
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

Received 2 December 2022; revised 23 March 2023; accepted 5 April 2023.
Date of publication 11 April 2023; date of current version 29 May 2023.

Digital Object Identifier 10.1109/JXCDC.2023.3266136

A Stochastic Computing Scheme of
Embedding Random Bit Generation and
Processing in Computational Random

Access Memory (SC-CRAM)

BRANDON R. ZINK , YANG LV , MASOUD ZABIHI, HÜSREV CILASUN ,
SACHIN S. SAPATNEKAR (Fellow, IEEE), ULYA R. KARPUZCU (Member, IEEE),
MARC D. RIEDEL (Senior Member, IEEE), and JIAN-PING WANG (Fellow, IEEE)

Electrical and Computer Engineering Department, University of Minnesota Twin Cities, Minneapolis, MN 55455 USA

CORRESPONDING AUTHOR: J.-P. WANG (jpwang@umn.edu)

This work was supported in part by the Center for Probabilistic Spin Logic for Low-Energy Boolean and Non-Boolean Computing (CAPSL),
one of the Nanoelectronic Computing Research (nCORE) centers as task 2759.001; in part by the Semiconductor Research Corporation
(SRC) Program through the National Science Foundation (NSF) under Grant 1739635; in part by the Spintronic Materials for Advanced
Information Technologies (SMART), one of the seven centers of nCORE, a Semiconductor Research Corporation Program through the
National Institute of Standards and Technology (NIST); in part by the SMART through the University of Minnesota (UMN) Materials

Research Science Engineering Center (MRSEC) Program under Award DMR-1420013; in part by the Applications and Systems driven
Center for Energy-Efficient Integrated NanoTechnologies (ASCENT), one of six centers of Joint University Microelectronics Program (JUMP),

a Semiconductor Research Corporation Program through Microelectronics Advanced Research Corporation (MARCO) and Defense
Advanced Research Projects Agency (DARPA); in part by DARPA through ‘‘Advanced Magnetic Tunnel Junctions (MTJs) for Computation in
and Near Random Access Memory’’ under Grant HR001117S0056-FP-042; in part by the NIST; and in part by the DARPA Non-Volatile Logic

Program, NSF Scalable Parallelism in the Extreme (SPX), under Grant 1725420.

This article has supplementary downloadable material available at https://doi.org/10.1109/JXCDC.2023.3266136, provided by the authors.

ABSTRACT Stochastic computing (SC) has emerged as a promising solution for performing complex
functions on large amounts of data to meet future computing demands. However, the hardware needed to
generate random bit-streams using conventional CMOS-based technologies drastically increases the area
and delay cost. Area costs can be reduced using spintronics-based random number generators (RNGs), and
however, this will not alleviate the delay costs since stochastic bit generation is still performed separately
from the computation. In this article, we present an SC method of embedding stochastic bit generation and
processing in a computational random access memory (CRAM) array, which we refer to as SC-CRAM.
We demonstrate that SC-CRAM is a resilient and low-cost method for image processing, Bayesian inference
systems, and Bayesian belief networks.

INDEX TERMS Bayesian systems, computational random access memory (CRAM), magnetic tunnel
junction (MTJ), neuromorphic computing, stochastic computing (SC).

I. INTRODUCTION
Conventional computing schemes where data are encoded in
deterministic binary bits have several challenges in meeting
future demands in neuromorphic computing and other novel
applications [1], [2], [3]. These unconventional computing
schemes often require processing complex functions on large
amounts of data and, therefore, one of the key challenges
is the large circuit area and computation delay required for
circuits based on conventional CMOS technology [4], [5].
In addition, the devices become highly sensitive to thermal
noise as transistor size scaling trends toward nanometer-size
dimensions [6]. Alternative methods of data encoding and

alternative hardware implementations should be investigated
to overcome these shortcomings.

Stochastic computing (SC) is a probabilistic scheme that
has been studied intensively in recent years [7]. SC is
an attractive method for several unconventional computing
applications for two key reasons. One is that it is immune
to the effects of thermal noise and random bit-flips, which
allows for smaller device sizes [7], [8], [9], [10], [11].
The second is that complex functions that are common in
numerous neuromorphic computing tasks, such as hyper-
bolic tangent, exponential functions, and square root, can
be performed efficiently in SC using a small number of

VOLUME 9, NO. 1, JUNE 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

29

https://orcid.org/0000-0001-5877-6539
https://orcid.org/0000-0001-9062-309X
https://orcid.org/0000-0002-5421-1159
https://orcid.org/0000-0002-5353-2364
https://orcid.org/0000-0001-9238-4256
https://orcid.org/0000-0003-2815-6624

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

logic gates [7], [9], [12], [13], [14]. Previous studies have
demonstrated that SC-based circuits can achieve above 99%
accuracy rates in image recognition tasks at noise injection
rates (percentage of bit-flips) above 30%, whereas the same
tasks processed in conventional computing schemes showed
large error rates at noise injection rates below 10% [8].

One of the major shortcomings of SC is the hardware area
costs required for stochastic bit-stream generation (SBG).
CMOS-based random number generators (RNGs) are typ-
ically linear shift feedback registers (LSFRs) [15] or ring
oscillators [16].When these circuits are used in SC-based net-
works, the hardware for SBG can consume up to 80% of the
total circuit area and 80% of the total energy consumption [8].
Therefore, despite the low circuit area required for compu-
tation in SC, there may be little to zero reductions in the
total circuit area and total energy consumption. Furthermore,
LSFRs and ring oscillators can only generate pseudorandom
numbers rather than true-random numbers, and therefore, the
circuit complexity needs to increase to improve the qual-
ity of randomness in the stochastic bit-streams. One attrac-
tive solution to overcome these shortcomings of SC is to
replace CMOS-based RNGs with spintronics-based RNGs
[17], [18], [19], [20], [21], [22]. This is because a single
magnetic tunnel junction (MTJ) can be used as a true RNG
(TRNG) with a tunable probability [23], [24], [25], [26].
While these solutions reduce the area and energy costs for
SBG, the hardware and energy consumption for SBG still
make up a majority of the total circuit area and total energy
consumption. Furthermore, implementing spintronic-based
RNGs in SC does not reduce the overall delay costs since
SBG steps are still performed separately from computation
steps. Recent experimental studies have shown that the over-
all computation delay can be reduced in spintronics-based
TRNGs by using MTJs with superparamagnetic free lay-
ers [27], [28]. However, these devices are incompatible for
methods of generating random bits with synchronized clock
cycles.

In this study, we present an SC scheme that uses
MTJ-based hardware where SBG and computation steps
are completely embedded. Our method exploits the intrinsic
stochasticity of MTJs for SBG and utilizes the computa-
tional random access memory (CRAM) array to efficiently
implement various SC tasks. Previous studies have demon-
strated that true in-memory computing can be achieved in the
CRAM architecture, thus eliminating circuit area costs and
energy consumption for transferring data between memory
and computation circuits [29], [30], [31], [32]. However,
performing neuromorphic applications that require process-
ing large amounts of data in conventional CRAM (conv-
CRAM) will still suffer large area and energy costs as
well as noise sensitivity since the data are still encoded
in binary bits. Our solution overcomes these shortcomings
by implementing SC within the CRAM array, which we
refer to as SC-CRAM. While conv-CRAM embeds memory
and logic arrays, SC-CRAM embeds SBG and computa-
tion arrays. We demonstrate the effectiveness of SC-CRAM

FIGURE 1. (a) Circuit diagram of the CRAM array and illustration
of (b) memory and (c) logic modes in CRAM.

TABLE 1. Output preset state and bias voltage criteria for logic
operations in CRAM.

in four neuromorphic applications: local image threshold-
ing, Bayesian inference for object location, Bayesian belief
network for heart disaster prediction, and kernel density
estimation.

Previous studies have proposed methods of generat-
ing stochastic bit-streams using logic-in-memory hardware.
Knag et al. [33] proposed a method where analog input
data were converted to a series of programming pulses with
variable pulsewidths and applied to an array of memristive
memory cells. The method proposed by Gupta et al. [34]
exploited the stochastic behavior of resistive random-access
memory (ReRAM) devices to generate stochastic bit-streams
in parallel over multiple rows. Riahi Alam et al. [35] took
a slightly different approach where logic-in-memory archi-
tectures were used to convert binary data into deterministic
bit-streams. The method presented in this article has one key
advantage over previously proposed methods in that it allows
for separate perturb and logic steps so that analog inputs
can be converted directly into stochastic bit-streams. Further-
more, the method proposed in [35] requires additional control
circuitry to implement different distributions for each bit-
stream. This is not required in our design since the spintronic

30 VOLUME 9, NO. 1, JUNE 2023

Zink et al.: Stochastic Computing Scheme of Embedding Random Bit Generation and Processing

devices are inherently stochastic, thus guaranteeing that the
bit-streams will not be correlated.

The rest of this article is organized as follows. Back-
ground information on the CRAM architecture, SC basics,
and MTJ-based TRNGs is presented in Section II. Section III
provides an overview of SC-CRAM, including task schedul-
ing, implementation of basic and complex functions, and its
advantages over conv-CRAM. In Section IV, we elaborate on
the four example applications that are simulated in SPICE.
The output accuracy and performance evaluation of SC-
CRAM, conv-CRAM, and CMOS-based SC are presented in
Section V. Finally, this article is concluded in Section IV.

II. BACKGROUND
A. CRAM ARCHITECTURE
The general structure of the CRAM array is shown in
Fig. 1(a). The configuration of the CRAM cell is similar to an
STT-MRAM cell, which uses a 1-transistor 1-MTJ (1T1M)
structure, except that the CRAM cell uses a 2T1M structure.
This architecture allows for logic and memory paths, where
voltages are applied to each cell independently during the
memory read and write operations, whereas voltages are
applied tomultiple cells simultaneously during the logic oper-
ations. This enables true in-memory computing capability
in CRAM. The MTJ in each bit cell is addressed using the
memory word line (WL) and logic operations are performed
in the CRAM cell by enabling the logic bitline (LBL).

The two operation modes in CRAM are the memory and
logic modes, which are shown in Fig. 1(b) and (c), respec-
tively. During the memory mode, WL is high and LBL is
low. This enables data to be read from or written to the
MTJ through the memory bitline (MBL). During the logic
mode, WL is low and LBL is high, which allows MTJs in the
same row to be connected through the logic line (LL). Logic
operations with multiple inputs and one output are performed
by applying the appropriate voltages (VBSL) to the bit select
lines (BSL) of the input cells. The current through the output
MTJ (JOUT) is dependent on the resistance states of the input
MTs and switches the state of the output MTJ if JOUT ≥

JC . The criteria for VBSL and the initial state of the output
MTJ (output preset) for various logic operations are shown in
Table 1.

B. STOCHASTIC COMPUTING
In SC, data are encoded as probabilities in streams of ran-
dom bits. There are significant reductions in hardware area
for processing circuits since multiplication, scaled addition,
and scaled subtraction of two stochastic bit-streams can be
performed using single logic gates [7], [9], [12], [13].

Fig. 2(c) shows the overall scheduling of steps for con-
ventional SC schemes. The first step is the SBG, where
the input data (either digital or analog representation) are
converted to stochastic bit-streams. This is typically done
using comparators with the input data and the output of an
RNG with an output centered around 0.5 connected at the

FIGURE 2. Illustration of (a) multiplication using AND logic and
(b) scaled addition using MUX of stochastic bit-streams A and
B. (c) Block diagram of the conventional stochastic computing
scheme.

FIGURE 3. (a) Illustration of an MTJ-based tunable TRNG for SC;
(b) scheduling of reset, perturb, and read voltage pulses (VRES,
VP, and VR); and (c) switching probability distribution versus VP
curves at various pulsewidths (extracted from [20]).

input terminals. At each clock cycle, a random number is
generated and the comparator produces a ‘‘1’’ if the random
number is greater than the input value; otherwise, it produces
a ‘‘0.’’ The total number of clock cycles is dependent on the
desired number of bits in the bit-streams (NB). Consider a
stochastic bit-stream A generated from an input value of XA.
The numeric representation ofA is the probability of a bit in A
being ‘‘1,’’ which is directly correlated with XA. In this study,
we represent bit-streams using unipolar formatting, meaning
that they lie within a [0, 1] range.

Data computation is performed in the second step, where
various arithmetic functions, determined by the desired appli-
cation, are performed on the stochastic bit-streams. It is in this
step where we see the advantages of SC best exemplified. For
example, Fig. 2(a) shows how multiplication of bit-streams A
and B can be performed using a single AND gate and Fig. 2(b)
shows how a single MUX can perform scaled addition on A
and B. For scaled addition, a third bit-stream, S, is applied at
the selector terminal of the MUX and the output is expressed

VOLUME 9, NO. 1, JUNE 2023 31

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

FIGURE 4. Current paths for (a) reset, (b) perturb, (c) logic, and (d) read steps for multiplication of bit-streams A and B using AND logic
in SC-CRAM.

as Y ≈ S × A + (1 − S) × B. For most applications,
S is fixed at 0.5, therefore Y ≈ 0.5 × (A + B). Note that
scaled addition can also be done using a MAJ3 gate if one of
the inputs is fixed at 0.5. More advanced arithmetic functions,
such as scaled division, exponential, and hyperbolic tangent,
can also be effectively implemented in SC [9], [14], some of
which will be explained in more detail in Section III-B.

In the third and final steps, the numeric representations
of the output bit-streams are determined. This is typically
done using an NB-bit digital counter. As with the input data,
the output data can be represented in either analog or digital
format. In this article, wewill not focus on this third step since
it is the same for our proposed method and conventional SC
schemes.

C. MTJ-BASED TUNABLE TRNG
The spin-transfer torque (STT) and spin-orbit torque (SOT)
switchingmechanisms inMTJs are subject to random thermal
fluctuations, thus introducing a probabilistic element. Extrin-
sic factors that determine the switching probability (PSW)
of the MTJ are the voltage pulse amplitude (VP) and its
duration (tP), as shown in Fig. 3(c). The stochasticity inherent
to MTJs make them promising for probabilistic computing
applications such as elementary computing units in Boltz-
mann machines [36], [37], TRNGs [24], [25], [38], and most
importantly for this article, generating stochastic bit-streams
for SC [26], [17], [18]. Fig. 3(a) shows the general method
of SBG using repeated cycles of synchronized reset, perturb,
and read pulses, and Fig. 3(b) shows the scheduling of these
pulses. Each cycle begins by setting the MTJ to the P-state
with the reset pulse. The perturb pulse switches the MTJ to
the AP-state probabilistically, where PSW is determined by
VP and tP. The resistance state of the MTJ is read at the end
of each cycle using VR, where VR is set small enough so that
it does not influence the state of the MTJ.

III. OVERVIEW OF SCCRAM
In this section, we describe the key aspects of our proposed
method of implementing SC in the CRAM architecture. First,
we explain the basic task scheduling of SC-CRAM, using an

FIGURE 5. (a) Circuit diagram of a 2-to-1 MUX and (b) scheduling
operations in SC-CRAM. For simplicity, reset steps and final
read steps are not shown.

AND gate for multiplication as an example. Then, we describe
the processes for performing more complicated arithmetic
functions in SC-CRAM. Finally, we describe the preliminary
advantages of SC-CRAM over conv-CRAM and CMOS-
based SC.

A. TASK SCHEDULING IN SC-CRAM
The SC-CRAM method proposed combines the processes
for MTJ-based SBG described in Section II-C and logic
operations in CRAM described in Section II-A. The SBG
method in SC-CRAM is similar to the method shown in
Fig. 3(a) and (b), except that each cycle includes an additional
logic step between the perturb and read steps. Therefore, each
cycle in SC-CRAM consists of synchronized reset, perturb,
logic, and read pulses. It should be noted that the random
bits are generated during the perturb and reset steps and
computation is performed during the logic step, which is all
done in the same cells. This makes SC-CRAM unique in
that SBG and computation are embedded within the same
circuits and the same cycles; therefore, external circuitry is
not required for random number generation.

Consider the example shown in Fig. 4(a)–(d), where AND

logic in CRAM is used to multiply inputs A and B. Fig. 4(a)
shows the current paths during the reset step, where VRES

32 VOLUME 9, NO. 1, JUNE 2023

Zink et al.: Stochastic Computing Scheme of Embedding Random Bit Generation and Processing

FIGURE 6. (a) Circuit diagram of an XOR gate and (b) scheduling
operations in SC-CRAM. For simplicity, reset steps and final
read steps are not shown.

FIGURE 7. (a) Circuit diagram of the square root function in
SC-CRAM where Y ≈

√
X , X1 and X2 are independent

bit-streams with probabilities equal to X , and C1 and C2 are
bit-streams with fixed probabilities of 0.67 and 0.18,
respectively. (b) Scheduling operations in SC-CRAM. For
simplicity, reset steps and final read steps are not shown.

initializes the input MTJs (A and B) to the P-state and the
output MTJ (Y) to the AP-state. Note that Y is initialized to
the AP-state to meet the output preset criteria for AND logic
in CRAM (recall Table 1).

The perturb pulses, shown in Fig. 4(b), are applied along
the MBL only for input cells A and B, which cause the MTJs
to switch probabilistically, with probabilities dependent on
V (A)
P and V (B)

P . Note that the values for V (A)
P and V (B)

P can be
determined in three ways depending on the desired task: 1)
in machine learning applications, one of the input cells can
perform a synaptic function, and therefore, VP is dependent
on the synaptic weight determined using learning algorithms;
2) other tasks may require multiplication of a fixed constant,
and therefore,VP is determined to produce a probability equal
to the desired constant; and 3) the most likely scenario is that
VP is dependent on the input data. For example, in image
processing applications,V (A)

P corresponds to intensity at pixel
A. It should be noted that VP only switches the MTJ from the
P-state to the AP-state since the reset pulse switches the MTJ
back to the P-state each cycle.

The logic step, shown in Fig. 4(c), replicates the logic
operation performed in conv-CRAM (recall Section II-B).
The voltage pulses applied at the BSL at A and B (VW) follow
the same criteria as VBSL described in Table 1. During the
perturb step, A and B switch probabilistically, whereas Y
switches deterministically during the logic step.

The final state of Y is read at the end of each cycle with
VR, as shown in Fig. 4(d). As with the process shown in
Fig. 3(a), VR should be set so that it does not affect the state
of Y . Alternatively, for tasks involving multiple computation
stages, the steps at each computation stage can be overlapped
so that the read steps at each stage prior to the final stage can
perform the logic steps in the following stages. By adding a
logic step in each cycle, SBG and computation are embedded
within the same circuit.

B. ARITHMETIC FUNCTIONS IN SC-CRAM
The implementation of SC in CRAM allows for various
arithmetic functions to be performed efficiently. Previous
studies on computation with stochastic bit-streams have
demonstrated that a wide variety of functions, such as expo-
nential, linear gain function, and hyperbolic tangent, can
be performed in SC schemes with a minimal number of
logic gates [9], [14]. Theoretically, any function performed
in CMOS-based SC can also be performed in SC-CRAM.
However, in this study, we will only focus on the arithmetic
functions needed in the three applications described in Sec-
tion IV. These functions include multiplication (described in
Section III-A), scaled addition, absolute valued subtraction,
square root, and scaled division. Note that for our calcula-
tions, we assumed that each logic function was performed
using NAND logic (see Supplementary Note 1), and however,
this is not shown in Figs. 5–8.

Scaled addition can be done with either MAJ3 logic or an
MUX [recall Fig. 2(b)]. In SC-CRAM, a MAJ3 gate consists
of two input MTJs with variable probabilities (A and B),
one input MTJ with a fixed probability of 0.5 (S), and one
output MTJ (Y). Furthermore, MAJ3 logic in SC-CRAM
has the same number of computation steps as AND logic.
An MUX can also be implemented in SC-CRAM using the
equivalent circuit diagram shown in Fig. 5(a). This circuit
can be built in CRAM hardware with two input MTJs with
variable probabilities (A andB), one inputMTJwith any fixed
probability (S), three intermediateMTJs (S̄,M1, andM2), and
one output MTJ (Y). Steps for implementing MUX logic in
SC-CRAM consist of a perturb step on A, B, and S, one NOT

logic step on S̄, two overlapping AND logic steps on M1 and
M2, and one OR logic step on Y , as shown in Fig. 5(b).
The advantage of using MAJ3 logic for scaled addition

is that it requires fewer MTJs and fewer computation steps
than MUX logic. However, S is limited to a value of 0.5 in
MAJ3 logic, whereas S can be any value inMUX logic (recall
Section II-C). Furthermore, when performing scaled addition
on more than two inputs using MAJ3 logic, multiple layers
of MAJ3 gates are required, which increases the number of
MTJs and computation delay. Alternatively, MUX logic can
handle more than one input without significantly increas-
ing the number of computation steps. Therefore, for some
applications, MUX logic is the preferred method for scaled
addition.

Absolute valued subtraction of stochastic bit-streamsA and
B can be done using XOR logic. In CRAM, an XOR gate can

VOLUME 9, NO. 1, JUNE 2023 33

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

TABLE 2. Number of MTJs, computation steps, and subarray size for various arithmetic functions in SC-CRAM (the number of MTJs
and computation steps are shown relative to Conv-CRAM).

FIGURE 8. (a) Circuit diagram for a JK flip-flop to compute the function Y ≈ A/(A + B) and (b) scheduling operations in SC-CRAM.
For simplicity, reset steps and final read steps are not shown.

be implemented using the equivalent circuit diagram shown
in Fig. 6(a). It consists of two input MTJs (A and B), two
intermediate MTJs (M1 and M2), and one output MTJ (Y).
SC-CRAM steps for XOR logic consist of one perturb step on
A and B, one NAND logic step onM1, one OR logic step onM2,
and one AND logic step on Y , as shown in Fig. 6(b). It should
be noted that XOR logic produces Y ≈ |A − B| only when
bit-streams A and B have the maximum correlation. In most
cases, this is undesirable because computation on stochastic
bit-streams typically requires maximum decorrelation. How-
ever, the application described in Section IV-A is a special
case and maximum correlation can be ensured using AND

logic prior to XOR logic (process described in further detail
in Section IV-A).
The square root of stochastic bit-stream X can be calcu-

lated using AND logic followed by two layers of OR logic,
as shown in Fig. 7(a). The SC-CRAM circuit consists of
two input MTJs (X1 and X2), two input MTJs with fixed
probabilities of 0.67 and 0.18 (C1 and C2), two intermediate
MTJs (M1 and M2), and one output MTJ (Y). SC-CRAM
steps consist of one perturb step on X1, X2, C1, and C2, one
AND logic step onM1, and two consecutive OR logic steps on
M2 and Y , as shown in Fig. 7(b). Note that X1 and X2 both
have probabilities equal to X , however, they are generated
independently.

Scaled division of stochastic bit-streams A and B can be
calculated using a JK flip-flop, which can be implemented
in CRAM using the equivalent circuit diagram shown in
Fig. 8(a). If A and B are applied to the J and K terminals,
respectively, the output Y is expressed as Y ≈ A/(A + B).
The SC-CRAM circuit consists of two input MTJs (A and B),

five intermediate MTJs (Q, Q̄, J , K1, and K2), and one output
MTJ (Y). SC-CRAM steps consist of one perturb step on A
and B, one NOT step on Q, one NAND operation to determine
J , two consecutive NAND operations to determineK2, and one
final NAND operation to determine Y . In the final step, one
BUFFER operation is performed to determineQ, as shown in
Fig. 8(b). Note that Q is set to ‘‘0’’ for the first cycle.

C. ADVANTAGES OF SC-CRAM
Table 2 shows the number of MTJs (NMTJ), the number
of computation steps (NC), and the subarray size for each
arithmetic function described in Sections III-A and III-B in
SC-CRAM. The values for NMTJ and NC are shown relative
to conv-CRAM. Furthermore, calculations for each of these
performancemetrics compared computation on numbers with
8-bit resolution. For conv-CRAM, calculations were done on
8-bit digital numbers, and for SC-CRAM, calculations were
performed on bit-streams with NB = 28 = 256 bits. When
calculating performancemetrics in conv-CRAM,we assumed
that addition and multiplication were performed using an
8-bit carry ripple adder (CRA) and an 8-bit Wallace tree
multiplier (WTM), respectively. We also assumed that sub-
traction and division in conv-CRAM were performed using
full subtractor (FS) circuits and nonrestoring array dividers
(NAD), respectively. Each of these circuits comprises NAND-
based full adders (FAs), details of which are described in
Supplementary Notes 2–6. Finally, we assumed that square
root in conv-CRAM was performed using three cycles of
the Newton–Raphson (N–R) method, which was assumed
in [10]. Details of the N–R method are described in Supple-
mentary Note 7.

34 VOLUME 9, NO. 1, JUNE 2023

Zink et al.: Stochastic Computing Scheme of Embedding Random Bit Generation and Processing

TABLE 3. Performance evaluation of SC-CRAM (the number of CRAM cells, computation steps, and energy consumption are shown
relative to Conv-CRAM).

The values in Table 2 show that SC-CRAM uses signif-
icantly less MTJs for all functions than conv-CRAM. The
reduction in NMTJ in SC-CRAM is the most significant for
multiplication and square root functions but the least signif-
icant for scaled addition and scaled subtraction functions.
This is due to the large number of FAs needed for 8-bit
WTM circuits and for the N–R method, which is not needed
in SC-CRAM. However, NC is larger in SC-CRAM than in
conv-CRAM for all functions, except square root. This result
is not unique to SC-CRAM and is observed when comparing
any SC schemes to conventional deterministic schemes on
binary numbers. The increase in NC in SC-CRAM is most
noticeable for scaled addition and absolute valued subtraction
but least significant for multiplication and scaled division.
Most notably, NC is smaller for SC-CRAM than for conv-
CRAM for square root. This is likely because we assumed
that conv-CRAM repeated the N–R method three times to
approximate the square root function, which increases NC
three times.

The subarray dimensions shown in Table 2 reveal that
multiple subarray rows are required for multiplication, divi-
sion, and square root in conv-CRAM, whereas only one
subarray row is required for all functions in SC-CRAM.
A low number of subarray rows are very important in
applications where a large number of arithmetic functions
are performed in parallel since subarrays with a large
number of rows are susceptible to parasitic effects such
as a large IR drop and low noise margins. As we will
see in Section IV, the large number of subarray rows in
conv-CRAM makes it an unfeasible solution for certain
applications.

The calculations shown in Table 2 indicate several key
features of SC-CRAM. One is that SC-CRAM is ideal for
solving functions involving a large number of multiplication
and scaled division functions (such as high-order polynomials
and Maclaurin expansions of more complicated functions).
Second is that both total circuit area and computation delay
may decrease in SC-CRAM for more complex functions,
as seen in the calculations for the square root function.
While SC-CRAM is not well suited for tasks involving
rapid, high-precision calculations, the results in Table 2 sug-
gest that SC-CRAM is ideal for applications that involve
rough approximations to detect statistical anomalies in large
datasets.

IV. EVALUATION AND RESULTS
In this section, we describe the three applications that were
performed in this study: local image thresholding for charac-
ter recognition, Bayesian inference for object location, and
Bayesian belief network for heart disaster prediction. These
applications are described in greater detail in Supplementary
Notes 8–11. We evaluated the performance of SC-CRAM for
each of these applications. For each application, the execution
time, circuit area, energy usage, and noise margin are com-
pared with those of conv-CRAM. The parameters for theMTJ
devices used for our analysis are described in Supplementary
Note 12.

The performance of SC-CRAM and conv-CRAM was
evaluated in terms of circuit area, computation delay, and total
energy consumption (ETOT). For each application described
in Section IV, the circuit area was defined in terms of the
number of CRAM cells used (NCELLS) and the computation
delay was defined in terms of the number of computation
steps (NC). The total energy consumption was calculated
using (1), where RMTJ is the resistance of the MTJ, V is
the voltage amplitude, and t is the pulsewidth. ETOT was
determined by calculating the energy consumption for the
reset, perturb, and logic steps, and adding them. Note that one
difference in ETOT in SC-CRAM and ETOT in conv-CRAM is
that ETOT in conv-CRAM does not include the perturb steps.
Furthermore, unlike conv-CRAM, the logic and reset steps
are repeated 256 (8-bit resolution) times in SC-CRAM,which
was accounted for in the ETOT calculations

Energy =
V 2t
RMTJ

. (1)

Table 3 shows all of the calculations for NCELLS, NC ,
and ETOT. In addition, Table 3 shows the number of rows
and the number of columns in the CRAM subarray. These
data show that SC-CRAM uses approximately 20–180 times
fewer CRAMcells than conv-CRAM for all four applications.
Furthermore, SC-CRAM also has about 1/3–2/3 fewer com-
putation steps than conv-CRAM for each application except
the Bayesian inference system, where NC is nearly equal
between SC-CRAM and conv-CRAM. This shows that, for
three of the four applications, the SC-CRAM circuit has less
computation delay than the conv-CRAM circuit. This may
seem counterintuitive since each step needs to be repeated
256 times in SC-CRAM, and however, the smaller NC values

VOLUME 9, NO. 1, JUNE 2023 35

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

FIGURE 9. Breakdown of energy consumption in SC-CRAM and
conv-CRAM for (a) and (b) local image thresholding, (c) and
(d) object location via Bayesian inference, (e) and (f) heart
disaster prediction via a Bayesian belief network, and (g) and
(h) kernel density estimation.

in SC-CRAM can be attributed to two features of SC-CRAM.
The first is the small number of cells required to perform both
simple and complex arithmetic functions and the second is the
ability to overlap the logic steps in some CRAMcells with the
perturb and/or reset steps in other CRAM cells.

These data also show that the total energy consumption is
approximately equal between SC-CRAM and conv-CRAM
for the Bayesian inference system and the Bayesian belief
network. However, ETOT is larger for SC-CRAM for local
image thresholding and kernel density approximation by
12.9× and 5.4×, respectively. It should be noted that conv-
CRAMhas nearly 40× less energy consumption than modern
near-memory processing systems [31]; therefore, SC-CRAM
is still a competitive solution since ETOT in SC-CRAM is on
the same order of magnitude as ETOT in conv-CRAM.
The subarrays for SC-CRAM have significantly less rows

than conv-CRAM, which leads to significantly less IR
drop [39], leading to an increase in noise margin. The noise
margin represents the size of the range of voltages where a
given logic operation can be performed. For example, a noise
margin of 10% means that there is a 10% difference between
the minimum and maximum voltage that can be applied
during the logic operation while maintaining an acceptable

output accuracy. Any noise margin below zero means that
there are no voltage values that exist that can reliably produce
an accurate output (see Supplementary Note 13 for a more
detailed description of noise margin). Table 3 shows that
the noise margin is too low for local image thresholding
and kernel density estimation to be feasible in conv-CRAM
due to the large number of subarray rows. This shows that,
despite the reduction in ETOT in conv-CRAM, SC-CRAM
is the preferred approach for local image thresholding and
kernel density estimation because the larger noise margin in
SC-CRAM makes it more reliable. The noise margin for the
Bayesian inference system and the Bayesian belief network
is large enough to be feasible in both SC-CRAM and conv-
CRAM. However, the noise margin in SC-CRAM is still
noticeably larger, and therefore, it is still the preferredmethod
for these two applications.

The pie charts in Fig. 9 show the portion of ETOT being
consumed by the logic, reset, and perturb steps for SC-CRAM
and conv-CRAM. Note that conv-CRAM does not use a
perturb step, and therefore, only the logic and reset steps are
considered. For conv-CRAM, the distribution of energy con-
sumption between the reset and logic steps is nearly the same
for all four applications, where approximately 25%–30% of
ETOT is consumed during the reset steps and 70%–75% of
ETOT is consumed during the logic steps. For SC-CRAM,
the reset steps account for around 25%–30% of ETOT. Most
importantly, these charts show that adding the perturb step in
SC-CRAM only accounts for a minority of the total energy
consumption. It should be noted that the Bayesian inference
system consumes the most portion of ETOT for the perturb
step, and however, it still only consumes 9.5% of ETOT.
Conversely, generating stochastic bit-streams with conven-
tional CMOS-based methods could increase the total energy
consumption by nearly 80% [8]. These results indicate that
SC-CRAM may outperform CMOS-based SC methods in
terms of ETOT.

V. CONCLUSION
In this study, we introduced a method in which CRAM can be
used to generate and compute stochastic bit-streams called
SC-CRAM. In SC-CRAM, the SBG and computation steps
are embedded within the same circuit block, meaning zero
cost in the total circuit area and computation delay to generate
stochastic bit-streams.We compared the performancemetrics
between SC-CRAM and conv-CRAM for local image thresh-
olding, object location, heart disaster prediction, and kernel
density estimation. We determined that SC-CRAM is very
efficient at computing complicated functions, which reduces
the total number of CRAM cells required to perform these
four applications without sacrificing the total computation
delay. Furthermore, the energy consumption was on the same
order of magnitude for SC-CRAM and conv-CRAM except
for local image thresholding. Finally, SC-CRAM had a sig-
nificantly larger noise margin for local image thresholding
and kernel density estimation, making it a muchmore feasible
solution for these applications.

36 VOLUME 9, NO. 1, JUNE 2023

Zink et al.: Stochastic Computing Scheme of Embedding Random Bit Generation and Processing

REFERENCES
[1] J. Grollier, D. Querlioz, and M. D. Stiles, ‘‘Spintronic nanodevices for

bioinspired computing,’’ Proc. IEEE, vol. 104, no. 10, pp. 2024–2039,
Oct. 2016, doi: 10.1109/JPROC.2016.2597152.

[2] C. D. Schuman et al., ‘‘A survey of neuromorphic computing and neural
networks in hardware,’’ 2017, arXiv:1705.06963.

[3] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and
B. Kay, ‘‘Opportunities for neuromorphic computing algorithms and appli-
cations,’’ Nature Comput. Sci., vol. 2, no. 1, pp. 10–19, Jan. 2022, doi:
10.1038/s43588-021-00184-y.

[4] G. Indiveri and S.-C. Liu, ‘‘Memory and information processing in neuro-
morphic systems,’’ Proc. IEEE, vol. 103, no. 8, pp. 1379–1397, Aug. 2015,
doi: 10.1109/JPROC.2015.2444094.

[5] D. Querlioz, O. Bichler, A. F. Vincent, and C. Gamrat, ‘‘Bioin-
spired programming of memory devices for implementing an inference
engine,’’ Proc. IEEE, vol. 103, no. 8, pp. 1398–1416, Aug. 2015, doi:
10.1109/JPROC.2015.2437616.

[6] K. Seshan, ‘‘Limits and hurdles to continued CMOS scaling,’’ inHandbook
of Thin Film Deposition, 4th ed. Norwich, NY, USA: William Andrew,
2018, pp. 19–41, doi: 10.1016/B978-0-12-812311-9.00002-5.

[7] A. Alaghi, W. Qian, and J. P. Hayes, ‘‘The promise and chal-
lenge of stochastic computing,’’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 37, no. 8, pp. 1515–1531, Aug. 2018, doi:
10.1109/TCAD.2017.2778107.

[8] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, ‘‘An archi-
tecture for fault-tolerant computation with stochastic logic,’’ IEEE Trans.
Comput., vol. 60, no. 1, pp. 93–105, Jan. 2011, doi: 10.1109/TC.2010.202.

[9] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, ‘‘Computation
on stochastic bit streams digital image processing case studies,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 3, pp. 449–462,
Mar. 2014, doi: 10.1109/TVLSI.2013.2247429.

[10] M. H. Najafi and M. E. Salehi, ‘‘A fast fault-tolerant architecture for
Sauvola local image thresholding algorithm using stochastic comput-
ing,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 2,
pp. 808–812, Feb. 2016, doi: 10.1109/TVLSI.2015.2415932.

[11] P. Li and D. J. Lilja, ‘‘A low power fault-tolerant architecture for the kernel
density estimation based image segmentation algorithm,’’ in Proc. IEEE
Int. Conf. Appl.-Specific Syst. Archit. Process, Sep. 2011, pp. 161–168, doi:
10.1109/ASAP.2011.6043264.

[12] J. M. de Aguiar and S. P. Khatri, ‘‘Exploring the viability of stochastic
computing,’’ in Proc. 33rd IEEE Int. Conf. Comput. Design (ICCD),
Oct. 2015, pp. 391–394, doi: 10.1109/ICCD.2015.7357131.

[13] P. Li, W. Qian, D. J. Lilja, K. Bazargan, and M. D. Riedel, ‘‘Case studies of
logical computation on stochastic bit streams,’’ in Integrated Circuit and
System Design, Power and Timing Modeling, Optimization and Simula-
tion (Lecture Notes in Computer Science), vol. 7606. Berlin, Germany:
Springer, 2013, pp. 235–244, doi: 10.1007/978-3-642-36157-9_24.

[14] Y. Liu and K. K. Parhi, ‘‘Computing hyperbolic tangent and sigmoid func-
tions using stochastic logic,’’ in Proc. 50th Asilomar Conf. Signals, Syst.
Comput., Nov. 2016, pp. 1580–1585, doi: 10.1109/ACSSC.2016.7869645.

[15] H. Hsiao, J. Anderson, and Y. Hara-Azumi, ‘‘Generating stochastic bit-
streams,’’ in Stochastic Computing: Techniques and Applications. Berlin,
Germany: Springer, 2019, pp. 137–152, doi: 10.1007/978-3-030-03730-
7_7.

[16] A. Alaghi and J. P. Hayes, ‘‘Survey of stochastic computing,’’ ACM
Trans. Embedded Comput. Syst., vol. 12, no. 2s, pp. 1–19, May 2013, doi:
10.1145/2465787.2465794.

[17] L. A. D. B. Naviner, H. Cai, Y.Wang,W. Zhao, andA. BenDhia, ‘‘Stochas-
tic computation with spin torque transfer magnetic tunnel junction,’’ in
Proc. IEEE 13th Int. New Circuits Syst. Conf. (NEWCAS), Jun. 2015,
pp. 1–4, doi: 10.1109/NEWCAS.2015.7182031.

[18] N. Onizawa, D. Katagiri, W. J. Gross, and T. Hanyu, ‘‘Analog-to-stochastic
converter using magnetic tunnel junction devices for vision chips,’’
IEEE Trans. Nanotechnol., vol. 15, no. 5, pp. 705–714, Sep. 2016, doi:
10.1109/TNANO.2015.2511151.

[19] X. Jia, J. Yang, Z. Wang, Y. Chen, H. H. Li, and W. Zhao, ‘‘Spintronics
based stochastic computing for efficient Bayesian inference system,’’ in
Proc. IEEE 23rd Asia South Pacific Design Automat. Conf. (ASP-DAC),
Jan. 2018, pp. 580–585, doi: 10.1109/ASPDAC.2018.8297385.

[20] Y. Lv and J.-P. Wang, ‘‘A single magnetic-tunnel-junction stochas-
tic computing unit,’’ in IEDM Tech. Dig., Dec. 2017, p. 36, doi:
10.1109/IEDM.2017.8268504.

[21] Y. Shao et al., ‘‘Implementation of artificial neural networks
using magnetoresistive random-access memory-based stochastic
computing units,’’ IEEE Magn. Lett., vol. 12, pp. 1–5, 2021, doi:
10.1109/LMAG.2021.3071084.

[22] E. Becle, G. Prenat, P. Talatchian, L. Anghel, and I.-L. Prejbeanu,
‘‘A fast, energy efficient and tunable magnetic tunnel junction based
bitstream generator for stochastic computing,’’ IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 69, no. 8, pp. 3251–3259, Aug. 2022, doi:
10.1109/TCSI.2022.3173030.

[23] W. Ho Choi et al., ‘‘A magnetic tunnel junction based true ran-
dom number generator with conditional perturb and real-time out-
put probability tracking,’’ in IEDM Tech. Dig., Dec. 2014, p. 12, doi:
10.1109/IEDM.2014.7047039.

[24] S. Oosawa, T. Konishi, N. Onizawa, and T. Hanyu, ‘‘Design of an
STT-MTJ based true random number generator using digitally con-
trolled probability-locked loop,’’ in Proc. IEEE 13th Int. New Circuits
Syst. Conf. (NEWCAS), Jun. 2015, pp. 3–6, doi: 10.1109/NEWCAS.
2015.7182089.

[25] W. H. Choi, Y. Lv, H. Kim, J.-P. Wang, and C. H. Kim, ‘‘An 8-bit
analog-to-digital converter based on the voltage-dependent switching prob-
ability of a magnetic tunnel junction,’’ in Proc. Symp. VLSI Technol.
(VLSI Technology), Jun. 2015, pp. 162–163, doi: 10.1109/VLSIT.2015.
7223662.

[26] C. Safranski, J. Kaiser, P. Trouilloud, P. Hashemi, G. Hu, and J. Z. Sun,
‘‘Demonstration of nanosecond operation in stochastic magnetic tunnel
junctions,’’ Nano Lett., vol. 21, no. 5, pp. 2040–2045, Feb. 2021, doi:
10.1021/acs.nanolett.0c04652.

[27] K. Hayakawa et al., ‘‘Nanosecond random telegraph noise in in-plane
magnetic tunnel junctions,’’ Phys. Rev. Lett., vol. 126, no. 11, Mar. 2021,
doi: 10.1103/PhysRevLett.126.117202.

[28] M. W. Daniels, A. Madhavan, P. Talatchian, A. Mizrahi, and M. D. Stiles,
‘‘Energy-efficient stochastic computing with superparamagnetic tunnel
junctions,’’ Phys. Rev. Appl., vol. 13, no. 3, Mar. 2020, Art. no. 034016,
doi: 10.1103/PhysRevApplied.13.034016.

[29] Z. Chowdhury et al., ‘‘Efficient in-memory processing using spintronics,’’
IEEE Comput. Archit. Lett., vol. 17, no. 1, pp. 42–46, Jan./Jun. 2018, doi:
10.1109/LCA.2017.2751042.

[30] M. Zabihi et al., ‘‘Using spin-Hall MTJs to build an energy-
efficient in-memory computation platform,’’ in Proc. 20th Int. Symp.
Quality Electron. Design (ISQED), Mar. 2019, pp. 52–57, doi:
10.1109/ISQED.2019.8697377.

[31] M. Zabihi, Z. I. Chowdhury, Z. Zhao, U. R. Karpuzcu, J.-P. Wang, and
S. S. Sapatnekar, ‘‘In-memory processing on the spintronic CRAM: From
hardware design to application mapping,’’ IEEE Trans. Comput., vol. 68,
no. 8, pp. 1159–1173, Aug. 2019, doi: 10.1109/TC.2018.2858251.

[32] H. Cilasun et al., ‘‘Spiking neural networks in spintronic computational
RAM,’’ ACM Trans. Archit. Code Optim., vol. 18, no. 4, pp. 1–21,
Sep. 2021, doi: 10.1145/3475963.

[33] P. Knag, W. Lu, and Z. Zhang, ‘‘A native stochastic comput-
ing architecture enabled by memristors,’’ IEEE Trans. Nanotechnol.,
vol. 13, no. 2, pp. 283–293, Mar. 2014, doi: 10.1109/TNANO.2014.
2300342.

[34] S. Gupta et al., ‘‘SCRIMP: A general stochastic computing architec-
ture using ReRAM in-memory processing,’’ in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), Mar. 2020, pp. 1598–1601, doi:
10.23919/DATE48585.2020.9116338.

[35] M. R. Alam, M. H. Najafi, and N. TaheriNejad, ‘‘Exact in-memory
multiplication based on deterministic stochastic computing,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5, doi:
10.1109/ISCAS45731.2020.9180743.

[36] K. Y. Camsari, B. M. Sutton, and S. Datta, ‘‘P-bits for probabilistic spin
logic,’’ Appl. Phys. Rev., vol. 6, no. 1, Mar. 2019, Art. no. 011305, doi:
10.1063/1.5055860.

[37] O. Hassan, R. Faria, K. Y. Camsari, J. Z. Sun, and S. Datta, ‘‘Low-barrier
magnet design for efficient hardware binary stochastic neurons,’’ IEEE
Magn. Lett., vol. 10, pp. 1–5, 2019, doi: 10.1109/LMAG.2019.2910787.

[38] B. Parks, M. Bapna, J. Igbokwe, H. Almasi, W. Wang, and S. A. Majetich,
‘‘Superparamagnetic perpendicular magnetic tunnel junctions for true
random number generators,’’ AIP Adv., vol. 8, no. 5, May 2018,
Art. no. 055903, doi: 10.1063/1.5006422.

[39] M. Zabihi et al., ‘‘Analyzing the effects of interconnect parasitics in the
STT CRAM in-memory computational platform,’’ IEEE J. Explor. Solid-
State Comput. Devices Circuits, vol. 6, no. 1, pp. 71–79, Jun. 2020, doi:
10.1109/JXCDC.2020.2985314.

VOLUME 9, NO. 1, JUNE 2023 37

http://dx.doi.org/10.1109/JPROC.2016.2597152
http://dx.doi.org/10.1038/s43588-021-00184-y
http://dx.doi.org/10.1109/JPROC.2015.2444094
http://dx.doi.org/10.1109/JPROC.2015.2437616
http://dx.doi.org/10.1016/B978-0-12-812311-9.00002-5
http://dx.doi.org/10.1109/TCAD.2017.2778107
http://dx.doi.org/10.1109/TC.2010.202
http://dx.doi.org/10.1109/TVLSI.2013.2247429
http://dx.doi.org/10.1109/TVLSI.2015.2415932
http://dx.doi.org/10.1109/ASAP.2011.6043264
http://dx.doi.org/10.1109/ICCD.2015.7357131
http://dx.doi.org/10.1007/978-3-642-36157-9_24
http://dx.doi.org/10.1109/ACSSC.2016.7869645
http://dx.doi.org/10.1007/978-3-030-03730-7_7
http://dx.doi.org/10.1007/978-3-030-03730-7_7
http://dx.doi.org/10.1145/2465787.2465794
http://dx.doi.org/10.1109/NEWCAS.2015.7182031
http://dx.doi.org/10.1109/TNANO.2015.2511151
http://dx.doi.org/10.1109/ASPDAC.2018.8297385
http://dx.doi.org/10.1109/IEDM.2017.8268504
http://dx.doi.org/10.1109/LMAG.2021.3071084
http://dx.doi.org/10.1109/TCSI.2022.3173030
http://dx.doi.org/10.1109/IEDM.2014.7047039
http://dx.doi.org/10.1109/NEWCAS.2015.7182089
http://dx.doi.org/10.1109/NEWCAS.2015.7182089
http://dx.doi.org/10.1109/VLSIT.2015.7223662
http://dx.doi.org/10.1109/VLSIT.2015.7223662
http://dx.doi.org/10.1021/acs.nanolett.0c04652
http://dx.doi.org/10.1103/PhysRevLett.126.117202
http://dx.doi.org/10.1103/PhysRevApplied.13.034016
http://dx.doi.org/10.1109/LCA.2017.2751042
http://dx.doi.org/10.1109/ISQED.2019.8697377
http://dx.doi.org/10.1109/TC.2018.2858251
http://dx.doi.org/10.1145/3475963
http://dx.doi.org/10.1109/TNANO.2014.2300342
http://dx.doi.org/10.1109/TNANO.2014.2300342
http://dx.doi.org/10.23919/DATE48585.2020.9116338
http://dx.doi.org/10.1109/ISCAS45731.2020.9180743
http://dx.doi.org/10.1063/1.5055860
http://dx.doi.org/10.1109/LMAG.2019.2910787
http://dx.doi.org/10.1063/1.5006422
http://dx.doi.org/10.1109/JXCDC.2020.2985314

