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Abstract. Chemical reaction networks (CRNs) are a fundamental
model in the study of molecular reactions. Widely used as formalism
for the analysis of chemical and biochemical systems, CRNs have re-
ceived renewed attention as a model for molecular computation. Prior
research has shown that, viewing the concentrations of specific molec-
ular types as inputs and outputs, CRNs can only compute semilinear
functions. This paper demonstrates that, with a different encoding,
CRNs can, in fact, compute a much richer set of functions, namely
all polynomial functions. The encoding is a fractional representation:
inputs and outputs are represented as the fraction of concentrations
of molecular types. The method is illustrated first for generic CRNs;
then an example is mapped to DNA strand-displacement reactions.

1 Introduction

It has long been recognized that, viewed from a mathematical standpoint, a
set of chemical reactions can exhibit rich dynamical behavior [1]. On the com-
putational front, there has been a wealth of research into efficient methods
for simulating chemical reactions, ranging from ordinary differential equations
(ODEs) [2] to stochastic simulation [3]. On the mathematical front, entirely
new branches of theory have been developed to characterize chemical dynam-
ics [4].

The idea of computation directly with with chemical reactions — as opposed
to writing computer programs to analyze chemical systems — dates back to
the seminal work of Adleman [5]. In this context, a chemical reaction net-
work (CRN) transforms input concentrations of molecular types into output
concentrations and so implements computation.

The question of the computational power of chemical reactions has been
considered by several authors. Magnasco demonstrated that chemical reactions
can compute anything that digital circuits can compute [6]. Soloveichik et
al. demonstrated that chemical reactions are Turing Universal, meaning that
they can compute anything that a computer algorithm can compute [7]. This
work was applicable to a discrete, stochastic model of chemical kinetics. The
computation is probabilistic; the total probability of error of the computation
can be made arbitrarily small (but not zero).

In a more narrow context, Chen et. al considered the question of what
functions, of the form f : R — R, CRNs can compute deterministically [9][10].
They proved that CRNs compute exactly the set of semilinear functions.
That is to say, they proved that a function is computable by a deterministic
CRN if and only if it is continuous piecewise linear.
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In this prior work, the authors considered — either implicitly or explicitly
— two types of encodings for the input and output variables of CRNs.

1. The value of each variable corresponds the concentration of a specific
molecular type. Call this the direct representation.

2. The value of each variable is represented by the difference between the
concentrations of a pair of molecular types. Call this the dual-rail repre-
sentation.

In this paper we introduce a new representation, the fractional represen-
tation. A pair of molecular types is assigned to each variable, e.g., (Xo, X1)
for a variable x. The value of the variable is determined by the ratio of the
assigned pair,

__H "
o+ X1

Evidently, the value is confined to the unit interval, [0, 1]. Based on this repre-
sentation, we propose a CRN framework for computing univariate polynomials
that map the unit interval [0,1] to itself. We demonstrate that a CRN exists
that computes any such polynomial. This is a much richer set of functions
that those in the construction by Chen et al. [9][10]. We first illustrate with a
simple example.

X

Example 1. Consider the following CRN:

So + Bo,o — Yo
Xo,0 + X1,0 = So So+ Bo1 = Y1
Xoo+X11— 51 S1+Bi1o— Yy
Xo1+X1,0— 51 Si1+DBig =Y
Xo1+X11— 52 Sa+ By — Yo
So+ DBy =Y

(a) (0)

Set the initial concentrations as follows:

Bpo=25, _ T __3
Bo1 =175 25+75 4
BI,O = 75 25 o 1
Bii=2) 7 i1
Bag = 50 50 1
Boi=500 7 50350 2

It may be shown that this CRN computes the function

_3 2 3
ya)= 22—z + 5, (2)

where 0 < x < 1.
The CRN is composed of two sets of reactions: the four reactions in group
(a) that we call them electing reactions and the six reactions in group (b) that
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we call the transferring reactions. We provide details regarding the synthesis
method in Section 3. Here we simply note that, given a polynomial y(z), the
first step is to convert to its Bernstein polynomial equivalent, g(x). For the
polynomial y(x) in Eq.2,
o() = 21— 2]+ 1221 — )] + o> 3)

(An explanation of what a Bernstein polynomial is is given in Section 2.) The
coefficients of the Bernstein polynomial are the values used to initialize the
types Bi,O and Bi71 for i = O, 1, 2.

Suppose we want to evaluate y(z) at x=0.5. We would initialize X; o =
X;,1=100, for i=0,1, such that

Xii 5, (4)

r= — =
Xio+ X1

We would set the initial concentration of the other types to zero. The output
value, y(z), is computed as the ratio of the final concentrations of Yy and Y7,
ie.,

Y1
)= . 5
W@ = 7 9
The simulation results for evaluating this example at x=0.5 using a continuous
mass-action kinetics model are shown in Fig.1. As the time ¢t — oo, the ratio

Yi(t)
Yo(t) + Yi(t)

(6)

approaches the correct value of (0.5)=0.4375.

2 Representation

In our method, the Bernstein representation of a polynomial is a key
element. We briefly describe the relevant mathematics. The family of n + 1
polynomials of the form

n

Bi () = (.)xiu—x)"—i, i=0,...,n (7)

2

are called Bernstein basis polynomials of degree n. A linear combination of
Bernstein basis polynomials of degree n,

g(m) = Z bi,nBi,n(x)v (8)
i=0

is a Bernstein polynomial of degree n. The b; ,’s are called Bernstein coeffi-
cients.
Polynomials are usually represented in power form,

y(‘r) = Zai,nxi7 (9)
=0
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Fig. 1. Simulation results for the CRN implementing the polynomial y(z) = 32 —
m+% for 0 < x < 1. These were obtained from an ODE simulation of the mass-action
kinetics.

We can convert such a power-form polynomial of degree n into a Bernstein
polynomial of degree n. The conversion from the power-form coefficients, a; r,,
to the Bernstein coefficients, b; ,,, is a closed-form expression:

bin = Z g%‘,m 0<i<n. (10)
=0 (5)

For a proof of this, the reader is referred to [11]. As an example consider the
polynomial

545 15 5 9 1
=3 = Zr . 11
ya) = 50° = 2P+ ot ()
It can be converted into the following Bernstein polynomial of degree 3:
2 5 3 6
g(z) = gBo,:;(m) + §B1,3($) + §32,3(33) + §33,3(’I)- (12)

Generally speaking, a power-form polynomial of degree n can be converted
into an equivalent Bernstein polynomial of degree greater than or equal to n.
The coefficients of a Bernstein polynomial of degree m + 1 (m > n) can be
derived from the Bernstein coefficients of an equivalent Bernstein polynomial
of degree m

bO,m ) ) 1=0
bimi1 =19 (1= 5 7)bim + g bicim 1<i<m (13)
bm,m t=m+1

Again, for a proof the reader is referred to [11].
By encoding the values of variables as the ratio of the concentrations of
two molecular types,
X1

po L 14
Xo+ Xy (14)
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we can only represent numbers between 0 and 1. Accordingly, our method syn-
thesizes functions that map the unit interval [0,1] onto itself. As was shown
in Example 1, the coefficients of the polynomials that we compute are also
represented in this fractional form. Fortunately, Qian et al. proved that any
polynomial that maps the unit interval onto the unit interval can be converted
into a Bernstein polynomial with all coefficients in the unit interval [12]. That
paper shows that, by repeatedly elevating the degree of a Bernstein polyno-
mial, one always obtains one with coeflicients in the unit interval. Therefore,
the necessary and sufficient condition for our method is that the target poly-
nomial maps the unit interval to itself. The reader is referred to [12] for further
details.

3 Synthesizing CRNs for computing polynomials

In this section we present a systematic methodology for synthesizing CRNs
that can compute polynomials. As discussed in the previous section, we assume
that the target polynomial is given in Bernstein form, with all coefficients in
the unit interval. The method is composed of two parts, designing the CRN
and initializing certain types to specific values, as discussed in the following.

3.1 Designing the CRN

The CRN reactions consists of two sets of reactions that we call the electing
reactions and the transferring reactions.

First consider the electing reactions. If the degree of the Bernstein poly-
nomial is m, we consider m pairs of molecular types (X; o, X; 1) for i =
0,1,...,m — 1, as reactants. One and only one type of each pair is selected
to participate in each reaction. Therefore, each of the electing reactions has
m reactants, one from each pair. In this manner, we generate 2™ reactions.
Each reaction produces S;, where j is the index of the reactant chosen from
the second type in the pair, i.e., Xj; 1. It is obvious that j can be an integer
between 0 and m. For m = 2 the electing reactions are:

Xo,0 + X1,0 = So
Xoo+X11— 51
Xo1+X10— 51
Xo1+X1,1 = S

~ o~~~
[y
— — ~— — ~—
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For general m, they are:

Xoo+ X0+ X0+ +Xm_10 = S0 (20)
Xor1+X10+Xoo+ 4+ Xmo10 = 51 (21)
Xoo+Xi1+Xoo+ -+ Xm—10 = 51 (22)
Xopg+Xi1+Xoo0+ -+ Xmo10 = 52 (23)
Xoo+Xi1+Xo1 4+ +Xm—10 = 52 (24)
Xog+Xi1+Xo1+--+ X110 = S, (25)

A degree m Bernstein polynomial has m+1 Bernstein coefficients. We consider
m + 1 pairs of types (Bj, Bj1) for j =0,1,...,m, to represent these coeffi-
cients. The transferring reactions produce the final output, Yy or Y7, from the
products of the electing reactions, the S;’s. They do so proportionally to the
Bernstein coefficients. S; goes to Yy if it combines with B; ¢ and goes to Y7 if
it combines with B, ;. Accordingly, there are 2(m + 1) transferring reactions
reactions. For m = 2 the transferring reactions are:

So + Bo,o — Yo (26)
So+ Bo1 =Y (27)
S1+Bio— Y (28)
S1+Bi1— " (29)
So + Baog — Yo (30)
So+ By — Y (31)
(32)
For general m, they are:

So + Bo,o — Yo (33)
So+ Bo1 — Y1 (34)
S1+Bi1o— Yy (35)
S1+Bii—Y (36)
Sm + Bm,o — Yo (37)
Sm + Bmi1 — Y1 (38)

3.2 Initialization

We initialize the pair (B, B;,1) according to the Bernstein coefficients b; m,,
i.e., we have

B;
bim = .1

_ 39
' Bio+ B (39)
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For simplicity we choose B; o and B;; such that the summation B; o+ B; 1 is
the same for all ¢’s. Call the sum B; o+ B; 1 = B for all 1.

We initialize the corresponding item in each pair (X; o, X; 1) to the same
value for all 7, based on the value x;, at which the polynomial is to be evalu-

ated,

i.e.,

X1

_ 40
Xio+ X (40)

Tin =

Call this common value X for the X;¢’s and X; for the X, ;’s. The other
types, namely the S;’s as well as Y and Y7, are initialized to zero.

4 Proof Based on the Mass-Action Kinetics

We use an ordinary differential model of the mass-action kinetics to prove
the correctness of our proposed CRN design. The electing reactions (21)-
(25) produce types S;. The transferring reactions (34)-(38) consume them.
Therefore the ODEs for the types S; are:

dS,
7; = X0,0X1,0---Xm-1,0 — B0,0S0 — Bo,150 = X3 — So(Bo,o + Bo1) (41)
dS
7; =X01X1,0--- X;m—1,0 + X0,0X1,1-- - Xen—10+ -+ X0,0X1,0- .- Xen—1,1 — B1,051 — B1,151
m m—1
=14 Xy X1 — S1(B1o + B11) (42)
Sy
o Xo1X11. - Xm—10+X00X11-- - Xm-10+ -+ X00X1,0---Xm-11— Br,0oSk — Bk,15%
— (") xmk Xk S, (Byo + B 43
= {5 ) %o 1 — Sk(Br,o + Br,1) (43)
ds,, m
W = X0’1X1,1 .. .Xm_171 — Bmﬁ()Sm — Bmvlsm = Xl — Sm(Bm,() + Bm,l)- (44)
Recall that we assumed that X; o = Xy and X; 1 = X; for all i’s. At equilib-
rium %:O. Accordingly, we can compute the S;’s as:

m m—iyvi
(9) Xe X 0<i<m. (45)

P e
’ Bio+ Bi1 -

Now we write the ODEs for the output types Yy and Y;. Based on the
transferring reactions (34)—(38), we have:

dYy
dt
dY;
dt

= By,050 + B1,051 + -+ + By 0Sm

=DBo1So+ B11S1+ -+ Bm1Sm (46)
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According to the fractional encoding, the output value, y, is calculated as
follows.

i dyy
Yo+Y, dYy+dYi
. BOJSO—FBl’lSl +...+Bm718m /A'7)
o (B()’()So + BL()S1 +...+ Bm’()Sm) + (BOJSO + B1’151 + -+ Bm’ls\;b

y:

By substituting S; from Eq. (45) and with the assumption that B; o+ B; 1 = B
for all i’s, we have:

By1So+B11S1+ -+ ByniSm

- (Bo,o+ Bo1)So+ (B1o+ B1,1)S1+ -+ (Bm,o+ Bm.1)Sm + (So + B11S1 + -

_ Bo1So+ B1,1S1+ -+ Bin1Sm
B(So+ S+ F 5m)

_ 2ico BiaSi
B3 Si)
m n XX
oy, B, NN
- (m)Xm—iXi

BCiLo )

We know that Y1 (7) X¢" " X{ = (Xo + X1)™, therefore, the denomina-

tor can be replaced by (Xo + X7)™
S Bi SN
(Xo + X1)

i i1 <m> Xm—ini
B Xo+X1)™

Zm: ( ) 1 — )™ g (49)

=0

y=

Eq. (49) is exactly the expression for a Bernstein polynomial of degree m.
Thus, our CRN computes y(z).

5 DNA Implementation

The proposed CRN for computing polynomials is general in the sense that
it can be implemented by any chemical system with mass-action kinetics. As
a practical medium, we choose DNA strand-displacement reactions. Indeed,
Soleveichik et al. demonstrated that DNA strand-displacement reactions can
emulate the kinetics of any CRN [16]. They presented a software tool that
maps chemical CRNs to DNA reactions. Their tool can only map unimolec-
ular and bimolecular reactions, i.e., reactions with one or two reactants. Our
CRNs, however, include reactions with more than two reactants, for target
polynomials of degree n > 3. Thus, in order to map these reactions to DNA
strand-displacement reactions, we first break them down into bimolecular re-
actions.

+ B 1Sm)



CRNs for Computing Polynomials 9

Specifically, the reactions in the electing set (21)—(25) may have more than
two reactants. Consider the case for n = 3:

Xo,0+ X1,0+ X200 — 50 Xo,0+X1,0 = Co
Xoo+ X0+ Xo1 =51 Co+ Xo0 — So

C() + Xg,l — Sl (50)
Xoo+ X1+ X051 Xoo+ X1,1 = C4
Xoo+X11+Xo1 =5 Ci+ X909 — 51

C1 + X2,1 — S5 (51)
Xoi+ X0+ Xo0— 51 Xo1+ X1,0 = Cs
Xo1+X10+Xo1— 5 Co+Xo9— 51

Cy + X2,1 — S5 (52)
Xo1+Xi11+Xo0— 5 Xog+X11—C3
Xo1+X11+X01— S5 Cs+ Xo09— 5

Cg -+ X271 — Sg (53)

The electing set consists of the trimolecular reactions on the left-hand side.
Those on the right-hand side are the bimolecular equivalents. Every pair of
trimolecular reactions can be represented by three bimolecular reactions.
Fig. 2 shows the simulation results for a DNA implementation of a CRN
computing
19 15

— 5 3
y(x)—4+8x g7 +4x (54)

at = 0.25. The Bernstein polynomial for y(z) is

o) = [0 — )] + 2301 2P + BP0 + oab (55)

From the Bernstein coefficients, we initialize the types (B;o,B;1) for i =
0,1, 2,3 as follows:

Byo =60 20

Boi=200 7 G020 ; (56)
gif - 28} - 30?50 - g (57)
ng ) 50?:?30 - g (58)
gif - ?58} - 20?360 - g (59)

In order to evaluate y(z) at x = 0.25 we initialize X;¢ = 75 and X, 1 = 25 for
7 =1,2,3. The initial value for the other types is set to zero.
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Fig. 2. Simulation results for a DNA implementation of a CRN computing y(z) =
i + %x - %12 + %xS at x = 0.25.

Judging the concentrations of Yy and Y7 to be close to their final values at
at t = 1 hour, the output y evaluates to:

Yi(1) B 45.03
Yo(1) +Yi(1)  57.357 +45.03

y = = 0.4398 (60)

Table 1 shows the computed values of y(z) at several points and the corre-
sponding errors.

Zin |Computed y(x)|Error (%)
0.1 0.3626 5
0.25 0.4398 1.4
0.5 0.5010 0.2
0.75 0.5590 1.3
0.9 0.6356 3

Table 1. Accuracy of a DNA Strand-Displacement Implementation of a CRN Com-
puting y(z) = 1 + 22 — 122% + 2% using the proposed method.

6 Conclusion

We introduced a new encoding for computation with CRNs: the value corre-
sponding to each variable consist of the ratio of concentrations of two types.
Based on this fractional representation, we proposed a construction for com-
puting arbitrary polynomials that map the unit interval [0,1] on itself. This
is a much richer class of functions than the semilinear functions considered in
prior work.

We note that the fractional representation that we use here was inspired
by our work on stochastic digital circuits [13] [14] [15]. Such circuits operate
on random bit streams, with the variables represented as the fraction of 1’s
versus 0’s in the bit stream. We have developed general scheme for synthesizing
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circuits that compute arbitrary polynomials based on this encoding. In a sense,
this paper is an application of those results to CRNs.

Although the proposed CRNs can compute polynomials, in real applica-
tions one might encounter non-polynomial functions, such as trigonometric
functions. These cannot be computed exactly, but they can be approximated.
In [14], we describe a efficient method for approximating non-polynomial func-
tions through quadratic programming.

Clearly, the primary interest of this work is theoretical. CRNs are a funda-
mental model of computation, abstract yet conforming to the physical behavior
of chemical systems. Delineating the range of behaviors of such systems has
intellectual merit. These results may also have practical applications.

Practitioners in synthetic biology are striving to create “embedded con-
trollers” — viruses and bacteria that are engineered to perform useful molecu-
lar computation in situ where it is needed, for instance for drug delivery and
biochemical sensing. Such embedded controllers may be called upon to per-
form computation such as filtering or signal processing. Computing polynomial
functions is at the core of many these computational tasks.
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