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Abstract—This paper describes a systematic method for 

molecular implementation of complex Markov chain processes with 

self-loop transitions. Generally speaking, Markov chains consist of 

two parts: a set of states, and state transition probabilities. Each 

state is modeled by a unique molecular type, referred to as a data 

molecule. Each state transition is modeled by a unique molecular 

type, referred to as a control molecule, and a unique molecular 

reaction. Each reaction consumes data molecules of one state and 

produces data molecules of another state. As we show in this paper, 

the produced data molecules are the same as the reactant data 

molecules for self-loop transitions. Although the reactions 

corresponding to self-loop transitions do not change the molecular 

concentrations of the data molecules, they are required in order for 

the system to compute probabilities correctly.  The concentrations 

of control molecules are initialized according to the probabilities of 

corresponding state transitions in the chain. The steady-state 

probability of Markov chain is computed by equilibrium 

concentration of data molecules. We demonstrate our method for a 

molecular design of a seven-state Markov chain as an instance of a 

complex Markov chain process with self-loop state transitions. The 

molecular reactions are then mapped to DNA strand displacement 

reactions. Using the designed DNA system we compute the steady-

state probability matrix such that its element (i,j) corresponds to 

the long-term probability of staying in state j, given it starts from 

state i. For example, the error in the computed probabilities is 

shown to be less than 2% for DNA strand-displacement reactions.   

Keywords—Molecular computation, Markov chain, self-loop state 

transition, molecular reaction, DNA strand-displacement. 

I.  INTRODUCTION  

Due to the advantage of having well-defined theory and extensive 
simulation software tools, a set of molecular reactions, more often called 
chemical reaction networks (CRNs), has been used as programming 
language or models and abstractions in different applications. For 
example, there has been a groundswell of interest in molecular 
computations in recent years [1-6]. Since 1994, several approaches have 
been investigated for molecular computation; these include: solving NP-
computational and combinatorial problems such as the Hamiltonian path 
problem [1] and finding maximal clique problem [7], computing of 
deterministic functions and algorithms [8],[9], implementation of logical 
functions [10]-[14], and signal processing operations [15]-[17]. 

This paper presents a systematic methodology for modeling complex 
Markov chains by a set of chemical reactions in order to compute the 
steady-state probabilities of its states. The produced set of molecular 
reactions is implemented and validated by DNA strand displacement 
reactions. Markov chain has been frequently used for modeling and 
analyzing systems of chemical reactions [4],[18],[19]; however, this 
paper addresses the reverse problem, i.e., modeling Markov chain  and 
computing its steady-state probabilities by a system of chemical 
reactions. Since Markov processes are commonly used in numerous 
processing and statistical modeling applications [20]-[22], design of a 
systematic method for synthesizing Markov chains with DNA strand 
displacement reactions leads to a systematic method for implementing 
these applications using DNA. 

The implementation of simple Markov Chain processes has been 
discussed in [23]. In this paper, however, we present a systematic 
method for implementing complex Markov chain processes using 
molecular reactions. In particular, for the first time, we describe the 
molecular implementation of complex Markov Chain processes with 
self-loop transition states. Our method can be used to implement any 
Markov chain that includes both transient and recurrent states, or even 
super states. We use a method similar to the method presented in [23]. 
However, in our method we have self-loop state transitions as well as 
transitions with different source and destination states. In this method, 
each state in the Markov chain is modeled by a unique data molecular 
type and each state transition is modeled by a molecular reaction and a 
unique control molecule. Data molecule for each state or control 
molecule for each state transition is distinguishable from molecules 
corresponding to other states or state transitions. All the reactions have 
the form of 𝐶𝑖𝑗 +  𝐷𝑖  → 𝐶𝑖𝑗 + 𝐷𝑗, where 𝐶𝑖𝑗 is the control molecule that 

facilitates transition from state 𝑖 to 𝑗 and 𝐷𝑖 and 𝐷𝑗 are data molecules 

for states 𝑖 and 𝑗, respectively. The final concentration of data molecules 
related to each state determines the probability of that state. Since all of 
the reactions have the same form, that is to say, they have two reactants 
and two products, we design a template of DNA reactions to implement 
them. The DNA template consists of a sequence of three DNA strand-
displacement reactions for each molecular reaction in our design.  

In Section II we present the proposed methodology for modeling 
Markov chain by molecular reactions. In Section III we explain mapping 
of the molecular reactions of the proposed model to DNA strand 
displacement reactions and also present simulation results. Finally 
Section IV concludes the paper. 
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II. MODELING BY MOLECULAR REACTIONS 

This section describes the methodology of constructing a model for a 
Markov chain process using molecular reactions. This model can be used 
to compute the steady-state probability of each state in the Markov chain 
diagram. The methodology has two parts: initialization and transition 
reactions. 

Initialization: This stage consists of initializing two groups of 
molecules: data molecules and control molecules. 

 

Fig. 1. A seven-state Markov chain with self-loop state 

transitions. 

Data molecule for each state of Markov chain is a unique type of 
molecule assigned to that state. The initial quantity for each data 
molecule, except the start state, is zero. For the start state the initial 
value can be any large nonzero number; however, larger the initial 
value, more accurate the probability estimates are. 

Control molecules are used to control transformation of data 
molecules of one state to data molecules of other states according to the 
transition probabilities in the Markov chain diagram. A unique type of 
molecule is devoted for each state transition in the chain. The quantities 
of control molecules are time invariant and can be determined 
according to the probabilities corresponding to their transition in the 
chain; the ratio of quantity of a control molecule over total quantities of 
all control molecules in a state equals the probability of the 
corresponding transition. 

In general, the number of unique molecular types in our model is 
the sum of the number of states and the number of transitions in the 
Markov chain. 

 Transition Reactions: The transition reactions determine how data 
molecules transfer in order to implement the desired Markov chain. 
There is a transition reaction for each transition in the chain. This 
reaction transfers data molecules in the source state of transition to the 
data molecules in the destination state. Each transition reaction uses a 
control molecule for transferring data molecules. However, transition 
reactions should not change the concentration of control molecules. 
Therefore, if a control molecule is used as a reactant in a reaction, it 
should also be a product of the reaction.  

We illustrate our methodology by explaining the design of 
molecular model for the seven-state Markov Chain shown in Fig. 1. The 
transition probability matrix for this Markov chain is given by (1). 

𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕
𝟏 0.7 0 0 0 0.3 0 0
𝟐 0.1 0.2 0.3 0.4 0 0 0
𝟑 0 0 0.5 0.3 0.2 0 0
𝟒 0 0 0 0.5 0 0.5 0
𝟓 0.6 0 0 0 0.4 0 0
𝟔 0 0 0 0 0 0.2 0.8
𝟕 0 0 0 1 0 0 0

                (1) 

As it is discussed in [22], states 2 and 3 are transient while, other 
than states 2 and 3, all states in this chain are recurrent. Furthermore, 

states 1 and 5 form a super state and states 4, 6, and 7 form another 
super state.  

The steady-state probabilities of the above mentioned Markov chain 
can be mathematically computed as shown in (2). 

𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕

𝟏
2

3
0 0 0

1

3
0 0

𝟐 0.1833 0 0 0.3412 0.0917 0.2132 0.1706
𝟑 0.2667 0 0 0.2824 0.1333 0.1765 0.1412
𝟒 0 0 0 0.4706 0 0.2941 0.2353

𝟓
2

3
0 0 0

1

3
0 0

𝟔 0 0 0 0.4706 0 0.2941 0.2353
𝟕 0 0 0 0.4706 0 0.2941 0.2353

        (2) 

 

The element (i,j) in the steady-state matrix shows the probability of 
being in state j, after a long time, if we start from state i. In other words, 
the row i of the matrix in (2) shows all long-term probabilities if 
starting from state i. For example, if we start from state 1, after a long 

time, with the probability of 
2

3
 we will stay in state 1 and with the 

probability of 
1

3
 we will be in state 5. The probability of being in other 

states is zero. The matrix also shows that no matter which state we start, 
the probability of staying in states 2 and 3, after a long time, is zero. 
Furthermore, the matrix shows that if we start from states 1 or 5, we 

end up staying in states 1 or 5 with the probabilities of 
2

3
 or 

1

3
, 

respectively. Similarly, the matrix shows that if we start from states 4, 
6, or 7, we end up staying in states 4, 6, or 7. 

In order to design its molecular reactions first we assign a data 
molecular type to each state: molecular type 1 for state 1, molecular 
type 2 for state 2, and all the way to molecular type 7 for state 7. 

For this example we have seven data molecular types since there 
are seven states in the Markov chain. Suppose we want to compute the 
steady-state probability of each state if the chain starts from state 𝑖. For 
this purpose we set the initial value of data molecular type assigned to 
state 𝑖, i.e., 𝐷𝑖, to a nonzero concentration, while the other states have 
data molecules with zero initial values. For simplicity we consider 100 
as the initial concentration of data molecules of state 𝑖. 

Because there are sixteen state transition arcs, ten between states 
and six self-loops, we have sixteen Control molecular types. Control 
molecules in this example are named as 𝐶𝑖𝑗, for 1 ≤ 𝑖, 𝑗 ≤ 7 where 𝑖 is 

the source state and 𝑗 is the destination state of the transition. For each 
state transition, we choose initial values of the related Control molecule 
such that the ratio of that Control molecule to the summation of the 
concentration of all Control molecules corresponding to the outgoing 
state transitions of that state is the same as the probability of that state 
transition. For example for state 3 there are three outgoing state 
transitions, i.e., to states 5, 4 and 3. Accordingly, we have three Control 
molecules, 𝐶35, 𝐶34, and 𝐶33. If we choose [𝐶35] = 20, [𝐶34] = 30, and 
[𝐶33] = 50 then for the probabilities of the outgoing state transitions 
from state 3 we have: 

𝑝35 =
 [𝐶35]

 [𝐶35] +  [𝐶34] +  [𝐶33]
= 0.2 

𝑝34 =
 [𝐶34]

 [𝐶35] +  [𝐶34] +  [𝐶33]
= 0.3 

𝑝33 =
 [𝐶33]

 [𝐶35] +  [𝐶34] +  [𝐶33]
= 0.5 
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Notice that the exact values for the concentrations of control 
molecular types is not important. Only the ratios should be equal to the 
probabilities of the state transitions. 

Similar to the state 3, we can initialize all of the control 
molecular types as follows: 

[𝐶11] = 70 [𝐶23] = 30 [𝐶35] = 20 [𝐶55] = 40 

[𝐶15] = 30 [𝐶24] = 40 [𝐶44] = 50 [𝐶66] = 20 

[𝐶21] = 10 [𝐶33] = 50 [𝐶46] = 50 [𝐶67] = 80 

[𝐶22] = 20 [𝐶34] = 30 [𝐶51] = 60 [𝐶74] = 100 

(3)                                        

 Note that any unit could have been used in this paper for the 
molecular concentrations. In other words, the molecular concentrations 
are in arbitrary unit. 

The final step is to write the molecular reactions related to each 
state transition. For each transition in the chain a molecular reaction,  
called transition reaction, is required. In the transition reaction, data 
molecules of the source state of transition are combined with the control 
reactions related to that transition to produce the data molecules of the 
destination state of the transition. The general form of the transition 
reactions is 𝐶𝑖𝑗 +  𝐷𝑖  → 𝐶𝑖𝑗 + 𝐷𝑗, where 𝐶𝑖𝑗 is the control molecule that 

catalyzes transition reaction for state transition from 𝑖 to 𝑗. 𝐷𝑖 and 𝐷𝑗 

are data molecules for states 𝑖 and 𝑗, respectively. As we notice  𝐶𝑖𝑗 

molecules act as catalysts for this reaction. For example, for state 3 
there are three outgoing state transitions, i.e., to states 5, 4 and 3. 

Accordingly, we have three transition molecular reactions as  𝐶35 + 𝐷3

→ 𝐶35 + 𝐷5 for the transition to state 5,  𝐶34 + 𝐷3 → 𝐶34 + 𝐷4 for 
the transition to state 4, and   𝐶33 + 𝐷3 → 𝐶33 + 𝐷3 for the self-loop 
transition. We can write all molecular reactions for the chain shown 
in Fig. 1 as listed in Table 1. 

Table 1. Molecular reactions for Markov chain shown in Fig. 1. 

𝐶15 + 𝐷1 → 𝐶15 + 𝐷5   𝐶11 + 𝐷1 → 𝐶11 + 𝐷1 

𝐶21 + 𝐷2 → 𝐶21 + 𝐷1   𝐶22 + 𝐷2 → 𝐶22 + 𝐷2 

  𝐶23 + 𝐷2 → 𝐶23 + 𝐷3   𝐶24 + 𝐷2 → 𝐶24 + 𝐷4 

  𝐶33 + 𝐷3 → 𝐶33 + 𝐷3   𝐶34 + 𝐷3 → 𝐶34 + 𝐷4 

  𝐶35 + 𝐷3 → 𝐶35 + 𝐷5   𝐶44 + 𝐷4 → 𝐶44 + 𝐷4 

  𝐶46 + 𝐷4 → 𝐶46 + 𝐷6   𝐶51 + 𝐷5 → 𝐶51 + 𝐷1 

  𝐶55 + 𝐷5 → 𝐶55 + 𝐷5   𝐶66 + 𝐷6 → 𝐶66 + 𝐷6 

  𝐶67 + 𝐷6 → 𝐶67 + 𝐷7   𝐶74 + 𝐷7 → 𝐶74 + 𝐷4 

 

Sixteen reactions in Table 1 and twenty three molecular types, i.e., 
seven data molecular types and sixteen control molecular types, with 

the initial concentrations, listed in Equation (3), are the proposed 
molecular model for the Markov chain problem in Fig. 1.  

Suppose we want to compute the steady state probabilities for this 
chain, when we start from a particular state. We initialize all the data 
molecular types of states to zero but the one that corresponds to our 
start state. For example, if want to calculate the probabilities of ending 
up to different states if we start from state 3, we initialize 𝐷3 with 100 
and initialize all other states to zero. Then, after we run the simulation 
of the proposed molecular system the steady-state concentrations of 
each data molecular type is used to calculate the probability of ending 
up in that state. For example, if we start with the initial concentration of 
one of the data molecules is equal to 100 and the others are zero and the 
final concentrations of data molecules 𝐷3 and 𝐷7 are 40 and 60, 
respectively, then the steady-state probabilities of states 3 and 7 are 

40

40+60
= 0.4 and 

60

40+60
= 0.6, respectively. 

 

III. DNA IMPLEMENTATION 

A. Mapping to DNA 

To validate our proposed model with a real molecular system we 
use DNA molecules. The DNA system that we use is based on DNA 
strand-displacement reactions. DNA strand-displacement reactions 
work based on toehold-mediated strand displacement that was 
introduced by Yurke et al [6] for construction of DNA tweezers. In the 
toehold-mediated mechanism, a single strand of a double-strand DNA 
can be replaced by another single strand, provided a toehold binding is 
feasible. Fig. 2 shows an example of the mechanism. In this 
representation continuous and dotted lines are used for domain and 
toehold parts, respectively. Toehold 𝑡1 in the single strand 𝑡1𝐷1 binds 
to its complementary in double strand 𝐷1𝑡1𝐷1 and causes its domain 
𝐷1  (in blue) to be replaced by the single domain 𝐷1 (in green). Since 
this reaction starts by binding toeholds, it is called toehold-mediated 
strand-displacement reactions. 

By properly designing the toeholds in DNA molecules, an arbitrary 
rate of binding can be achieved. Indeed, Soleveichik et al. [5] 
demonstrated that DNA strand-displacement reactions can emulate the 
kinetics of any CRN. Therefore, the molecular reactions designed by 
our methodology can be implemented by DNA strand displacements 
reactions using their method. They also presented a software tool that 
maps chemical CRNs to DNA reactions. 

In order to map our molecular reactions to DNA reactions using the 
method presented in [5], each molecular type is required to be identified 
by two toeholds and two domains as depicted in Fig. 3 for molecule 𝐴. 

 
Fig. 2. Toehold-mediated DNA strand-displacement reaction. 
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Fig. 4- Three DNA reactions that emulate the molecular reaction  𝑨𝟏 + 𝑨 → 𝑨𝟏 + 𝑩  
 

D1A t1A D2A t2A

 

Fig. 3- A DNA strand composed of two domains and two toeholds is 

used to represent each molecule. 

According the method presented in [5] each chemical reaction with 
𝑚 reactants and nonzero products can be emulated by 𝑚 +  1 DNA 
strand-displacement reactions. Since all of reactions in our designed 
molecular system are bimolecular reactions with two reactants and two 
products, they are mapped to 3 DNA strand displacement reactions. To 
illustrate this, we present a sequence of DNA strand displacement 
reactions that are used to simulate a bimolecular reaction with two 
products. Three DNA reactions, shown in Fig. 4, implement the 

molecular reaction  𝐴1 + 𝐴 → 𝐴1 + 𝐵.  

The reaction starts when toehold 1 of strand 𝐴 binds to its 
complementary part of gate molecule L and produces intermediate 
double strand gate molecule H and single strand molecule V. In the next 

reaction molecule 𝐴1 and gate H combine with each other and 
produce a double strand Waste and single strand O. In the third 
reaction, strand O and gate T combine to produce A1 and B and 
another Waste molecule. For more details about the mapping of 
molecular reactions to DNA strand-displacement reactions, the 
reader is referred to [5]. 

B. Simulation Results 

To evaluate the DNA implementation of the proposed model, we 

implement the model for the example shown in Fig. 1. All the 

molecules are mapped to the DNA strands as described earlier. We use 

the Mathematica tool of Soloveichik et al [5] to simulate the designed 

DNA system. We use the initial parameters based on the examples in 

[5]. For all DNA simulations for the presented designs we used the 

following parameters: The initial concentration of auxiliary complexes, 

𝐶𝑚𝑎𝑥 = 10−5𝑀, the maximum strand displacement rate constant, 

𝑞𝑚𝑎𝑥 = 106𝑀−1𝑠−1, all reaction rates are the same, i.e., 𝑘 = 5.56 ×
104𝑀−1𝑠−1 . 

In order to obtain the simulation values for each row of the steady-state 

probability matrix, shown in (2), we initialize one of the data molecular 

types, i.e., 𝐷𝑖s, each time and run the simulation until equilibrium. In 

other words, to obtain the simulation values for the first row of the 

matrix we initialize 𝐷1 = 100 𝑛𝑀 and other 𝐷𝑖s to zero. Then 

equilibrium concentrations of 𝐷𝑖s show us the steady state values to be 

in the related state if we start from state 1.  Similarly, to obtain the 

simulation values for the second row of the matrix we initialize 𝐷2 =
100 𝑛𝑀 and the equilibrium concentrations of 𝐷𝑖s show us the steady 

state values to be in the corresponding state if we start from state 2.  We 

repeat the simulation for all the seven states in the chain. Fig. 5 shows 

the simulation results for each case. We run each simulation for 12 

minutes (0.2 hours) and then calculate the steady-state probabilities 

according to the final molecular concentrations. As we described earlier 

in this paper, the probability value, 𝑝𝑖, for state 𝑖,  is computed using the 

Equation (5). 

𝑝𝑖 =
𝐷𝑖

∑ 𝐷𝑗
7
𝑗=1

      (5) 

Since only one 𝐷𝑖 is initialized to 100 at the beginning of each 

simulation and other data molecular types initialized to zero Equation 

(5) can be simplified to  

𝑝𝑖 =
𝐷𝑖

100
      (6). 

Note that the summation of the concentration of data molecules 

does not change during the simulation time because the 

proposed molecular reactions do not consume or produce data 

molecules; they just transfer one molecular type to the other 

type. Matrix in Equation (7) shows the computed steady-state 

probability matrix using DNA reactions. 
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𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕
𝟏 0.6663 0 0 0 0.3327 0 0
𝟐 0.183 0 0 0.3424 0.0911 0.2167 0.1732
𝟑 0.265 0 0 0.2844 0.1384 0.178 0.1442
𝟒 0 0 0 0.468 0 0.294 0.2312
𝟓 0.6663 0 0 0 0.3327 0 0
𝟔 0 0 0 0.4729 0 0.2895 0.2361
𝟕 0 0 0 0.4729 0 0.2941 0.2361

       (7). 

 

If the concentration of auxiliary species, 𝐶𝑚𝑎𝑥, is much larger 

than the maximum concentration of other species, (i.e., in the 

proposed CRNs 𝐶𝑚𝑎𝑥 ≫ 100 𝑛𝑀) then, as described in [5] we 

can assume that over the simulation time the auxiliary 

concentrations remain effectively constant. Therefore, DNA 

reactions correctly emulate the CRN independent of the 

auxiliary concentrations. Note that, for this assumption, the 

simulation time and reaction rates should not be very large 

values [5]. Although these requirements have been met in our 

simulations, errors exist. The error stems from the fact that each 

molecular reaction is implemented by a sequence of DNA strand 

displacement reactions as we described earlier; the 

concentrations of auxiliary molecules, 𝐶𝑚𝑎𝑥, is bounded. In fact, 

if 𝐶𝑚𝑎𝑥 → ∞, the DNA simulation results converge to the 

expected molecular reaction results. Further details concerning 

the analysis of errors when implementing CRNs with DNA 

strand displacement reactions, as well as a proof of convergence 

of a DNA implementation to the target CRN, can be found in the 

Supplementary Information of [5] and [24]. 

IV. CONCLUSION 

This paper has presented a method for modeling complex 
Markov chain processes using molecular reactions. The model is 
composed of data molecules corresponding to states and control 
molecules corresponding to the state transition probabilities, 
where data molecules transfer between states by molecular 
reactions corresponding to state transitions. One interpretation of 
the model is that each data molecule represents an agent that 
participates in the Markov chain process. Whether there is a state 
transition or not is defined by the molecular reactions and the 
probabilities of transitions are defined by the concentrations of 
control molecules.  

We ran the DNA simulation of a seven-state Markov chain 
for 12 minutes. For more complex Markov chain the simulation 
time can be longer. In fact, the simulation time should be large 
enough for the data molecular types to get close to their 
equilibrium concentrations.  
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Fig. 5. Simulation results of DNA implementation for the proposed molecular model for Fig. 1. Big red numbers at the top-right corner of 

each figure represent the start state for that simulation where the related data molecular type is initialized to a nonzero value.
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