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Abstract

As current CMOS-based technology is approaching its anticipated limits, research is

shifting to novel forms of nanoscale technologies including molecular-scale self-assembled

systems. Unlike conventional CMOS that can be patterned in complex ways with lithog-

raphy, self-assembled nanoscale systems generally consist of regular structures. Logical

functions are achieved with crossbar-type switches. Our model, a network of four-

terminal switches, corresponds to this type of switch in a variety of emerging tech-

nologies, including nanowire crossbar arrays and magnetic switch-based structures. We

discuss this in the first part of the dissertation.

We consider networks of four-terminal switches arranged in rectangular lattices. In

the second part of the dissertation, we develop a synthesis method to implement Boolean

functions with lattices of four-terminal switches. Each switch of the lattice is controlled

by a Boolean literal. If the literal takes the value 1, the corresponding switch is connected

to its four neighbours; else it is not connected. A Boolean function is implemented in

terms of connectivity across the lattice: it evaluates to 1 iff there exists a connected

path between two opposing edges of the lattice. We address the synthesis problem of

how best to assign literals to switches in a lattice in order to implement a given target

Boolean function, with the goal of minimizing the lattice size, measured in terms of the

number of switches. We present an efficient algorithm for this task. The algorithm has

polynomial time complexity. It produces lattices with a size that grows linearly with the

number of products of the target Boolean function. We evaluate our synthesis method

on standard benchmark circuits and compare the results to a lower-bound calculation

on the lattice size.

In the third part of the dissertation, we address the problem of implementing Boolean

functions with lattices of four-terminal switches in the presence of defects. We assume
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that such defects occur probabilistically. Our approach is predicated on the mathemat-

ical phenomenon of percolation. With random connectivity, percolation gives rise to a

sharp non-linearity in the probability of global connectivity as a function of the proba-

bility of local connectivity. We exploit this phenomenon to compute Boolean functions

robustly. We show that the margins, defined in terms of the steepness of the non-

linearity, translate into the degree of defect tolerance. Achieving good margins entails a

mapping problem. Given a target Boolean function, the problem is how to assign literals

to regions of the lattice such that there are no diagonal paths of 1’s in any assignment

that evaluates to 0. Assignments with such paths result in poor error margins due to

stray, random connections that can form across the diagonal. A necessary and suffi-

cient condition is formulated for a mapping strategy that preserves good margins: the

top-to-bottom and left-to-right connectivity functions across the lattice must be dual

functions. Based on lattice duality, we propose an efficient algorithm to perform the

mapping. The algorithm optimizes the lattice area while meeting prescribed worst-case

margins. We demonstrate its effectiveness on benchmark circuits.

A significant tangent for this work is its mathematical contribution: lattice-based

implementations present a novel view of the properties of Boolean function duality.

In the final part of the dissertation, we study the applicability of these properties to

the famous problem of testing whether a monotone Boolean function in irredundant

disjunctive normal form (IDNF) is self-dual. This is one of the few problems in circuit

complexity whose precise tractability status is unknown. We show that monotone self-

dual Boolean functions in IDNF do not have more variables than disjuncts. We examine

monotone self-dual Boolean functions in IDNF with the same number of variables and

disjuncts. We propose an algorithm to test whether a monotone Boolean function in

IDNF with n variables and n disjuncts is self-dual. The runtime of the algorithm is

O(n4).
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Chapter 1

Introduction

In his seminal Master’s Thesis, Claude Shannon demonstrated that any Boolean

function can be implemented by a switching relay circuit [1]. Shannon’s thesis became

the foundation of modern digital logic design and led to the design and fabrication

of digital circuits with millions of transistors. He considered two-terminal switches

corresponding to electromagnetic relays. An example of a two-terminal switch is shown

in the top part of Figure 1.1. The switch is either ON (closed) or OFF (open). A Boolean

function can be implemented in terms of connectivity across a network of switches, often

arranged in a series/parallel configuration. An example is shown in the bottom part of

Figure 1.1. Each switch is controlled by a Boolean literal. If the literal is 1 then the

corresponding switch is ON; if the literal is 0 then the corresponding switch is OFF.

The Boolean function for the network evaluates to 1 if there is a closed path between

the left and right nodes. It can be computed by taking the sum (OR) of the product

(AND) of literals along each path. These products are x1x2x3, x5x1x2x6, x5x4x2x3,

and x5x4x6.

In this dissertation, we demonstrate that any Boolean function can be implemented

by a network of four-terminal switches. An example of a four-terminal switch is shown

in the top part of Figure 1.2. The four terminals of the switch are all either mutually

1
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x4
x5

x6

x2 x3

x1 x6x2

x1 x3x2

Figure 1.1: Two-terminal switching network implementing the Boolean function
x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6.

connected (ON) or disconnected (OFF). We consider networks of four-terminal switches

arranged in rectangular lattices. An example is shown in the bottom part of Figure 1.2.

Again, each switch is controlled by a Boolean literal. If the literal takes the value 1

then corresponding switch is ON; if the literal takes the value 0 then corresponding

switch is OFF. The Boolean function for the lattice evaluates to 1 iff there is a closed

path between the top and bottom edges of the lattice. Again, the function is computed

by taking the sum of the products of the literals along each path. These products are

x1x2x3, x1x2x5x6, x4x5x2x3, and x4x5x6 – the same as those in Figure 1.1. We conclude

that this lattice of four-terminal switches implements the same Boolean function as

the network of two-terminal switches in Figure 1.1; they both implement x1x2x3 +

x1x2x5x6 + x2x3x4x5 + x4x5x6.

Throughout this dissertation, we use a “checkerboard” representation for lattices

where black and white sites represent ON and OFF switches, respectively, as illustrated

in Figure 1.3. We discuss the Boolean functions implemented in terms of connectivity

between the top and bottom edges as well as connectivity between the left and right

edges. (We refer to these edges as “plates”.)

We frame our discussion at the technology-independent level. Although conceptually

general, our model is applicable for a variety of nanoscale technologies, such as nanowire
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x4

x5

x6

x1

x2

x3

Figure 1.2: Four-terminal switching network implementing the Boolean function
x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6.

Figure 1.3: A 3×3 four-terminal switch network and its lattice form.

crossbar arrays [2, 3] and magnetic switch-based structures [4, 5]. In Chapter 2, we

discuss potential technologies that fit our model of lattices of four-terminal switches.

1.1 Synthesis Problem

We address the following synthesis problem: how should we assign literals to switches

in a lattice in order to implement a given target Boolean function? Suppose that we are

asked to implement the function f(x1, x2, x3, x4) = x1x2x3 + x1x4. We might consider
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the lattice in Figure 1.4(a). The product of the literals in the first column is x1x2x3; the

product of the literals in the second column is x1x4. We might also consider the lattice

in Figure 1.4(b). The products for its columns are the same as those for (a). In fact, the

two lattices implement two different functions, only one of which is the intended target

function. To see why this is so, note that we must consider all possible paths, including

those shown by the red and blue lines. In (a) the product x1x2 corresponding to the path

shown by the red line covers the product x1x2x3 so the function is fa = x1x2 +x1x4. In

(b) the products x1x2x4 and x1x2x3x4 corresponding to the paths shown by the red and

blue lines are redundant, covered by column paths, so the function is fb = x1x2x3+x1x4.

Figure 1.4: Two 3×2 lattices implementing different Boolean functions.

In this example, the target function is implemented by a 3 × 2 lattice with four

paths. If we were given a target function with more products, a larger lattice would

likely be needed to implement it; accordingly, we would need to enumerate more paths.

Here the problem is that number of paths grows exponentially with the lattice size. Any

synthesis method that enumerates paths quickly becomes intractable. In Chapter 3, we

present an efficient algorithm for this task – one that does not exhaustively enumerate

paths but rather exploits the concept of Boolean function duality [6, 7]. Our synthesis

algorithm produces lattices with a size that grows linearly with the number of products

of the target Boolean function. It runs in time that grows polynomially.
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1.2 Robust Computation

We address the problem of implementing Boolean functions with lattices of four-

terminal switches in the presence of defects. We assume that defects cause switches to

fail in one of two ways: they are ON when they are supposed to be OFF (OFF-to-ON

defect), i.e., the controlling literal is 0; or they are OFF when they are supposed to be

ON (ON-to-OFF defect), i.e., the controlling literal is 1. We allow for different defect

rates in both directions, ON-to-OFF and OFF-to-ON. For example, if a switch has a

larger ON-to-OFF defect rate than its OFF-to-ON defect rate then the switch works

more accurately when its controlling input is 1 (the switch is ON). Crucially, we assume

that all switches of the lattice fail with independent probability.

Defective switches can ruin the Boolean computation performed by a network. Con-

sider the networks shown in Figure 1.5. The network in Figure 1.5(a) consists of a single

switch. The networks in Figure 1.5(b) and Figure 1.5(c) consist of a pair of switches in

series and in parallel, respectively. All switches are controlled by the literal x1. Obvi-

ously, in each of these networks, the top and bottom plates are connected when x1 = 1

and disconnected when x1 = 0. Therefore they implement the function f = x1.

Note that the three networks are not identical in their defect-tolerance capability.

Suppose that exactly one switch in each network is defective when x1 = 1 and exactly one

is defective when x1 = 0. When x1 = 1, the networks in Figure 1.5(a) and Figure 1.5(b)

compute the wrong value of f = 0; however, the network in Figure 1.5(c) computes

the correct value f = 1. Similarly, when x1 = 0, the networks in Figure 1.5(a) and

Figure 1.5(c) compute the wrong value of f = 1. However, the network in Figure 1.5(b)

computes the correct value of f = 0. So the series and parallel networks in Figures 1.5(b)

and 1.5(c) each tolerate up to one defective switch, but they tolerate different defect

types. None of these networks tolerates defects for both cases x1 = 1 and x1 = 0.

Now consider the network in Figure 1.6. Compared to the networks in Figure 1.5,

it has more switches. We expect that it will be superior in terms of its defect tolerance,



6

Figure 1.5: Switching networks

for both the cases x1 = 1 and x1 = 0. But what is the relationship between the amount

of redundancy and the defect tolerance that is achieved? As shown in Figure 1.7, the

relationship is non-linear. The explanation hinges on percolation.

x1x1x1

x1x1x1

x1x1x1

x 1=

x1=

Figure 1.6: Switching network with defects.

We exploit the percolation phenomenon to compute Boolean functions robustly. We

show that the margins, defined in terms of the steepness of the non-linearity, translate

into the degree of defect tolerance. Achieving good margins entails a mapping problem.

Given a target Boolean function, the problem is how to assign literals to regions of the

lattice such that there are no diagonal paths of 1’s in any assignment that evaluates
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Figure 1.7: Non-linearity through percolation in random media.

to 0. Assignments with such paths result in poor error margins due to stray, random

connections that can form across the diagonal. A necessary and sufficient condition

is formulated for a mapping strategy that preserves good margins: the top-to-bottom

and left-to-right connectivity functions across the lattice must be dual functions. In

Chapter 4, we propose an efficient algorithm, based on lattice duality, to perform the

mapping. The algorithm optimizes the lattice area while meeting prescribed worst-case

margins.

1.3 Boolean Duality

We exploit the concept of Boolean function duality in our synthesis methodology.

Our method, presented in Chapter 3, implements Boolean functions with lattices of four-

terminal switches such that top-to-bottom and left-to-right Boolean functions across

the lattice are dual pairs. Our mapping strategy for robust computation, presented in

Chapter 4, is also constructed on lattice duality. These lattice-based implementation

techniques present a novel view of the properties of Boolean function duality. We
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study the applicability of these properties to the famous problem of testing whether a

monotone Boolean function in irredundant disjunctive normal form (IDNF) is self-dual.

This is one of the few problems in circuit complexity whose precise tractability status

is unknown. This famous problem is called the monotone self-duality problem [8].

Consider a monotone Boolean function f in IDNF. Suppose that f has k variables

and n disjuncts:

f(x1, x2, . . . , xk) = D1 ∨D2 ∨ · · · ∨Dn

where each disjunct Di is a prime implicant of f , i = 1, . . . n. The relationship between

k and n is a key aspect of the monotone self-duality problem. Prior work has shown

that if f is self-dual then k ≤ n2 [6, 9]. We improve on this result. In Chapter 5, we

show that if f is self-dual then k ≤ n. We consider the monotone self-duality problem

for Boolean functions with the same number of variables and disjuncts (i.e., n = k). For

such functions, we propose an algorithm that runs in O(n4) time.

1.4 Outline

In Chapter 2, we discuss potential technologies that fit our model of lattices of

four-terminal switches.

In Chapter 3, we present our general synthesis method that implements any target

function with a lattice of four-terminal switches. We also discuss the implementation of

a specific function, the parity function. We evaluate our synthesis method on standard

benchmark circuits and compare the results to the derived lower-bound on the lattice

size.

In Chapter 4, we present our defect tolerance method based on percolation. We

discuss the mathematics of percolation and how this phenomenon can be exploited for

tolerating defects in our method. We evaluate our method on benchmark circuits.

In Chapter 5, we study the applicability of the properties of lattice duality to the

famous problem of testing whether a monotone Boolean function in IDNF is self-dual.
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We show that monotone self-dual Boolean functions in IDNF do not have more variables

than disjuncts. We propose a polynomial-time algorithm to test whether a monotone

Boolean function in IDNF with the same number of variables and disjuncts is self-dual.



Chapter 2

Applicable Technologies

In this chapter, we discuss potential technologies that fit our model of lattices of

four-terminal switches. The concept of regular two-dimensional arrays of four-terminal

switches is not new; it dates back to a seminal paper by Akers in 1972 [10]. With the

advent of a variety of types of emerging nanoscale technologies, the model has found

renewed interest [11, 12]. Unlike conventional CMOS that can be patterned in complex

ways with lithography, self-assembled nanoscale systems generally consist of regular

structures [13, 14]. Logical functions are achieved with crossbar-type switches [15, 5].

Although conceptually general, our model corresponds to exactly this type of switch in

a variety of emerging technologies.

A schematic for the realization of our circuit model is shown in Figure 2.1. Each

site of the lattice is a four-terminal switch, controlled by an input voltage. When a high

(logic 1) or low (logic 0) voltage is applied, the switch is ON or OFF, respectively. The

output of the circuit depends upon the top-to-bottom connectivity across the lattice.

If the top and bottom plates are connected, then the lattice allows signals to flow;

accordingly, the output is logic 1. Otherwise the output is logic 0. One can sense the

output with a resistor connected to the bottom plate while a high voltage applied to

the top plate. Below, we discuss two potential technologies that fit this circuit model.

10
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Figure 2.1: 3D realization of our circuit model with the inputs and the output.

2.1 Nanowire Crossbar Arrays

In their seminal work, Yi Cui and Charles Lieber investigated crossbar structures for

different types of nanowires including n-type and p-type nanowires [16]. They achieved

the different types of junctions by crossing different types of nanowires.

By crossing an n-type nanowire and a p-type nanowire, they achieved a diode-like

junction. By crossing two n-types or two p-types, they achieved a resistor-like junction

(with a very low resistance value). They showed that the connectivity of nanowires

can be controlled by an insulated input voltage V -in. A high V -in makes the p-type

nanowires conductive and the n-type nanowires resistive; a low V -in makes the p-type

nanowires resistive and the n-type nanowires conductive. So they showed that, based

on a controlling voltage, nanowires can behave either like short circuits or like open

circuits.

Cui and Lieber implemented a four-terminal device with crossed n- and p-type

nanowires, illustrated in Figure 2.2. The device works as follows. When a high V -in is

applied, a p-type nanowire (green) behaves like a short circuit, so the N and S terminals

are connected, and an n-type nanowire (red) behaves like an open circuit, so the W and

E terminals are disconnected. When a low V -in is applied, a p-type nanowire behaves

like an open circuit, so the N and S terminals are disconnected, and an n-type nanowire

behaves like a short circuit, so the W and E terminals are connected.
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Figure 2.2: Nanowire four-terminal device with crossed n- and p-type nanowires.

A four-terminal switch can be implemented with the techniques of Cui and Lieber,

as illustrated in Figure 2.3. The switch has crossed p-type nanowires. When a high V -in

is applied, the nanowires behave like short circuits. A resistor-like junction is formed,

with low resistance. Thus, all four terminals are connected; the switch is ON. When

a low V -in is applied, the nanowires behave like open circuits: all four terminals are

disconnected; the switch is OFF. The result is a four-terminal switch that corresponds

to our model. It is also apparent that a four-terminal switch with negative logic can be

achieved by using crossed n-type nanowires. In this case, when a high V -in is applied

the switch is OFF, and when a low V -in is applied the switch is ON.

Figure 2.3: Nanowire four-terminal device (switch) with crossed p-type nanowires.
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Nanowire switches, of course, are assembled in large arrays. Indeed, the impetus

for nanowire-based technology is the potential density, scalability and manufacturabil-

ity [17, 3, 2]. Consider a p-type nanowire array, where each crosspoint is controlled by

an input voltage. From the discussion above, we know that each such crosspoint behaves

like a four-terminal switch. Accordingly, the nanowire crossbar array can be modeled

as a lattice of four-terminal switches as illustrated in Figure 2.4. Here the black and

white sites represent crosspoints that are ON and OFF, respectively.

Figure 2.4: Nanowire crossbar array with random connections and its lattice represen-
tation.

Nanowire crossbar arrays may offer substantial advantages over conventional CMOS

when used to implement programmable architectures. Conventional implementations

typically employ SRAMs for programming crosspoints. However, for nanoscale technolo-

gies, relative to the size of the switches, SRAMs would be prohibitively costly. A variety

of techniques have been suggested for fabricating programmable nanowire crosspoints

based on bistable switches that form memory cores [2, 18]. Also, molecular switches and

solid-electrolyte nanoswitches could be used to form programmable crosspoints [19].

2.2 Arrays of Spin Wave Switches

Other novel and emerging technologies fit our model of four-terminal switches. For

instance, researchers are investigating spin waves [20]. Unlike conventional circuitry such

as CMOS that transmits signals electrically, spin-wave technology transmits signals as
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propagating disturbances in the ordering of magnetic materials. Potentially, spin-wave

based logic circuits could compute with significantly less power than conventional CMOS

circuitry.

Spin wave switches are four-terminal devices, as illustrated in Figure 2.5. They have

two states ON and OFF, controlled by an input voltage V-in. In the ON state, the

switch transmits all spin waves; all four terminals are connected. In the OFF state, the

switch reflects any incoming spin waves; all four terminals are disconnected. Spin-wave

switches, like nanowire switches, are also configured in crossbar networks [4].

Figure 2.5: Spin-wave switch.



Chapter 3

Lattice-Based Computation

In this chapter, we consider the general problem of implementing Boolean functions

with lattices of four-terminal switches. We seek to minimize the lattice size represented

by the number of switches. Also, we aim for an efficient algorithm for this task – one

that does not exhaustively enumerate paths in a lattice. In our synthesis strategy, we

exploit the concept of lattice and Boolean function duality. This forms a novel and rich

framework for Boolean computation.

This chapter is organized as follows. In Section 3.1, we present definitions that

are used throughout this chapter. In Section 3.2, we present our general synthesis

method that implements any target function with a lattice of four-terminal switches. In

Section 3.3, we discuss the implementation of a specific function, the parity function.

In Section 3.4, we derive a lower bound on the size of a lattice required to implement a

Boolean function. In Section 3.5, we evaluate our general synthesis method on standard

benchmark circuits. In Section 3.6, we discuss extensions and future directions.

15
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3.1 Definitions

Definition 1

Consider k independent Boolean variables, x1, x2, . . . , xk. Boolean literals are

Boolean variables and their complements, i.e., x1, x̄1, x2, x̄2, . . . , xk, x̄k. 2

Definition 2

A product (P) is an AND of literals, e.g., P = x1x̄3x4. A set of a product (SP) is

a set containing all the product’s literals, e.g., if P = x1x̄3x4 then SP = {x1, x̄3, x4}. A

sum-of-products (SOP) expression is an OR of products. 2

Definition 3

A prime implicant (PI) of a Boolean function f is a product that implies f such that

removing any literal from the product results in a new product that does not imply f.

2

Definition 4

An irredundant sum-of-products (ISOP) expression is an SOP expression, where

each product is a PI and no PI can be deleted without changing the Boolean function

f represented by the expression. 2

Definition 5

f and g are dual Boolean functions iff

f(x1, x2, . . . , xk) = ḡ(x̄1, x̄2, . . . , x̄k).

Given an expression for a Boolean function in terms of AND, OR, NOT, 0, and 1, its

dual can also be obtained by interchanging the AND and OR operations as well as

interchanging the constants 0 and 1. For example, if f(x1, x2, x3) = x1x2 + x̄1x3 then

fD(x1, x2, x3) = (x1 + x2)(x̄1 + x3). A trivial example is that for f = 1, the dual is

fD = 0. 2
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Definition 6

A parity function is a Boolean function that evaluates to 1 iff the number of variables

assigned to 1 is an odd number. The parity function f of k variables can be computed

by the exclusive-OR (XOR) of the variables: f = x1 ⊕ x2 ⊕ . . .⊕ xk. 2

3.2 Synthesis Method

In our synthesis method, a Boolean function is implemented by a lattice according to

the connectivity between the top and bottom plates. In order to elucidate our method,

we will also discuss connectivity between the left and right plates. Call the Boolean

functions corresponding to the top-to-bottom and left-to-right plate connectivities fL

and gL, respectively. As shown in Figure 3.1, each Boolean function evaluates to 1 if

there exists a path between corresponding plates, and evaluates to 0 otherwise. Thus,

fL can be computed as the OR of all top-to-bottom paths, and gL as the OR of all

left-to-right paths. Since each path corresponds to the AND of inputs, the paths taken

together correspond to the OR of these AND terms, so implement sum-of-products

expressions.

Figure 3.1: Relationship between Boolean functionality and paths. (a): fL = 1 and
gL = 0. (b): fL = 1 and gL = 1.
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Example 1

Consider the lattice shown in Figure 3.2. It consists of six switches. Consider the three

top-to-bottom paths x1x4, x2x5, and x3x6. Consider the four left-to-right paths x1x2x3,

x1x2x5x6, x4x5x2x3, and x4x5x6. While there are other possible paths, such as the one

shown by the dashed line, all such paths are covered by the paths listed above. For

instance, the path x1x2x5 shown by the dashed line is covered by the path x2x5 shown by

the solid line, and so is redundant. We conclude that the top-to-bottom function is the

OR of the three products above, fL = x1x4 +x2x5 +x3x6, and the left-to-right function

is the OR of the four products above, gL = x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6.

Figure 3.2: A 2×3 lattice with assigned literals.

2

We address the following logic synthesis problem: given a target Boolean function

fT , how should we assign literals to the sites in a lattice such that the top-to-bottom

function fL equals fT ? More specifically, how can we assign literals such that the OR

of all the top-to-bottom paths equals fT ? In order to solve this problem we exploit the

concept of lattice duality, and work with both the target Boolean function and its dual.

Suppose that we are given a target Boolean function fT and its dual fD
T , both in

ISOP form such that

fT = P1 + P2 + · · ·+ Pn and

fD
T = P ′1 + P ′2 + · · ·+ P ′m
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where each Pi is a prime implicant of fT , i = 1, . . . n, and each P ′j is a prime implicant

of fD
T , j = 1, . . .m. 1 We use a set representation for the prime implicants:

Pi → SPi, i = 1, 2, . . . , n

P ′j → SP ′j , j = 1, 2, . . . ,m

where each SPi is the set of literals in the corresponding product Pi and each SP ′j is

the set of literals in the corresponding product P ′j .

3.2.1 Algorithm

We first present the synthesis algorithm; then we illustrate it with examples; then

we explain why it works.

Above we argued that, in establishing the Boolean function that a lattice implements,

we must consider all possible paths. Paradoxically, our method allows us to consider

only the column paths and the row paths, that is to say, the paths formed by straight-line

connections between the top and bottom plates and between the left and right plates,

respectively. Our algorithm is formulated in terms of the set representation of products

and their intersections.

1. Begin with fT and its dual fD
T , both in ISOP form. Suppose that fT and fD

T have

n and m products, respectively.

2. Start with an m × n lattice. Assign each product of fT to a column and each

product of fD
T to a row.

3. Compute intersection sets for every site, as shown in Figure 3.3.

4. Arbitrarily select a literal from an intersection set and assign it to the correspond-

ing site.
1 Here ′ is used to distinguish symbols. It does not indicate negation.
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The proposed implementation technique is illustrated in Figure 3.3. The technique

implements fT with an m× n lattice where n and m are the number of products of fT

and fD
T , respectively. Each of the n column paths implements a product of fT and each

of the m row paths implements a product of fD
T . As we explain in the next section, the

resulting lattice implements fT and fD
T as the top-to-bottom and left-to-right functions,

respectively. None of the paths other than the column and row paths need be considered.

 f L
 =

f Td

 gL = fT
D

11 SPSP I 12 SPSP I 11 SPSPn I− 1SPSPn I

21 SPSP I 2SPSPn I

11 −mSPSP I 1−mn SPSP I

mSPSP I1 mSPSP I2 mn SPSP I1− mn SPSP I

Figure 3.3: Proposed implementation technique: fT and fD
T are implemented by top-

to-bottom and left-to-right functions of the lattice, respectively.

We present a few examples to elucidate our algorithm.
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Example 2

Suppose that we are given the following target function fT in ISOP form:

fT = x1x2 + x1x3 + x2x3.

We compute its dual fD
T in ISOP form:

fD
T = (x1 + x2)(x1 + x3)(x2 + x3),

fD
T = x1x2 + x1x3 + x2x3.

We have:

SP1 = {x1, x2}, SP2 = {x1, x3}, SP3 = {x2, x3},

SP ′1 = {x1, x2}, SP ′2 = {x1, x3}, SP ′3 = {x2, x3}.

x1 x3

x2 x3

x1 x2

x1 x1 x3 x3

x2 x3 x2 x3

x1 x1

x1 x1

x2

x3

x2 x3 x2

x1 x2 x1 x3 x2 x3

x1 x2 x1 x2

Figure 3.4: Implementing fT = x1x2+x1x3+x2x3. (a): Lattice sites with corresponding
sets. (b): Lattice sites with corresponding literals.

Figure 3.4 shows the implementation of the target function. Grey sites represent

sets having more than one literal; which literal is selected for these sites is arbitrary. For

example, selecting x2, x3, x3 instead of x1, x1, x2 does not change fL and gL. In order to

implement the target function, we only use column paths; these are shown by the solid

lines. All other paths are, in fact, redundant. Indeed there are a total of 9 top-to-bottom
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paths: the 3 column paths and 6 other paths; however all other paths are covered by the

column paths. For example, the path x1x2x3 shown by the dashed line is a redundant

path covered by the column paths. The lattice implements the top-to-bottom and left-

to-right functions fL = fT = x1x2 + x1x3 + x2x3 and gL = fD
T = x1x2 + x1x3 + x2x3,

respectively. 2

Example 3

Suppose that we are given the following target function fT in ISOP form:

fT = x1x2x3 + x1x4 + x1x5.

We compute its dual fD
T in ISOP form:

fD
T = (x1)(x2 + x4 + x5)(x3 + x4 + x5).

fD
T = x1 + x2x4x5 + x3x4x5.

We have:

SP1 = {x1, x2, x3}, SP2 = {x1, x4}, SP3 = {x1, x5},

SP ′1 = {x1}, SP ′2 = {x2, x4, x5}, SP ′3 = {x3, x4, x5}.

x2 x4 x5

x3 x4 x5

x1

x2 x4 x5

x3 x4 x5

x1 x1

x2 x4

x1

x5

x3 x4 x5

x1 x5

x1 x1 x1

x1 x2 x3 x1 x4

Figure 3.5: Implementing fT = x1x2x3 + x1x4 + x1x5. (a): Lattice sites with corre-
sponding sets. (b): Lattice sites with corresponding literals.
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Figure 3.5 shows the implementation of the target function. In this example, all

the intersection sets are singletons, so the choice of which literal to assign is clear. The

lattice implements fL = fT = x1x2x3+x1x4+x1x5 and gL = fD
T = x1+x2x4x5+x3x4x5.

2

We give another example, this one somewhat more complicated.

Example 4

Suppose that fT and fD
T are both given in ISOP form as follows:

fT = x1x̄2x3 + x1x̄4 + x2x3x̄4 + x2x4x5 + x3x5 and

fD
T = x1x2x5 + x1x3x4 + x2x3x̄4 + x̄2x̄4x5.

x1 x1

x1 x1

x2

x3

x3 x4 x2

x1      
x2
x3

x2

x4

x5

x3

x2 x3

x2 x4 x4 x5 x5

x1
x4

x2      
x3
x4

x2      
x4
x5

x3
x5

x1 x2 x5

x1 x3 x4

x2 x3 x4

x2 x4 x5

Figure 3.6: Implementing fT = x1x̄2x3 + x1x̄4 + x2x2x̄4 + x2x4x5 + x3x5.

Figure 3.6 shows the implementation of the target function. Grey sites represent

intersection sets having more than one literal. For these sites, selection of the final

literal is arbitrary. The result is fL = fT = x1x̄2x3 + x1x̄4 + x2x2x̄4 + x2x4x5 + x3x5

and gL = fD
T = x1x2x5 + x1x3x4 + x2x3x̄4 + x̄2x̄4x5. 2
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3.2.2 Proof of Correctness

We present a proof of correctness of the synthesis method. Since our method does not

enumerate paths, we must answer the question: for the top-to-bottom lattice function,

how do we know that all paths other than the column paths are redundant? The

following theorem answers this question. It pertains to the lattice functions and their

duals.

Theorem 1

If we can find two dual functions f and fD that are implemented as subsets of all top-

to-bottom and left-to-right paths, respectively, then fL = f and gL = fD. 2

Before presenting the proof, we provide some examples to elucidate the theorem.

Example 5

We analyze the two lattices shown in Figure 3.7.

Lattice (a): The top-to-bottom paths shown by the red lines implement f = x1x2+

x̄1x3. The left-to-right paths shown by the blue lines implement g = x1x3 + x̄1x2. Since

g = fD, we can apply Theorem 1: fL = f = x1x2 + x̄1x3 and gL = fD = x1x3 + x̄1x2.

Relying on the theorem, we obtain the functions without examining all possible paths.

Let us check the result by using the formal definition of fL and gL, namely the OR of

all corresponding paths. Since there are 9 total top-to-bottom paths, fL = x1x1x̄1 +

x1x1x2x2+x1x1x2x3x̄1+x3x2x1x̄1+x3x2x2+x3x2x3x̄1+x3x3x̄1+x3x3x2x2+x3x3x2x1x̄1,

which is equal to x1x2 + x̄1x3. Thus all the top-to-bottom paths but the paths shown by

the red lines are redundant. Since there are 9 total left-to-right paths, gL = x1x3x3 +

x1x3x2x3+x1x3x2x2x̄1+x1x2x3x3+x1x2x3+x1x2x2x̄1+x̄1x2x2x3x3+x̄1x2x2x3+x̄1x2x̄1,

which is equal to x1x3 + x̄1x2. Thus all the left-to-right paths but the paths shown by

the blue lines are redundant. So Theorem 1 holds for this example.
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Lattice (b): The top-to-bottom paths shown by the red lines implement f =

x1x2x3+x1x4+x1x5. The left-to-right paths shown by the blue lines implement g = x1+

x2x4x5+x3x4x5. Since g = fD, we can apply Theorem 1: fL = f = x1x2x3+x1x4+x1x5

and gL = fD = x1 + x2x4x5 + x3x4x5. Again, we see that Theorem 1 holds for this

example. 2

x5

x1 x1

x2 x4

x1

x5

x3 x4x1

x1 x3

x1 x2

x3

x3

x1 x2

Figure 3.7: Examples to illustrate Theorem 1. (a): fL = x1x2 + x̄1x3 and gL =
x1x2 + x̄1x3. (b): fL = x1x2x3 + x1x4 + x1x5 and gL = x1 + x2x4x5 + x3x4x5.

Proof of Theorem 1: If f(x1, x2, . . . , xk) = 1 then fL = 1. From the definition of

duality, if f(x1, x2, . . . , xk) = 0 then fD(x̄1, x̄2, . . . , x̄k) = f̄(x1, x2, . . . , xk) = 1. This

means that there is a left-to-right path consisting of all 0’s; accordingly, fL = 0. Thus,

we conclude that fL = f . If fD(x1, x2, . . . , xk) = 1 then gL = 1. From the definition

of duality, if fD(x1, x2, . . . , xk) = 0 then f(x̄1, x̄2, . . . , x̄k) = f̄D(x1, x2, . . . , xk) = 1.

This means that there is a top-to-bottom path consisting of all 0’s; accordingly, gL = 0.

Thus, we conclude that gL = fD. 2

Theorem 1 provides a constructive method for synthesizing lattices with the requisite

property, namely that the top-to-bottom and left-to-right functions fT and fD
T are duals,

and each column path of the lattice implements a product of fT and each row path

implements a product of fD
T .
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We begin by lining up the products of fT as the column headings and the products

of fD
T as the row headings. We compute intersection sets for every lattice site. We

arbitrarily select a literal from each intersection set and assign it to the corresponding

site. The following lemma and theorem explain why we can make such an arbitrary

selection.

Suppose that functions f(x1, x2, . . . , xk) and fD(x1, x2, . . . , xk) are both given in

ISOP form such that

f = P1 + P2 + · · ·+ Pn and

fD = P ′1 + P ′2 + · · ·+ P ′m

where each Pi is a prime implicant of f , i = 1, . . . n, and each P ′j is a prime implicant

of fD, j = 1, . . .m. Again, we use a set representation for the prime implicants:

Pi → SPi, i = 1, 2, . . . , n

P ′j → SP ′j , j = 1, 2, . . . ,m

where each SPi is the set of literals in the corresponding product Pi and each SP ′j is

the set of literals in the corresponding product P ′j . Suppose that SPi and SP ′j have

zi and z′j elements, respectively. We first present a property of dual Boolean functions

from [6]:

Lemma 1

Dual pairs f and fD must satisfy the condition

SPi ∩ SP ′j 6= ∅ for every i = 1, 2, . . . , n and j = 1, 2, . . . ,m. 2

Proof of Lemma 1: The proof is by contradiction. Suppose that we focus on one

product Pi from f and assign all its literals, namely those in the set SPi, to 0. In this

case fD = 0. However if there is a product P ′j of fD such that SP ′j ∩ SPi = ∅, then we

can always make P ′j equal 1 because SP ′j does not contain any literals that have been

previously assigned to 0. If follows that fD = 1, a contradiction. 2
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Lemma 2

Consider a product P with a corresponding set representation SP . Consider a Boolean

function f = P1 + P2 + · · · + Pn with a corresponding set representation SPi for each

of its products Pi, i = 1, 2, . . . , n. If SP has non-empty intersections with every SPi,

i = 1, 2, . . . , n, then P is a product of fD. 2

Proof of Lemma 2: To prove that P is a product of fD we assign 1’s to all the

variables of P and see if this always results in fD = 1. Since SP has non-empty

intersections with every SPi, i = 1, 2, . . . , n, each product of f should have at least one

assigned 1. From the definition of duality, these assigned 1’s always result in fD =

(1 + . . .)(1 + . . .) . . . (1 + . . .) = 1. 2

Theorem 2

Assume that f and fD are both in ISOP form. For any product Pi of f , there exist m

non-empty intersection sets, (SPi ∩ SP ′1), (SPi ∩ SP ′2), . . . , (SPi ∩ SP ′m). Among these

m sets, there must be at least zi single-element disjoint sets. These single-element sets

include all zi literals of Pi.

We can make the same claim for products of fD: for any product P ′j of fD there

exist n non-empty intersection sets, (SP ′j ∩SP1), (SP ′j ∩SP2), . . . , (SP ′j ∩SPn). Among

these n sets there must be at least z′j single-element disjoint sets that each represents

one of the z′j literals of P ′j . 2

Before proving the theorem we elucidate it with examples.

Example 6

Suppose that we are given a target function fT and its dual fD
T , both in ISOP form

such that

fT = x1x̄2 + x̄1x2x3 and fD
T = x1x2 + x1x3 + x̄1x̄2.
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Thus,

SP1 = {x1, x̄2}, SP2 = {x̄1, x2, x3},

SP ′1 = {x1, x2}, SP ′2 = {x1, x3}, SP ′3 = {x̄1, x̄2}.

Let us apply Theorem 2 for SP2 (z2 = 3).

SP2 ∩ SP ′1 = {x2}, SP2 ∩ SP ′2 = {x3}, SP2 ∩ SP ′3 = {x̄1}.

Since these three sets are all the single-element disjoint sets of the literals of SP2,

Theorem 2 is satisfied. 2

Example 7

Suppose that we are given a target function fT and its dual fD
T , both in ISOP form

such that

fT = x1x2 + x1x3 + x2x3 and fD
T = x1x2 + x1x3 + x2x3.

Thus,

SP1 = {x1, x2}, SP2 = {x1, x3}, SP3 = {x2, x3},

SP ′1 = {x1, x2}, SP ′2 = {x1, x3}, SP ′3 = {x2, x3}.

Let us apply Theorem 2 for SP ′1 (z′1 = 2).

SP ′1 ∩ SP1 = {x1, x2}, SP ′1 ∩ SP2 = {x1}, SP ′1 ∩ SP3 = {x2}.

Since {x1} and {x2}, the single-element disjoint sets of the literals of SP ′1, are among

these sets, Theorem 2 is satisfied. 2

Proof of Theorem 2: The proof is by contradiction. Consider a product Pi of f

such that SPi = {x1, x2, . . . , xzi}. From Lemma 1 we know that SPi has non-empty

intersections with every SP ′j , j = 1, 2, . . . ,m. For one of the elements of SPi, say x1,

assume that none of the intersection sets (SPi ∩ SP ′1), (SPi ∩ SP ′2), . . . , (SPi ∩ SP ′m) is
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{x1}. This means that if we extract x1 from SPi then the new set {x2, . . . , xzi} also has

non-empty intersections with every SP ′j , j = 1, 2, . . . ,m. From Lemma 2 we know that

the product x2x3 . . . xzi must be a product of f . This product covers Pi. However, in an

ISOP expression, all products including Pi are irredundant, not covered by a product

of f . So we have a contradiction. 2

From Lemma 1 we know that none of the lattice sites will have an empty intersection

set. Theorem 2 states that the intersection sets of a product include single-element sets

for all of its literals. So the corresponding column or row has always all literals of the

product regardless of the final literal selections from multiple-element sets. Thus we

obtain a lattice whose column paths and row paths implement fT and fD
T , respectively.

In the next section, we present a method to implement a specific function, the parity

function.

3.3 Parity Functions

The algorithm proposed in Section 3.2 provides a general method for implementing

any type of Boolean function with an m × n lattice, where n and m are the number

of products of the function and its dual, respectively. In this section, we discuss a

method for implementing a specific function, the parity function, with a (log(m)+1)×n

lattice. Compared to the general method, we improve the lattice size by a factor of

m/(log(m) + 1) for this function.

As defined in Section 3.1, a k-variable parity function can be represented as a k-

variable XOR operation. We exploit the following properties of XOR functions:

XORk = xkXORk−1 + xkXORk−1

XORk = xkXORk−1 + xkXORk−1.

These properties allow us to implement both XORk and its complement XORk

recursively. The approach for the k-variable parity function is illustrated in Figure 3.8.
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The approach for 1, 2, and 3 variable parity functions is shown in Figure 3.9. As in

our general method, we implement each product of the target function with a separate

column path; in this construction, all paths other than column paths are redundant.

The following lemma explains why this configuration works. Figure 3.10 illustrates the

lemma.

XORk-1

xk

XORk-1

xk

XORk-1

xk

XORk-1

xk

Figure 3.8: (a): Implementation of XORk. (b): Implementation of XORk.

x1 x1

x2 x2

x1 x1

x2 x2

x1 x1

x2 x2

x1 x1

x2 x2

x3 x3 x3 x3

x1 x1

x2 x2

x1 x1

x2 x2

x3 x3 x3 x3

x1

x1

XOR1 XOR2 XOR3

XOR1 XOR2 XOR3

Figure 3.9: Implementation of XOR1, XOR1, XOR2, XOR2, XOR3, and XOR3.
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Lemma 3

Consider two lattices with the same number of rows. Suppose that the lattices imple-

ment the Boolean functions fL1 and fL2. Construct a new lattice with the two lattices

side by side. If the attached columns of the lattices have negated variables facing each

other for all rows except the first and the last, then the new lattice implements the

Boolean function fL3 = fL1 + fL2. 2

Proof of Lemma 3: The new lattice has three types of top-to-bottom paths: paths

having all sites from the first lattice that implement fL1, paths having all sites from the

second lattice that implement fL2, and paths having sites from both the first and the

second lattices that implement fL1−2. The Boolean function fL3 implemented by the

third lattice is OR of the all paths; fL3 = fL1 +fL2 +fL1−2. The paths having sites from

both the first and the second lattices should cross the attached columns. This means

that such paths both include a variable and its negation; negated variables in attached

columns result in fL1−2 = 0. We conclude that fL3 = fL1 + fL2. 2

x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

x2

x1

fL1 fL2 fL3 fL1+fL2

Figure 3.10: An example illustrating Lemma 3: from left to right, the top-to-bottom
Boolean functions of the lattices are fL1, fL2, and fL1 + fL2.

We exploit Lemma 3 to compute the parity function as follows (please refer back

to Figure 3.8). We attach the lattices implementing fL1 = xkXORk−1 and fL2 =

xkXORk−1 to implement fL3 = XORk. We attach the lattices implementing fL1 =

xkXORk−1 and fL2 = xkXORk−1 to implement fL3 = XORk. One can easily see that
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attached columns always have the proper configuration of negated variables to ensure

that fL1−2 = 0.

3.4 A Lower Bound on the Lattice Size

In this section, we propose a lower bound on the size of any lattice implementing

a Boolean function. Although it is a weak lower bound, it allows us to gauge the

effectiveness of our synthesis method. The bound is predicated on the maximum length

of any path across the lattice. The length of such a path is bounded from below by the

maximum number of literals in terms of an ISOP expression for the function.

We present preliminaries including definitions that are used throughout this section

as follows.

3.4.1 Preliminaries

Definition 7

Let the degree of an SOP expression be the maximum number of literals in terms of

the expression. 2

A Boolean function might have several different ISOP expressions and these might

have different degrees. Among all the different expressions, we need the one with the

smallest degree for our lower bound. (We need only consider ISOP expressions; every

SOP expression is covered by an ISOP expression of equal or lesser degree.)

Consider a target Boolean function fT and its dual fD
T , both in ISOP form. We will

use v and y to denote the minimum degrees of fT and fD
T , respectively. For example,

if v = 3 and y = 5, this means that every ISOP expression for fT includes terms with 3

literals or more, and every ISOP expression for fD
T includes terms with 5 literals or more.

Our lower bound, described in the next section by Theorem 4, consists of inequalities

on v and y. We first illustrate how it works with an example.
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Example 8

Consider two target Boolean functions fT1 = x1x2x3 +x1x4 +x1x5 and fT2 = x1x2x3 +

x̄1x̄2x4 + x2x3x4, and their duals fD
T1 = x1 + x2x4x5 + x3x4x5 and fD

T2 = x1x4 +

x̄1x2 + x̄2x3. These expressions are all in ISOP form with minimum degrees. Since each

expressions consists of three products, the synthesis method described in Section 3.2

implements each target function with a 3× 3 lattice.

Examining the expressions, we see that the degrees of fT1 and fT2 are v1 = 3 and

v2 = 3, respectively, and the degrees of fD
T1 and fD

T2 are y1 = 3 and y2 = 2, respectively.

Our lower bounds based on these values are 3× 3 for fT1 and 3× 2 for fT2. Thus, the

lower bound for fT2 suggests that our synthesis method might not be producing optimal

results. Indeed, Figure 3.11 shows minimum-sized lattices for for fT1 and fT2. Here the

3× 2 lattice for fT2 was obtained through exhaustive search. 2

x x

x x

x x

x

x

x

x

x

x

x x x

Figure 3.11: Minimum-sized lattices (a): fL = fT1 = x1x2x3 + x1x4 + x1x5. (b):
fL = fT2 = x1x2x3 + x̄1x̄2x4 + x2x3x4.

Since we implement Boolean functions in terms of top-to-bottom connectivity across

the lattice, it is apparent that we cannot implement a target function fT with top-to-

bottom paths consisting of fewer than v literals, where v is the minimum degree of an
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ISOP expression for fT . The following theorem explains the role of y, the minimum

degree of fD
T . It is based on eight-connected paths.2

Definition 8

An eight-connected path consists of both directly and diagonally adjacent sites. 2

An example is shown in Figure 3.12. Here the paths x1x4x8 and x3x6x5x8 shown

by red and blue lines are both eight-connected paths; however only the blue one is

four-connected.

Recall that fL and gL are defined as the OR of all four-connected top-to-bottom

and left-to-right paths, respectively. (A lattice implements a given target function fT if

fL = fT .) We define fL−8 and gL−8 to be the OR of all eight-connected top-to-bottom

and left-to-right paths, respectively.

Figure 3.12: A lattice with eight-connected paths.

Theorem 3

The functions fL and gL−8 are duals. The functions fL−8 and gL duals. 2

Before proving the theorem, we elucidate it with an example.
2 Note that because our synthesis methodology is based on lattices of four-terminal switches, the

target function fT is always implemented by four-connected paths. We discuss eight-connected paths
only because it is helpful to do so in order to prove our lower bound.
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Example 9

Consider the lattice shown in Figure 3.13. Here fL is the OR of 3 top-to-bottom four-

connected paths x1x4, x2x5, and x3x6; gL is the OR of 4 left-to-right four-connected

paths x1x2x3, x1x2x5x6, x4x5x2x3, and x4x5x6; fL−8 is the OR of 7 eight-connected

top-to-bottom paths x1x4, x1x5, x2x4, x2x5, x2x6, x3x5, and x3x6; and gL−8 is the OR

of 8 eight-connected left-to-right paths x1x2x3, x1x2x6, x1x5x3, x1x5x6, x4x2x3, x4x2x6,

x4x5x3, and x4x5x6. We can easily verify that fL = gD
L−8 and fL−8 = gD

L . Accordingly,

Theorem 3 holds true for this example.

Figure 3.13: A 2×3 lattice with assigned literals.

2

Proof of Theorem 3: We consider two cases, namely fL = 1 and fL = 0.

Case 1: If fL(x1, x2, . . . , xk) = 1, there must be a four-connected path of 1’s between

the top and bottom plates. If we complement all the inputs (1→ 0, 0→ 1), these four-

connected 1’s become 0’s and vertically separate the lattice into two parts. Therefore

no eight-connected path of 1’s exists between the left and right plates; accordingly,

gL−8(x̄1, x̄2, . . . , x̄k) = 0. As a result ḡL−8(x̄1, x̄2, . . . , x̄k) = fL(x1, x2, . . . , xk) = 1

Case 2: If fL(x1, x2, . . . , xk) = 0, there must be an eight-connected path of 0’s be-

tween the left and right plates. If we complement all the inputs, these eight-connected

0’s become 1’s; accordingly, gL−8(x̄1, x̄2, . . . , x̄k) = 1. As a result ḡL−8(x̄1, x̄2, . . . , x̄k) =
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fL gL-8 

fL gL-8 

Figure 3.14: Conceptual proof of Theorem 3.

fL(x1, x2, . . . , xk) = 0

Figure 3.14 illustrates the two cases. Taken together, the two cases prove that fL

and gL−8 are duals. With inverse reasoning we can prove that fL−8 and gL are duals.

2

Theorem 3 tells us that the products of fD
T are implemented with eight-connected

left-to-right paths. Now consider y, the degree of fD
T . We know that we cannot imple-

ment fD
T with eight-connected right-to-left paths having fewer than y literals. Consider

v, the degree of fT . We know that we cannot implement fT with four-connected top-

to-bottom paths having fewer than v literals.

Returning to the functions in Example 8, we can now prove that lower bounds on the

lattice sizes are 9 (3×3) for fT1, and 6 (3×2) for fT2. Since v1 = 3 and y1 = 3 for fT1, a
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3×3 lattice is a minimum-size lattice that has four-connected top-to-bottom and eight-

connected left-to-right paths of at least 3 literals, respectively. Since v2 = 3 and y2 = 2

for fT2, a 3× 2 lattice is a minimum-size lattice that has four-connected top-to-bottom

and eight-connected left-to-right paths of at least 3 and 2 literals, respectively.

Based on these preliminaries, we now formulate the lower bound.

3.4.2 Lower Bound

Consider a target Boolean function fT and its dual fD
T , both in ISOP form. Recall

that v and y are defined as the minimum degrees of fT and fD
T , respectively. Our

lower bound is based on the observation that a minimum-size lattice must have a four-

connected top-to-bottom path with at least v literals and an eight-connected left-to-right

path with at least y literals. Since the functions are in ISOP form, all products of fT

and fD
T are irredundant, i.e., not covered by other products. Therefore, we need only

to consider irredundant paths:

Definition 9

A four-connected (eight-connected) path between plates is irredundant if it is not

covered by another four-connected (eight-connected) path between the corresponding

plates. 2

We bound the length of irredundant paths. For example, the length of an eight-

connected left-to-right path in a 3 × 3 lattice is at most 3. Accordingly, no Boolean

function with y greater than 3 can be implemented by a 3×3 lattice. Figure 3.15 shows

eight-connected left-to-right paths in a 3× 3 lattice. The path in (a) consists of 3 sites.

The path in (b) consists of 4 sites; however it is a redundant path – it is covered by the

path in (a).

The following simple lemmas pertain to irredundant paths of a lattice.
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Figure 3.15: Lattices with (a) an irredundant path and (b) a redundant path. The site
marked with × is redundant.

Lemma 4

An irredundant top-to-bottom path of a lattice contains exactly one site from the top-

most row and exactly one site from the bottommost row. An irredundant left-to-right

path of a lattice contains exactly one site from the leftmost column and exactly one site

from the rightmost column. 2

Proof of Lemma 4: All sites in the first row of a lattice are connected through the

top plate. Therefore we do not need a path to connect any two sites in this row; such a

path is redundant. Similarly for the last row. Similarly for the first and last columns.

2

Lemma 5

An irredundant four-connected path of a lattice contains at most 3 of 4 sites in any

2 × 2 sub-lattice. An irredundant eight-connected path of a lattice contains at most 2

of 4 sites in any 2× 2 sub-lattice. 2

Proof of Lemma 5: In order to connect any 2 sites of a 2 × 2 sub-lattice with a

four-connected path, we need at most 3 sites of the sub-lattice. Similarly, in order to

connect any 2 sites of a 2× 2 sub-lattice with an eight-connected path, we need at most

2 sites of the sub-lattice. 2
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Figure 3.16 shows examples illustrating Lemma 5. The lattice in (a) has a four-

connected top-to-bottom path. This path contains 4 of the 4 sites in the 2 × 2 sub-

lattice encircled in red. Lemma 5 tells us that the path in (a) is redundant. Indeed, it

is covered by the path achieved by removing the site marked by ×. The lattice in (b)

has an eight-connected left-to-right path. This path contains 3 of 4 sites in the 2 × 2

sub-lattice encircled in red. Lemma 5 tells us that the path in in (b) is redundant.

Indeed it is covered by the path achieved by removing the site marked by ×.

Figure 3.16: Examples to illustrate Lemma 5. (a): a four-connected path with a redun-
dant site marked with ×. (b): an eight-connected path with a redundant site marked
with ×.

From Lemmas 4 and 5, we have the following theorem consisting of two inequalities.

The first inequality states that the degree of fT is equal to or less than the maximum

number of sites in any four-connected top-to-bottom path. The second inequality states

that the degree of fD
T is less than or equal to the maximum number of sites in any

eight-connected left-to-right path.

Theorem 4

If a target Boolean function fT is implemented by an R × C lattice then the following

inequalities must be satisfied:
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v ≤


R, if R ≤ 2 or C ≤ 1

3
⌈

R−2
2

⌉ ⌈
C
2

⌉
+ 2+(−1)R+(−1)C

2 , if R > 2 and C > 1,

y ≤


C, if R ≤ 3 or C ≤ 2

2
⌈

R
2

⌉ ⌈
C−2

2

⌉
+ 2+(−1)R+(−1)C

2 , if R > 3 and C > 2,

where v and y are the minimum degrees of fT and its dual fD
T , respectively, both in

ISOP form. 2

Proof of Theorem 4: If R and C are both even then all irredundant top-to-bottom

and left-to-right paths contain at most 3
4(R−2)C+2 and 2

4R(C−2)+2 sites, respectively;

this follows directly from Lemmas 4 and 5. If R or C are odd then we first round these

up to the nearest even number. The resulting lattice contains at least one extra site

(if either R or C but not both are odd) or two extra sites (if both R and C are odd).

Accordingly, we compute the maximum number of sites in top-to-bottom and left-to-

right paths and subtract 1 or 2. This calculation is reflected in the inequalities. 2

The theorem proves our lower bound. Table 3.1 shows the calculation of the bound

for different values of v and y up to 10.

3.5 Experimental Results

In Table 3.2 and Table 3.3 we report synthesis results for a few standard benchmark

circuits [21]. We treat each output of a benchmark circuit as a separate target function.

The values for n and m represent the number of products for each target function fT

and its dual fD
T , respectively. We obtained these through sum-of-products minimization

using the program Espresso [22]. The lattice size, representing the number of switches,

is computed as a product of n and m.
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Table 3.1: Lower bounds on the lattice size for different values of v and y the minimum
degrees.

v

y
1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 12 14 16 18 20

3 3 6 9 12 12 15 20 20 20 24

4 4 6 9 12 12 15 20 20 20 24

5 5 8 9 12 12 15 20 20 20 24

6 6 9 9 12 12 15 20 20 20 24

7 7 10 12 12 12 15 20 20 20 24

8 8 12 15 15 15 15 20 20 20 24

9 9 14 15 15 15 15 20 20 20 24

10 10 14 15 15 15 15 20 20 20 24

For the lower bound calculation, we obtained values of v and y, the minimum degrees

of fT and fD
T , as follows: first we generated prime implicant tables for the target

functions and their duals using Espresso with the “-Dprimes” option; then we deleted

prime implicants one by one, beginning with those that had the most literals, until we

obtained an expression of minimum degree. Given values of v and y, we computed the

lower bound from the inequalities in Theorem 4.

Table 3.2 and Table 3.3 list the runtimes for the lattice size and the lower bound

calculations. The runtimes for the lattice size consist of the time for obtaining the

functions’ duals and for SOP minimization of both the functions and their duals. The

runtimes for the lower bound consist of the time for generating the prime implicant

tables and for obtaining the minimum degrees from the tables. We performed trials on

an AMD Athlon 64 X2 6000+ Processor (at 3Ghz) with 3.6GB of RAM running Linux.
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Examining the numbers in Table 3.2 and Table 3.3, we see that, often, the syn-

thesized lattice size matches the lower bound. In these cases, our results are optimal.

However for most of the Boolean functions, especially those with larger values of n

and m, the lower bound is much smaller than the synthesized lattice size. This is not

surprising since the lower bound is weak, formulated based on path lengths.

In the final columns of Table 3.2 and Table 3.3, we list the number of transistors

required in a CMOS implementation of the functions. We obtained the transistor counts

through synthesis trials with the Berkeley tool ABC [23]. We applied the standard

synthesis script “resyn2” in ABC and then mapped to a generic library consisting of

NAND2 gates and inverters. We assume that each NAND2 gate requires four transistors

and each inverter requires two transistors.

The number of switches needed by our method compares very favorably to the num-

ber of transistors required in a CMOS implementation. Of course, a rigorous comparison

would depend on the specifics of the types of technology used. Each four-terminal switch

might equate to more than one transistor. Then again, in some nanoscale technologies,

it might equate to much less: the density of crosspoints in nanowire arrays is generally

much higher than the density achievable with CMOS transistors.

3.6 Discussion

The two-terminal switch model is fundamental and ubiquitous in electrical engi-

neering [24]. Either implicitly or explicitly, nearly all logic synthesis methods target

circuits built from independently controllable two-terminal switches (i.e., transistors).

And yet, with the advent of novel nanoscale technologies, synthesis methods targeting

lattices of multi-terminal switches are apropos. Our model consists of a regular lattice

of four-terminal switches.

Our treatment is at a technology-independent level; nevertheless we comment that

our synthesis results are applicable to a range of emerging technologies, including
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Table 3.2: Proposed lattice sizes, lower bounds on the lattice sizes, and CMOS transistor
counts for standard benchmark circuits. Each row lists the numbers for a separate
output function of the benchmark circuit.

Circuit n m Lattice Run v y Lower Run CMOS
size time bound time circuit size

alu1 3 2 6 2 3 6 18
alu1 2 3 6 < 0.01 3 2 6 0.02 26
alu1 1 3 3 3 1 3 16
clpl 4 4 16 4 4 12 42
clpl 3 3 9 3 3 9 26
clpl 2 2 4 < 0.01 2 2 4 0.01 10
clpl 6 6 36 6 6 15 74
clpl 5 5 25 5 5 12 64

newtag 8 4 32 < 0.01 3 6 15 < 0.01 60
dc1 4 4 16 3 3 9 38
dc1 2 3 6 3 2 6 24
dc1 4 4 16 < 0.01 3 4 12 < 0.01 40
dc1 4 5 20 4 3 9 42
dc1 3 3 9 2 3 6 26

misex1 2 5 10 4 2 6 64
misex1 5 7 35 4 4 12 84
misex1 5 8 40 5 4 12 64
misex1 4 7 28 < 0.01 5 3 9 0.01 58
misex1 5 5 25 4 4 12 76
misex1 6 7 42 4 4 12 64
misex1 5 7 35 4 3 9 36

b12 4 6 24 4 3 9 50
b12 7 5 35 4 4 12 54
b12 7 6 42 5 4 12 70
b12 4 2 8 2 2 4 16
b12 4 2 8 0.01 2 4 8 0.41 28
b12 5 1 5 1 5 5 30
b12 9 6 54 6 4 12 332
b12 6 4 24 4 6 15 60
b12 7 2 14 2 7 14 62

newbyte 1 5 5 < 0.01 5 1 5 < 0.01 26
c17 3 3 9 < 0.01 2 3 6 < 0.01 16
c17 4 2 8 2 2 4 18
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Table 3.3: Proposed lattice sizes, lower bounds on the lattice sizes, and CMOS transistor
counts for standard benchmark circuits. Each row lists the numbers for a separate
output function of the benchmark circuit.

Circuit n m Lattice Run v y Lower Run CMOS
size time bound time circuit size

ex5 1 3 3 3 1 3 16
ex5 1 5 5 5 1 5 24
ex5 1 4 4 4 1 4 18
ex5 1 7 7 7 1 7 36
ex5 1 8 8 8 1 8 40
ex5 1 6 6 6 1 6 34
ex5 8 4 32 3 6 15 46
ex5 10 4 40 3 8 20 52
ex5 7 3 21 3 7 20 44
ex5 7 3 21 3 6 15 48
ex5 8 2 16 2 8 16 42
ex5 9 4 36 3 8 20 56
ex5 8 2 16 0.26 2 7 14 3.17 42
ex5 12 6 72 4 7 20 70
ex5 14 8 112 4 7 20 388
ex5 7 2 14 2 7 14 38
ex5 6 3 18 3 6 15 40
ex5 6 2 12 2 6 12 36
ex5 10 7 70 3 7 20 76
ex5 6 6 36 3 6 15 64
ex5 12 10 120 4 8 20 318
ex5 14 8 112 5 7 20 350
ex5 8 5 40 3 7 20 86
ex5 10 8 80 3 7 20 116
ex5 12 7 84 4 7 20 356
ex5 9 3 27 3 8 20 60
ex5 5 2 10 2 5 10 44

mp2d 11 1 11 1 11 11 46
mp2d 8 6 48 5 8 20 82
mp2d 10 5 50 4 10 24 102
mp2d 6 10 60 0.01 9 3 15 0.61 318
mp2d 1 5 5 5 1 5 26
mp2d 3 6 18 5 2 8 46
mp2d 1 8 8 8 1 8 36
mp2d 5 1 5 1 5 5 28
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nanowire crossbar arrays [16, 2] and magnetic switch-based structures [4] with indepen-

dently controllable crosspoints. We are investigating its applicability to DNA nanofab-

rics [25, 26].

In this chapter, we present a synthesis method targeting regular lattices of four-

terminal switches. Significantly, our method assigns literals to lattice sites without

enumerating paths. It produces lattice sizes that are linear in the number of products

of the target Boolean function. The time complexity of our synthesis algorithm is

polynomial in the number of products. Comparing our results to a lower bound, we

conclude that the synthesis results are not optimal. However, this is hardly surprising: at

their core, most logic synthesis problems are computationally intractable; the solutions

that are available are based on heuristics. Furthermore, good lower bounds on circuit

size are notoriously difficult to establish. In fact, such proofs are related to fundamental

questions in computer science, such as the separation of the P and NP complexity

classes. (To prove that P 6= NP it would suffice to find a class of problems in NP that

cannot be computed by a polynomially sized circuit [27].)

The results on benchmarks illustrate that our method is effective for Boolean func-

tions of practical interest. We should note, however, we would not expect it to be

effective on some specific types of Boolean functions. In particular, our method will

not be effective for Boolean functions such that the functions’ duals have much more

products than the functions do have.

The lattices for such functions will be inordinately large. For example, consider the

function f = x1x2x3 + x4x5x6 + x7x8x9. It has only three products, but its dual has

33 = 27 products. With our method, a lattice with 27 rows and 3 columns would be

required. The cost of implementing such functions could be mitigated by decomposing

and implementing Boolean functions with separate lattices (or physically separated

regions in a single lattice). For example, fT = x1x2x3 + x4x5x6 can be implemented by

two lattices each of which is for each product, so the target function is implemented by

two 3× 1 lattices. An apparent disadvantage of this technique is the necessity of using
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multiple lattices rather than a single lattice to implement a target function. We do not

get into further details of the technique of decomposition and sharing; Techniques for

functional decomposition are well established [22, 28]. We would like to keep it as a

future work.

Another future direction is to extend the results to lattices of eight-terminal switches,

and then to 2k-terminal switches, for arbitrary k.

Another direction is to study methods for synthesizing robust computation in lattices

with random connectivity. In Chapter 4, we explore methods based on the principle of

percolation [29].

A significant tangent for this work is its mathematical contribution: lattice-based

implementations present a novel view of the properties of Boolean functions. In Chap-

ter 5, we study the applicability of these properties to the famous problem of testing

whether two monotone Boolean functions in ISOP form are dual. This is one of the few

problems in circuit complexity whose precise tractability status is unknown [8].



Chapter 4

Robust Computation Through

Percolation

In Chapter 3, we discuss strategies for implementing Boolean functions with lattices

of four-terminal switches. We address the synthesis problem of how best to assign literals

to switches in a lattice in order to implement a given target Boolean function, with the

goal of minimizing the lattice size, measured in terms of the number of switches.

In this chapter, we address the problem of implementing Boolean functions with lat-

tices of four-terminal switches in the presence of defects. We assume that such defects

occur probabilistically. Our approach is predicated on the mathematical phenomenon

of percolation. With random connectivity, percolation gives rise to a sharp non-linearity

in the probability of global connectivity as a function of the probability of local con-

nectivity. We exploit this phenomenon to compute Boolean functions robustly, within

prescribed error margins.

This chapter is organized as follows. In Section 4.1, we discuss our defect model. In

Section 4.1.1, we discuss the mathematics of percolation and how this phenomenon can

be exploited for tolerating defects. In Section 4.2, we present our main technical result:

a method for assigning Boolean literals to sites in a switching lattice that optimizes the

47
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lattice area while meeting prescribed defect tolerances. In Section 4.3, we evaluate our

method on benchmark circuits.

4.1 Defect Model

We assume that defects cause switches to fail in one of two ways: they are ON

when they are supposed to be OFF (OFF-to-ON defect), i.e., the controlling literal is

0; or they are OFF when they are supposed to be ON (ON-to-OFF defect), i.e., the

controlling literal is 1. We allow for different defect rates in both directions, ON-to-

OFF and OFF-to-ON. For example, if a switch has a larger OFF-to-ON defect rate than

its ON-to-OFF defect rate then the switch works more accurately when its controlling

input is 1 (the switch is ON). Crucially, we assume that all switches of the lattice fail

with independent probability.

Defective switches can ruin the Boolean computation performed by a network. Con-

sider the network in Figure 4.1. White and black sites represent OFF and ON switches,

respectively. If x1 = 1, each four-terminal switch is ideally ON and represented by a

black site. If x1 = 0, each four-terminal switch is ideally OFF and represented by a

white site. Due to defects, not all switches will behave in this way. Defective switches

are represented by white and black sites while the switch is supposed to be ON and

OFF, respectively. This is illustrated in Figure 4.1. Note that in spite of defects, the

network in Figure 4.1 computes correctly for both the cases x1 = 0 and x1 = 1.

4.1.1 Percolation

Percolation theory is a rich mathematical topic that forms the basis of explanations

of physical phenomena such as diffusion and phase changes in materials. It tells us

that in media with random local connectivity, there is a critical threshold for global

connectivity: below the threshold, the probability of global connectivity quickly drops

to zero; above it, the probability quickly rises to one.
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Figure 4.1: Switching network with defects.

Broadbent and Hammersley described percolation with the following metaphorical

model [30]. Suppose that water is poured on top of a large porous rock. Will the water

find its way through holes in the rock to reach the bottom? We can model the rock as a

collection of small regions each of which is either a hole or not a hole. Suppose that each

region is a hole with independent probability p1 and not a hole with probability 1− p1.

The theory tells us that if p1 is above a critical value pc, the water will always reach the

bottom; if p1 is below pc, the water will never reach the bottom. The transition in the

probability of water reaching bottom as a function of increasing p1 is extremely abrupt.

For an infinite size rock, it is a step function from 0 to 1 at pc.

In two dimensions, percolation theory can be studied with a lattice, as shown in

Figure 4.2(a). Here each site is black with probability p1 and white with probability

1 − p1. Let p2 be the probability that a connected path of black sites exists between

the top and bottom plates. Figure 4.2(b) shows the relationship between p1 and p2 for

different square lattice sizes. Percolation theory tells us that with increasing lattice size,
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the steepness of the curve increases. (In the limit, an infinite lattice produces a perfect

step function.) Below the critical probability pc, p2 is approximately 0 and above it p2

is approximately 1.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

pc

p1

p 2

BOTTOM

TOP

Figure 4.2: (a): Percolation lattice with random connections; there is a path of black
sites between the top and bottom plates. (b) p2 versus p1 for 1×1, 2×2, 6×6, 24×24,
120× 120, and infinite-size lattices.

Suppose that each site of a percolation lattice is a four-terminal switch controlled by

the same literal x1. Also suppose that each switch is independently defective with the

same probability. Defective switches are represented by white and black sites while the

switch is supposed to be ON and OFF, respectively. Let’s analyze the cases x1 = 0 and

x1 = 1. If x1 = 0 then each site is black with the defect probability, and the defective

black sites might cause an error by forming a path between the top and bottom plates.

In this case, p1 and p2 described in the percolation model correspond to the defect

probability and the probability of an error in top-to-bottom connectivity, respectively.

If x1 = 1 then each site is white with the defect probability and the defective white sites

might cause an error by destroying the connection between the top and bottom plates.
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In this case, p1 and p2 in the percolation model correspond to 1−(defect probability) and

1−(probability of an error in top-to-bottom connectivity), respectively. The relationship

between p1 and p2 is shown in Figure 4.3.
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Figure 4.3: Non-linearity through percolation in random media.

Throughout this chapter, we use the concept of defect probability and defect rate

interchangeably. We assume that the lattice is large enough for this to hold true.

Definition 10

We define the one margin and zero margin to be the ranges of p1 for which we

interpret p2 as unequivocally 1 and 0, respectively. 2

The percolation curve shown in Figure 4.3 tells us that unless the defect probability

exceeds a zero margin (one margin), we achieve robust connectivity: the top and

bottom plates remain disconnected (connected) with high probability. Therefore the

one margin and zero margin are the indicators of defect tolerance while the lattice’s

top and bottom plates are connected and disconnected, respectively. In other words,

the margins are the maximum defect probabilities (rates) that can be tolerated. For
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example, suppose that a network has 5% zero and one margins. This means that the

network will successfully tolerate defects unless the defect probability (rate) exceed 5%.

If it exceeds 5%, it is obvious that we need a bigger network, one with more switches,

in order to tolerate defects.

4.2 Logic Synthesis Through Percolation

We implement Boolean functions with a single lattice of four-terminal switches, as

illustrated in Figure 4.4. There are R×C regions r11, . . . , rRC in the lattice. Each region

has N ×M four-terminal switches. We assign Boolean literals x1, x̄1, x2, x̄2, . . . , xk, x̄k

to regions as controlling inputs. If an input literal is logic 1 then all switches in the

corresponding region are ideally ON; if the literal is logic 0 then all switches in the

corresponding region are ideally OFF. This is illustrated in Figure 4.5.

In our synthesis method, a Boolean function is implemented by a lattice according

to the connectivity between the top and bottom plates. For the purpose of elucidating

our method, we will also discuss connectivity between the left and right plates. Call the

Boolean functions corresponding to the top-to-bottom and left-to-right plate connectiv-

ities fL and gL, respectively. (Note, however, that our design method does not aim to

implement separate top-to-bottom and left-to-right functions. As we explain below, fL

and gL are related.)

As shown in Figure 4.5, each Boolean function evaluates to 1 if there exists a path

between corresponding plates and evaluates to 0 otherwise. Thus, the Boolean functions

fL and gL can be computed as the OR of all top-to-bottom and left-to-right paths,

respectively. Since each path corresponds to the AND of inputs, the paths taken together

correspond to the OR of these AND terms, so implement a sum-of-products expression.

Note that the values of N and M do not affect the Boolean functionality between

plates; they determine the defect tolerance capability of the lattice. Therefore, for

simplicity, let’s set N = 1 and M = 1 while computing the Boolean functions fL and gL.



53

r11

rRCrR1

r12 r1C

rR2

r(R-1)1

r21

r1(C-1)

r2C

r(R-1)C

rR(C-1)

TOP

C Columns
LE

FT

R
IG

H
T

R 
R

ow
s

 f L
 

 gL 

N
 R

ow
s

M Columns

Insulator
Metal

BOTTOM

V-in

Figure 4.4: Boolean computation in a lattice, i.e., each region has N ×M four-terminal
switches. Each region can be realized by an N ×M nanowire crossbar array with a
controlling voltage V-in.

Figure 4.5: Relation between Boolean functionality and paths; fL = 1 and gL = 0. (a)
Each of the 16 regions is assigned logic 0 or 1; R = 4 and C = 4. (b) Each region has 9
switches; N = 3 and M = 3.
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In this way, there are fewer paths to count between the corresponding plates. Consider

the lattice shown in Figure 4.6(a): here there are 6 regions each of which is controlled

by a Boolean literal. With N = 1 and M = 1, there are 3 top-to-bottom paths and

4 left-to-right paths, as shown in Figure 4.6(b). Here fL is the OR of the 3 products

x1x3, x̄1x2, x3x4 and gL is the OR of the 4 products x1x2x3, x1x̄1x2x4, x̄1x2x3x3, x̄1x3x4.

As a result, fL = x1x3 + x̄1x2 + x3x4 and gL = x̄1x3x4 + x2x3.

L 

L 

L 

L 

Figure 4.6: (a) A lattice with assigned inputs to 6 regions. (b) Switch-based represen-
tation of the lattice; N = 1 and M = 1.

In the following section, we study the robustness of the lattice computation. We

investigate the computation, implemented in terms of connectivity across the lattice, in

the presence of defects.

4.2.1 Robustness

An important consideration in synthesis is the quality of the margins, defined in

Definition 10. Suppose that the one and zero margins are the ranges of values for p1

for which p2 is always above (1 − ε) and below ε, respectively, where ε is a very small

number. For what follows, we will use a value ε = 0.001. The margins correlate with

the degree of defect tolerance. For instance a 10% one margin means that a defect rate

of up to 10% can be tolerated while the corresponding Boolean function evaluates to 1.

In other words, although each switch is defective with probability 0.1, the circuit still
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evaluates to 1 with high probability (p2 > 0.999). The higher the margins, the higher

the defect tolerance that we achieve.

Different assignments of input variables to the regions of the lattice affect the mar-

gins. Consider a 4-input 2× 2 lattice shown in Figure 4.7(a). Suppose that N = 8 and

M = 8 for this lattice. Figure 4.7(b) shows Boolean functionalities and margins for

different input assignments. Since the lattice has 4 input variables x1, x2, x3, x4 there

should be 16 different input assignments. However, there are only 7 rows in the ta-

ble. Some input assignments produce the same result due to symmetries in the lattice:

flipping the lattice vertically or horizontally gives us two different input assignments

that are identical in terms of margins as well as the Boolean functionality. Note that

each margin value in the table corresponds to either a one margin (if the corresponding

Boolean function is 1) or a zero margin (if the corresponding Boolean function is 0). We

define the worst-case one and zero margins to be the minimum one and zero margins

of all input assignments. For example, the table shown in Figure 4.7(b) states that fL

has a 14% worst-case one margin and a 0% worst-case zero margin.

x1 x2

x3 x4

LE
FT

BOTTOM

TOP

R
IG

H
T

             (a)                                                                                   (b)

Figure 4.7: (a): A lattice with assigned inputs; R = 2 and C = 2. (b): Possible 0/1
assignments to the inputs (up to symmetries) and corresponding margins for the lattice
(N = 8,M = 8).
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The row highlighted in grey has very low margins – indeed, these are nearly zero

– so the circuit is likely to produce erroneous values for this input combination. Let’s

examine why. Assignments that evaluate to 0 but have diagonally adjacent assignments

of blocks of 1’s could be problematic because there is a chance that a weak connection

will form through stray, random connections across the diagonal. This is illustrated in

Figure 4.8. In this example, fL and gL both evaluate to 0; however the top-to-bottom

and left-to-right connectivities evaluate to 1 if a defect occurs around the diagonal 1’s.

In effect, such defective switches are “shorting” the connection. So in this case fL and

gL both evaluate to 1, incorrectly.

L L

Figure 4.8: An input assignment with a low zero margin. Ideally, both fL and gL

evaluate to 0.

Note that diagonal paths are only problematic when the corresponding Boolean

function evaluates to 0 because the diagonal paths can only cause 0 → 1 errors. If the

Boolean function evaluates to 1, these diagonal paths do not cause such an error; at

best they strengthen the connection between plates. This is illustrated in Figure 4.9.

In the figure, there are both top-to-bottom and left-to-right diagonal paths shown with

red lines. However, only the top-to-bottom diagonal path is destructive because only

fL evaluates to 0 (gL = 1).
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Figure 4.9: An input assignment with top-to-bottom and left-to-right diagonal paths
shown by the red line.

Definition of Robustness: We call a lattice robust if there is no input assignment for

which the top-to-bottom function evaluates to 0 that contains diagonally adjacent 1’s.

The following theorem tells us the necessary and sufficient condition for robustness.

Theorem 5

A lattice is robust iff the top-to-bottom and left-to-right functions fL and gL are dual

functions: fL(x1, x2, . . . , xk) = ḡL(x̄1, x̄2, . . . , x̄k). 2

(See Definition 5 for the meaning of dual.)

Proof of Theorem 5: In the proof, we consider two cases, namely fL = 1 and fL = 0.

Case 1: If fL(x1, x2, . . . , xk) = 1, there must be a path of 1’s between top and

bottom. If we complement all the inputs (1 → 0, 0 → 1), these connected 1’s be-

come 0’s and vertically separate the lattice into two parts. Therefore no path of

1’s exists between the left and right plates, i.e., gL(x̄1, x̄2, . . . , x̄k) = 0. As a result,

ḡL(x̄1, x̄2, . . . , x̄k) = fL(x1, x2, . . . , xk) = 1
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Figure 4.10: Illustration of Theorem 5.

Case 2: If fL(x1, x2, . . . , xk) = 0 and there are no diagonally connected top-to-

bottom paths, there must be a path of 0’s between left and right. If we complement

all the inputs, these connected 0’s become 1’s, i.e., gL(x̄1, x̄2, . . . , x̄k) = 1. As a result,

ḡL(x̄1, x̄2, . . . , x̄k) = fL(x1, x2, . . . , xk) = 0

Figure 4.10 illustrates the two cases. Taken together the two cases prove that for

robust computation, fL and gL must be dual functions. For both cases it is trivial that

we can do the same reasoning in an inverse way: if fL and gL are dual functions then

every input assignment is robust. 2

We elucidate the theorem by the following example.

Example 10

Consider the lattices shown in Figure 4.11. For both lattices, R = 2 and C = 2. Let’s

analyze the robustness of these two lattices using Theorem 5.

Example (a): The Boolean functions implemented by the lattice are fL = x1x3 +

x2x4 and gL = x1x2+x3x4. Since fD
L = (x1+x3)(x2+x4) = x1x2+x1x4+x2x3+x3x4 6=

gL, so fL and gL are not dual functions. Theorem 5 tells us that if fL and gL are

not dual then there exists an non-robust input assignment. We can easily identify it:

x1 = 1, x2 = 0, x3 = 0, x4 = 1.
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Figure 4.11: (a) An example of non-robust computation; (b) An example of robust
computation.

Example (b): The Boolean functions implemented by the lattice are fL = x1x3 +

x̄1x2 and gL = x1x2 + x̄1x3. Since fD
L = (x1 + x3)(x̄1 + x2) = x1x2 + x̄1x3 = gL,

so fL and gL are dual functions. Theorem 5 tells us that if fL and gL are dual then

every assignment is robust. One can easily see that none of the input assignments cause

diagonal 1’s while the corresponding function evaluates to 0. 2

We conclude that, in order to achieve robust computation, we must design lattices

that have dual top-to-bottom and left-to-right Boolean functions.

4.2.2 Logic Optimization Problem

To achieve robust computation gives rise to an interesting problem in logic optimiza-

tion: given a target function fT in SOP form, how should we assign the input literals

such that fL = fT and gL = fD
T ? In other words, how should we assign literals so

that the lattice implements the target function between the top and bottom plates, and

implements the dual of the function between the left and right plates? As described in

the previous section, having dual functions ensures robustness.

While maximizing the margins, we also need to consider the area of the lattice; this

can be measured by the total number of switches R × C ×N ×M in the lattice. Here

R×C and N ×M represent the number of regions and the number of switches for each

region, respectively.
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We suggest a four-step algorithm for optimizing the lattice area while meeting pre-

scribed worst-case margins for a given target function fT .

Algorithm:

1. Begin with the target function fT and its dual fD
T both in MSOP form.

2. Find a lattice with the smallest number of regions that satisfies the conditions:

fL = fT and gL = fD
T . This determines R× C.

3. Dependent on the defect rates of the technology, determine the required worst-case

one and zero margin values.

4. Determine the number of switches required in each region in order to meet the

prescribed margins. This determines N ×M .

The first step is straightforward. The dual of the target function can be computed

from Definition 5. Exact methods such as Quine-McCluskey or heuristic methods such

as Espresso can be used to obtain functions in MSOP form [31, 22].

For the second step of the algorithm, we point the reader to Chapter 3. In this

chapter, we address the problem of assigning literals to switches in a lattice in order to

implement a given target Boolean function. The goal was to minimize the number of

regions. We present an efficient algorithm that produces lattices with a size that grows

linearly with the number of products of the target Boolean function. Suppose that

fT and fD
T in MSOP form have A and B product terms, respectively. Our algorithm

produces lattices with B × A regions (R = B and C = A) for which fL = fT and

gL = fD
T .

For the third step, we assume that the defect rates of the switches are known or can

be estimated. Recall that we consider two types of defects: those that result in switches

being OFF while they are supposed to be ON (call these “ON-to-OFF” defects), and

defects that result in switches being ON while they are supposed to be OFF (call these
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“OFF-to-ON” defects). We allow for different rates for both types of defects. Based

upon the ON-to-OFF and OFF-to-ON defect rates, we establish the worst-case one and

zero margins, respectively.

For the fourth step, we need to determine N and M such that the lattice meets the

prescribed margins. Table 4.1 shows the general relationship between margins and N

and M . It suggests how we should select values of N and M . For instance, suppose

that we require a 20% one margin and a 5% zero margin. Table 4.1 tells us that we

need to select a larger value of M than that of N . Also, from the figure, we observe that

regardless of whether we increase N or M , the sum of the margins always increases.

This is due to the percolation phenomenon: the larger the lattice, the steeper the non-

linearity curve. Based upon these considerations, we use a simple greedy technique to

set the required values of N and M . The method tries worst-case margins for different

values of N and M until the prescribed margins are met.

We elucidate our algorithm with the following examples. For all of the examples,

we use 10% worst-case one and zero margins.

Table 4.1: Relationship between margins, and N and M .

Example 11

Suppose that we are given the following target function fT in MSOP form:

fT = x1x2.

First, we compute its dual fD
T in MSOP form:

fD
T = x1 + x2.
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The number of products in fT and fD
T are 1 and 2, respectively, i.e., A = 1 and B = 2.

Then, we construct a lattice such that fL = fT = x1x2 and gL = fD
T = x1 + x2. The

lattice is illustrated in Figure 4.12. Note that R = B = 2 and C = A = 1.

Finally, we find that N = 4 and M = 6 in order to satisfy 10% worst-case one and zero

margins.

As a result, the lattice area = R× C ×N ×M = 2× 1× 4× 6 = 48.

Figure 4.12: A lattice that implements fL = x1x2 and gL = x1 + x2.

2

Example 12

Suppose that we are given the following target function fT in MSOP form:

fT = x1x̄2 + x̄1x2.

First, we compute its dual fD
T in MSOP form:

fD
T = x1x2 + x̄1x̄2.

We have that A = 2 and B = 2.

Then, we construct a lattice such that fL = fT and gL = fD
T . The lattice is illustrated

in Figure 4.13. Note that R = B = 2 and C = A = 2.

Finally, we find that N = 4 and M = 6 in order to satisfy 10% worst-case one and zero

margins.
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As a result, the lattice area = R× C ×N ×M = 2× 2× 4× 6 = 96.

Figure 4.13: A lattice that implements fL = x1x̄2 + x̄1x2 and gL = x1x2 + x̄1x̄2.

2

Example 13

Suppose that we are given the following target function fT in MSOP form:

fT = x1x̄2x3 + x1x̄4 + x2x2x̄4 + x2x4x5 + x3x5.

First, we compute its dual fD
T in MSOP form:

fD
T = x1x2x5 + x1x3x4 + x2x3x̄4 + x̄2x̄4x5.

We have that A = 5 and B = 4.

Then, we construct a lattice such that fL = fT and gL = fD
T . The lattice is illustrated

in Figure 4.14. Note that R = B = 4 and C = A = 5.

Finally, we find that N = 4 and M = 5 in order to satisfy 10% worst-case one and zero

margins.

As a result, the lattice area = R× C ×N ×M = 4× 5× 4× 5 = 400.

2

We implement the target functions with specified margins. Note that because of the

lattice duality, the one and zero margins of target functions become the zero and one

margins of their duals, respectively. Therefore our algorithm also gives us solutions for
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Figure 4.14: A lattice that implements fL = x1x̄2x3 + x1x̄4 + x2x2x̄4 + x2x4x5 + x3x5

and gL = x1x2x5 + x1x3x4 + x2x3x̄4 + x̄2x̄4x5.

the target functions’ duals with inverse margin specifications. For the examples above,

the lattice areas are also valid for the target functions’ duals since the zero and one

margin specifications are both 10%.

In the following section, we test the effectiveness of the algorithm on benchmark

circuits.

4.3 Experimental Results

We report synthesis results for some common benchmark circuits [21]. We consider

each output of a benchmark circuit as a separate target Boolean function. Table 4.2

lists the required lattice areas for the target functions meeting 10% worst-case one and

zero margins. Recall that the lattice area is defined as the number of switches in the

lattice. It can be calculated as R×C ×N ×M where R×C and N ×M represent the

number of regions and the number of switches for each region, respectively.

In order to obtain the lattice areas, we follow the steps of the proposed algorithm

in Section 4.2.2. We first obtain values for A and B, the number of products in the

target functions and their duals, respectively. Our algorithm sets R = A and C = B,
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so produces lattices with B × A regions. We calculate values of N and M that satisfy

the prescribed 10% worst-case margins.

Table 4.2 reports the lattice areas, calculated as A × B × N × M . Examining

the numbers in the table, we see that number of switches needed per region, N ×M ,

is negatively correlated with the number of regions, A × B. That is to say, Boolean

functions with more products (larger A×B values) need smaller regions (smaller N×M

values) to meet prescribed margins. This indicates a positive scaling trend: the lattice

size grows more slowly than the function size. This key behavior is due to the percolation

phenomena.

The lattice areas in Table 4.2 gurantee that each circuit evaluates to a correct value

with high probability (0.999) in spite of a considerably high defect rate (10%). Note

that we consider random defects; there is no restriction on the number or the place of

the defects.

4.4 Discussion

In this chapter, we develop a defect tolerance methodology for nanoscale lattices

of four-terminal switches, each controlled by a Boolean literal. This model is concep-

tually general and applicable to a range of emerging technologies, including nanowire

crossbar arrays [16] and magnetic switch-based structures [4]. We are investigating its

applicability to DNA nanofabrics [25, 26].

Particularly with self-assembly, nanoscale lattices are often characterized by high

defect rates. A variety of techniques have been proposed for mitigating against de-

fects [32, 33, 34, 35, 36]. Significantly, unlike these techniques for defect tolerance, our

method does not require defect identification followed by reconfiguration. Our method

provides a priori tolerance to defects of any kind, both permanent and transient, pro-

vided that such defects occur probabilistically and independently. Indeed, percolation

depends on a random distribution of defects. If the defect probabilities are correlated
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Table 4.2: Lattice areas for the output functions of benchmark circuits in order to meet
10% worst-case one and zero margins.

Circuit A B Number of regions N M Lattice area
alu1 3 2 6 5 6 180
alu1 2 3 6 4 6 144
alu1 1 3 3 4 6 72
clpl 4 4 16 4 5 320
clpl 3 3 9 4 5 180
clpl 2 2 4 4 6 96
clpl 6 6 36 4 5 720
clpl 5 5 25 4 5 500

newtag 8 4 32 5 5 800
dc1 4 4 16 4 5 320
dc1 2 3 6 4 6 144
dc1 4 4 16 4 5 320
dc1 4 5 20 4 6 480
dc1 3 3 9 4 5 180

misex1 2 5 10 4 7 280
misex1 5 7 35 4 6 840
misex1 5 8 40 4 6 960
misex1 4 7 28 4 6 672
misex1 5 5 25 4 5 500
misex1 6 7 42 4 5 840
misex1 5 7 35 4 6 840

b12 4 6 24 4 6 576
b12 7 5 35 5 5 875
b12 7 6 42 5 5 1050
b12 4 2 8 5 6 240
b12 4 2 8 5 6 240
b12 5 1 5 6 5 150
b12 9 6 54 5 5 1350
b12 6 4 24 5 5 600
b12 7 2 14 6 5 420

newbyte 1 5 5 4 7 140
newapla2 1 6 6 4 7 168

c17 3 3 9 4 5 180
c17 4 2 8 5 6 240

rd53 5 10 50 4 6 1200
rd53 10 10 100 4 5 2000
rd53 16 16 256 3 5 3840



67

across regions, then the steepness of the percolation curve decreases; as a result, the

defect tolerance diminishes. In future work, we will study this tradeoff mathematically

and develop synthesis strategies to cope with correlated probabilities in defects.



Chapter 5

Dualization Problem

The problem of testing whether a monotone Boolean function in irredundant disjun-

tive normal form (IDNF) is self-dual is one of few problems in circuit complexity whose

precise tractability status is unknown. This famous problem is called the monotone self-

duality problem [8]. It impinges upon many areas of computer science, such as artificial

intelligence, distributed systems, database theory, and hypergraph theory [37, 38].

Consider a monotone Boolean function f in IDNF. Suppose that f has k variables

and n disjuncts:

f(x1, x2, . . . , xk) = D1 ∨D2 ∨ · · · ∨Dn

where each disjunct Di is a prime implicant of f , i = 1, . . . n. The relationship between

k and n is a key aspect of the monotone self-duality problem. Prior work has shown

that if f is self-dual then k ≤ n2 [6, 9]. We improve on this result. In Section 5.2, by

Corollary 1, we show that if f is self-dual then k ≤ n. Our result can also be applied to

dual Boolean functions by using the statement in Lemma 9: Boolean functions f and g

are dual pairs iff a Boolean function af ∨ bg ∨ ab is self-dual where a and b are Boolean

variables. In Section 5.2, by Corollary 2, we show that if f and g are dual pairs then

k ≤ n + m − 1 where k is the number of variables, and n and m are the numbers of

68
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disjuncts of f and g, respectively. Prior work has shown that if f and g are dual pairs

then k ≤ n×m [6, 8].

In Section 5.3, we consider the monotone self-duality problem for Boolean functions

with the same number of variables and disjuncts (i.e., n = k). For such functions, we

propose an algorithm that runs in O(n4) time.

In the following section, we present definitions that are used throughout this chapter.

5.1 Definitions

Definition 11

Consider k independent Boolean variables, x1, x2, . . . , xk. Boolean literals are

Boolean variables and their complements, i.e., x1, x̄1, x2, x̄2, . . . , xk, x̄k. 2

Definition 12

A disjunct (D) of a Boolean function f is an AND of literals, e.g., D = x1x̄3x4, that

implies f . A disjunct set (SD) is a set containing all the disjunct’s literals, e.g., if

D = x1x̄3x4 then SD = {x1, x̄3, x4}. A disjunctive normal form (DNF) is an OR

of disjuncts. 2

Definition 13

A prime implicant (PI) of a Boolean function f is a disjunct that implies f such that

removing any literal from the disjunct results in a new disjunct that does not imply f .

2

Definition 14

An irredundant disjunctive normal form (IDNF) is a DNF where each disjunct

is a PI of a Boolean function f and no PI can be deleted without changing f . 2

Definition 15

Boolean functions f and g are dual pairs iff f(x1, x2, . . . , xk) = gD = ḡ(x̄1, x̄2, . . . , x̄k).

A Boolean function f is self-dual iff f(x1, x2, . . . , xk) = fD = f̄(x̄1, x̄2, . . . , x̄k).
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Given an expression for a Boolean function in terms of AND, OR, NOT, 0, and 1, its

dual can also be obtained by interchanging the AND and OR operations as well as

interchanging the constants 0 and 1. For example, if f(x1, x2, x3) = x1x2 ∨ x̄1x3 then

fD(x1, x2, x3) = (x1 ∨ x2)(x̄1 ∨ x3). A trivial example is that for f = 1, the dual is

fD = 0. 2

Definition 16

A Boolean function f is monotone if it can be constructed using only the AND and

OR operations (specifically, if it can constructed without the NOT operation). 2

Definition 17

The Fano plane is the smallest finite projective plane with seven points and seven

lines such that and every pair of its lines intersect in one point. A Boolean function

that represents the Fano plane is a monotone self-dual Boolean function with seven

variables and seven disjuncts such that every pair of its disjuncts intersect in one vari-

able. An example is f = x1x2x3∨x1x4x5∨x1x6x7∨x2x4x6∨x2x5x7∨x3x4x7∨x3x5x6.

2

5.2 Number of disjuncts versus number of variables

Our main contribution in this section is Theorem 6. It defines a necessary condition

for monotone self-dual Boolean functions. For such functions, there exists a matching

between its variables and disjuncts, i.e., every variable can be paired to a distinct

disjunct that contains the variable. From this theorem we derive our two main results,

presented as Corollary 1 and Corollary 2.

5.2.1 Preliminaries

We define the intersection property as follows. A Boolean function f satisfies the

intersection property if every pair of its disjuncts has a non-empty intersection.
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The following lemma is from from [6].

Lemma 6

Consider a monotone Boolean function f in IDNF. If f is self-dual then f satisfies the

intersection property. 2

Proof of Lemma 6: The proof is by contradiction. Consider a disjunct D of f . We

assign 1’s to the all variables of D and 0’s to the other variables of f . This makes f = 1.

If f does not satisfy the intersection property then there must be a disjunct of f having

all assigned 0’s. This makes fD = 0, so f 6= fD. This is a contradiction. 2

Lemma 7

Consider a monotone Boolean function f in IDNF satisfying the intersection property.

Suppose that we obtain a new Boolean function g by removing one or more disjuncts

from f . There is an assignment of 0’s and 1’s to the variables of g such that every

disjunct of g has both a 0 and a 1. 2

Proof of Lemma 7: Consider one of the disjuncts that was removed from f . We

focus on the variables of this disjunct that are also variables of g. Suppose that we

assign 1’s to all of these variables of g and 0’s to all of the other variables of g. Since

f is in IDNF, the assigned 1’s do not make g = 1. Therefore g = 0; every disjunct of g

has at least one assigned 0. Since f satisfies the intersection property, every disjunct of

g has at least one assigned 1. As a result, every disjunct of g has both a 0 and a 1. 2

We define a matching between a variable x and a disjunct D as follows. There is

a matching between x and D iff x is a variable of D. For example, if D = x1x2 then

there is a matching between x1 and D as well as x2 and D.

Lemma 8

Consider a monotone Boolean function f in IDNF satisfying the intersection property.

Suppose that f has k variables and n disjuncts. If each of the b variables of f can be
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matched with a distinct disjunct of f where b < k and b < n, and all other unmatched

disjuncts of f do not have any of the matched variables, then f is not self-dual. 2

Proof of Lemma 8: Lemma 8 is illustrated in Figure 5.1. Note that a variable xi

is matched with a disjunct Di for every i = 1, . . . , b. To prove that f is not self-dual,

we assign 0’s and 1’s to the variables of f such that every disjunct of f has both 0

and 1. This results in f = 0 and fD = 1; f 6= fD. We first assign 0’s and 1’s to the

variables of Db+1 ∨ . . . ∨ Dn to make each disjunct of Db+1 ∨ . . . ∨ Dn have both a 0

and a 1. Lemma 7 allows us to do so. Note that none of the variables x1, . . . , xb has an

assignment yet. Since f satisfies the intersection property, each disjunct of D1∨ . . .∨Db

should have at least one previously assigned 0 or 1. If a disjunct of D1 ∨ . . . ∨Db has

a previously assigned 1 then we assign 0 to its matched (circled) variable; if a disjunct

of D1 ∨ . . . ∨Db has a previously assigned 0 then we assign 1 to its matched (circled)

variable. As a result, every disjunct of f has both a 0 and a 1; therefore f is not

self-dual.

Figure 5.1: An illustration of Lemma 8.

2

The following lemma is from [6].

Lemma 9

Boolean functions f and g are dual pairs iff a Boolean function af ∨ bg ∨ ab is self-dual

where a and b are Boolean variables. 2
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Proof of Lemma 9: From the definition of duality, if af ∨ bg ∨ ab is self-dual then

(af∨bg∨ab)a=1, b=0 = f and (af∨bg∨ab)a=0, b=1 = g are dual pairs. From the definition

of duality, if f and g are dual pairs then (af∨bg∨ab)D = (aD∨fD)(bD∨gD)(aD∨bD) =

(a ∨ g)(b ∨ f)(a ∨ b) = (af ∨ bg ∨ ab). 2

5.2.2 The Theorem

Theorem 6

Consider a monotone Boolean function f in IDNF. If f is self-dual then each variable

of f can be matched with a distinct disjunct. 2

Before proving the theorem we elucidate it with examples.

Example 14

Consider a monotone self-dual Boolean function in IDNF

f = x1x2 ∨ x1x3 ∨ x2x3.

The function has three variables x1, x2, and x3, and three disjuncts D1 = x1x2, D2 =

x1x3, and D3 = x2x3. As shown in Figure 5.2, every variable is matched with a distinct

disjunct; the circled x1, x2, and x3 are matched with D1, D3, and D2, respectively.

We see that the theorem holds for this example. Note that the required matching –

each variable to a distinct disjunct – might not be unique. For this example, another

possibility is having x1, x2, and x3 matched with D2, D1, and D3, respectively.

Figure 5.2: An example to illustrate Theorem 6: x1, x2, and x3 matched with D2, D1,
and D3, respectively.

2
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Example 15

Consider a monotone self-dual Boolean function in IDNF

f = x1x2x3 ∨ x1x3x4 ∨ x1x5x6 ∨ x2x3x6 ∨ x2x4x5 ∨ x3x4x6 ∨ x3x5.

The function has six variables x1, x2, x3, x4, x5, and x6, and seven disjuncts D1 =

x1x2x3, D2 = x1x3x4, D3 = x1x5x6, D4 = x2x3x6, D5 = x2x4x5, D6 = x3x4x6, and

D7 = x3x5. As shown in Figure 5.3, every variable is matched with a distinct disjunct;

the circled x1, x2, x3, x4, x5, and x6 are matched with D1, D4, D2, D5, D3, and D6,

respectively. We see that the theorem holds for this example.

Figure 5.3: An example to illustrate Theorem 6: x1, x2, x3, x4, x5, and x6 are matched
with D1, D4, D2, D5, D3, and D6, respectively.

2

Proof of Theorem 6: The proof is by contradiction. We suppose that at most a

variables of f can be matched with distinct disjuncts, where a < k. We consider two

cases, n = a and n > a where n is the number of disjuncts of f . For both cases, we find

an assignment of 0’s and 1’s to the variables of f such that every disjunct of f has both

a 0 and a 1. This results in a contradiction since such an assignment makes f = 0 and

fD = 1; f 6= fD.

Case 1: n = a.

This case is illustrated in Figure 5.4. To make every disjunct of f have both a 0

and a 1, we first assign 0 to x1 and 1 to xa+1. Then we assign a 0 or a 1 to each of the

variables x2, . . . , xa step by step. In each step, if a disjunct has a previously assigned 1

then we assign 0 to its matched (circled) variable; if a disjunct has a previously assigned

0 then we assign 1 to its matched (circled) variable. After these steps, if every disjunct
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of f has both a 0 and a 1 then we have proved that f is not self-dual. If there remain

disjuncts, these disjuncts should not have any previously assigned variables. Lemma 8

identifies this condition and it tells us that f is not self-dual. This is a contradiction.

Figure 5.4: An illustration of Case 1.

Case 2: n > a

This case is illustrated in Figure 5.5. We show that f always satisfies the condition

in Lemma 8; accordingly f is not self-dual.

As shown in Figure 5.5, the expression Da+1 ∨ . . . ∨Dn does not have the variable

x1 or the variable xa+1. If it had then at least a + 1 variables would be matched; this

would go against our assumption. For example, if Da+1∨ . . .∨Dn has x1 then x1 would

be matched with a disjunct from Da+1 ∨ . . .∨Dn and xa+1 would be matched with D1.

So a+ 1 variables would be matched with distinct disjuncts.

Figure 5.5: An illustration of Case 2.

If Da+1 ∨ . . . ∨Dn does not have any of the variables x2, . . . , xa then f satisfies the

condition in Lemma 8; f is not self-dual. If it does then the number of disjuncts not

having x1 or xa+1 increases. This is illustrated in Figure 5.6. Suppose that Da+1 ∨

. . . ∨Dn has variables xj , . . . , xa−1 where j ≥ 2. As shown in the table, Dj ∨ . . . ∨Dn

does not have x1 or xa+1. If it had then at least a + 1 variables would be matched;



76

this would go against our assumption. For example, if Dj had xa+1 then xa+1 would be

matched with Dj and xj would be matched with a disjunct from Da+1 ∨ . . . ∨Dn. So

a+ 1 variables would be matched with distinct disjuncts.

Figure 5.6: An illustration of Case 2.

If Dj ∨ . . . ∨ Dn does not have any of the variables x2, . . . , xj−1 then f satisfies

Lemma 8; f is not self-dual. If it does have any of these variables then the number of

disjuncts not having x1 or xa+1 increases.

As a result the number of disjuncts not having x1 or xa+1 increases unless the

condition in Lemma 8 is satisfied. Since there must be disjuncts having x1 or xa+1,

this increase should eventually stop. When it stops, the condition in Lemma 8 will be

satisfied. As a result, f is not self-dual. This is a contradiction. 2

Corollary 1

Consider a monotone Boolean function f in IDNF. Suppose that f has k variables and

n disjuncts. If f is self-dual then k ≤ n. 2

Proof of Corollary 1: We know that if f is self-dual then f should satisfy the

matching defined in Theorem 6. This matching requires that f does not have more

variables than disjuncts, so k ≤ n. 2

Corollary 2

Consider monotone Boolean functions f and g in IDNF. Suppose that f has k variables

and n disjuncts and g has k variables and m disjuncts. If f and g are dual pairs then

k ≤ n+m− 1. 2
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Proof of Corollary 2:

From Lemma 9 we know that the Boolean functions f and g are dual pairs iff a

Boolean function af ∨ bg∨ab is self-dual where a and b are Boolean variables. If neither

a nor b is a variable of f (or of g) then af ∨ bg ∨ ab has n+m+ 1 disjuncts and k + 2

variables. From Corollary 1, we know that k + 2 ≤ n+m+ 1, so k ≤ n+m− 1. 2

5.3 The self-duality problem

In this section we propose an algorithm to test whether a monotone Boolean function

in IDNF with n variables and n disjuncts is self-dual. The runtime of the algorithm is

O(n4).

5.3.1 Preliminaries

The following theorem is from [39, 40]

Theorem 7

Consider a disjunct Di of a monotone self-dual Boolean function f in IDNF. For any

variable x of Di there exists at least one disjunct Dj of f such that SDi ∩ SDj = {x}.

2

Before proving the theorem we elucidate it with an example.

Example 16

Consider a monotone self-dual Boolean function function in IDNF

f = x1x2x3 ∨ x1x3x4 ∨ x1x5x6 ∨ x2x3x6 ∨ x2x4x5 ∨ x3x4x6 ∨ x3x5.

The function has seven disjuncts D1 = x1x2x3, D2 = x1x3x4, D3 = x1x5x6, D4 =

x2x3x6, D5 = x2x4x5, D6 = x3x4x6, and D7 = x3x5. Consider the disjunct D1 =

x1x2x3. Since SD1 ∩ SD3 = {x1}, SD1 ∩ SD5 = {x2}, and SD1 ∩ SD6 = {x3},

the theorem holds for any variable of D1. Consider the disjunct D2 = x1x3x4. Since
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SD2 ∩ SD3 = {x1}, SD2 ∩ SD4 = {x3}, and SD2 ∩ SD5 = {x4}, the theorem holds for

any variable of D2. 2

Proof of Theorem 7: The proof is by contradiction. Suppose that there is no

disjunct Dj of f such that SDi ∩ SDj = {x}. From Lemma 6, we know that Di has

a non-empty intersection with every disjunct of f . If we extract x from Di then a

new disjunct D′i should also have a non-empty intersection with every disjunct of f .

This means that if we assign 1’s to the all variables of D′i then these assigned 1’s make

f = fD = (1 + . . .)(1 + . . .) . . . (1 + . . .) = 1. So D′i implies f ; D′i is a disjunct of f . This

disjunct covers Di. However, in IDNF, all disjuncts including Di are irredundant, not

covered by another disjunct of f . So we have a contradiction 2

Lemma 10

Consider a disjunct D of a monotone self-dual Boolean function f in IDNF. Consider all

disjuncts D1, . . . , Dy of f such that SD ∩ SDi = {x} for every i = 1, . . . , y. A Boolean

function g = (Dx=1)((D1 ∨ . . . ∨Dy)x=1)D implies (i.e., is covered by) f . 2

Before proving the lemma we elucidate it with an example.

Example 17

Consider a monotone self-dual Boolean function function in IDNF

f = x1x2x3 ∨ x1x3x4 ∨ x1x5x6 ∨ x2x3x6 ∨ x2x4x5 ∨ x3x4x6 ∨ x3x5.

The function has seven disjuncts D1 = x1x2x3, D2 = x1x3x4, D3 = x1x5x6, D4 =

x2x3x6, D5 = x2x4x5, D6 = x3x4x6, and D7 = x3x5. Consider the disjunct D1 =

x1x2x3. The disjunct D3 = x1x5x6 is the only disjunct that intersects D1 in x1. Since

g = ((D1)x1=1) ((D3)x1=1)D = x2x3x5∨x2x3x6 implies f , the lemma holds for this case.

The disjuncts D6 = x3x4x6 and D7 = x3x5 are the only disjuncts that intersect D1

in x3. Since g = ((D1)x3=1) ((D6 ∨D7)x1=1)D = x1x2x4x5 ∨ x1x2x5x6 implies f , the

lemma holds for this case. 2
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Proof of Lemma 10: To prove the statement we check if g = 1 always makes

f = fD = 1 (by assigning 1’s to the variables of g). Suppose that f has n disjuncts

D1, . . . , Dy, D,Dy+2, . . . , Dn. If g = 1 then both (Dx=1) = 1 and ((D1∨. . .∨Dy)x=1)D =

1. From Lemma 6, we know that if (Dx=1) = 1 then every disjunct of Dy+2, . . .∨, Dn

has at least one assigned 1. From the definition of duality, we know that if ((D1 ∨ . . .∨

Dy)x=1)D = 1 then every disjunct of D1, . . . , Dy has at least one assigned 1. As a result,

every disjunct of f has at least one assigned 1 making f = fD = (1+. . .) . . . (1+. . .) = 1.

2

Lemma 11

Consider a monotone self-dual Boolean function f in IDNF with k variables. A set of b

variables of f has a non-empty intersection with at least b+ 1 disjunct sets of f where

b < k. 2

Before proving the lemma we elucidate it with an example.

Example 18

Consider a monotone self-dual Boolean function function in IDNF

f = x1x2x3x4 ∨ x1x5 ∨ x1x6 ∨ x2x5x6 ∨ x3x5x6 ∨ x4x5x6.

The function has six disjuncts D1 = x1x2x3x4, D2 = x1x5, D3 = x1x6, D4 = x2x5x6,

D5 = x3x5x6, and D6 = x4x5x6. Consider a set of two variables {x2, x3}; b = 2. Since

it has a non-empty intersection with three disjunct sets SD1, SD4, and SD5, the lemma

holds for this case. Consider a set of one variable {x1}; b = 1. Since has a non-empty

intersection with three disjunct sets SD1, SD2, and SD3, the lemma holds for this case.

2

Proof of Lemma 11: The proof is by contradiction. From Theorem 6, we know that

each of the k variables should be matched with a distinct disjunct, so a set of b variables

of f should have a non-empty intersection with at least b disjunct sets of f . Suppose
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that a set of b variables of f has a non-empty intersection with exactly b disjunct sets

of f . Lemma 8 identifies this condition and it tells us that f is not self-dual. This is a

contradiction. 2

Theorem 8

Consider a monotone self-dual Boolean function f in IDNF with k variables. If every

variable of f occurs at least three times then a set of b variables of f has a non-empty

intersection with at least b+ 2 disjunct sets of f where b < k − 1. 2

Proof of Theorem 8: The proof is by induction on b.

The base case: b = 1.

Since a variable of f occurs three times, a set of one variable should have a non-empty

intersection with at least three disjunct sets of f .

The inductive step: Assume that the theorem holds for b ≤ m where m ≥ 2. We

show that it also holds for b = m+ 1.

Consider a set of m + 1 variables S = {x1, . . . , xm+1}. Consider a disjunct D of f

such that SD ∩ S = {x1, . . . , xc}. From Theorem 7, we know that there is at least one

disjunct that intersects D in xi for every i = 1, . . . , c. We consider two cases.

For the cases we suppose that f does not have a disjunct set intersecting S in one

variable; if it does then the theorem holds for S (by using the inductive assumption).

Also we suppose that f does not have a disjunct set that is a subset of S; if it does then

it is obvious that the theorem holds for S.

Case 1: There is only one disjunct that intersects D in xi for every i = 1, . . . , c.

Suppose that Di is the only disjunct that intersects D in xi for every i = 1, . . . , c.

Consider a variable set SDx1−xc of ((D1)x1=1∨. . .∨(Dc)xc=1); SDx1−xc includes all vari-

ables of ((D1)x1=1∨. . .∨(Dc)xc=1). From Lemma 10, we know that ((D)xi=1) ((Di)xi=1)D

implies f for every i = 1, . . . , c. This means that f should have at least |SDx1−xc ∩

S| disjuncts such that each of them has one distinct variable from SDx1−xc ∩ S =

{xc+1, xc+2, . . . , xm+1} and none of them is covered by (D ∨D1 ∨ . . . ∨Dc).
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If SDx1−xc ∩ S = {xc+1, xc+2, . . . , xm+1} then f has at least |SDx1−xc ∩ S| =

m − c + 1 disjunct sets such that each of them intersects {xc+1, xc+2, . . . , xm+1} in

one variable. Therefore, including SD, SD1, SD2, . . ., and SDc, f has at least

m + 2 disjunct sets such that each of them has a non-empty intersection with S.

If f has exactly m + 2 disjunct sets then each disjunct of f has a non-empty in-

tersection with (xc+1xc+2 . . . xm+1)(Dx1=1,...,xc=1). This means that f should have a

disjunct that covers (xc+1xc+2 . . . xm+1)(Dx1=1,...,xc=1). Since none of the m + 2 dis-

juncts covers (xc+1xc+2 . . . xm+1)(Dx1=1,...,xc=1), f needs one more disjunct to cover

(xc+1xc+2 . . . xm+1)(Dx1=1,...,xc=1) that has a non-empty intersection with S. This is a

contradiction. As a result, f has at least m+ 3 disjunct sets such that each of them has

a non-empty intersection with S; the theorem holds for S.

If SDx1−xc ∩ S = {xc+1, xc+2, . . . , xn} where n < m + 1 then from our inductive

assumption we know that the variable set {xn+1, xn+2, . . . , xm+1} intersects at least

m− n+ 3 disjunct sets. As a result, f has at least (c+ 1) + |SDx1−xc ∩ S| = (n− c) +

(m− n+ 3) = m+ 4 disjunct sets such that each of them has a non-empty intersection

with S. So the theorem holds for S.

Case 2: For at least one of the variables of x1, . . . , xc, say xc, there are at least two

disjuncts such that each of them intersects D in xc.

The proof has c steps. In each step, we consider all disjuncts of f such that each of

them intersects D in xi where 1 ≤ i ≤ c. We first consider disjuncts D1, . . . , Dy such that

each of them intersects D in x1. Consider a variable set SDx1 of (D1 ∨ . . . ∨Dy)x1=1;

SDx1 includes all variables of (D1 ∨ . . . ∨ Dy)x1=1. From Lemma 10, we know that

(Dx1=1)((D1 ∨ . . .∨Dy)x1=1)D implies f . Therefore along with D1 ∨ . . .∨Dy, f should

have disjuncts that cover (Dx1=1)((D1 ∨ . . . ∨Dy)x1=1)D. This means that f includes

a dual-pair of (D1 ∨ . . . ∨ Dy)x1=1 and ((D1 ∨ . . . ∨ Dy)x1=1)D. From Lemma 9 and

Lemma 11, we know that SDx1 ∩ S requires at least |SDx1 ∩ S| + 1 disjunct sets of f

such that each of them has a non-empty intersection with S.
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We apply the same method for x2, x3, and xc−1, respectively. Consider a variable set

SDxi for every i = 2, . . . , c−1; SDxi is obtained in the same way as SDx1 was obtained

in the first step. In each step if SDxi ∩ S has new variables that are the variables not

included in (SDx1 ∪ . . .∪SDxi−1)∩S, then these new variables result in new disjuncts.

From Lemma 9 and Lemma 11, we know that the number of new disjuncts is at least one

more than the number of the new variables. Therefore before the last step, including

SD, f has at least |(SDx1 ∪ . . .∪SDxc−1)∩S|+ (c− 1) + 1 disjunct sets (+1 is for SD)

such that each of them has a non-empty intersection with S.

The last step corresponds to xc. If |(SDx1 ∪ . . .∪SDxc−1)∩S| = ((m+ 1)− c) then

SDxc does not have any new variables. Since there are at least two disjuncts such that

each of them intersects D in xc, f has at least (m+1−c)+(c)+(2) = m+3 disjunct sets

such that each of them has a non-empty intersection with S. So the theorem holds for S.

If |(SDx1∪. . .∪SDxc−1)∩S| = n where n < (m+1)−c then S has (m−n−c+1) variables

that are not included in ((SDx1 ∪ . . .∪SDxc−1)∪SD). From our inductive assumption,

we know that these (m− n− c+ 1) variables results in at least (m− n− c+ 1 + 2) new

disjunct sets. As a result, f has at least (m + 1 − c) + (c) + (2) = m + 3 disjunct sets

such that each of them has a non-empty intersection with S. So the theorem holds for

S. 2

Lemma 12

Consider a monotone self-dual Boolean function f in IDNF with the same number of

variables and disjuncts. If f has a variable occurring two times then f has at least two

disjuncts of size two. 2

Proof of Lemma 12: If a variable of f , say x1, occurs two times then from Theo-

rem 7, we know that two disjuncts that have x1 should intersect in x1. Consider the

disjuncts x1xa1 . . . xan and x1xb1 . . . xbm of f . From Lemma 10, we know that both

g = (xa1 . . . xan)(xb1 ∨ . . . ∨ xbm) and h = (xb1 . . . xbm)(xa1 ∨ . . . ∨ xan) should be cov-

ered by f . Note that g and h have total of n + m disjuncts. These n + m disjuncts
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should be covered by at most n+m− 2 disjuncts of f ; otherwise Lemma 11 is violated.

For example, if n + m disjuncts are covered by n + m − 1 disjuncts of f then along

with the disjuncts x1xa1 . . . xan and x1xb1 . . . xbm there are n+m+ 1 disjuncts having

n+m+ 1 variables. This means that a set of the remaining variables, say b variables,

has a non-empty intersection with at most b disjuncts of f , so Lemma 11 is violated.

Any disjunct of f with more than two variables can only cover one of the m + n

disjuncts of g ∨ h. Therefore to cover m+n disjuncts of g ∨ h with m+n− 2 disjuncts,

f needs disjuncts of size two. Since a disjunct of size two can cover at most two of the

m+ n disjuncts of g ∨ h, f should have at least two disjuncts of size two. 2

Lemma 13

Consider a monotone self-dual Boolean function f in IDNF with the same number of

variables and disjuncts. If each variable of f occurs at least three times then f is a

unique Boolean function that represents the Fano plane. 2

Proof of Lemma 13: We consider two cases.

Case 1: A pair of disjuncts of f intersect in multiple variables.

We show that if a pair of disjuncts of f intersect in multiple variables then f is not

self-dual. Consider two disjuncts D1 and D2 of f such that they intersect in multiple

variables. Suppose that bothD1 andD2 have variables x1 and x2. This case is illustrated

in Figure 5.7. Note that x3, x4, . . ., xk are matched with D3, D4, . . ., Dk, respectively.

This is called perfect matching. Hall’s theorem describes a necessary and sufficient

condition for this matching: a subset of b variables of {x3, . . . , xk} has a non-empty

intersection with at least b disjunct sets from SD3, . . . , SDk. From Theorem 8, we

know that a set of b variables of f has a non-empty intersection with at least b + 2

disjunct sets of f . This satisfies the necessary and sufficient condition for the perfect

matching between x3, . . . , xk and D3, . . . , Dk.

We find an assignment of 0’s and 1’s to the variables of f such that every disjunct

of f has both a 0 and a 1. To make every disjunct of f have both 0 and 1, we first
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assign 0 to x1 and 1 to x2. Then we assign a 0 or a 1 to each of the variables x3, . . . , xk

step by step. In each step, if a disjunct has a previously assigned 1 then we assign 0 to

its matched (circled) variable; if a disjunct has a previously assigned 0 then we assign

1 to its matched (circled) variable. After these steps, if every disjunct of f has both a

0 and a 1 then we have proved that f is not self-dual. If there remain disjuncts, these

disjuncts should not have any previously assigned variables. Lemma 8 identifies this

condition and it tells us that f is not self-dual.

Figure 5.7: An illustration of Case 1.

Case 2: Every pair of disjuncts of f intersect in one variable.

Suppose that a variable of f , say x1, occurs three times. Consider disjuncts D1 =

x1xa1 . . . xan, D2 = x1xb1 . . . xbm, and D3 = x1xc1 . . . xcl of f where n ≤ m ≤ l. From

Lemma 10, we know that f should cover (xa1 . . . xan)(xb1∨. . .∨xbm)(xc1∨. . .∨xcl) where

n ≤ m ≤ l. This means that f should cover m · l disjuncts. These disjuncts are covered

by at least m · l disjuncts of f ; otherwise the intersection property does not hold for f .

Along with D1, D2, and D3, f has m · l+3 disjuncts having m+n+ l+1 variables. From

Lemma 6, we know that m · l+ 3 ≤ m+n+ l+ 1. The only solution of this inequality is

that n = 2, m = 2, and l = 2. This results in a self-dual Boolean function representing

the Fano plane, e.g., f = x1x2x3∨x1x4x5∨x1x6x7∨x2x4x6∨x2x5x7∨x3x4x7∨x3x5x6.

If a variable of f occurs more than three times then the value on left hand side of

the inequality m · l + 3 ≤ m + n + l increases more than that on the right hand side

does, so there is no solution. 2
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Lemma 14

A Boolean function f is self-dual iff fxa=xb
, fxa=xc , and fxb=xc are all self-dual Boolean

functions where xa, xb, and xc are any three variables of f . 2

Proof of Lemma 14: From the definition of duality, f is self-dual iff each assignment

of 0’s and 1’s to the variables of f , corresponding to a row of the truth table, satisfies

f(x1, x2, . . . , xk) = f̄(x̄1, x̄2, . . . , x̄k). Any dependency between variables of f only elim-

inates some rows of f ’s truth table. Therefore, if f is self-dual then fxa=xb
, fxa=xc , and

fxb=xc are all self-dual. For each row of f ’s truth table either xa = xb or xa = xc, or

xb = xc. Therefore, if fxa=xb
, fxa=xc , and fxb=xc are all self-dual then f is self-dual. 2

5.3.2 The Algorithm

We present a four-step algorithm:

Input: A monotone Boolean function f in IDNF with n variables n disjuncts.

Output: “YES” if f is self-dual; “NO” otherwise.

1. Check if f is a single variable Boolean function. If it is then return “YES”.

2. Check if f represents the Fano plane. If it does then return “YES”.

3. Check if the intersection property holds for f . If it does not then return “NO”.

4. Check if f has two disjuncts of size two, xaxb and xaxc where xa, xb, and xc are

variables of f . If it does not then return “NO”; otherwise obtain a new function

f = fxb=xc in IDNF. Repeat this step until f consists of a single variable; in this

case, return “YES”.

If f is self-dual then f should be in one of the following three categories: (1) f is a

single variable Boolean function; (2) at least one variable of f occurs two times; (3) each

variable of f occurs at least three times. From Theorem 7, we know that if f is self-dual

and not in (1) then every variable of f should occur at least two times, so f should be
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in either (2) or (3). Therefore these three categories cover all possible self-dual Boolean

functions.

The first step of our algorithm checks if f is self-dual and in (1). The second step of

our algorithm checks if f is self-dual and in (3). From Lemma 13, we know that if f is

self-dual and in (3) then f is a unique Boolean function that represents the Fano plane.

The third and fourth steps of our algorithm check if f is self-dual and in (2). From

Lemma 6, we know that if f is self-dual then f should satisfy the intersection property.

From Lemma 12, we know that if f is self-dual and in (2) then f should have at least

two disjuncts of size two, xaxb and xaxc. From Lemma 14, we know that f is self-dual

iff fxa=xb
, fxa=xc , and fxb=xc are all self-dual. Since f satisfies the intersection property,

both fxa=xb
= xa and fxa=xc = xa are self-dual. This means that f is self-dual iff fxb=xc

is self-dual. Note that fxb=xc in IDNF has n − 1 variables and n − 1 disjuncts. Since

fxb=xc satisfies the intersection property and does not represent the Fano plane, we just

need to repeat step four to check if the function is self-dual. Note that to check if f is

self-dual and in (2), we need to repeat step four at most n times.

The steps three and four of the algorithm run in O(n4) and O(n3) time, respectively.

Therefore the run time of the algorithm is that of the step three O(n4).

We present a few examples to elucidate our algorithm.

Example 19

Suppose that we are given the following function f in IDNF

f = x1x2x3 ∨ x1x5x6 ∨ x2x3x6 ∨ x2x4x5 ∨ x3x4x6 ∨ x3x5.

The function has 6 variables and 6 disjuncts, so n = 6 . The algorithm does not return

“YES” or “NO” in its first three steps, so we should apply step four. First, we need

to check if f has two disjuncts of size two. Since f has only one disjunct x3x5 of size

two, the algorithm returns “NO”. This means that f is not self-dual. Indeed, f is not

self-dual; f 6= fD. 2
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Example 20

Suppose that we are given the following function f in IDNF

f = x1x2 ∨ x1x3 ∨ x1x4x5x6 ∨ x1x4x6x7 ∨ x2x3x4 ∨ x2x3x5x7 ∨ x2x3x6x7.

The function has 7 variables and 7 disjuncts, so n = 7. The algorithm does not return

“YES” or “NO” in its first three steps, so we should apply step four. First, we need to

check if f has two disjuncts of size two. The function has two disjuncts x1x2 and x1x3

of size two; xa = x1, xb = x2, and xc = x3. We obtain a new function f = fx2=x3 in

IDNF as follows

f = x1x3 ∨ x1x4x5x6 ∨ x1x4x6x7 ∨ x3x4 ∨ x3x5x7 ∨ x3x6x7.

The function has 6 variables and 6 disjuncts, so n = 6. Again, we apply step four. The

function has two disjuncts x1x3 and x3x4 of size two; xa = x3, xb = x1, and xc = x4.

We obtain a new function f = fx1=x4 in IDNF as follows

f = x3x4 ∨ x3x5x7 ∨ x3x6x7 ∨ x4x5x6 ∨ x4x6x7.

The function has 5 variables and 5 disjuncts, so n = 5. Again, we apply step four. Since

f only has one disjunct x3x5 of size two, the algorithm returns “NO”. This means that

f is not self-dual. Indeed, f is not self-dual; f 6= fD. 2

Example 21

Suppose that we are given the following function f in IDNF

f = x1x2x3x4x5 ∨ x1x2x3x4x7 ∨ x1x6 ∨ x2x6 ∨ x3x6 ∨ x4x6 ∨ x5x6x7.

The function has 7 variables and 7 disjuncts, so n = 7. The algorithm does not return

“YES” or “NO” in its first three steps, so we should apply step four. First, we need

to check if f has two disjuncts of size two. The function has four disjuncts x1x6, x2x6,

x3x6, and x4x6 of size two. We need to select any two of them, say x1x6 and x2x6;
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xa = x6, xb = x1, and xc = x2. We obtain a new function f = fx1=x2 in IDNF as

follows

f = x2x3x4x5 ∨ x2x3x4x7 ∨ x2x6 ∨ x3x6 ∨ x4x6 ∨ x5x6x7.

The function has 6 variables and 6 disjuncts, so n = 6. Again, we apply step four. The

function has three disjuncts x2x6, x3x6, and x4x6 of size two. We need to select any two

of them, say x2x6 and x3x6; xa = x6, xb = x2, and xc = x3. We obtain a new function

f = fx2=x3 in IDNF as follows

f = x3x4x5 ∨ x3x4x7 ∨ x3x6 ∨ x4x6 ∨ x5x6x7.

Again, we apply step four. The function has 5 variables and 5 disjuncts, so n = 5.

Again, we apply step four. The function has two disjuncts x3x6 and x4x6 of size two.

We obtain a new function f = fx3=x4 in IDNF as follows

f = x4x5 ∨ x4x6 ∨ x4x7 ∨ x5x6x7.

With applying step four we obtain a new function f = fx5=x6 in IDNF as follows

f = x4x6 ∨ x6x7 ∨ x4x7.

With applying step four we obtain a new function f = fx4=x7 in IDNF as follows

f = x7.

Since f consists of a single variable, the algorithm returns “YES”. This means that f

is self-dual. Indeed, f is self-dual; f = fD. 2

5.4 Discussion

In this chapter, we investigate monotone self-dual Boolean functions. We present

many new properties for these Boolean functions. Most importantly, we show that



89

monotone self-dual Boolean functions in IDNF (with k variables and n disjuncts) do

not have more variables than disjuncts; k ≤ n. This is a significant improvement over

the prior result showing that k ≤ n2.

We focus on the famous problem of testing whether a monotone Boolean function in

IDNF is self-dual. We examine this problem for monotone Boolean functions with the

same number of variables and disjuncts; k = n. Our algorithm runs in O(n4) time. As

a future work we plan to extend our results to monotone Boolean functions with variety

of different k-n relations.



Chapter 6

Conclusion and Future Directions

In this dissertation, we discuss strategies of achieving digital computation with lat-

tices of four-terminal switches. We also discuss the mathematics of lattice-based imple-

mentations.

We develop a model of regular lattices of four-terminal switches. In our model each

switch is controlled by a Boolean literal. If the literal takes the value 1, the corresponding

switch is connected to its four neighbours; else it is not connected. A Boolean function

is implemented in terms of connectivity across the lattice: it evaluates to 1 iff there

exists a connected path between two opposing edges of the lattice.

We present our model at the technology-independent level. Although conceptually

general, we comment that our synthesis results are applicable to various emerging tech-

nologies, including nanowire crossbar arrays and magnetic switch-based structures with

independently controllable crosspoints. As a future work, we study our model’s applica-

bility to nanoscale arrays of switches, such as optical switch-based structures and arrays

of single-electron transistors.

We present our synthesis method to implement a given target Boolean function with

a lattice of four-terminal switches. Our method produces a lattice size that grows lin-

early with the number of products of the target Boolean function. The time complexity

90
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of our synthesis algorithm is polynomial in the number of products. we also derive a

lower bound on the size of a lattice required to implement a Boolean function. With

comparing our results to a lower bound, we see that the synthesis results are not op-

timal. However, this is hardly surprising: at their core, most logic synthesis problems

are computationally intractable; the solutions that are available are based on heuristics.

Furthermore, good lower bounds on circuit size are notoriously difficult to establish.

In fact, such proofs are related to fundamental questions in computer science, such as

the separation of the P and NP complexity classes. (To prove that P 6= NP it would

suffice to find a class of problems in NP that cannot be computed by a polynomially

sized.)

In particular, our method will not be effective for Boolean functions such that the

functions’ duals have much more products than the functions do have. The lattices for

such functions will be inordinately large. The cost of implementing such functions could

be mitigated by decomposing and implementing Boolean functions with separate lattices

(or physically separated regions in a single lattice). For example, fT = x1x2x3 +x4x5x6

can be implemented by two lattices each of which is for each product, so the target

function is implemented by two 3×1 lattices. An apparent disadvantage of this technique

is the necessity of using multiple lattices rather than a single lattice to implement a

target function. We do not get into further details of the technique of decomposition

and sharing; We would like to keep it as a future work.

Another future direction is to extend the results to lattices of eight-terminal switches,

and then to 2k-terminal switches, for arbitrary k.

We develop a novel probabilistic framework for digital computation with lattices

of nanoscale switches based on the mathematical phenomenon of percolation. With

random connectivity, percolation gives rise to a sharp non-linearity in the probability

of global connectivity as a function of the probability of local connectivity. This phe-

nomenon is exploited to compute Boolean functions robustly, in the presence of defects.

It is shown that the margins, defined in terms of the steepness of the non-linearity,
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translate into the degree of defect tolerance. Achieving good margins entails a map-

ping problem. Given a target Boolean function, the problem is how to assign literals

to regions of the lattice such that there are no diagonal paths of 1s in any assignment

that evaluates to 0. Assignments with such paths result in poor error margins due to

stray, random connections that can form across the diagonal. A necessary and suffi-

cient condition is formulated for a mapping strategy that preserves good margins: the

top-to-bottom and left-to-right connectivity functions across the lattice must be dual

functions. Based on lattice duality, an efficient algorithm to perform the mapping is

proposed. The algorithm optimizes the lattice area while meeting prescribed worst-case

margins.

Particularly with self-assembly, nanoscale lattices are often characterized by high

defect rates. A variety of techniques have been proposed for mitigating against defects.

Significantly, unlike these techniques for defect tolerance, our method does not require

defect identification followed by reconfiguration. Our method provides a priori toler-

ance to defects of any kind, both permanent and transient, provided that such defects

occur probabilistically and independently. Indeed, percolation depends on a random

distribution of defects. If the defect probabilities are correlated across regions, then

the steepness of the percolation curve decreases; as a result, the defect tolerance dimin-

ishes. In future work, we will study this tradeoff mathematically and develop synthesis

strategies to cope with correlated probabilities in defects.

A significant tangent for this work is its mathematical contribution: lattice-based

implementations present a novel view of the properties of Boolean functions. In Chap-

ter 5, we investigate monotone self-dual Boolean functions. We present many new

properties for these Boolean functions. Most importantly, we show that monotone self-

dual Boolean functions in IDNF (with k variables and n disjuncts) do not have more

variables than disjuncts; k ≤ n. This is a significant improvement over the prior result

showing that k ≤ n2.
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We study the applicability of these properties to the famous problem of testing

whether a monotone Boolean function in IDNF is self-dual. This is one of the few

problems in circuit complexity whose precise tractability status is unknown. We examine

this problem for monotone Boolean functions with the same number of variables and

disjuncts; k = n. Our algorithm runs in O(n4) time. As a future work we plan to extend

our results to monotone Boolean functions with variety of different k-n relations.
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