Computing Polynomials with Positive Coefficients using
Stochastic Logic by Double-NAND Expansion -

Sayed Ahmad Salehi, Yin Liu, Marc D. Riedel, Keshab K. Parhi
University of Minnesota
200 Union Street SE, Minneapolis, MN, 55455
{saleh022, liux1394, mriedel, parhi}@umn.edu

ABSTRACT

This paper proposes a novel method, referred to as double-
NAND ezpansion, to implement polynomials with all pos-
itive coefficients using unipolar stochastic logic. The pro-
posed double-NAND expansion leads to implementations
of polynomials using no more than 2n NAND gates where
n represents the degree of the polynomial. The proposed
implementations are compared with those based on multi-
plexers, Bernstein polynomial method, finite state machine
method and factorization. The paper also considers im-
plementations of several functions expressed as polynomi-
als using truncated Mclaurin series based on the proposed
approach. The experimental results show that the proposed
method outperforms the prior methods in terms of accuracy,
hardware complexity, and critical path.

Keywords
Stochastic logic; double-NAND expansion

1. INTRODUCTION

This paper presents a novel method for implementing poly-
nomials with all positive coefficients such that the sum of all
coefficients is less than or equal to 1 by using stochastic logic
circuits that require only two NAND gates for each term of
the polynomial.

Stochastic logic circuits can be realized by simple combi-
national logic gates [2]. In this paper we only use AND and
NAND gates for polynomial computations. Using unipolar
representation, the AND gate computes the multiplication
of its two inputs, z = zy and the NAND gate computes
z = 1 — zy. Although the proposed circuits are primarily
based on NAND gates, for computation of some polynomi-
als, AND gates also may be required only at the beginning
and end of the circuits.

*This research is supported by the National Science Foun-
dation Grants CCF-1423407 and CCF-1319107.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

GLSVLSI '17, May 10-12, 2017, Banff, AB, Canada.
© 2017 ACM. ISBN 978-1-4503-4972-7/17/05. .. $15.00.
DOL: http://dx.doi.org/10.1145/3060403.3060410

agta
aotartarta;

Figure 1: Multiplexer-based Stochastic logic circuit-
s for computing (a) first-order polynomial and (b)
third-order polynomial.

This paper considers a polynomial of degree n, i.e., P, (x),
represented in power form as:

Po(x) = ao + a1z + azx® + azz® 4+ ... + anz”. (1)

All a;’s are assumed to be positive or zero, and sum of a;’s
is assumed to be less than or equal to 1.

A multiplexer-based stochastic logic circuit for implemen-
tation of FIR digital filters was proposed in [1]. We can
adapt this circuit for the purpose of computing polynomials
with all positive coefficients. Figure 1(a) shows the multiplexer-
based circuit for computation of Pi(x) = ap+aix. Similarly,
Py(z) =ao+ a1z + asx? + azz> can be implemented by the
circuit shown in Figure 1(b). The delay elements are used
for decorrelation [5]. Factorization method, presented in [4],
is another approach to synthesize stochastic logic circuits for
computing polynomials.

This paper proposes a new approach that can map polyno-
mials having all positive coefficients to a hardware-efficient
circuit composed of NAND gates. For the proposed method,
each term of the polynomial is implemented by two two-
input NAND gates and the proposed expansion of polyno-
mials is referred to as double-NAND expansion.

This paper is organized as follows. Section 2 presents
the proposed method for computing a class of polynomials
and certain functions. Section 3 presents the experimental
results for the proposed method and comparisons with prior
work.

2. PROPOSED DOUBLE-NAND METHOD

Using stochastic logic circuits composed of simple two-
input NAND gates, this section presents the proposed method
for computing polynomials with all positive coefficients, i.e.,

1-
L q, —»:)C»pl(x)
1-a,

=

Figure 2: The proposed Stochastic logic circuit-
s for computing (a) first-order polynomial and (b)
second-order polynomial.

0<a; <1fori=0,...,n. Each term of the polynomial has
the form of a;z* and is monotonically increasing. Therefore,
the polynomials considered in this paper are monotonically
increasing in the interval [0,1). It is important to note that
not all monotonically increasing polynomials satisfy the all
positive coefficient property as considered in this paper.

First Consider the simple example of the first-order poly-
nomial given by:

ai

Pi(a) = a0+ aw =1~ (1 -ao)(l - 7=~

z) (2)

For ag,a1 € [0,1), Equation (2) can be mapped to the s-
tochastic logic circuit shown in Figure 2(a). Similarly, the
second-order polynomial, P>(x), with all coefficients in the
unit interval can be expressed as (3), and implemented as
shown in Figure 2(b).

Py(z) = a0+ a1z + azx?
=1—(1—ao)[l —a(l - 1522 (1 — =22 _))] (3)

l—ag l—ap—ai

This approach can be extended for the general case of a
polynomial of degree n, P, (z), with all positive coefficients.
P, (x) can be represented as a sum of its first term, ag, and
the other terms, xP,—_1(x), as given by:

P, (z) = aotaiz + asz? +azz® + ..+ ana™ = ao+xPr-1(x)

zPp_1(z)

(4)

Equation (4) can be rewritten as:

Py(x) = a0 + xPr_1(x) =
a1+ asw + asx® + ... +apx” !
170,0

Pp_1(x)

L= (1 —ao)(1 —a() (5)

Equation (5) shows that P,_1(z) has a form similar to the
original P, (z); however, its degree is reduced by one and the
coefficients are divided by (1 — ag). Thus, the above men-
tioned step can be repeated for P,—1(z) and the procedure
can be continued as required. Using this approach P, ()
can be reformatted as

Figure 4: Stochastic logic circuit for Equation (7).

Pale) = 1= (1= a0)(1 —a(1 = 22020 (g
1*25;01 ai .
(- Tf;fcu(l (...
_yrla, -
(- gt e))

THEOREM 1. All the coefficients for the representation of
P, (z) in Equation (6) are greater than 0 and less than 1.

Proor. We know that the sum of all a;’s for i = 0,...,n
is less than or equal to one, i.e., > ja; < 1. All of the
coeflicients in Equation (6), except the one in the innermost

ko
parentheses, have the form of % for k=0,...,n—1.

It is clear that for these coefficients 0the numerator is less
than the denominator. Thus, the values of the coefficients
are less than 1. Since > " ja; < 1 we have an—i—z?;ol a; <1
or equivalently a, <1 — Z?;Ol a;. Thus, the coefficient in-
side the innermost parentheses is also less than one, i.e.,
Ty te, < 1. Moreover, the the numerator and denomi-
nator of all the coefficients in Equation (6) are greater than
0. Therefore, these coefficients are greater than 0. []

Equation (6) can be mapped to a stochastic logic circuit
containing cascaded NAND gates as shown in Figure 3. Note
that the delay elements are used for decorrelation [5].

In the proposed circuits, for the first-order polynomial,
Pi(x), two NAND gates are required, and for each additional
term another two NAND gates are needed. Thus, 2(n: — 1)
NAND gates are required to implement a polynomial that
has n; terms. For example, P,(z) represented in Equation
(1) requires 2n two-input NAND gates.

We now show that for any stochastic logic circuit imple-
mented by cascaded double-NAND gates, the coefficients ad-
d to less than 1. To illustrate this, consider the circuit shown
in Figure 4. The second-order polynomial implemented by
this circuit is given by:

PQ({E) =1- bo(l — 23(1 — bl(l — bQCC)))
= (1 —bo) + bo(1 — b1)z + bob1baz®. (7)

Therefore, apg = 1-— bo, a; = bo(l — b1), and az = boblbz.
For this example, 37 a; = 1 — bob1(1 — b2) < 1.

For a polynomial of degree n, stochastic logic circuit in
Figure 5 implements P, (z) shown in Equation (8).

P,(z) =1-bo(1—z(1=b1(1—2(...(1=bp—1(1=brx)))))) (8)

The polynomial represented in Equation (8) can be ex-
pressed in power form in Equation (9).

Pn(a:) = (1 — bo) + bo(l — bl)a: + bobl(l — b2)$2 =+ ...
+bob1.bn—2(1 = bp—1)x ™™D 4 bobr.by_1bpz™ (9)

Figure 3: General double-NAND structure for polynomial of degree n. Based on the proposed approach we
change the form of Equation (4) to the form of Equation (6) and map it to a cascade of NAND gates.

b by.
*] -

Figure 5: Stochastic logic circuit for implementation
of polynomial in Equation (8).

The sum of the coefficients in Equation (9) is equal to 1 —
bob1...bn—1(1—0by). Considering 0 < b; < 1fori=0,...,n—1
and 0 < b, < 1, it is easy to show that this sum is less than

or equal to 1 and greater than 0.

22

Example 1: Consider the polynomial P(x) = %—l—%—i— T

Using Equation (6), it can be rewritten as:
1 2 3
P@)=1- (-2~ 20-22) (10)
This equation can be implemented by the circuit in Figure
4Withb0:%,b1=%andb2=%.

The proposed approach can be used to implement certain
arithmetic functions using stochastic logic. For this purpose,
first the target functions are approximated by truncating
their Maclaurin series expansions [5].

We consider three functions whose Maclaurin series ex-
pansions are listed below.

& n 2 _
e<z—1>:12(9ﬂ) ~rpl e et

e ‘= n! e e 2¢ 6e e
z(l - Z:fu—m— 22(2:2)(- 66f15)))))
secx — 1 :nij:l%x%z%—&-%x‘*—l-%f
(- 20— (0 - L1 -)

coshz — 1 -y ANt

where E,, is an Euler number.

Notice that, since all the terms of the Maclaurin series
of these three functions have coefficients that are less than
one, are positive, and have sums less or equal to 1, they can
be mapped to stochastic logic circuits using the proposed
method. Note that because approximations for sec(z) — 1
and cosh(z)—1 are polynomials in 22 with no constant term,
they require two AND gates in addition to the NAND gates.
The implementations are shown in Fig. 6.

(2e-5)/2(e-2) (e-1) /e

(e=2)/(e-1) &
X
{2} {2}

11/12. 1/2.
S S
: TS
n1. — — coshx—1
125 12

(c)

Figure 6: Stochastic implementations of (a) e,

(b) secx —1 and (c) coshz — 1 by mapping Maclaurin
series to double-NAND circuits.

3. EXPERIMENTAL RESULTS

In our experiments, we compare accuracy and hardware
complexity of the proposed circuits with those of prior work.
With respect to the performance, we compare our approach
with four other alternative approaches: multiplexer-based
[1], Bernstein polynomial [6], finite-state-machine (FSM) us-
ing a 2-dimensional FSM with 8 states [3], and factorization
[4]. For the factorization method, the scale factors of e(*™ %),
sec(z) — 1, and cosh(x) — 1 are, respectively, given by é7 %,
and %

Table 1 presents the mean absolute error (MAE) of dif-
ferent approaches for computing the target functions. The
errors are computed using Montecarlo simulation for each of
the 101 inputs, between 0 and 1, i.e., x = 0,0.01,0.02..., 1.
The length of the stochastic bit streams is 1024 bits. Note
that stochastic logic circuits of approximate Maclaurin poly-
nomials implemented by the proposed method outperform
other methods.

The implementation of double-NAND expansion requires
2n NAND gates, (n+ 1) coefficients and (n — 1) delay units
needed for decorrelation. The structure presented in [1] re-
quires 3n gates to implement n multiplexers, (n — 1)AND
gates and (n — 1) delays to calculate z* for i = 2 to n, one
AND gate to scale the computed output, and (n + 1) coeffi-
cients. We assume that each delay unit can be implemented
by 10 gates. For the coefficients, we assume that one LFSR
is used to generate all coefficients and each coefficient uses
a unique comparator and delay unit. A 10-bit LFSR can
be realized using 160 gates. Although the number of gates

Table 1: The mean absolute error (MAE) for computing polynomials in Example 1, @Y sec(z) — 1 and
cosh(z) — 1 functions using the proposed method and previous methods.
Function Proposed Multiplexer Bernstein Polynomial Factorization FSM
Example 1 0.0040 0.0040 - - - 0.0040 -
(z—1) degree 2 3 4 2 3 4 2 3 4 2 3 4 8-state
¢ error | 0.0197 0.0042 0.0011 | 0.0199 0.0050 0.0015 | 0.0253 0.0164 0.0122 | 0.0199 0.0074 0.0032 | 0.0163
sec(z) — 1 degree 4 6 8 4 6 8 4 6 8 4 6 8 8-state
error | 0.0172 0.0053 0.0027 | 0.00175 0.0068 0.0034 | 0.0505 0.0330 0.0245 | 0.0175 0.0068 0.0061 | 0.1200
cosh(z) — 1 degree 4 6 8 4 6 8 4 6 8 4 6 8 8-state
degree | 0.0016 0.0008 0.0005 | 0.00017 0.0008 0.0005 | 0.0235 0.0154 0.0113 | 0.0017 0.0008 0.0006 | 0.0399

Table 2: The synthesis results for area in terms of two-input NAND gates and critical path (ns) for different
stochastic logic polynomial and functions using 5 approaches.

Function Proposed Multiplexer Bernstein Polynomial Factorization FSM
Example 1 area 488.8 494.5 - - - 494.5 -
delay 2.42 2.71 - - - 2.71 -
degree 2 3 4 2 3 4 2 3 4 2 3 4 8-state
e®=1 area | 488.8 559.5 634.4 | 494.5 569.4 6489 | 496.1 569.4 664.0 | 494.5 563.9 641.2 | 1144.0
delay 242 268 3.02 2.71 294 3.16 2.59 296 2.90 2.71 2.78 3.11 2.76
degree 4 [8 4 6 8 4 6 8 4 6 8 8-state
sec(z) — 1 area | 463.3 530.9 612 | 466.4 541.3 626.6 | 664.0 872.0 1153.2 | 466.4 541.3 623.5 | 1144.0
delay 243 284 3.03 247 3.04 347 2.90 4.01 3.98 247 3.04 3.44 2.76
degree 4 6 8 4 6 8 4 6 8 4 6 8 8-state
cosh(z) — 1 area | 463.3 530.9 612 | 466.4 541.3 626.6 | 664.0 872.0 1153.2 | 466.4 541.3 623.5 | 1144.0
delay 243 284 3.03 247 3.04 347 2.90 4.01 3.98 247 3.04 3.44 2.76

required for the comparators varies for each coefficient, we
estimate that an average of 30 gates is required for each com-
parator. These numbers are taken from our synthesis results.
Hence, for (n+1) coefficients 160+30(n+1)+10(n+1) gates
are used. Collecting these values together, computation of
P, (z) based on the stochastic logic in [1] requires 54n + 190
gates while the double-NAND method requires 52n + 190
gates, leading to saving 4% of the number of gates for a
large n.

With respect to the critical path, for the double-NAND
circuits the critical path is in the order of n. Since the struc-
ture in [1] has log, n levels of multiplexers and the critical
path for each multiplexer is about two gates, the critical path
for the multiplexer levels is O([log, n]). When we consider
(n—1) AND gates at the input and 1 AND gate at the out-
put the total critical path for multiplexer-based stochastic
logic circuit is O([logy] +n). One should note that, while
for small values of n the critical paths for the two methods
are close, the difference is remarkable for higher values of n.
Table 2 compares area and critical path for all 4 polynomials
using discussed methods. The architectures are implement-
ed using 65nm libraries and synthesized using Synopsys De-
sign Compiler. All required SNGs including 10-bit LFSRs
as random number generators are considered in our synthe-
sis. The operating conditions for each implementation are
specified by a supply voltage of 1.05 V and a temperature of
25 degree Celsius. It can be observed from Table 2 that the
proposed stochastic circuits have less hardware complexity
compared to prior approaches.

4. CONCLUSIONS

A novel double-NAND expansion approach has been pre-
sented to expand any polynomial with positive coefficients
where the sum of coefficients is less than or equal to one.
Note that the coefficients need not be either increasing or
decreasing, but can be in any arbitrary order. The proposed

expansion leads to stochastic logic implementations of these
polynomials using cascaded two-input NAND gates. The
reader is referred to [5] for stochastic logic implementation
of polynomials with alternating signs and decreasing mag-
nitude.

S. REFERENCES

[1] Y.-N. Chang and K. K. Parhi. Architectures for digital
filters using stochastic computing. In Proc. of IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 2697-2701. IEEE,
May 2013.

B. R. Gaines. Stochastic computing. in Proceedings of
AFIPS spring joint computer conference, ACM, pages
149-156, 1967.

P. Li, D. J. Lilja, W. Qian, K. Bazargan, and

M. Riedel. The synthesis of complex arithmetic
computation on stochastic bit streams using sequential
logic. in Proceedings of the International Conference on
Computer-Aided Design, pages 480487, 2012.

Y. Liu and K. K. Parhi. Computing complex functions
using factorization in unipolar stochastic logic. In
Proceedings of the 26th edition on Great Lakes
Symposium on VLSI, pages 109-112. ACM, 2016.

K. K. Parhi and Y. Liu. Computing arithmetic
functions using stochastic logic by series expansion.
IEEE Transactions on Emerging Technologies in
Computing (TETC), DOL:
10.1109/TETC.2016.2618750.

W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J.
Lilja. An architecture for fault-tolerant computation
with stochastic logic. IEFE Transactions on
Computers, 60(1):93-105, 2011.

2l

8l

(4]

