Figure 1. Basic molecular units. (a) The Multiplication unit, Mult. This unit calculates c = a × b, the
multiplication of two input variables a and b in the unipolar fractional representation. (b) The NMult unit.
This unit computes c = 1 − a × b in the unipolar fractional representation. (c) The MUX unit. This unit
performs scaled addition. Here a,b and c can be in the unipolar or the bipolar representation, while s must
be in in unipolar representation. (d) The bipolar Mult unit. This unit performs multiplication in the bipolar
fractional representation. (e) The bipolar NMult unit. This unit computes c = −a × b in the bipolar fractional
representation. Note the symbols that we will use to represent the different units are shown above the CRNs.

Figure 2. The proposed methodology. This figure shows the required steps for computing functions based on
the proposed methodology. It starts with the approximation of the desired function as a polynomial using a
series expansion method. The polynomial is then expressed in an equivalent form that only contains Mult and
NMult units. The Mult and NMult units are mapped to their equivalent chemical reactions and finally the CRN
is implemented by DNA strand-displacement reactions.

www.nature.com/scientificreports/

3Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

In prior work on molecular computing, two types of representation for the input and output variables of chem-
ical reaction networks (CRNs) have been considered:

 1. The value of each variable corresponds to the concentration of a specific molecular type; this is referred to
as a direct representation.

 2. The value of each variable is represented by the difference between the concentrations of a pair of molecu-
lar types; this is referred to as a dual-rail representation53.

In recent work, we have proposed a new type of representation, referred to as a fractional representation28.
Here a pair of molecular types is assigned to each variable, e.g., (X0, X1) for a variable x. The value of the variable
is determined by the ratio of the concentrations for the assigned pair,

=
+

x X
X X

[]
[] [] (1)

1

0 1

where [X1] and [X0] represent concentrations of molecules X1 and X0, respectively. Note that the value of x is
confined to the unit interval, [0, 1]. With the values confined to the unit interval, we refer to the representations
as a unipolar fractional encoding.

Variables with values in the range [−1, 1] can be represented by a slightly different encoding on the assigned
pair (X0, X1), given by:

=
−
+

.x X X
X X

[] []
[] [] (2)

1 0

0 1

We refer to this representation as a bipolar fractional encoding.

Figure 3. Examples of molecular circuits for mathematical functions. Truncated Maclaurin series, reformatted
Maclaurin series using Horner’s rule, and Mult/NMult structure for functions in equations (41)–(46) of the
Supplementary Information.

www.nature.com/scientificreports/

4Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

The unipolar fractional coding and the connection that it makes between molecular computation and electronic
stochastic logic design have been introduced in28. However, the extension of the idea for bipolar fractional coding and a
systematic method for molecular implementation of complex functions using fractional coding has not been reported
in prior work. The contributions of this paper are twofold. Firstly, molecular reactions are proposed to compute opera-
tions such as ab, 1 − ab, and sa + (1 − s)b using both the unipolar and bipolar fractional representations. These molec-
ular circuits are, respectively, referred to as Mult, NMult, and MuX. Secondly, this paper demonstrates that unipolar
and bipolar fractional coding approaches can be used to design CRNs for computing complex mathematical functions
such as e−x, sin(x), and sigmoid (x). The proposed CRNs can readily be implemented using DNA strand displacement.

The fractional representation is inspired by a technique from digital electronic design, termed stochastic logic,
in which values are represented by the probability of seeing 1’s in a stream of randomly generated 0’s and 1’s54–59.
Research in the electronic realm has shown that a variety of complex functions can be computed with remarkably
simple circuitry with this stochastic approach.

Figure 4. Examples of molecular circuits for mathematical functions with inputs covering entire range.
Truncated Maclaurin series, reformatted Maclaurin series using Horner’s rule, Mult/NMult and MUX structure
for functions in equations (47), (48) and (46) of the Supplementary Information. The output of the cosine
function and the input of the bipolar sigmoid are in bipolar representation.

Figure 5. Molecular Perceptron. (a) A standard perceptron that computes sigmoid ∑ = wx()i
N

i i1 , (b) A molecular
perceptron that computes sigmoid ∑ =()wx

N i
N

i i
1

1 .

www.nature.com/scientificreports/

5Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

The main difference between28 and this paper lies in the approach proposed to design and synthesize comput-
ing CRNs. The approach in28 uses so-called control generating reactions and the transferring reactions that lead
to reactions with m reactants for a polynomial of degree m. In contrast, this paper uses simple molecular units
such as Mult and NMult described in the next section. Regardless of the complexity of the target functions, the
molecular reactions designed by the new approach are only composed of simple reactions with two reactants and
one product. These reactions are more suitable for DNA implementation. The molecular implementations pre-
sented in this paper are inspired by the stochastic implementations of functions presented in60.

The fractional encoding discussed in this paper is analogous to the stochastic representation. The concentra-
tions of the X0 and X1 molecular types, correspond to the probability of seeing 0’s and 1’s, respectively, in the ran-
dom streams. This paper demonstrates how stochastic electronic designs can be translated to molecular circuits.

One should notice that the bipolar fractional coding is just a representation of the value of a variable using two
molecular types. This means that it is not required to actually calculate Equation (2). In other words, Equation (2)
is our interpretation for the value of a variable and molecular reactions do not calculate this equation.

Section 1 introduces molecular reactions for the Mult and NMult units; these perform multiplication in
the unipolar fractional representation. Section 2 presents an approach for mapping specific target functions to a
cascade of Mult/NMult units. Section 3 introduces a molecular MUX unit that performs scaled addition, as well
as Mult/NMult units for multiplication using the bipolar representation. Section 3 also presents an application:
CRNs for implementing a single-layered neural network (also referred to as a perceptron). Section 4 discusses the
DNA implementations of the proposed CRNs.

CRNs for Multiplication Units
Based on the fractional coding discussed in the previous section, we propose two simple sets of CRNs for comput-
ing multiplication. We refer to these as Mult and NMult. These sets will serve as fundamental units in the con-
struction of other desired functions in Section 2. Mult computes c = a × b, and NMult computes c = 1 − a × b
where a,b, and c are in the unipolar fractional representation. The units are described below.

Mult unit. Consider the four reactions shown in Fig. 1(a). These compute c as the multiplication of two inputs a
and b, all in unipolar fractional representation. So if =

+
a A

A A
[]

[] []
1

0 1
 and =

+
b B

B B
[]

[] []
1

0 1
 then c a bC

C C
[]

[] []
1

0 1
= = ×

+
.

We prove this in Supplementary Section S.1, on the basis of both stochastic and ordinary dif ferential equations.

Figure 6. Inputs, weights and outputs of three perceptrons, denoted A, B and C. (a) Inputs to the perceptron:
each column of the 32×100 matrix illustrates an input vector containing 32 binary inputs. Each white square
corresponds to a 1 and each black square corresponds to a 0. (b) Weights: The weights for the three perceptrons
are illustrated. These weights are divided into 4 parts and correspond to 1/2, −1/2, 1/4 and −1/4 from left
to right. (c) Binary outputs of Perceptron A containing 58 1’s and 42 0’s. (d) Binary outputs of Perceptron B
containing 90 1’s and 10 0’s. (e) Binary outputs of Perceptron C containing 6 1’s and 94 0’s.

www.nature.com/scientificreports/

6Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

NMult unit. If we switch C0 and C1 in the molecular reactions of the Mult unit, we obtain what we call an
NMult unit which computes 1 − a × b in the unipolar fractional coding. Figure 1(b) shows the corresponding set
of reactions. The proof that the NMult unit computes 1 − a × b is very similar to the proof for Mult unit. It can
be obtained by switching C0 and C1 in the proof presented for Mult unit.

Note that the CRNs in Fig. 1 do not preserve the initial values of the input molecular types. The reactions can
be modified such that the initial concentrations of either one or both of the input pairs, (A0, A1) and (B0, B1), are
preserved. The details are presented in Section S.2 of the Supplementary Information.

Figure 1 shows three additional units. For some functions we use a CRN unit called MUX, shown in Fig. 1(c).
To perform multiplication on the bipolar fractional coding, we use the CRN units shown in Fig. 1(d) and (e). All
three CRN units are described in detail in Section 3 where we use them to compute the bipolar sigmoid function.

Figure 7. Exact perceptron outputs that represent sigmoid of the weighted sum of the inputs and the molecular
perceptron outputs that compute sigmoid of the weighted sum scaled by a factor 1/32 for the 100 input vectors
for: (a) Perceptron A, (b) Perceptron B, (c) Perceptron C. The x axis corresponds to input vector number.

Figure 8. Exact and molecular perceptron outputs with weighted sum of the inputs scaled by 1/32 for 100
input vectors for: (a) Perceptron A, (b) Perceptron B, (c) Perceptron C. The x axis corresponds to input vector
number.

www.nature.com/scientificreports/

7Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

Designing CRNs for Computing Functions
In this section we propose a framework for designing CRNs to compute different functions. Our method is illus-
trated in Fig. 2.

Methodology. In the proposed methodology, the functions are approximated by truncating their Maclaurin
series expansions. Note that other expansion methods such as Taylor series could also be used. The approximated
polynomials are then mapped into equivalent forms that can be readily implemented using Mult and NMult units.

Figure 9. DNA simulation results. The DNA reaction kinetics for the computation of e−x, sin(x), cos(x),
log(1 + x), tanh(x), and sigmoid(x) for x = 0.3, and x = 0.7. Each row pertains to one function. The details for
the DNA implementation are listed in Supplementary Information Section S.8.

www.nature.com/scientificreports/

8Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

The Mult/NMult units are then mapped to CRNs. These are implemented by DNA strand-displacement
reactions. We describe these steps using f(x) = e−x as an example.

Step 1- Approximate the function
The Taylor series of any function f(x) that is infinitely differentiable at a point a corresponds to the power

series

∑= − .
=

∞
f x f a

n
x a() ()

!
()

(3)n

n
n

0

()

If the Taylor series is centered at zero, i.e., a = 0, then the series is called a Maclaurin series. As an example for
f(x) = e−x the Maclaurin expansion is given by:

e x
n

x x x x()
!

1
2! 3! 4! (4)

x

n

n

0

2 3 4

∑=
−

= − + − + −−

=

∞

The series is truncated to a polynomial of degree n, in order to approximate the desired function. As an exam-
ple if n = 5, i.e., the first six terms are retained, for f(x) = e−x we obtain

= − + − + − .−e x x x x x1
2! 3! 4! 5! (5)

x
2 3 4 5

Step 2- Reformat the approximation and map it to Mult/NMult units
As the second step, the approximating polynomials obtained in the first step are mapped into equivalent

forms can be implemented using Mult and NMult units. The Mult and NMult units are analogous to AND
and NAND gates in electronic design paradigm called stochastic processing. First developed by Poppelbaum55
and Gaines56 in the late 1960’s, stochastic processing implements logical computation on random bit streams.
Numbers are encoded by the probability of obtaining a one versus a zero in stream of random bits.

In this work, the Mult and NMult units perform the same operation on molecular concentrations in the
unipolar fractional encoding as AND and NAND gates do, respectively, in stochastic logic. Recent work in
stochastic logic60 has shown that the form of polynomials that we generate in this step can be changed in a
way that they can be mapped to a cascade of AND and NAND logic gates. The approach presented by Parhi
and Liu uses the well known Horner’s rule in order to map polynomials with alternating positive and negative
coefficients and decreasing magnitudes to AND and NAND gates60. This approach can be used for Maclaurin
series of the functions e−x, sin(x), cos(x), log(1 + x), tanh(x), and sigmoid (x). Note that for the trigonometric
functions, the operand x is in radians. We use the approach of Parhi and Liu60 to change the form of the desired
approximating polynomials and then map them to a cascade of Mult and NMult units. We briefly describe
this approach.

Figure 10. DNA simulation results. The DNA reaction kinetics for the computation of π
π

sin x() , and π
.

cos x()
5 9348

 for
x = 0.3, and x = 0.7. For the cosine function, the simulation shows Y Y

Y Y
[] []
[] []

1 0

0 1

−
+

, where Y0 and Y1 represent the
output in bipolar fractional coding.

www.nature.com/scientificreports/

9Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

Horner’s rule. Consider a polynomial P(x) of degree n given in its power form as

= + + + + ... + .P x a a x a x a x a x() (6)n
n

0 1 2
2

3
3

As described by Parhi and Liu60, Eq. (6) can be rewritten as

= − − − ... − − ...−P x b b x b x b x b x b x() (1 (1 (1 (1 (1))))) (7)n n0 1 2 3 1

where b0 = a0 and = −
−

bi
a

a
i

i 1
 for i = 1, 2, ..., n. Provided 0 ≤ bi ≤ 1 for i = 0, 1,, n, this representation can be

easily mapped to a regular cascade of molecular Mult and NMult units as described by Parhi and Liu60.
In order to guarantee 0 ≤ bi ≤ 1 the following requirements must be satisfied. Firstly, the coefficients of the

original polynomial, i.e., the ai’s, should be alternatively positive and negative. Secondly, the absolute values for
all the coefficients, i.e., the ai’s, should be less than one and decrease as the terms’ orders increase. There exist sev-
eral polynomials that satisfy these requirements. For example Maclaurin series expansion of e−x, sin(x), cos(x),
log(1 + x), tanh(x), and sigmoid (x), listed in equations (41) to (46) of the Supplementary Information, meet these
requirements and can be represented using Equation (7).

Consider the following example. If we apply the Horner’s rule for the fifth order Maclaurin series of f(x) = e−x,
shown in (5), we obtain

e x x x x x1 1
2

1
3

1
4

1
5 (8)

x = −

−

−

−

 −

.−

Equation (8) can be implemented using Mult and NMult units as shown in Fig. 3.
Elements Ei of the structure shown in Fig. 3 compute intermediate outputs ti in order to progressively compute

the e−x function using Equation (8). What follows is the computation for each element:

=

 −

 = =

 −

= =

 −

 =

=

 −

 = − = .−

t x t t t x t

t t t x t t t

t x t f x xt e

E : 1
5

E : 1
4

E : 1
4

E : 1
3

E : 1
3

E : 1
2

E : 1
2

E : () 1 x

1 1 2 2 1 3 3 1

4 4 3 5 5 3 6 6 5

7 7 5 8 7

Function x = 0 x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5 x = 0.6 x = 0.7 x = 0.8 x = 0.9 x = 1 MSE

e−x
computed 0.9568 0.8770 0.7975 0.7228 0.6609 0.5951 0.5295 0.4772 0.4300 0.3872 0.3482

5.02 × 10−4

exact 1 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066 0.3679

sin(x)
computed 0 0.1045 0.2062 0.3043 0.3970 0.4833 0.5570 0.6261 0.6844 0.7460 0.7967

4.63×10−4

exact 0 0.0998 0.1986 0.2955 0.3894 0.4794 0.5646 0.64421 0.7173 0.7833 0.8414

cos(x)
computed 0.9728 0.9757 0.9641 0.9407 0.9129 0.8671 0.8071 0.7461 0.6778 0.6029 0.5221

3.16 × 10−4

exact 1 0.9950 0.9800 0.9553 0.9210 0.8775 0.8253 0.7648 0.6967 0.6216 0.5403

log(1 + x)
computed 0.0090 0.0985 0.1868 0.2675 0.3410 0.4075 0.4660 0.5212 0.5707 0.6217 0.6699

1.8 × 10−4

exact 0 0.0953 0.1823 0.2623 0.3364 0.4054 0.4700 0.5306 0.5877 0.6418 0.6931

tanh(x)
computed 0 0.0935 0.1883 0.2823 0.3701 0.4574 0.5277 0.5826 0.6246 0.6682 0.7038

7.35 × 10−4

exact 0 0.0996 0.1973 0.2913 0.3799 0.4621 0.5370 0.6043 0.6640 0.7162 0.7615

sigmoid(x)
computed 0.5196 0.5453 0.5657 0.5878 0.6068 0.6212 0.6366 0.6570 0.6721 0.6906 0.7084

2.5 × 10−4

exact 0.5000 0.5250 0.5498 0.5744 0.5987 0.6225 0.6457 0.6682 0.6900 0.7109 0.7311

sin x()π
π

computed 0 0.0984 0.1871 0.2574 0.3023 0.3176 0.3016 0.2565 0.1931 0.1329 0.0899
8.48 × 10−4

exact 0 0.0984 0.1871 0.2576 0.3027 0.3183 0.3027 0.2575 0.1871 0.0984 0

cos x()
5 9348

π
.

computed 0.1685 0.1602 0.1363 0.0991 0.0527 0.0030 −0.0429 −0.07729 −0.0921 −0.0852 −0.0673
1.67 × 10−3

exact 0.1685 0.1603 0.1363 0.0990 0.0521 0 −0.0521 −0.0990 −0.1363 −0.1603 −0.1685

Table 1. Computed values of functions with the proposed CRNs compared to their exact values.

Perceptron TP TN FP FN

Mean Square Error

Molecular DNA

A 58 42 0 0 2.0198 × 10−11 3.7670 × 10−7

B 90 10 0 0 1.2301 × 10−10 1.0357 × 10−6

C 6 94 0 0 3.9050 × 10−12 9.1999 × 10−8

Table 2. Classification accuracy and mean sqaure error values for the three perceptrons with weighted input
values scaled by factor 1/32 for molecular reactions and DNA strand displacement reactions.

www.nature.com/scientificreports/

1 0Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

Figure 3 summarizes the truncated Maclaurin series, reformatted Maclaurin series using Horner’s rule, and
Mult/NMult structure for several other desired functions where the input and output are in unipolar rep-
resentation. Figure 4 presents Mult/NMult structure for stochastic logic implementations of half-period of
sin x()π

π
 and cos x()

5 9348
π

.
 as presented in Parhi and Liu60 and described by equations (9) and (10). Note that in the scaled

cosine computation, the input is in unipolar representation while the output is in bipolar representation and can
represent negative values. This is referred to as hybrid representation61.

π
π

= − − . − . − . .
sin x x x x x x() (1)(1 0 4)(1 0 2488 (1 0 2637)) (9)

2 2 2 2

cos x x x

x x x

()
5 9348

4 9348
5 9348

(2 0 4112 1)

1
5 9348

(1 2 0 6676 (1 0 1762 (1 0 1097)))
(10)

2 2

6 2 2

π
.

=
.
.

⋅ . −

+
.

− ⋅ . − . − . .

Step 3- Synthesize the Chemical Reactions
To build the CRN for computing the desired function, the next step is to synthesize the related chemical

reactions for each element used in the Mult/NMult structure. Depending on the unit type, either the set of
reactions presented in Fig. 1(a–c) is used. After designing the CRNs, the final step is to map them to DNA reac-
tions as described in Section 4. Note that Mult/NMult units with more than two inputs are built by cascading
two-input Mult/NMult units.

Molecular Perceptron
This section describes implementation of a single-layered neural network, also called a perceptron, by molecular
reactions. As shown in Fig. 5(a), the system first computes the inner product of a binary input vector and a coef-
ficient vector as y w x wi

N
i i1 0= ∑ += ; then it uses the sigmoid function to compute the final output z as z = sigmoid

(y). The stochastic sigmoid circuit shown in Fig. 5(b) was presented in60 the reader is referred to60 for details of the
derivation. This performs a soft decision of whether the output should be close to 0 or 1. For the perceptron sys-
tem that we implement, the inputs are binary, that is to say either xi = 0 or xi = 1, and the coefficients, i.e., wi’s, are
between −1 and 1. All multiply-add operations are implemented using bipolar Mult units. Since the input of the
sigmoid function is between −1 and 1, we implement the sigmoid function using a bipolar fractional coding.

Note that prior biomolecular implementations of artificial neural networks (ANNs) have considered either
hard limit or linear activation functions50,52. No prior publication has considered molecular ANNs using a sig-
moid activation function. In this section we describe the implementation of the bipolar MUX unit and the bipolar
Mult and NMult units.

MUX unit. The MUX unit, shown in Fig. 1(c), computes c as the weighted addition of two inputs a and b as
c = a × (1 − s) + b × s, where 0 ≤ s ≤ 1. Here a, b, and c can be in either the unipolar or the bipolar fractional
representation while the weight s must be in the unipolar representation. The set of four reactions in Fig. 1(c)
describes the CRN for a MUX unit for both unipolar and bipolar fractional codings. Mass-action kinetic equations
for both unipolar and bipolar fractional coding are discussed in Supplementary Information Section S.4.

Bipolar Mult unit. The bipolar Mult unit, shown in Fig. 1(d), computes c as the multiplication of two inputs
a and b, where a, b and c are represented in bipolar fractional representation. So if a A A

A A
[] []
[] []

1 0

0 1
= −

+
 and b B B

B B
[] []
[] []

1 0

0 1
= −

+

then c a bC C
C C
[] []
[] []

1 0

0 1
= = ×−

+
. The set of four reactions in Fig. 1(d) represents the CRN for a multiplication unit in

the bipolar fractional coding. In Supplementary Information Section S.3 we prove that these reactions compute
c = a × b.

Bipolar NMult unit. Analogous to the way that we obtained NMult from Mult unit in the unipolar frac-
tional coding, if we switch C0 and C1 in the reactions of the bipolar Mult unit, we obtain the bipolar NMult unit
which computes −a × b. Figure 1(e) gives the corresponding set of reactions. Similar to the method we used for
Mult unit, it is easy to show that the reactions listed in Fig. 1(e) compute c = −a × b in the bipolar fractional
coding.

The proof is very similar to the bipolar Mult unit. Indeed, for bipolar NMult we just switch C0 and C1 mean-
ing that in the proof for bipolar Mult instead of C1 − C0 in the numerator we have C0 − C1. This leads to having
c = −ab instead of c = ab.

Hybrid sigmoid function and Perceptron with Binary Inputs. The bipolar fractional representation
can be used to implement the sigmoid function, presented in Section 2.1.1 for the unipolar fractional representa-
tion. Therefore, the function can be computed for inputs between −1 and 1, i.e., −1 ≤ x ≤ 1. The output of this
function, however, is still in the unit interval [0, 1] and can be represented by a unipolar fractional representation.
In fact, for x ∈ [−1, 1] the corresponding output range is [0.2689, 0.7311]. In Parhi and Liu60, it is shown that the
sigmoid function using hybrid format, i.e., for bipolar input and unipolar output can be implemented by elec-
tronic stochastic logic circuits, namely, XOR and XNOR gates and multiplexers. These electronic circuits perform
multiplication and weighted addition for stochastic bit streams analogous to the same operations that bipolar
Mult, NMult, and MUX units in Fig. 1 perform for CRNs. Accordingly, we map the circuit to the cascade of
proposed molecular units as shown in Fig. 5(b). The inner product can be implemented by N bipolar Mult units

www.nature.com/scientificreports/

1 1Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

having the same output. Details for the molecular implementation of the inner product are described in Section
S.5 of the Supplementary Information.

By cascading the inner product part and the sigmoid function, we can implement molecular perceptrons with
binary inputs as shown in Fig. 5. Although the inner product in the standard perceptron shown in Fig. 5(a) com-
putes ∑ = w xi

N
i i1 , the molecular inner product in Fig. 5(b) computes w x

N i
N

i i
1

1∑ = . We map this molecular circuit to
DNA strand-displacement reactions and simulate it for N = 32 using 32 coefficients. Three perceptrons are simu-
lated. The 32 binary inputs are selected at random such that each bit is equally likely to be 1 or 0. It is important to
note that the inputs are not constrained to be binary in the proposed methodology, but are constrained to lie
between −1 and 1. For each perceptron, the same 100 input vectors are simulated. The input vectors are illustrated
in Fig. 6(a) where the 100 columns correspond to 100 input vectors, and each column contains 32 binary values
chosen at random with equal probability. The corresponding binary matrix representing the 100 input vectors is
also shown in Figure S.7.1 in the Supplementary Information Section S.7. The weights of perceptrons are chosen
from the set 1/2, −1/2, 1/4, and −1/4. These weights for the 3 perceptrons, denoted A, B and C, are illustrated in
Fig. 6(b), and are also listed in Supplementary Section S.7. In Perceptron A, each weight occurs 8 times. In
Perceptron B, the weights 1/2, −1/2, 1/4 and −1/4, occur with frequencies 10, 6, 10 and 6, respectively, In
Perceptron C, the weights 1/2, −1/2, 1/4, and −1/4 occur with frequencies 6, 10, 6, and 10, respectively. In a per-
ceptron, let the presence or absence of the input molecules be denoted by 1 or 0, and the coefficients describe the
weights associated with each input, and each weighted molecule either activates or inhibits the perceptron state
depending on whether it is positive or negative. Then Perceptron B has more molecules that activate the state
whereas Perceptron C has more molecules that inhibit the state, whereas Perceptron A has equal number of mol-
ecules that either activate or inhibit the state. For equally likely binary inputs, the probabilities of the weighted
sum for the Perceptrons A, B, and C, respectively, correspond to 0, 1.5 and −1.5. The expected sigmoid values for
the three perceptrons correspond to 0.5, 0.8175, and 0.1825, respectively. Each perceptron output is classified as
1 or 0 using a threshold of 0.5. If very large number of random input vectors are simulated, we would expect the
percent of input vectors classified as 1 in these three perceptrons to be 50%, 81.75% and 18.25%, respectively. For
the 100 input vectors, the classification results for the three perceptrons are illustrated in Fig. 6(c–e). The number
of 1’s in these perceptrons correspond to 58, 90 and 6, respectively. All three molecular perceptrons achieve clas-
sification accuracy of 100%.

The simulation results in Fig. 7(a–c) illustrate the exact sigmoid values of the weighted sum of the inputs and
the outputs of the molecular perceptrons that compute sigmoid of the weighted sum of the inputs scaled down by
the dimension of the input vector, i.e., 32, for the Perceptrons A, B, and C, respectively. The horizontal axis in
Fig. 7 represents the index of the input vector and the vertical axis shows the exact sigmoid value and the molec-
ular sigmoid value. Although the molecular CRN outputs do not perfectly match with actual values, if we con-
sider 0.5 as the threshold for a binary decision, the molecular perceptron classification results and the actual
perceptron classifier results are the same for all 100 input vectors. Since the molecular inner product computes

= ∑ =y wx
N i

N
i i

1
1 instead of y wxi

N
i i1= ∑ = , the amplitude for the computed output is not same as the exact value.

Note that xi and wi, respectively, represent the binary value of the ith input and its associated weight. Figure 8
shows the exact and molecular outputs of the three perceptrons that compute sigmoid of the scaled versions of the
weighted inputs for the 100 input vectors. The next section describes DNA implementations of the proposed
CRNs.

DNA Implementation
Constructs in the previous sections were presented in terms of abstract CRNs. In this section, we translate our
Mult/NMult circuits to DNA strand displacement (DSD) reactions. The idea of DSD reactions based on toehold
mediation was first introduced by Yurke et al. for the construction of DNA tweezers2. A general method for trans-
lating CRNs to DSD reactions was proposed by Soloveichik et al.6 and is illustrated in Supplementary Information
Section S.8 and Figure S.8.1. That work proved that DSD reactions can closely emulate the mass-action kinetics
of any CRN.

Recently Chen et al. showed that bimolecular reactions, such as A + B → C, can be implemented by linear,
double-stranded DNA complexes that are compatible with natural DNA32. We note that our computational units
are all constructed from bimolecular reactions and so these could be implemented using the framework proposed
by Chen et al.32.

Using the software tool provided by Erik Winfree’s group in Caltech6 we simulate the reactions using DSD.
Figures 9 and 10 show the simulation results for the functions at x = 0.3 and x = 0.7. Table 1 presents simulation
data highlighting the accuracy of the proposed method. It lists computed values for functions at eleven equally
separated points in the interval [0,1]. For each function, the computed result is reported 50 hours after the simu-
lation starts. The table also lists the mean square error (MSE) at the eleven points. The error may be due to several
factors: the approximation of the function with a truncated series expansion; the emulation of the related CRNs
by DSD reactions; and the limited simulation time (of 50 hours for DSD reactions). As the results show, the error
is less than 1 × 10−3. For a visual comparison, Figure S.8.2 of the Supplementary Information illustrates the exact
values of the functions together with their computed values.

Table 2 lists the classification accuracy of the three perceptrons simulated using DSD with results collected
after 50 hours of simulations.The table also lists the mean square error values for the three perceptrons for both
molecular reactions and DNA strand displacement reactions. The mean square error, MSE, is defined as:

∑= −
=

MSE y j y j1
100

() ()
j 1

100
2

www.nature.com/scientificreports/

1 2Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

where = ∑ =()y j sigmoid wx j() []
N i

N
i i

1
1 and y j() is the computed value of y(j) from molecular or DNA simulation,

xi[j] represents the ith bit position of input vector j, and wi represents the ith weight. The mean square error values
for molecular and DNA simulations are small as the dynamic range of the sigmoid function with scaled weighted
sum of binary inputs is small. For example, sigmoid(1.5/32) and sigmoid(−1.5/32), respectively, correspond to
0.5117 and 0.4882. Although the DNA implementation of the perceptron achieves 100% classification accuracy
in simulation, we caution that in an actual experiment the DNA perceptron may not achieve perfect classification
accuracy.

Conclusion
Although there have been numerous examples of CRNs for computing specific functions presented in the liter-
ature, as yet there has been no systematic way to design molecular systems to compute mathematical functions.
This paper presents a systematic methodology for designing CRNs to implement complex mathematical func-
tions robustly. The proposed method is unique in that it relies exclusively on bimolecular reactions, with no
requirements on the reaction rates. According to the work of Chen et al., bimolecular reactions are compatible
with natural DNA32. This means that, the computational elements we propose here could potentially be used
for in vivo applications. A key contribution of this paper is the ability to map any stochastic logic circuit to a
molecular circuit based on fractional coding. Numerous prior papers have demonstrated stochastic logic imple-
mentations of digital filters, error control coders such as low-density parity check codes and polar codes. The
proposed molecular logic gates can be used to design molecular digital filters and molecular error control coders
in a straightforward manner.

This paper builds on our prior work. The computation of polynomials was presented in Salehi et al.28. In that
paper we showed how arbitrary polynomials can be mapped to a CRN. Although that method could be used to
compute truncated Maclaurin series of desired functions, it uses a rather complex set of chemical reactions with
m reactants and at least m + 1 products, with m≥2, for polynomials of degree m. Implementing reactions with
more than two reactants may be biologically infeasible, since this entails large complexes. In contrast, the meth-
odology proposed in this paper requires only bimolecular reactions and so is readily implementable.

Although molecular and DNA implementations of several mathematical functions using fractional coding
have been demonstrated, the proposed method suffers from numerous limitations. Use of fractional coding,
inspired by stochastic logic62–66, requires molecules to be bounded between −1 and 1. Thus, complete dynamic
range of a function cannot be computed by the proposed method. For example, the proposed method can
only compute scaled sine and cosine values. The molecular perceptron cannot compute the sigmoid value of
the weighted sum of the binary inputs. This is an inherent limitation of the proposed method as the sigmoid
function processes a scaled version of the weighted inputs (scaled down by the dimension of the input vector).
Furthermore, the weight values are constrained to lie between −1 and 1. Molecular implementations of general
perceptrons with arbitrary weights remains a topic for future research. In addition, further research needs to be
directed towards molecular implementations of perceptrons used in inference applications as opposed to binary
classification applications.

References
 1. Adelman, L. Molecular Computation of Solutions to Combinatorial Problems. Science 266, 1021–1024 (1994).
 2. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled Molecular Machine Made of DNA. Nature

406, 605–608 (2000).
 3. Turberfield, A. J. et al. DNA Fuel for Free-running Nanomachines. Phys. Rev. Lett. 90, 118102 (2003).
 4. Yurke, B., Mills, B. P. & Using, D. N. A. to Power Nanostructures. Genet. Program. Evolvable Mach. 4, 111 (2003).
 5. Zhang, D. Y. & Winfree, E. Control of DNA Strand Displacement Kinetics Using Toehold Exchange. J. Am. Chem. Soc. 131, 17303

(2009).
 6. Soloveichik, D., Seelig, G. & Winfree, E. DNA as a Universal Substrate for Chemical Kinetics. Proceedings of the National Academy

of Sciences, 5393–5398 (2010).
 7. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a Genetic Toggle Switch in Escherichia Coli. Nature 403, 339–342 (2000).
 8. Weiss, R. et al. Genetic Circuit Building Blocks for Cellular Computation, Communications, and Signal Processing. Nat. Comput. 2,

47–84 (2003).
 9. Jiang, H., Riedel, M. D. & Parhi, K. K. Digital Logic with Molecular Reactions. IEEE/ACM International Conference on Computer-

Aided Design. 29, 21–31 (2013).
 10. Jiang, H., Riedel, M.D., & Parhi K.K. Synchronous Sequential Computation with Molecular Reactions. ACM Design Automation

Conference, (2011).
 11. Beneson, Y., Gil, B., Ben-Dor, U., Adar, R. & Shapiro, E. An Autonomous Molecular Computer for Logical Control of Gene

Expression. Nature 429, 423–429 (2004).
 12. Endy, D. Foundations for Engineering Biology. Nature 438, 449–453 (2005).
 13. Ramalingam, K., Tomshine, J. R., Maynard, J. A. & Kaznessis, Y. N. Forward Engineering of Synthetic Bio-logical AND Gates.

Biochem. Eng. J. 47, 38–47 (2009).
 14. Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust Multicellular Computing Using Genetically Encoded NOR Gates and Chemical ‘Wires’.

Nature 469, 212–215 (2011).
 15. Jiang, H., Riedel, M. D. & Parhi, K. K. Digital Signal processing with Molecular Reactions. IEEE Design & Test Magazine, (Special

Issue on Bio-Design Automation in SyntheticBiology) 29, 21–31 (2012).
 16. Jiang, H., Salehi, S. A., Riedel, M. D. & Parhi, K. K. Discrete-Time Signal Processing with DNA. American Chemical Society (ACS)

SyntheticBiology 2, 245–254 (2013).
 17. Salehi, S. A., Jiang, H., Riedel, M. D. & Parhi, K. K. Molecular Sensing and Computing Systems (Invited Paper). IEEE Transactions

on Molecular, Biological, and Multi-ScaleCommunications 1(3), 249–264 (2015).
 18. Salehi, S. A., Riedel, M. D. & Parhi, K. K. Markov Chain Computations using Molecular Reactions. IEEE International Conference on

Digital Signal Processing 1(3), 249–264 (2015).
 19. Salehi, S. A., Riedel, M. D. & Parhi, K. K. Asynchronous Discrete-Time Signal Processing with Molecular Reactions. Asilomar

Conference on Signals, Systems, and Computers 1(3), 249–264 (2014).
 20. Senum, P. & Riedel, M. D. Rate-Independent Constructs for Chemical Computation. PLoS ONE 6, 6 (2011).

www.nature.com/scientificreports/

13Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

 21. Rubens, J. R., Selvaggio, G. & Lu, T. K. Synthetic Mixed-Signal Computation in Living Cells. Nat. Commun. 7, 11658 (2016).
 22. Nielsen, A. A. K. et al. Genetic Circuit Design Automation. Science. https://doi.org/10.1126/science.aac7341 (2016).
 23. Thubagere, A. J. et al. Compiler-aided Systematic Construction of Large-Scale DNA Strand Displacement Circuits Using Unpurified

Components. Nature. Communications 8, 1038 (2017).
 24. Samoilov, M., Arkin, A. & Ross., J. Signal Processing by Simple Chemical Systems. The Journal of Physical Chemistry A 106,

10205–10221 (2002).
 25. Thurley, K. et al. Reliable Encoding of Stimulus Intensities Within Random Sequences of Intracellular Ca2+ Spikes. Science Signaling

7(331), ra59, https://doi.org/10.1126/scisignal.2005237 (2014).
 26. Sumit, M., Neubig, R. R., Takayama, S. & Linderman, J. J. Band-Pass Processing in a GPCR Signaling Pathway Selects for NFAT

Transcription Factor Activation. Integr. Biol. 7, 1378–1386 (2015).
 27. Buisman, H. J., ten Eikelder, H. M. M., Hilbers, P. A. J. & Liekens, A. M. L. Computing Algebraic Functions with Biochemical

Reaction Networks. Artif. Life. 15(1), 5–19 (2009).
 28. Salehi, S. A., Parhi, K. K. & Riedel, M. D. Chemical Reaction Networks for Computing Polynomials. ACS Synthetic Biology Journal

6(1), 76–83 (2017).
 29. Foo, M., Sawlekar, R. & Bates, D. G. Exploiting the Dynamic Properties of Covalent Modification Cycle for the Design of Synthetic

Analog Biomolecular Circuitry. Journal of Biological Engineering 10, 15 (2016).
 30. Chou, C. T. Chemical Reaction Networks for Computing Logarithm. Synthetic Biology, 2(1) (2017).
 31. Gomez-Uribe, C., Verghese, G. C. & Mirny, L. A. Operating Regimes of Signaling Cycles: Statics, Dynamics, and Noise Filtering.

PLoS Comput Biol 3(12), e246 (2007).
 32. Chen, Y. J. et al. Programmable Chemical Controllers Made from DNA. Nature Nanotechnology 8, 755–762 (2013).
 33. Bishop, C. M. Pattern Recognition and Machine Learning. Springer ISBN 8132209060, 9788132209065 (2013).
 34. Alpaydin, E. Introduction to Machine Learning. 3rd Edition, MIT press (2014).
 35. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-based Logic Circuit for Identification of Specific

Cancer Cells. Science 333, 1307–1311 (2011).
 36. Li, Y. et al. Modular Construction of Mammalian Gene Circuits Using TALE Transcriptional Repressors. Nat. Chem. Biol. 11,

207–213 (2015).
 37. Miki, K. et al. Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches. Cell Stem Cell 16,

699–711 (2015).
 38. Sayeg, M. K. et al. Rationally Designed MicroRNA-based Genetic Classifiers Target Specific Neurons in the Brain. ACS Synth. Biol.

4, 788–795 (2015).
 39. Mohammadi, P., Beerenwinkel, N. & Benenson, Y. Automated Design of Synthetic Cell Classifier Circuits Using a Two-Step

Optimization Strategy. Cell Systems 4(2), 207–218 (2017).
 40. Bandyopadhyay, A., Sahu, S. & Fujita, D. Smallest Artificial Molecular Neural-net for Collective and Emergent Information

Processing. Applied physics letters 95(11), 113702 (2009).
 41. Baum, E. B. Building an Associative Memory Vastly Larger than the Brain. Science 268, 583–585 (1995).
 42. Haronian, D. & Lewis, A. Elements of a Unique Bacteriorhodopsin Neural Network Architecture. Applied optics 30(5), 597 (1991).
 43. Huang, W. T., Chen, L. X., Lei, J. L., Luo, H. Q. & Li, N. B. Molecular Neuron: From Sensing to Logic Computation, Information

Encoding, and Encryption. Sensors and Actuators: B. Chemical 239, 704–710 (2017).
 44. Hjelmfelt, A., Weinberger, E. D. & Ross, J. Chemical Implementation of Neural Networks and Turing Machines. Proc. Natl Acad. Sci.

USA 88, 10983–10987 (1991).
 45. Hjelmfelt, A., Weinberger, E. D. & Ross, J. Chemical Implementation of Finite-State Machines. Proc. Natl. Acad. Sci. USA 89, 383

(1992).
 46. Mills, A. P. Jr, Turberfield, M., Turberfield, A. J., Yurke, B. & Platzman, P. M. Experimental Aspects of DNA Neural Network

Computation. Soft Comput. 5, 10–18 (2001).
 47. Mills, A. P., Yurke, B. & Platzman, P. M. Article for Analog Vector Algebra Computation. Biosystems 52, 175–180 (1999).
 48. Laplante, J. P., Pemberton, M., Hjelmfelt, A. & Ross, J. Experiments on Pattern Recognition by Chemical Kinetics. J. Phys. Chem. 99,

10063–10065 (1995).
 49. Lim, H. W. et al. In Vitro Molecular Pattern Classification via DNA-Based Weighted-Sum Operation. Biosystems 100, 1–7 (2010).
 50. Zhang, D. Y. & Seelig, G. In DNA Computing and Molecular Programming. Lecture Notes in Computer Science, Springer 6518,

176–186 (2011).
 51. Lakin, M. R. & Stefanovic, D. Supervised learning in adaptive DNA strand displacement networks. ACS Synthetic Biology 5(8),

885–897 (2016).
 52. Qian, L. & Winfree, E. Neural Network Computation with DNA Strand Displacement Cascades. Nature 475, 368–372 (2011).
 53. Chen, H., Doty, D.& Soloveichik, D. Rate-Independent Computation in Continuous Chemical Reaction Networks. Conference on

Innovations in Theoretical Computer Science, 313–326 (2014).
 54. Gaines, B. R. Stochastic Computing. Proceedings of AFIPS spring joint computer conference, ACM, 149–156 (1967).
 55. Poppelbaum, W. J., Afuso, C. and Esch. J. W. Stochastic Computing Elements and Systems. In Proceedings of the Joint Computer

Conference, AFIPS ‘67 (Fall), pages 635–644, New York, NY, USA, ACM (1967).
 56. Gaines, B. R. Stochastic Computing Systems. in Advances in information systems science, Springer, 37–172 (1969).
 57. Qian, W. & Riedel, M. D. The Synthesis of Robust Polynomial Arithmetic with Stochastic Logic. Design Automation Conference,

648–653 (2008).
 58. Qian, W., Li, X., Riedel, M. D., Bazargan, K. & Lilja, D. J. An Architecture for Fault-Tolerant Computation with Stochastic Logic.

IEEE Tran. on Comp. 60(1), 93–105 (2011).
 59. Alaghi, A. & Hayes j., P. Survey of Stochastic Computing. ACM Transactions on Embedded computing systems (TECS) 12, 92 (2013).
 60. Parhi, K. K. & Liu, Y. Computing Arithmetic Functions Using Stochastic Logic by Series Expansion. IEEE Transactions on Emerging

Technologies in Computing (TETC). https://doi.org/10.1109/TETC.2016.2618750 (2016).
 61. Parhi, K K. Analysis of Stochastic Logic Circuits in Unipolar, Bipolar and Hybrid Formats. In Circuits and Systems (ISCAS), 2017

IEEE International Symposium on, pp. 1–4 (2017).
 62. Li, Peng, Lilja, D. J., Qian, W., Riedel, M. D. & Bazargan, K. Logical Computation on Stochastic Bit Streams with Linear Finite-state

Machines. Computers, IEEE Transactions on 63(6), 1474–1486 (2014).
 63. Liu, Y. & Parhi, K. K. Computing Polynomials Using Unipolar Stochastic Logic. ACM Journal on Emerging Technologies in

Computing Systems (JETC), 13(3) (2017).
 64. Liu, Y. & Parhi, K. K. Computing Hyperbolic Tangent and Sigmoid Functions Using Stochastic Logic Functions Using Stochastic

Logic. Proc. 2016 Asilomar Conference on Signals, Systems and Computers, 1580–1585 (2016).
 65. Salehi, S.A., Liu, Y., Riedel, M. & Parhi, K. K. Computing Polynomials with Positive Coefficients using Stochastic Logic by Double-

NAND Expansion. Proc. 2017 ACM Great Lakes Symposium on VLSI (GLSVLSI), 471–474 (2017).
 66. Parhi, K. K. Stochastic Logic Implementations of Polynomials with All Positive Coefficients by Expansion Methods. IEEE

Transactions on Circuits and Systems II: Express Briefs, https://doi.org/10.1109/TCSII.2017.2756862 (2017).

http://dx.doi.org/10.1126/science.aac7341
http://dx.doi.org/10.1126/scisignal.2005237
http://dx.doi.org/10.1109/TETC.2016.2618750
http://dx.doi.org/10.1109/TCSII.2017.2756862

www.nature.com/scientificreports/

1 4Scientific REPORTS | (2018) 8:8312 | DOI:10.1038/s41598-018-26709-6

Acknowledgements
This work was supported by the NSF (grant no CCF-1423407).

Author Contributions
S.A.S., M.R. and K.P. developed fractional molecular reactions. K.P. designed the experiments. S.A.S. and X.L.
simulated molecular and DNA reactions. S.A.S., M.R. and K.P. wrote the paper.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-26709-6.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-26709-6
http://creativecommons.org/licenses/by/4.0/

	Computing Mathematical Functions using DNA via Fractional Coding
	CRNs for Multiplication Units
	Mult unit.
	NMult unit.

	Designing CRNs for Computing Functions
	Methodology.
	Horner’s rule.

	Molecular Perceptron
	MUX unit.
	Bipolar Mult unit.
	Bipolar NMult unit.
	Hybrid sigmoid function and Perceptron with Binary Inputs.

	DNA Implementation
	Conclusion
	Acknowledgements
	Figure 1 Basic molecular units.
	Figure 2 The proposed methodology.
	Figure 3 Examples of molecular circuits for mathematical functions.
	Figure 4 Examples of molecular circuits for mathematical functions with inputs covering entire range.
	Figure 5 Molecular Perceptron.
	Figure 6 Inputs, weights and outputs of three perceptrons, denoted A, B and C.
	Figure 7 Exact perceptron outputs that represent sigmoid of the weighted sum of the inputs and the molecular perceptron outputs that compute sigmoid of the weighted sum scaled by a factor 1/32 for the 100 input vectors for: (a) Perceptron A, (b) Perceptro
	Figure 8 Exact and molecular perceptron outputs with weighted sum of the inputs scaled by 1/32 for 100 input vectors for: (a) Perceptron A, (b) Perceptron B, (c) Perceptron C.
	Figure 9 DNA simulation results.
	Figure 10 DNA simulation results.
	Table 1 Computed values of functions with the proposed CRNs compared to their exact values.
	Table 2 Classification accuracy and mean sqaure error values for the three perceptrons with weighted input values scaled by factor 1/32 for molecular reactions and DNA strand displacement reactions.

