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Computing Mathematical 
Functions using DNA via  
Fractional Coding
Sayed Ahmad Salehi, Xingyi Liu, Marc D. Riedel & Keshab K. Parhi  

This paper discusses the implementation of mathematical functions such as exponentials, 
trigonometric functions, the sigmoid function and the perceptron function with molecular reactions 
in general, and DNA strand displacement reactions in particular. The molecular constructs for these 
functions are predicated on a novel representation for input and output values: a fractional encoding, 
in which values are represented by the relative concentrations of two molecular types, denoted 
as type-1 and type-0. This representation is inspired by a technique from digital electronic design, 
termed stochastic logic, in which values are represented by the probability of 1’s in a stream of 
randomly generated 0’s and 1’s. Research in the electronic realm has shown that a variety of complex 
functions can be computed with remarkably simple circuitry with this stochastic approach. This paper 
demonstrates how stochastic electronic designs can be translated to molecular circuits. It presents 
molecular implementations of mathematical functions that are considerably more complex than any 
shown to date. All designs are validated using mass-action simulations of the chemical kinetics of DNA 
strand displacement reactions.

Molecular computing holds the promise for transforming research in areas such as disease monitoring and drug 
delivery. Since early, pioneering work by Adleman1, the field has evolved significantly. A particularly promising 
strategy for molecular computation is based on the mechanism of DNA strand displacement2–6.

Various computational structures have been proposed for DNA-based systems, as well as in other contexts. 
Simple logic primitives, such as AND, OR, NAND, NOR, and XOR have been demonstrated7–14. These circuits 
have been used as building blocks for both digital signal processing15–20, and mixed-signal (i.e., analog and digital) 
computation17,21. Using these simple circuits, complex genetic circuits have been constructed to perform compu-
tation in cells22. To automate the design of genetic and DNA circuits, computer-aided design (CAD) systems have 
been presented22,23. There has been interest in activating and inhibiting pathways by “filtering” concentrations of 
molecular types in different frequency bands24–26.

The theory of computing with abstract chemical reactions, termed chemical reaction networks (CRNs), has 
evolved into a bona fide computer programming framework. Work on CRNs includes programs for computing 
different sorts of mathematical functions such as polynomials27,28, and logarithms29,30.

In prior work, different approaches to compute complex functions such as exponentials and sigmoids have 
been presented. For example, it has been shown that CRNs describing covalent modification cycle can realize 
exponential, logarithm and sigmoid functions29,31. The hyperbolic regime can be used to realize exponential and 
logarithm while ultrasensitive regime can be used to realize sigmoid function. The CRNs in29,31 describe analog 
behavior of the system while the CRNs described by the proposed approach describe digital behavior. In29,31, each 
region of operation is described by a specific input-output characteristic. This implies that the exponential and 
sigmoid functions are realized for specific ranges of input concentrations. Furthermore, the sigmoid function 
in29 describes a hard-limit response. On the other hand, the proposed approach realizes digital circuits and the 
function behavior is not limited to a specific range of input concentrations (only the ratio of two concentrations 
used to represent a variable is important not their concentrations).

This paper presents a method for designing CRNs that compute a wide range of mathematical functions, 
ranging from simple to complex. The building blocks in the proposed methodology are units composed of four 
chemical reactions. All chemical reactions in the proposed system have exactly two reactants. Such bimolecu-
lar chemical reactions can be implemented as DNA strand-displacement reactions in a robust way32. Thus, our 
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method provides a systematic way to design DNA reactions that compute mathematical functions. These com-
putational constructs are central to the topic of perceptrons, that represent simple machine learning algorithm.

Machine learning classifiers have become ubiquitous in the computational sciences. Their physical realization 
using different technologies has been considered33,34. Molecular implementations of machine learning classifiers 
could have important applications. One can imagine instances where inference and learning might be an integral 
part of tasks such as biochemical sensing. For example, genetic logic circuits for cell classification can sense 
features of mRNAs; they can detect their expression patterns and selectively respond to specific cell types35–38. 
Such circuits could enable the production of personalized “smart” drugs that target specific diseases for specific 
patients39.

Past work on neural computation with molecular reactions includes40–44. As early theoretical research on the 
topic, Hjelmfelt et al. presented chemical reactions that, based on the ordinary differential equations of mass 
action kinetics model, can emulate so-called McClulloch-Pitts neurons44. These chemical neurons can be cou-
pled together to build chemical neural networks or finite-state machine45. Also in a theoretical vein, Mills et al. 
described a DNA implementation of a Hopfield neural network as well as a DNA implementation of a multi-layer 
perceptron46,47. The authors speculated that networks containing as many as 109 neurons might be feasible.

Laplante et al. performed pattern recognition with chemical (as opposed to biomolecular) reactions, in a 
continuous flow stirred tank reactors48. Lim et al. implemented pattern recognition with differentially-labeled 
probe DNA molecules that competitively hybridized to compute the decisions49. Zhang and Seelig described 
an implementation of a linear classifier using DNA strand displacement50. Design of DNA circuits for super-
vised learning of a class of linear functions using buffered strand displacement reactions has been presented in51. 
Finally, Qian et al. demonstrated a complete artificial neural network, implemented experimentally using DNA 
strand displacement52.

In general, an artificial neural network consists of one or more layers where, in each layer, a neuron com-
putes a weighted sum followed by a nonlinear activation (transfer) function. Typically the activation function 
corresponds to a sigmoid function. Prior work on molecular implementations of ANNs has considered either a 
hard-threshold52 or linear transfer function50 as the activation function.

This paper discusses the implementation of mathematical functions such as exponentials, trigonometric func-
tions, the sigmoid function and a perceptron function with the limitation that the weighted sum of the inputs is 
scaled down by the dimension of the input vector.

Figure 1. Basic molecular units. (a) The Multiplication unit, Mult. This unit calculates c = a × b, the 
multiplication of two input variables a and b in the unipolar fractional representation. (b) The NMult unit. 
This unit computes c = 1 − a × b in the unipolar fractional representation. (c) The MUX unit. This unit 
performs scaled addition. Here a,b and c can be in the unipolar or the bipolar representation, while s must 
be in in unipolar representation. (d) The bipolar Mult unit. This unit performs multiplication in the bipolar 
fractional representation. (e) The bipolar NMult unit. This unit computes c = −a × b in the bipolar fractional 
representation. Note the symbols that we will use to represent the different units are shown above the CRNs.

Figure 2. The proposed methodology. This figure shows the required steps for computing functions based on 
the proposed methodology. It starts with the approximation of the desired function as a polynomial using a 
series expansion method. The polynomial is then expressed in an equivalent form that only contains Mult and 
NMult units. The Mult and NMult units are mapped to their equivalent chemical reactions and finally the CRN 
is implemented by DNA strand-displacement reactions.
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In prior work on molecular computing, two types of representation for the input and output variables of chem-
ical reaction networks (CRNs) have been considered:

 1. The value of each variable corresponds to the concentration of a specific molecular type; this is referred to 
as a direct representation.

 2. The value of each variable is represented by the difference between the concentrations of a pair of molecu-
lar types; this is referred to as a dual-rail representation53.

In recent work, we have proposed a new type of representation, referred to as a fractional representation28. 
Here a pair of molecular types is assigned to each variable, e.g., (X0, X1) for a variable x. The value of the variable 
is determined by the ratio of the concentrations for the assigned pair,

=
+

x X
X X

[ ]
[ ] [ ] (1)

1

0 1

where [X1] and [X0] represent concentrations of molecules X1 and X0, respectively. Note that the value of x is 
confined to the unit interval, [0, 1]. With the values confined to the unit interval, we refer to the representations 
as a unipolar fractional encoding.

Variables with values in the range [−1, 1] can be represented by a slightly different encoding on the assigned 
pair (X0, X1), given by:

=
−
+
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We refer to this representation as a bipolar fractional encoding.

Figure 3. Examples of molecular circuits for mathematical functions. Truncated Maclaurin series, reformatted 
Maclaurin series using Horner’s rule, and Mult/NMult structure for functions in equations (41)–(46) of the 
Supplementary Information.
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The unipolar fractional coding and the connection that it makes between molecular computation and electronic 
stochastic logic design have been introduced in28. However, the extension of the idea for bipolar fractional coding and a 
systematic method for molecular implementation of complex functions using fractional coding has not been reported 
in prior work. The contributions of this paper are twofold. Firstly, molecular reactions are proposed to compute opera-
tions such as ab, 1 − ab, and sa + (1 − s)b using both the unipolar and bipolar fractional representations. These molec-
ular circuits are, respectively, referred to as Mult, NMult, and MuX. Secondly, this paper demonstrates that unipolar 
and bipolar fractional coding approaches can be used to design CRNs for computing complex mathematical functions 
such as e−x, sin(x), and sigmoid (x). The proposed CRNs can readily be implemented using DNA strand displacement.

The fractional representation is inspired by a technique from digital electronic design, termed stochastic logic, 
in which values are represented by the probability of seeing 1’s in a stream of randomly generated 0’s and 1’s54–59. 
Research in the electronic realm has shown that a variety of complex functions can be computed with remarkably 
simple circuitry with this stochastic approach.

Figure 4. Examples of molecular circuits for mathematical functions with inputs covering entire range. 
Truncated Maclaurin series, reformatted Maclaurin series using Horner’s rule, Mult/NMult and MUX structure 
for functions in equations (47), (48) and (46) of the Supplementary Information. The output of the cosine 
function and the input of the bipolar sigmoid are in bipolar representation.

Figure 5. Molecular Perceptron. (a) A standard perceptron that computes sigmoid ∑ = wx( )i
N

i i1 , (b) A molecular 
perceptron that computes sigmoid ∑ =( )wx

N i
N

i i
1

1 .
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The main difference between28 and this paper lies in the approach proposed to design and synthesize comput-
ing CRNs. The approach in28 uses so-called control generating reactions and the transferring reactions that lead 
to reactions with m reactants for a polynomial of degree m. In contrast, this paper uses simple molecular units 
such as Mult and NMult described in the next section. Regardless of the complexity of the target functions, the 
molecular reactions designed by the new approach are only composed of simple reactions with two reactants and 
one product. These reactions are more suitable for DNA implementation. The molecular implementations pre-
sented in this paper are inspired by the stochastic implementations of functions presented in60.

The fractional encoding discussed in this paper is analogous to the stochastic representation. The concentra-
tions of the X0 and X1 molecular types, correspond to the probability of seeing 0’s and 1’s, respectively, in the ran-
dom streams. This paper demonstrates how stochastic electronic designs can be translated to molecular circuits.

One should notice that the bipolar fractional coding is just a representation of the value of a variable using two 
molecular types. This means that it is not required to actually calculate Equation (2). In other words, Equation (2) 
is our interpretation for the value of a variable and molecular reactions do not calculate this equation.

Section 1 introduces molecular reactions for the Mult and NMult units; these perform multiplication in 
the unipolar fractional representation. Section 2 presents an approach for mapping specific target functions to a 
cascade of Mult/NMult units. Section 3 introduces a molecular MUX unit that performs scaled addition, as well 
as Mult/NMult units for multiplication using the bipolar representation. Section 3 also presents an application: 
CRNs for implementing a single-layered neural network (also referred to as a perceptron). Section 4 discusses the 
DNA implementations of the proposed CRNs.

CRNs for Multiplication Units
Based on the fractional coding discussed in the previous section, we propose two simple sets of CRNs for comput-
ing multiplication. We refer to these as Mult and NMult. These sets will serve as fundamental units in the con-
struction of other desired functions in Section 2. Mult computes c = a × b, and NMult computes c = 1 − a × b 
where a,b, and c are in the unipolar fractional representation. The units are described below.

Mult unit. Consider the four reactions shown in Fig. 1(a). These compute c as the multiplication of two inputs a 
and b, all in unipolar fractional representation. So if =

+
a A

A A
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0 1
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We prove this in Supplementary Section S.1, on the basis of both stochastic and ordinary dif ferential equations.

Figure 6. Inputs, weights and outputs of three perceptrons, denoted A, B and C. (a) Inputs to the perceptron: 
each column of the 32×100 matrix illustrates an input vector containing 32 binary inputs. Each white square 
corresponds to a 1 and each black square corresponds to a 0. (b) Weights: The weights for the three perceptrons 
are illustrated. These weights are divided into 4 parts and correspond to 1/2, −1/2, 1/4 and −1/4 from left 
to right. (c) Binary outputs of Perceptron A containing 58 1’s and 42 0’s. (d) Binary outputs of Perceptron B 
containing 90 1’s and 10 0’s. (e) Binary outputs of Perceptron C containing 6 1’s and 94 0’s.
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NMult unit. If we switch C0 and C1 in the molecular reactions of the Mult unit, we obtain what we call an 
NMult unit which computes 1 − a × b in the unipolar fractional coding. Figure 1(b) shows the corresponding set 
of reactions. The proof that the NMult unit computes 1 − a × b is very similar to the proof for Mult unit. It can 
be obtained by switching C0 and C1 in the proof presented for Mult unit.

Note that the CRNs in Fig. 1 do not preserve the initial values of the input molecular types. The reactions can 
be modified such that the initial concentrations of either one or both of the input pairs, (A0, A1) and (B0, B1), are 
preserved. The details are presented in Section S.2 of the Supplementary Information.

Figure 1 shows three additional units. For some functions we use a CRN unit called MUX, shown in Fig. 1(c). 
To perform multiplication on the bipolar fractional coding, we use the CRN units shown in Fig. 1(d) and (e). All 
three CRN units are described in detail in Section 3 where we use them to compute the bipolar sigmoid function.

Figure 7. Exact perceptron outputs that represent sigmoid of the weighted sum of the inputs and the molecular 
perceptron outputs that compute sigmoid of the weighted sum scaled by a factor 1/32 for the 100 input vectors 
for: (a) Perceptron A, (b) Perceptron B, (c) Perceptron C. The x axis corresponds to input vector number.

Figure 8. Exact and molecular perceptron outputs with weighted sum of the inputs scaled by 1/32 for 100 
input vectors for: (a) Perceptron A, (b) Perceptron B, (c) Perceptron C. The x axis corresponds to input vector 
number.
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Designing CRNs for Computing Functions
In this section we propose a framework for designing CRNs to compute different functions. Our method is illus-
trated in Fig. 2.

Methodology. In the proposed methodology, the functions are approximated by truncating their Maclaurin 
series expansions. Note that other expansion methods such as Taylor series could also be used. The approximated 
polynomials are then mapped into equivalent forms that can be readily implemented using Mult and NMult units.

Figure 9. DNA simulation results. The DNA reaction kinetics for the computation of e−x, sin(x), cos(x), 
log(1 + x), tanh(x), and sigmoid(x) for x = 0.3, and x = 0.7. Each row pertains to one function. The details for 
the DNA implementation are listed in Supplementary Information Section S.8.
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The Mult/NMult units are then mapped to CRNs. These are implemented by DNA strand-displacement 
reactions. We describe these steps using f(x) = e−x as an example.

Step 1- Approximate the function
The Taylor series of any function f(x) that is infinitely differentiable at a point a corresponds to the power 

series

∑= − .
=

∞
f x f a

n
x a( ) ( )

!
( )

(3)n

n
n

0

( )

If the Taylor series is centered at zero, i.e., a = 0, then the series is called a Maclaurin series. As an example for 
f(x) = e−x the Maclaurin expansion is given by:
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The series is truncated to a polynomial of degree n, in order to approximate the desired function. As an exam-
ple if n = 5, i.e., the first six terms are retained, for f(x) = e−x we obtain

= − + − + − .−e x x x x x1
2! 3! 4! 5! (5)

x
2 3 4 5

Step 2- Reformat the approximation and map it to Mult/NMult units
As the second step, the approximating polynomials obtained in the first step are mapped into equivalent 

forms can be implemented using Mult and NMult units. The Mult and NMult units are analogous to AND 
and NAND gates in electronic design paradigm called stochastic processing. First developed by Poppelbaum55 
and Gaines56 in the late 1960’s, stochastic processing implements logical computation on random bit streams. 
Numbers are encoded by the probability of obtaining a one versus a zero in stream of random bits.

In this work, the Mult and NMult units perform the same operation on molecular concentrations in the 
unipolar fractional encoding as AND and NAND gates do, respectively, in stochastic logic. Recent work in 
stochastic logic60 has shown that the form of polynomials that we generate in this step can be changed in a 
way that they can be mapped to a cascade of AND and NAND logic gates. The approach presented by Parhi 
and Liu uses the well known Horner’s rule in order to map polynomials with alternating positive and negative 
coefficients and decreasing magnitudes to AND and NAND gates60. This approach can be used for Maclaurin 
series of the functions e−x, sin(x), cos(x), log(1 + x), tanh(x), and sigmoid (x). Note that for the trigonometric 
functions, the operand x is in radians. We use the approach of Parhi and Liu60 to change the form of the desired 
approximating polynomials and then map them to a cascade of Mult and NMult units. We briefly describe 
this approach.

Figure 10. DNA simulation results. The DNA reaction kinetics for the computation of π
π

sin x( ) , and π
.

cos x( )
5 9348

 for 
x = 0.3, and x = 0.7. For the cosine function, the simulation shows Y Y

Y Y
[ ] [ ]
[ ] [ ]

1 0

0 1

−
+

, where Y0 and Y1 represent the 
output in bipolar fractional coding.
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Horner’s rule. Consider a polynomial P(x) of degree n given in its power form as

= + + + + ... + .P x a a x a x a x a x( ) (6)n
n

0 1 2
2

3
3

As described by Parhi and Liu60, Eq. (6) can be rewritten as

= − − − ... − − ...−P x b b x b x b x b x b x( ) (1 (1 (1 (1 (1 )))) ) (7)n n0 1 2 3 1

where b0 = a0 and = −
−

bi
a

a
i

i 1
 for i = 1, 2, ..., n. Provided 0 ≤ bi ≤ 1 for i = 0, 1, ...., n, this representation can be 

easily mapped to a regular cascade of molecular Mult and NMult units as described by Parhi and Liu60.
In order to guarantee 0 ≤ bi ≤ 1 the following requirements must be satisfied. Firstly, the coefficients of the 

original polynomial, i.e., the ai’s, should be alternatively positive and negative. Secondly, the absolute values for 
all the coefficients, i.e., the ai’s, should be less than one and decrease as the terms’ orders increase. There exist sev-
eral polynomials that satisfy these requirements. For example Maclaurin series expansion of e−x, sin(x), cos(x), 
log(1 + x), tanh(x), and sigmoid (x), listed in equations (41) to (46) of the Supplementary Information, meet these 
requirements and can be represented using Equation (7).

Consider the following example. If we apply the Horner’s rule for the fifth order Maclaurin series of f(x) = e−x, 
shown in (5), we obtain

e x x x x x1 1
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Equation (8) can be implemented using Mult and NMult units as shown in Fig. 3.
Elements Ei of the structure shown in Fig. 3 compute intermediate outputs ti in order to progressively compute 

the e−x function using Equation (8). What follows is the computation for each element:
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Function x = 0 x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5 x = 0.6 x = 0.7 x = 0.8 x = 0.9 x = 1 MSE

e−x
computed 0.9568 0.8770 0.7975 0.7228 0.6609 0.5951 0.5295 0.4772 0.4300 0.3872 0.3482

5.02 × 10−4

exact 1 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066 0.3679

sin(x)
computed 0 0.1045 0.2062 0.3043 0.3970 0.4833 0.5570 0.6261 0.6844 0.7460 0.7967

4.63×10−4

exact 0 0.0998 0.1986 0.2955 0.3894 0.4794 0.5646 0.64421 0.7173 0.7833 0.8414

cos(x)
computed 0.9728 0.9757 0.9641 0.9407 0.9129 0.8671 0.8071 0.7461 0.6778 0.6029 0.5221

3.16 × 10−4

exact 1 0.9950 0.9800 0.9553 0.9210 0.8775 0.8253 0.7648 0.6967 0.6216 0.5403

log(1 + x)
computed 0.0090 0.0985 0.1868 0.2675 0.3410 0.4075 0.4660 0.5212 0.5707 0.6217 0.6699

1.8 × 10−4

exact 0 0.0953 0.1823 0.2623 0.3364 0.4054 0.4700 0.5306 0.5877 0.6418 0.6931

tanh(x)
computed 0 0.0935 0.1883 0.2823 0.3701 0.4574 0.5277 0.5826 0.6246 0.6682 0.7038

7.35 × 10−4

exact 0 0.0996 0.1973 0.2913 0.3799 0.4621 0.5370 0.6043 0.6640 0.7162 0.7615

sigmoid(x)
computed 0.5196 0.5453 0.5657 0.5878 0.6068 0.6212 0.6366 0.6570 0.6721 0.6906 0.7084

2.5 × 10−4

exact 0.5000 0.5250 0.5498 0.5744 0.5987 0.6225 0.6457 0.6682 0.6900 0.7109 0.7311

sin x( )π
π

computed 0 0.0984 0.1871 0.2574 0.3023 0.3176 0.3016 0.2565 0.1931 0.1329 0.0899
8.48 × 10−4

exact 0 0.0984 0.1871 0.2576 0.3027 0.3183 0.3027 0.2575 0.1871 0.0984 0

cos x( )
5 9348

π
.

computed 0.1685 0.1602 0.1363 0.0991 0.0527 0.0030 −0.0429 −0.07729 −0.0921 −0.0852 −0.0673
1.67 × 10−3

exact 0.1685 0.1603 0.1363 0.0990 0.0521 0 −0.0521 −0.0990 −0.1363 −0.1603 −0.1685

Table 1. Computed values of functions with the proposed CRNs compared to their exact values.

Perceptron TP TN FP FN

Mean Square Error

Molecular DNA

A 58 42 0 0 2.0198 × 10−11 3.7670 × 10−7

B 90 10 0 0 1.2301 × 10−10 1.0357 × 10−6

C 6 94 0 0 3.9050 × 10−12 9.1999 × 10−8

Table 2. Classification accuracy and mean sqaure error values for the three perceptrons with weighted input 
values scaled by factor 1/32 for molecular reactions and DNA strand displacement reactions.
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Figure 3 summarizes the truncated Maclaurin series, reformatted Maclaurin series using Horner’s rule, and 
Mult/NMult structure for several other desired functions where the input and output are in unipolar rep-
resentation. Figure 4 presents Mult/NMult structure for stochastic logic implementations of half-period of 
sin x( )π

π
 and cos x( )

5 9348
π

.
 as presented in Parhi and Liu60 and described by equations (9) and (10). Note that in the scaled 

cosine computation, the input is in unipolar representation while the output is in bipolar representation and can 
represent negative values. This is referred to as hybrid representation61.

π
π

= − − . − . − . .
sin x x x x x x( ) (1 )(1 0 4 )(1 0 2488 (1 0 2637 )) (9)

2 2 2 2

cos x x x

x x x

( )
5 9348

4 9348
5 9348

(2 0 4112 1)

1
5 9348

(1 2 0 6676 (1 0 1762 (1 0 1097 )))
(10)

2 2

6 2 2

π
.

=
.
.

⋅ . −

+
.

− ⋅ . − . − . .

Step 3- Synthesize the Chemical Reactions
To build the CRN for computing the desired function, the next step is to synthesize the related chemical 

reactions for each element used in the Mult/NMult structure. Depending on the unit type, either the set of 
reactions presented in Fig. 1(a–c) is used. After designing the CRNs, the final step is to map them to DNA reac-
tions as described in Section 4. Note that Mult/NMult units with more than two inputs are built by cascading 
two-input Mult/NMult units.

Molecular Perceptron
This section describes implementation of a single-layered neural network, also called a perceptron, by molecular 
reactions. As shown in Fig. 5(a), the system first computes the inner product of a binary input vector and a coef-
ficient vector as y w x wi

N
i i1 0= ∑ += ; then it uses the sigmoid function to compute the final output z as z = sigmoid 

(y). The stochastic sigmoid circuit shown in Fig. 5(b) was presented in60 the reader is referred to60 for details of the 
derivation. This performs a soft decision of whether the output should be close to 0 or 1. For the perceptron sys-
tem that we implement, the inputs are binary, that is to say either xi = 0 or xi = 1, and the coefficients, i.e., wi’s, are 
between −1 and 1. All multiply-add operations are implemented using bipolar Mult units. Since the input of the 
sigmoid function is between −1 and 1, we implement the sigmoid function using a bipolar fractional coding.

Note that prior biomolecular implementations of artificial neural networks (ANNs) have considered either 
hard limit or linear activation functions50,52. No prior publication has considered molecular ANNs using a sig-
moid activation function. In this section we describe the implementation of the bipolar MUX unit and the bipolar 
Mult and NMult units.

MUX unit. The MUX unit, shown in Fig. 1(c), computes c as the weighted addition of two inputs a and b as 
c = a × (1 − s) + b × s, where 0 ≤ s ≤ 1. Here a, b, and c can be in either the unipolar or the bipolar fractional 
representation while the weight s must be in the unipolar representation. The set of four reactions in Fig. 1(c) 
describes the CRN for a MUX unit for both unipolar and bipolar fractional codings. Mass-action kinetic equations 
for both unipolar and bipolar fractional coding are discussed in Supplementary Information Section S.4.

Bipolar Mult unit. The bipolar Mult unit, shown in Fig. 1(d), computes c as the multiplication of two inputs 
a and b, where a, b and c are represented in bipolar fractional representation. So if a A A

A A
[ ] [ ]
[ ] [ ]

1 0

0 1
= −

+
 and b B B

B B
[ ] [ ]
[ ] [ ]

1 0

0 1
= −

+
 

then c a bC C
C C
[ ] [ ]
[ ] [ ]

1 0

0 1
= = ×−

+
. The set of four reactions in Fig. 1(d) represents the CRN for a multiplication unit in 

the bipolar fractional coding. In Supplementary Information Section S.3 we prove that these reactions compute 
c = a × b.

Bipolar NMult unit. Analogous to the way that we obtained NMult from Mult unit in the unipolar frac-
tional coding, if we switch C0 and C1 in the reactions of the bipolar Mult unit, we obtain the bipolar NMult unit 
which computes −a × b. Figure 1(e) gives the corresponding set of reactions. Similar to the method we used for 
Mult unit, it is easy to show that the reactions listed in Fig. 1(e) compute c = −a × b in the bipolar fractional 
coding.

The proof is very similar to the bipolar Mult unit. Indeed, for bipolar NMult we just switch C0 and C1 mean-
ing that in the proof for bipolar Mult instead of C1 − C0 in the numerator we have C0 − C1. This leads to having 
c = −ab instead of c = ab.

Hybrid sigmoid function and Perceptron with Binary Inputs. The bipolar fractional representation 
can be used to implement the sigmoid function, presented in Section 2.1.1 for the unipolar fractional representa-
tion. Therefore, the function can be computed for inputs between −1 and 1, i.e., −1 ≤ x ≤ 1. The output of this 
function, however, is still in the unit interval [0, 1] and can be represented by a unipolar fractional representation. 
In fact, for x ∈ [−1, 1] the corresponding output range is [0.2689, 0.7311]. In Parhi and Liu60, it is shown that the 
sigmoid function using hybrid format, i.e., for bipolar input and unipolar output can be implemented by elec-
tronic stochastic logic circuits, namely, XOR and XNOR gates and multiplexers. These electronic circuits perform 
multiplication and weighted addition for stochastic bit streams analogous to the same operations that bipolar 
Mult, NMult, and MUX units in Fig. 1 perform for CRNs. Accordingly, we map the circuit to the cascade of 
proposed molecular units as shown in Fig. 5(b). The inner product can be implemented by N bipolar Mult units 
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having the same output. Details for the molecular implementation of the inner product are described in Section 
S.5 of the Supplementary Information.

By cascading the inner product part and the sigmoid function, we can implement molecular perceptrons with 
binary inputs as shown in Fig. 5. Although the inner product in the standard perceptron shown in Fig. 5(a) com-
putes ∑ = w xi

N
i i1 , the molecular inner product in Fig. 5(b) computes w x

N i
N

i i
1

1∑ = . We map this molecular circuit to 
DNA strand-displacement reactions and simulate it for N = 32 using 32 coefficients. Three perceptrons are simu-
lated. The 32 binary inputs are selected at random such that each bit is equally likely to be 1 or 0. It is important to 
note that the inputs are not constrained to be binary in the proposed methodology, but are constrained to lie 
between −1 and 1. For each perceptron, the same 100 input vectors are simulated. The input vectors are illustrated 
in Fig. 6(a) where the 100 columns correspond to 100 input vectors, and each column contains 32 binary values 
chosen at random with equal probability. The corresponding binary matrix representing the 100 input vectors is 
also shown in Figure S.7.1 in the Supplementary Information Section S.7. The weights of perceptrons are chosen 
from the set 1/2, −1/2, 1/4, and −1/4. These weights for the 3 perceptrons, denoted A, B and C, are illustrated in 
Fig. 6(b), and are also listed in Supplementary Section S.7. In Perceptron A, each weight occurs 8 times. In 
Perceptron B, the weights 1/2, −1/2, 1/4 and −1/4, occur with frequencies 10, 6, 10 and 6, respectively, In 
Perceptron C, the weights 1/2, −1/2, 1/4, and −1/4 occur with frequencies 6, 10, 6, and 10, respectively. In a per-
ceptron, let the presence or absence of the input molecules be denoted by 1 or 0, and the coefficients describe the 
weights associated with each input, and each weighted molecule either activates or inhibits the perceptron state 
depending on whether it is positive or negative. Then Perceptron B has more molecules that activate the state 
whereas Perceptron C has more molecules that inhibit the state, whereas Perceptron A has equal number of mol-
ecules that either activate or inhibit the state. For equally likely binary inputs, the probabilities of the weighted 
sum for the Perceptrons A, B, and C, respectively, correspond to 0, 1.5 and −1.5. The expected sigmoid values for 
the three perceptrons correspond to 0.5, 0.8175, and 0.1825, respectively. Each perceptron output is classified as 
1 or 0 using a threshold of 0.5. If very large number of random input vectors are simulated, we would expect the 
percent of input vectors classified as 1 in these three perceptrons to be 50%, 81.75% and 18.25%, respectively. For 
the 100 input vectors, the classification results for the three perceptrons are illustrated in Fig. 6(c–e). The number 
of 1’s in these perceptrons correspond to 58, 90 and 6, respectively. All three molecular perceptrons achieve clas-
sification accuracy of 100%.

The simulation results in Fig. 7(a–c) illustrate the exact sigmoid values of the weighted sum of the inputs and 
the outputs of the molecular perceptrons that compute sigmoid of the weighted sum of the inputs scaled down by 
the dimension of the input vector, i.e., 32, for the Perceptrons A, B, and C, respectively. The horizontal axis in 
Fig. 7 represents the index of the input vector and the vertical axis shows the exact sigmoid value and the molec-
ular sigmoid value. Although the molecular CRN outputs do not perfectly match with actual values, if we con-
sider 0.5 as the threshold for a binary decision, the molecular perceptron classification results and the actual 
perceptron classifier results are the same for all 100 input vectors. Since the molecular inner product computes 

= ∑ =y wx
N i

N
i i

1
1  instead of y wxi

N
i i1= ∑ = , the amplitude for the computed output is not same as the exact value. 

Note that xi and wi, respectively, represent the binary value of the ith input and its associated weight. Figure 8 
shows the exact and molecular outputs of the three perceptrons that compute sigmoid of the scaled versions of the 
weighted inputs for the 100 input vectors. The next section describes DNA implementations of the proposed 
CRNs.

DNA Implementation
Constructs in the previous sections were presented in terms of abstract CRNs. In this section, we translate our 
Mult/NMult circuits to DNA strand displacement (DSD) reactions. The idea of DSD reactions based on toehold 
mediation was first introduced by Yurke et al. for the construction of DNA tweezers2. A general method for trans-
lating CRNs to DSD reactions was proposed by Soloveichik et al.6 and is illustrated in Supplementary Information 
Section S.8 and Figure S.8.1. That work proved that DSD reactions can closely emulate the mass-action kinetics 
of any CRN.

Recently Chen et al. showed that bimolecular reactions, such as A + B → C, can be implemented by linear, 
double-stranded DNA complexes that are compatible with natural DNA32. We note that our computational units 
are all constructed from bimolecular reactions and so these could be implemented using the framework proposed 
by Chen et al.32.

Using the software tool provided by Erik Winfree’s group in Caltech6 we simulate the reactions using DSD. 
Figures 9 and 10 show the simulation results for the functions at x = 0.3 and x = 0.7. Table 1 presents simulation 
data highlighting the accuracy of the proposed method. It lists computed values for functions at eleven equally 
separated points in the interval [0,1]. For each function, the computed result is reported 50 hours after the simu-
lation starts. The table also lists the mean square error (MSE) at the eleven points. The error may be due to several 
factors: the approximation of the function with a truncated series expansion; the emulation of the related CRNs 
by DSD reactions; and the limited simulation time (of 50 hours for DSD reactions). As the results show, the error 
is less than 1 × 10−3. For a visual comparison, Figure S.8.2 of the Supplementary Information illustrates the exact 
values of the functions together with their computed values.

Table 2 lists the classification accuracy of the three perceptrons simulated using DSD with results collected 
after 50 hours of simulations.The table also lists the mean square error values for the three perceptrons for both 
molecular reactions and DNA strand displacement reactions. The mean square error, MSE, is defined as:

∑= −
=

MSE y j y j1
100

( ) ( )
j 1

100
2
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where = ∑ =( )y j sigmoid wx j( ) [ ]
N i

N
i i

1
1  and y j( ) is the computed value of y(j) from molecular or DNA simulation, 

xi[j] represents the ith bit position of input vector j, and wi represents the ith weight. The mean square error values 
for molecular and DNA simulations are small as the dynamic range of the sigmoid function with scaled weighted 
sum of binary inputs is small. For example, sigmoid(1.5/32) and sigmoid(−1.5/32), respectively, correspond to 
0.5117 and 0.4882. Although the DNA implementation of the perceptron achieves 100% classification accuracy 
in simulation, we caution that in an actual experiment the DNA perceptron may not achieve perfect classification 
accuracy.

Conclusion
Although there have been numerous examples of CRNs for computing specific functions presented in the liter-
ature, as yet there has been no systematic way to design molecular systems to compute mathematical functions. 
This paper presents a systematic methodology for designing CRNs to implement complex mathematical func-
tions robustly. The proposed method is unique in that it relies exclusively on bimolecular reactions, with no 
requirements on the reaction rates. According to the work of Chen et al., bimolecular reactions are compatible 
with natural DNA32. This means that, the computational elements we propose here could potentially be used 
for in vivo applications. A key contribution of this paper is the ability to map any stochastic logic circuit to a 
molecular circuit based on fractional coding. Numerous prior papers have demonstrated stochastic logic imple-
mentations of digital filters, error control coders such as low-density parity check codes and polar codes. The 
proposed molecular logic gates can be used to design molecular digital filters and molecular error control coders 
in a straightforward manner.

This paper builds on our prior work. The computation of polynomials was presented in Salehi et al.28. In that 
paper we showed how arbitrary polynomials can be mapped to a CRN. Although that method could be used to 
compute truncated Maclaurin series of desired functions, it uses a rather complex set of chemical reactions with 
m reactants and at least m + 1 products, with m≥2, for polynomials of degree m. Implementing reactions with 
more than two reactants may be biologically infeasible, since this entails large complexes. In contrast, the meth-
odology proposed in this paper requires only bimolecular reactions and so is readily implementable.

Although molecular and DNA implementations of several mathematical functions using fractional coding 
have been demonstrated, the proposed method suffers from numerous limitations. Use of fractional coding, 
inspired by stochastic logic62–66, requires molecules to be bounded between −1 and 1. Thus, complete dynamic 
range of a function cannot be computed by the proposed method. For example, the proposed method can 
only compute scaled sine and cosine values. The molecular perceptron cannot compute the sigmoid value of 
the weighted sum of the binary inputs. This is an inherent limitation of the proposed method as the sigmoid 
function processes a scaled version of the weighted inputs (scaled down by the dimension of the input vector). 
Furthermore, the weight values are constrained to lie between −1 and 1. Molecular implementations of general 
perceptrons with arbitrary weights remains a topic for future research. In addition, further research needs to be 
directed towards molecular implementations of perceptrons used in inference applications as opposed to binary 
classification applications.
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