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1 INTRODUCTION

THE Reliable Array of Independent Nodes (RAIN) project
is a research collaboration between Caltech's Parallel

and Distributed Computing Group and the Jet Propulsion
Laboratory's Center for Integrated Space Microsystems, in
the area of distributed computing and data storage systems
for future spaceborne missions. The goal of the project is to
identify and develop key building blocks for reliable
distributed systems built with inexpensive off-the-shelf
components.

The general hardware platform for the RAIN system is a

heterogeneous cluster of computing and/or storage nodes

connected via multiple interfaces through a network of

switches. A diagram of a possible system configuration is

shown in Fig. 1. Our testbed at Caltech consists of

10 Pentium workstations running the Linux operating

system, each with two network interfaces. These are

connected via four eight-way Myrinet switches [10]. Note,

however, that the RAIN software is not tied to a particular

hardware platform, operating system, or network type.

The RAIN system consists of a collection of software

modules that run in conjunction with operating system

services and standard network protocols, as illustrated in

Fig. 2. Through software-implemented fault tolerance, the

RAIN system tolerates multiple node, link, and switch

failures with no single point of failure. In addition to

reliability, the RAIN architecture is scalable and dynami-

cally reconfigurable, and permits the efficient use of

network resources, such as multiple data paths and

redundant storage, with graceful degradation in the

presence of faults.
We have identified the following key building blocks for

distributed computing systems:

. Communication: fault-tolerant interconnect topologies
and reliable communication protocols. We describe
network topologies that are resistant to partitioning,
and a protocol guaranteeing a consistent history of
link failures. We also describe an implementation of
the MPI standard [49] on the RAIN communication
layer.

. Fault Management: techniques based on group
membership. We describe an efficient token-based
protocol that tolerates node and link failures.

. Storage: distributed data storage schemes based on
error-control codes. We describe schemes that are
optimal in terms of storage, as well as encoding/
decoding complexity.

We present three proof-of-concept applications based on

the RAIN building blocks:
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. A video server based on the RAIN communication
and data storage components.

. A Web server based on the RAIN fault management
component.

. A distributed checkpointing system based on the
RAIN storage component, as well as a leader
election protocol.

This paper is intended as an overview of our work on the
RAIN system. Further details of our work on fault-tolerant
interconnect topologies may be found in [36] and [44]; on a
consistent-history protocol in [37]; on the group member-
ship problem in [30]; on a leader election protocol in [29];
and on data storage schemes in [55], [56], and [57].

We note that the RAIN technology has been transfered to
Rainfinity, a start-up company focusing on creating clus-
tered solutions for improving the performance and avail-
ability of Internet data centers [41].

1.1 Related Work

Cluster computing systems, such as the NOW project at
the University of California, Berkeley [2] and the Beowulf
project [3], have shown that networks of workstations can
rival supercomputers in computational power. Packages,
such as PVM [51], [52], and MPI [31], [49], are widely
used for parallel programming applications. There have
been numerous projects focusing on various aspects of
fault management and reliability in cluster computing
systems. Well-known examples are the Isis [6] and
Horus [54] systems at Cornell University, the Totem
system at the University of California, Santa Barbara [1],
[40], and the Transis system at the Hebrew University of
Jerusalem [19], [20]. Projects focusing on fault tolerance
through process replication and rollback-recovery include
the Manetho project at Rice University [25] and the
DOME project at Carnegie Mellon University [4], [18].
RAID techniques are widely used for performance and
reliability in storage systems [17]. Well-known projects in
reliable distributed storage include the Zebra, CODA, and
Scotch file systems [32], [47], [26].

1.2 Novel Features of RAIN

The RAIN project incorporates many novel features in an

attempt to deal with faults in nodes, networks, and data

storage.

1. Communication: Since the network is frequently a
single point of failure, RAIN provides fault tolerance
in the network via the following mechanisms:

. Bundled interfaces: Nodes are permitted to have
multiple interface cards. This not only adds fault
tolerance to the network, but also gives im-
proved bandwidth.

. Link montioring: To correctly use multiple paths
bewteen nodes in the presence of faults, we have
developed a link-state monitoring protocol that
provides a consistent history of the link state at
each endpoint.

. Fault-tolerant interconnect topologies: Network
partitioning is always a problem when a cluster
of computers must act as a whole. We have
designed network topologies that are resistant to
partitioning as network elements fail.

2. Group membership: A fundamental part of fault
management is identifying which nodes are healthy
and participating in the cluster. We give a new
protocol for establishing group membership.

3. Data storage: Fault tolerance in data storage over
multiple disks is achieved through redundant
storage schemes. Novel error-correcting codes have
been developed for this purpose. These are array
codes that encode and decode using simple
XOR operations. Traditional RAID codes generally
only allow mirroring or parity (i.e., one degree of
fault tolerance) as options. Array codes can be
thought of as data partitioning schemes that allow
one to trade storage requirements for fault tolerance.
These codes exhibit optimality in the storage
requirements, as well as in the number of update
operations needed. Although some of the original
motivation for these codes came from traditional
RAID systems, these schemes apply equally well to
partitioning data over disks on distinct nodes (as in

100 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2001

Fig. 1. Example of the RAIN hardware platform (C � Computer,

S � Switch.)

Fig. 2. RAIN software architecture.



our project), or even partitioning data over disks at
remote geographic locations.

1.3 Organization

This paper is organized as follows: In Section 2, we discuss
fault-tolerant interconnect topologies and the communica-
tion protocol. In Section 3, we present the group member-
ship protocol. In Section 4, we discuss error-control codes
and reliable storage. In Sections 5 and 6, we describe proof-
of-concept applications and a commercial product, Rain-
wall, built with the RAIN technology. Finally, in Section 7,
we present conclusions and directions of future work.

2 COMMUNICATION

The RAIN project addresses fault tolerance in the network
with fault-tolerant interconnect topologies and with
bundled network interfaces.

2.1 Fault-Tolerant Interconnect Topologies

We were faced with the question of how to connect
compute nodes to switching networks in order to maximize
the network's resistance to partitioning. Many distributed
computing algorithms face trouble when presented with a
large set of nodes that have become partitioned from the
others. A network that is resistant to partitioning should
lose only some constant number of nodes (with respect to
the total number of nodes) given that we do not exceed
some number of failures. After additional failures, we may
see partitioning of the set of compute nodes, i.e., some
fraction of the total number of compute nodes may be lost.
By carefully choosing how we connect our compute nodes
to the switches, we can maximize a system's ability to resist
partitioning in the presence of faults.

Our main contributions are:

1. a construction for degree-2 compute nodes con-
nected by a ring network of switches of degree 4 that
can tolerate any 3 switch failures without partition-
ing the nodes into disjoint sets,

2. a proof that this construction is optimal in the sense
that no construction can tolerate more switch fail-
ures while avoiding partitioning, and

3. generalizations of this construction to arbitrary
switch and node degrees and to other switch
networks, in particular, to a fully-connected network
of switches.

See [36] for our full paper on the work described in this
section.

2.1.1 Previous Fault-Tolerant Interconnect Work

The construction of fault-tolerant networks was studied in
1976 by Hayes [33]. This paper looked primarily at
constructing graphs that would still contain some target
graph as a subgraph even after the introduction of some
number of faults. For example, it explored the construction
of k-FT rings that still contain a ring of the given size after
the introduction of k faults.

Other papers that address the construction of fault-
tolerant networks are [14] for fault-tolerant rings, meshes,
and hypercubes, [11], [12], [13] for rings and other

circulants, and [21], [22], [23] for trees and other fault-
tolerant systems.

A recent paper by Ku and Hayes [35] looks at an issue
similar to the one covered in this paper. In particular, it
discusses maintaining connectivity among compute nodes
connected by buses. This is equivalent to not permitting any
switch-to-switch connections in our model. We are looking
at permitting such switch-to-switch connections to allow
the creation of useful switch topologies and then connecting
compute nodes to this network of switches.

2.1.2 The Problem

We look at the following problem: Given n switches of
degree ds connected in a ring, what is the best way to
connect n compute nodes of degree dc to the switches to
minimize the possibility of partitioning the compute nodes
when switch failures occur? Fig. 3 illustrates the problem.

2.1.3 A NaõÈve Approach

At first glance, Fig. 4a may seem like a solution to our
problem. In this construction, we simply connect the
compute nodes to the nearest switches in a regular fashion.
If we use this approach, we are relying entirely on fault
tolerance in the switching network. A ring is 1-fault-tolerant
for connectivity so we can lose one switch without upset. A
second switch failure can partition the switches and, thus,
the compute nodes, as in Fig. 4b. This prompts the study of
whether we can use the multiple connections of the
compute nodes to make the network more resistant to
partitioning. In other words, we want a construction where
the connectivity of the nodes is maintained even after the
switch network has become partitioned.

2.1.4 Diameter Construction dc � 2

The intuitive, driving idea behind this construction is to
connect the compute nodes to the switching network in the
most nonlocal way possible. That is, connect a compute node
to switches that are maximally distant from each other. This
idea can be applied to arbitrary compute node degree dc,
where each connection for a node is as far apart as possible
from its neighbors.

We call this the diameter solution because the maximally
distant switches in a ring are on opposite sides of the ring,
so a compute node of degree 2 connected between them

BOHOSSIAN ET AL.: COMPUTING IN THE RAIN: A RELIABLE ARRAY OF INDEPENDENT NODES 101

Fig. 3. How to connect n compute nodes to a ring of n switches?



forms a diameter. We actually use the switches that are one
less than the diameter apart to permit n compute nodes to
be connected to n switches with each compute node
connected to a unique pair of switches.

Construction 2.1 (Diameters). Let ds � 4 and dc � 2. 8i,
0 � i < n, label all compute nodes ci and switches si. Connect
switch si to s�i�1�mod n, i.e., in a ring. Connect node ci to
switches si and s�i�bn=2c�1�mod n. See Fig. 5 for an example for
n odd and n even.

Note: Although Construction 2.1 is given for an identical
number of compute nodes and switches, we can add
additional compute nodes by repeating the above
process. In this case, we would connect node cj to the
same switches as node cjmod n. All the following results
still hold, with a simple change in constants. For
example, when we connect 10 nodes to 10 switches, we
have a maximum loss of six nodes with the occurrence of
three faults. Increasing the number of nodes to 3n � 30
triples the maximum number of nodes lost with three
faults to 18. This is also true of the generalized diameters
construction in [36]. The maximum number of lost nodes
is still constant with respect to n, the number of switches.
The addition of extra nodes to the ring constructions

affects only this constant in our claims. The asymptotic
results about resistance to partitioning are all still valid.

Theorem 2.1. Construction 2.1 creates a graph of n compute
nodes of degree dc � 2 connected to a ring of n switches of
degree ds � 4 that can tolerate three faults of any kind (switch,
link, or node) without partitioning the network. Thus, only a
constant number of nodes (with respect to n) will be lost. In
this case, that constant is min�n; 6� lost nodes. This
construction is optimal in the sense that no construction
connecting n compute nodes of degree dc � 2 to a ring of
switches of degree ds � 4 can tolerate any arbitrary four faults
without partitioning the nodes into sets of nonconstant size
(with respect to n).

The proof of this theorem is given in [36]. The latter
paper also presents a generalization to nodes of degree
larger than two, as well as a clique network instead of the
ring shown above.

2.2 Consistent-History Protocol for Link Failures

When we bundle interfaces together on a machine and
allow links and network adapters to fail, we must monitor
available paths in the network for proper functioning. In
[36], we give a modified ping protocol that guarantees that
each side of the communication channel sees the same
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history. Each side is limited in how much it may lead or lag

the other side of the channel, giving the protocol bounded

slack. This notion of identical history can be useful in the

development of applications using this connectivity infor-

mation. For example, if an application takes error recovery

action in the event of lost connectivity, it knows that both

sides of the channel will see the exact same behavior on the

channel over time and, thus, will take the same error

recovery action. Such a guarantee may simplify the writing

of applications using this connectivity information.
Our main contributions are: 1) a simple, stable protocol

for monitoring connectivity that maintains a consistent

history with bounded slack and 2) proofs that this protocol

exhibits correctness, bounded slack, and stability.
See [37] for our full paper on the work described in this

section.

2.2.1 Previous Link-State Work

Although this is not the consensus problem, it is still useful

to look at past work on consensus, such as Fischer et al. in

[28], or in Lynch's book [38]. The connectivity problem has

been addressed with different goals by Rodeheffer and

Schroeder in the Autonet system [45], [46]. They were

concerned with adaptive rates and skepticism in judging

the quality of a link, whereas we are concerned with

consistency in reporting the quality of a link. Birman [7]

gives general motivation for consistency in failure reporting

for the purpose of improving reliability of distributed

systems.

2.2.2 Precise Problem Definition

We now present all the requirements of the protocol:

. Correctness: The protocol will eventually correctly
reflect the true state of the channel. If the channel
ceases to perform bidirectional communication (at
least one side sees time-outs), both sides should
eventually mark the channel as Down. If the channel
resumes bidirectional communication, both sides
should eventually mark the channel as Up.

. Bounded Slack: The protocol will ensure that a
maximum slack of N exists between the two sides.

Neither side will be allowed to lag or lead the other
by more than N transitions. (See Fig. 6.)

. Stability: Each real channel event (i.e., time-out) will
cause at most some bounded number of observable
state transitions, preferably, one at each endpoint.

The system model is one in which nodes do not fail, but
links intermittently fail. The links must be such that a
sliding window protocol can function. See the discussion on
data link protocols by Lynch in [38]. Note that this protocol
may still be used in a system where node failures are
allowed. However, it is the job of the application using the
protocol to deal with the concept of node failure via
checkpointing and roll-back, or some other mechanism.

2.2.3 The Protocol

This protocol uses reliable message passing to ensure that
nodes on opposing ends of some faulty channel see the
same state history of link failure and recovery. The reliable
message passing can be implemented using a sliding
window protocol, as mentioned above. At first, it may
seem odd to discuss monitoring the status of a link using
reliable messages. However, it makes the description and
proof of the protocol easier, preventing us from essentially
reproving sliding window protocols in a different form. For
an implementation, there is no reason to actually build the
protocol on an existing reliable communication layer. The
protocol can be easily implemented on top of ping messages
(sent unreliably) with only a sequence number and
acknowledge number as data (in other words, we can
easily map reliable messaging on top of the ping messages).

The protocol consists of two parts:

. First, we have the sending and receiving of tokens
using reliable messaging. Tokens are conserved,
neither lost nor duplicated. Tokens are sent when-
ever a side sees an observable channel state transi-
tion. The observable channel state is whether the link
is seen as Up or Down. The token-passing part of the
protocol essentially is the protocol. Its job is to
ensure that a consistent history is maintained.

. Second, we have the sending and receiving of ping
messages using unreliable messaging. The sole
purpose of the pings is to detect when the link can
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be considered Up or Down. This part of the protocol
would not necessarily have to be implemented with
pings but could be done using other hints from the
underlying system. For example, hardware could
give instant feedback about its view of link status.
For all the proofs to be valid, we must have that a tout
is generated when bidirectional communication has
(probably) been lost, and a tin is generated when
bidirectional communication has (probably) been
reestablished.

The token-passing part of the protocol maintains the
consistent history between the sides, and the pings give
information on the current channel state. The token-passing
protocol can be seen as a filter that takes raw information
about the channel and produces channel information
guaranteed to be (eventually) consistent at both ends. The
state machines in Fig. 7 and Fig. 8 describe how each side of
the protocol functions in the total system for N � 2.

In Section 2.3, we describe the protocol for a slack of
N � 2 and, in 2.4, we do so for a general slack of N .

2.3 Slack N � 2

Here, we describe the protocol for the base case where we
have slack of N � 2. This is a significant case since it is the
smallest value of slack for which any such protocol can
work. Its description is somewhat simpler than the general
case. A state machine, as described in Fig. 7, runs at each
end of the link, at each node.

Intuitively, the state machine of Fig. 7 shows the reaction
to tout events and T (token-receipt) events by the node at
one end of the communication channel. The number of
tokens currently held is t, and 2ÿ t is then the number of
unacknowledged transitions the node has made. Note that
2ÿ t is at most 2, corresponding to the slack bound of two.
The states can be described as follows:

1. Up�t � 2�: The node is in the stable state. No
unacknowledged transitions have been made by this
node.

2. Down�t � 2�: The node is catching-up with a transi-
tion seen by the other node that it itself did not see
via a time-out. No unacknowledged transitions have
been made by this node.

3. Down�t � 1�: The node has seen a time-out and
marked the channel as down. One unacknowledged
transition has been made by this node (Up! Down).

4. Up�t � 1�: The node has received acknowledgement
(via a received token) for the Up! Down transition.
One unacknowledged transition has been made by
this node (Down! Up).

5. Down�t � 0�: The node has seen a time-out and
marked the channel as down and is now blocked
from further transitions by the bounded-slack con-
straint. Two unacknowledged transitions have been
made by this node (Down! Up! Down).

In Fig. 7, each state is characterized by whether the node
sees the channel as Up or Down, and how many tokens t are
held by the node. The state transitions are labeled by the
action triggering the transition and the action taken upon
transition. A trigger event is either a time-out tout or receipt
of a token T . The action taken is always whether a token is
sent (1) or not (0). Note that a token T is sent whenever a
transition for an Up state to a Down state or from a Down
state to an Up state is made.

2.4 General Slack N

Here, we describe the protocol for the general case where
we have some arbitrary slack value, N . A state machine, as
described Fig. 8, runs at each end of the communication at
each node. This description of the state machine tries to
preserve the same structure as the N � 2 machine described
above for the purpose of the proofs.

Each state in Fig. 8 is characterized by whether the node
sees the channel as Up or Down, and how many tokens t are
held by the node. There is an implicit action for each
transition: If a token is received, the token count t is
incremented; if a token is sent, the token count t is
decremented. The state transitions are labeled by the pair
{action triggering the transition} / {action taken upon transition}.
A trigger event is either a time-out tout, a time-in tin, or
receipt of a token T . The action taken is a combination of
sending tokens and adjusting the token count t.

Notice that here we've introduced the tin event, which
was not present in the N � 2 case. This is the complement
to the tout event that becomes meaningful for higher slack. A
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tin corresponds to a hint from some lower level that the
communication link is up and running. For an implementa-
tion where tokens are mapped on top of pings, we would
never explicitly see a tin event since the latest token
information comes with each ping response. However, if
tokens were not mapped on top of pings or, if other sources
of information about the communication link were also
possible, tin events make sense and as such are allowed.

For the protocol details and proofs of correctness,
bounded slack, and stability, see [37].

2.5 A Port of MPI

A port of MPI [49] (using the MPICH implementation from
Argonne Labs [31]) was done on the RAIN communication
layer. This port involved creating a new communications
device in the MPICH framework, essentially adapting the
standard communication device calls of MPICH to those
presented by the RAIN communication layer called RUDP
(Reliable UDP). RUDP is a datagram delivery protocol that
monitors connectivity to remote machines using the
consistent history link protocol explained in this paper
and presented in detail in [37]. The port to MPI was done to
facilitate our own analysis and use of the RAIN commu-
nication layer.

MPI is not a fault-tolerant API and, as such, the best we
can do is mask network errors to the extent redundant
hardware has been put in place. For example, if all
machines have two network adaptors and one link fails,
the MPI program will proceed as if nothing had happened.
If a second link fails, the MPI application may hang until the
link is restored. There is no possibility of returning errors
related to link connectivity in the MPI communications API.
Thus, although the RUDP communication layer knows of
the loss of connectivity, it can do nothing about it and must
wait for the problem to be resolved.

The implementation itself has a few notable features:

. It allows individual networking components to fail
up to the limit of the redundancy put into the
network.

. It provides increased network bandwidth by utiliz-
ing the redundant hardware.

. It runs entirely in user space. This has the important
impact that all program state exists entirely in the
running process, its memory stack, and its open file
descriptors. The result is that if a system running
RUDP has a checkpointing library, the program state
(including the state of all communications) can be
transparently saved without having to first synchro-
nize all messaging. The communications layer only
uses the kernel for unreliable packet delivery and
does not rely on any kernel state for reliable
messaging.

. It illustrates that an experimental communication
library can make the step to a practical piece of
software easily in the presence of standards such as
MPI.

The MPI port to RUDP has helped us use our own
communication layer for real applications, has helped us
argue the importance of keeping program state out of the
kernel for the purposes of transparent checkpointing, and

has highlighted the importance of programming standards
such as MPI.

3 GROUP MEMBERSHIP

Tolerating faults in an asynchronous distributed system is a
challenging task. A reliable group membership service
ensures that the processes in a group maintain a consistent
view of the global membership.

In order for a distributed application to work correctly in
the presence of faults, a certain level of agreement among
the nonfaulty processes must be achieved. There are a
number of well-defined problems in an asynchronous
distributed system, such as consensus, group membership,
commit, and atomic broadcast that have been extensively
studied by researchers. In the RAIN system, the group
membership protocol is a critical building block. It is a
difficult task, especially when a change in the membership
occurs, either due to failures or to voluntary joins and
withdrawals.

In fact, with the classical definition of an asynchronous
environment, the group membership problem has been
proven impossible to solve in the presence of any failures
[15], [28]. The underlying reason for the impossibility is that
according to the classical definition of an asynchronous
environment, processes in the system share no common
clock and there is no bound on the message delay. With this
definition, it is impossible to implement a reliable fault
detector, for no fault detector can distinguish between a
crashed node and a very slow node. Since the establishment
of this theoretic result, researchers have been striving to
circumvent this impossibility. Theorists have modified the
specifications [5], [16], [42], while practitioners have built a
number of real systems that achieve a level of reliability in
their particular environment [1], [6].

3.1 Novel Features

The group membership protocol in the RAIN system differs
from that of other systems, such as the Totem [1] and Isis [6]
projects, in several respects. First, it is based exclusively on
unicast messages, a practical model given the nature of the
Internet. With this model, the total ordering of packets is
not relevant. Compared to broadcast messages, unicast
messages are more efficient in terms of CPU overhead.
Second, the protocol does not require the system to freeze
during reconfiguration. We do make the assumption that
the mean time to failure of the system is greater than the
convergence time of the protocol. With this assumption, the
RAIN system tolerates node and link failures, both
permanent and transient. In general, it is not possible to
distinguish a slow node from a dead node in an
asynchronous environment. It is inevitable for a group
membership protocol to exclude a live node, if it is slow,
from the membership. Our protocol allows such a node to
rejoin the cluster automatically.

The key to this fault management service is a token-
based group membership protocol. The protocol consists of
two mechanisms, a token mechanism and a 911 mechanism.
The two mechanisms are described in greater detail in the
next two sections.
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3.2 The Token Mechanism

The nodes in the membership are ordered in a logical ring.
A token is a message that is being passed at a regular
interval from one node to the next node in the ring. The
reliable packet communication layer is used for the
transmission of the token and guarantees that the token
will eventually reach the destination. The token carries the
authoritative knowledge of the membership. When a node
receives a token, it updates its local membership informa-
tion according to the token.

The token is also used for failure detection. There are two
variants of the failure detection protocol in this token
mechanism. The aggressive detection protocol achieves fast
detection time, but is more prone to incorrect decisions,
namely, it may temporarily exclude a partially disconnected
node in the presence of link failures. The conservative
detection protocol excludes a node only when its commu-
nication has failed from all nodes in the connected
component. The conservative detection protocol has a
slower failure detection time.

3.2.1 Aggressive Failure Detection

When the aggressive failure detection protocol is used, after
a node fails to send a token to the next node, the former
node immediately decides that the latter node has failed or
is disconnected, and removes that node from the member-
ship. The node updates the token with the adjusted
membership information, and passes the token to the next
live node in the ring. This protocol does not guarantee that
all nodes in the connected component are included in the
membership at all times. If a node loses a connection to part
of the system because of a link failure, it could be excluded
from the membership. The excluded node will automati-
cally rejoin the system, however, via the 911 mechanism,
which we will describe in the next section. For example, for
the situation in Fig. 9b, the link between A and B is broken.
After node A fails to send the token to node B, the
aggressive failure detection protocol excludes node B from
the membership. The ring changes from ABCD to ACD
until node B rejoins the membership when the 911 mechan-
ism is activated.

3.2.2 Conservative Failure Detection

In comparison, when the conservative failure detection
protocol is used, partially disconnected nodes will not be
excluded. When a node detects that another node is not

responding, the former node does not remove the latter
node from the membership. Instead, it changes the order of
the ring. In the example in Fig. 9c, after node A fails to send
the token to node B, it changes the ring from ABCD to
ACBD. Node A then sends the token to node C and node C
to node B. In the case when a node has indeed failed, all the
nodes in the connected component fail to send the token to
this node. When a node fails to send a token to another
node twice in a row, it removes that node from the
membership.

3.2.3 Uniqueness of Token

The token mechanism is the basic component of the
membership protocol. It guarantees that there exists no
more than one token in the system at any one time. This
single token detects the failures, records the membership,
and updates all live nodes as it travels around the ring.
After a node is determined to have failed, all live nodes in
the membership are unambiguously informed within one
round of token travel. Group membership consensus is
therefore achieved.

3.3 911 Mechanism

Having described the token mechanism, a few questions
remain. What if a node fails when it possesses the token
and, consequently, the token is lost? Is it possible to add a
new node to the system? How does the system recover from
a transient failure? These questions can be answered by the
911 mechanism.

3.3.1 Token Regeneration

To deal with the token loss problem, a time-out has been
set on each node in the membership. If a node does not
receive a token for a certain period of time, it enters the
STARVING mode. The node suspects that the token has
been lost and sends out a 911 message to the next node
in the ring. The 911 message is a request for the right to
regenerate the token, and is to be approved by all the live
nodes in the membership. It is imperative to allow one
and only one node to regenerate the token when a token
regeneration is needed. To guarantee this mutual ex-
clusivity, we utilize the sequence number on the token.

Every time a token is being passed from one node to
another, the sequence number on it is increased by one. The
primary function of the sequence number is to allow the
receiving node to discard out-of-sequence tokens. The
sequence number also plays an important role in the token
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Fig. 9. (a) Token movement with no link failure. (b) Token movement with one link failure and aggressive failure detection. (c) Token movement with

one link failure and conservative failure setection.



regeneration mechanism. Each node makes a local copy of

the token every time that the node receives it. When a node
needs to send a 911 message to request the regeneration of
the token, it adds this message to the sequence number that
is on its last local copy of the token. This sequence number

will be compared to all the sequence numbers on the local
copies of the token on the other live nodes. The 911 request
will be denied by any node which possesses a more recent
copy of the token. In the event that the token is lost, every

live node sends out a 911 request after its STARVING time-
out expires. Only the node with the latest copy of the token
will receive the right to regenerate the token.

3.3.2 Dynamic Scalability

The 911 message is not only used as a token regeneration

request, but also as a request to join the group. When a new
node wishes to participate in the membership, it sends a
911 message to any node in the cluster. The receiving node
notices that the originating node of this 911 is not a member

of the distributed system and, therefore, treats it as a join
request. The next time that it receives the token, it adds the
new node to the membership and sends the token to the
new node. Thus, the new node becomes a part of the
system.

3.3.3 Link Failures and Transient Failures

The unification of the token regeneration request and the
join request facilitates the treatment of link failures in the
aggressive failure detection protocol. Using the example in
Fig. 9b, node B has been removed from the membership

because of the link failure between A and B. When node B
does not receive the token for a while, it enters the
STARVING mode and sends out a 911 message to node C.
Node C notices that node B is not part of the membership

and, therefore, treats the 911 as a join request. The ring is
changed to ACBD and node B joins the membership.

Transient failures are treated with the same mechanism.
When a transient failure occurs, a node is removed from the
membership. After that node recovers, it sends out a

911 message. The 911 message is treated as a join request,
and the node is added back into the cluster. In the same
fashion, wrong decisions made in a local failure detector
can also be corrected, guaranteeing that all nonfaulty nodes

in the primary connected component eventually stay in the
membership.

Putting together the token and 911 mechanisms, we have
a reliable group membership protocol. Using this protocol,
it is easy to build a fault management service. It is also

possible to attach to the token application-dependent
synchronization information. For example, in the SNOW

project, described in Section 5.2, an HTTP request queue is
attached to the token to ensure mutual exclusion of service.

4 DATA STORAGE

Much research has been done on improving reliability by
introducing data redundancy (also called information
dispersity) [34], [50]. The RAIN system provides a
distributed storage system based on a class of error-control
codes called array codes. In Section 4.2, we describe the
implementation of distributed store and retrieve operations
based upon this storage scheme.

4.1 Array Codes

Array codes are a class of error-control codes that are
particularly well-suited to be used as erasure-correcting
codes. Erasure-correcting codes are a mathematical means
of representing data so that lost information can be
recovered. With an �n; k� erasure-correcting code, we
represent k symbols of the original data with n symbols of
encoded data (nÿ k is called the amount of redundancy or
parity). With an m-erasure-correcting code, the original data
can be recovered even if m symbols of the encoded data are
lost [39]. A code is said to be Maximum Distance Separable
(MDS) if m � nÿ k. An MDS code is optimal in terms of the
amount of redundancy versus the erasure recovery cap-
ability. The Reed-Solomon code [39] is an example of an
MDS code.

The complexity of the computations needed to construct
the encoded data (a process called encoding) and to recover
the original data (a process called decoding) is an important
consideration for practical systems. Array codes are ideal in
this respect [9], [27]. The only operations needed for
encoding and decoding are simple binary exclusive-or
(XOR) operations, which can be implemented efficiently
in hardware and/or software. Several MDS array codes are
known. For example, the EVENODD code [8] is a general
�n; k� array code. Recently, we described two classes of
�n; nÿ 2� and �n; 2� MDS array codes with an optimal
number of encoding and decoding operations [56], [57].

Example 4.1. Table 1a shows an example of such a code,
called the B-Code [57], for n � 6 and k � 4. The original
data consists of 12 pieces of equal size, represented as
a; b; . . . ; f; A;B; . . . ; F . Each piece could be a single bit, or
some fixed amount of binary data. The encoded data is
shown in Table 1a, with one symbol per column.

For the above (6,4) code, suppose that the original
data consists of the following 12 pieces, each one bit in
size: 111010101010. Using the code in Table 1a, the data is
encoded as in Table 1b. With this code, the amount of
data needed for decoding (four columns with three bits
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TABLE 1a
A Data Placement Scheme for a (6,4) Array Code

Each column represents one symbol of the encoded data. Addition (+) is the (bit-wise) binary XOR operation.



each) equals the amount of original data (12 bits). Thus,
the code is MDS. If any two symbols (i.e., columns in the
table) are lost, all the data can be reconstructed. Because
of the symmetry of the data placement, we only need to
check the following three cases of data loss:

Case 1. Columns 1 and 2 are lost. (Table 2)
The decoding procedure to recover the lost data is as
follows:

A � C � d� e� �A� C � d� e�
b � A� �E �A� b� c� � c� E
a � b� �D� F � a� b� �D� F
B � a� c� �F �B� c� d� � d:

Notice that here the ª+º operation is a simple binary
XOR operation, thus x� x � 0 and 0� x � x hold for an
arbitrary binary data piece x.

In Step 1 above, data piecesC,D, e, and �A� C � d� e�
are known from the third, fourth, fifth, and sixth columns,
respectively. Thus, the lost data pieceA in the first column
canberecovered.OnceA isknown, it is thenusedtorecover
another lost data piece, b, in Step 2, and so on. Erasure
decoding for array codes is usually done using such
decoding chains.

Case 2. Columns 1 and 3 are lost.
Now, we need to recover the four data pieces a, A, c, and
C. Similar to Case 1, the decoding chain is as follows:

c � B� d� �F �B� c� d� � F
A � c� b� �E �A� b� c� �E
C � A� d� e� �A� C � d� e�
a � C � �C � E � f � a� �E � f:

Case 3. Columns 1 and 4 are lost.
Finally, we give the procedure to recover the data pieces
a, A, d, and D:

a � �C � E � f � a� � C �E � f ;

A � b� c� �E �A� b� c� �E
D � a� b� �D� F � a� b� � F ;

d � A� C � e� �A� C � f � e�:

Notably, here we see two parallel decoding chains to
recover a and A; these are then used to recover D and d,
respectively.

General decoding algorithms for the B-Code and the
X-Code (another class of MDS array codes we have
developed) are described in [57] and [56].

4.2 Distributed Store/Retrieve Operations

Our distributed store and retrieve operations are a
straight-forward application of MDS array codes to
distributed storage. Suppose that we have n nodes. For
a store operation, we encode a block of data of size d into
n symbols, each of size d

k , using an �n; k� MDS array code.
We store one symbol per node. For a retrieve operation,
we collect the symbols from any k nodes and decode
them to obtain the original data.

This data storage scheme has several attractive
features. First, it provides reliability. The original data
can be recovered with up to nÿ k node failures. Second,
it permits dynamic reconfigurability and hot-swapping of
components. We can dynamically remove and replace up
to nÿ k nodes. In addition, the flexibility to choose any k
out of n nodes permits load balancing. We can select the
k nodes with the smallest load or, in the case of a wide-
area network, the k nodes that are geographically closest.

5 PROOF-OF-CONCEPT APPLICATIONS

We present several applications implemented on the
RAIN platform based on the fault management, commu-
nication, and data storage building blocks: a video server
(RAINVideo), a web server (SNOW), and a distributed
checkpointing system (RAINCheck).

5.1 High-Availability Video Server

There has been considerable research in the area of fault-
tolerant Internet and multimedia servers. Examples are the
SunSCALR project at Sun Microsystems [48], as well as
papers by Elnozahy [24] and Tobagi et al. [53].

For our RAINVideo application, a collection of videos
are encoded and written to all n nodes in the system with
distributed store operations. Each node runs a client
application that attempts to display a video, as well as a
server application that supplies encoded video data. For
each block of video data, a client performs a distributed
retrieve operation to obtain encoded symbols from k of the
servers. It then decodes the block of video data and displays
it. If we break network connections or take down nodes,
some of the servers may no longer be accessible. However,
the videos continue to run without interruption, provided
that each client can access at least k servers. Snapshots of the
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TABLE 1b
A Numerical Example of Table 1a

TABLE 2
Recovery of the First Two Columns of the (6,4) Array Code



demo are shown in Figs. 10 and 11. There are 10 computers,
each with two Myrinet network interfaces and four eight-
way Myrinet network switches.

5.2 High-Availability Web Server

SNOW stands for Strong Network Of Web servers. It is a
proof-of-concept project that demonstrates the features of
the RAIN system. The goal is to develop a highly available
fault-tolerant distributed web server cluster that minimizes
the risk of downtime for mission-critical Internet and
Intranet applications.

The SNOW project uses several key building blocks of
the RAIN technology. First, the reliable communication
layer is used to handle all of the message passing between
the servers. Second, the token-based fault management
module is used to establish the set of servers participating
in the cluster. In addition, the token protocol is used to
guarantee that when a request is received by SNOW, oneÐ
and only oneÐserver will reply to the client. The latest
information about the HTTP queue is attached to the token.
Third, the distributed storage module can be used to store
the actual data for the web server.

SNOW also uses the distributed state sharing mechanism
enabled by the RAIN system. The state information of the
web servers, namely, the queue of HTTP requests, is shared
reliably and consistently among the SNOW nodes. High
availability and performance are achieved without external
load balancing devices, such as the commercially available
Cisco LocalDirector. The SNOW system is also readily
scalable. In contrast, the commercially available Microsoft
Wolfpack is only available for up to two nodes per cluster.

5.3 Distributed Checkpointing Mechanism

The idea of using error-control codes for distributed
checkpointing was proposed by Plank [43]. We have
implemented a checkpoint and rollback/recovery mechan-
ism on the RAIN platform based on the distributed store
and retrieve operations. The scheme runs in conjunction
with a leader election protocol, described in [29]. This
protocol ensures that there is a unique node designated as
leader in every connected set of nodes. The leader node
assigns jobs to the other nodes. As each job executes, a
checkpoint of its state is taken periodically. The state is
encoded and written to all accessible nodes with a
distributed store operation. If a node fails or becomes
inaccessible, the leader assigns the node's jobs to other
nodes. The encoded symbols for the state of each job are
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Fig. 10. The RAINVideo system.

Fig. 11. A client node displaying a video in the RAINVideo system.



read from k nodes with a distributed read operation. The
state of each job is then decoded and execution is resumed
from the last checkpoint. As long as a connected component
of k nodes survives, all jobs execute to completion.

6 RAINWALL: A COMMERCIAL APPLICATION

The RAIN technology has been transfered to Rainfinity, a
start-up company focusing on creating clustered solutions
for improving the performance and availability of Internet
data centers [41]. Rainfinity's first commercial product is
Rainwall, an application of the RAIN technology to provide
a high-availability and load-balancing clustering solution
for firewalls. As the Internet continues to grow, firewalls are
becoming a requirement as a single security administration
point to control access and block intruders. These single
points of administration and entry into the network also
become single points of failure and bottlenecks for the
organization, customers, and partners trying to access the
site. Rainwall is a scalable, high-availability software
solution that is installed on a cluster of gateways, along
with the firewall software, and performs load balancing
among the gateways. In the event of the failure of one or
more gateways, Rainwall routes traffic through the remain-
ing gateways without interrupting existing connections.

Rainwall is designed to address three issues that affect
mission-critical Internet firewalls: availability, performance,
and scalability.

. Availability: Rainwall detects failures in software
and hardware components in real time, shifting
traffic from failing gateways to functioning ones
without interrupting existing connections.

. Performance: Rainwall performs load balancing of
traffic among the gateway servers, and because all
the servers are actively processing traffic, Rainwall
dramatically increases gateway performance.

. Scalability: Rainwall is scalable to any number of
Internet firewall gateways and allows the addition of
new gateways into the cluster without service
interruption. Rainwall also allows existing servers
in the cluster to be removed for service or main-
tenance and added back to the cluster, again without
any interruption of service.

6.1 Virtual IPs
At its core, Rainwall manages pools of virtual IP addresses.
By ensuring that all virtual IPs are always owned by oneÐ
and only oneÐhealthy gateway, and by moving these
virtual IP addresses between gateway machines, Rainwall is
able to balance load and compensate for failed machines.
The group membership protocol described in Section 3 is
used as the foundation for the virtual IP management.

Rainwall monitors inbound and outbound gateway
traffic, ensuring that each gateway is functioning properly
and that the traffic is balanced. It guarantees that the pools
of virtual IP addresses are always available as long as one
machine remains functional in the cluster. There are no
leaders, no primary or secondary machines, and no
redirectors within the cluster. Rainwall requires no extra
network interface cards or subnetworks; all synchronization
between gateway machines is allowed to go over existing
networks. Fig. 12 shows a simple Rainwall cluster sitting
between a single external and a single internal subnet.

The Rainwall software is installed directly onto every
firewall machine in the cluster and manages the pools of
virtual IP addresses. The virtual IPs are specified to the
routers and local clients as default gateways, and are the
only advertised IP addresses of the firewall cluster. They
are dynamically assigned to different firewall nodes in the
Rainwall cluster. Rainwall manages the virtual IPs intelli-
gently and efficiently, so that the firewall availability is
guaranteed in the presence of failures and optimal
performance is achieved even under heavy load.

Rainwall assures users that while physical machines can
go down, the virtual IPs never disappear. In a simple
2-node Rainwall cluster, if Firewall A crashes, all of
Firewall A's virtual IPs are moved to Firewall B. In a
3-node Rainwall cluster, an even higher level of availability
is achieved. Two out of three firewalls can fail and the
healthy one will host all the virtual IPs. With Rainwall's
auto-recovery feature, it can reintroduce a recovered server
into the cluster on the fly, with no downtime, automatically
returning the cluster to its preferred state. This maintains
the highest level of availability and performance, all with no
downtime and potentially no human intervention.

6.2 Failure Detection

The failure detection mechanism of Rainwall consists of two
components, a local failure detector and a cluster failure
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Fig. 12. Simple Rainwall configuration with one external and one internal network. Rainwall presents multiple IP addresses for each subnet and

guarentees that those IP addresses are available as long as one gateway machine remains functional.



detector. A copy of the local failure detector sits on each of
the firewall nodes, constantly examining whether required
local resources are functioning correctly. Rainwall examines
three required components: the network interface cards for
link connectivity, the firewall software for proper function-
ality, and the local machine's ability to reach remote hosts
via ping. If any of these required resources fail, Rainwall
will, by default, bring down the firewall node, and its
virtual IP addresses will be reassigned to other healthy
firewall nodes with no interruption of service. Any local
monitoring component may be disabled by the adminis-
trator, if desired.

The cluster failure detector uses the protocol described in
Section 3. This protocol enables healthy firewall nodes to
detect crashed firewall nodes. It guarantees that all healthy
nodes in the cluster have consensus on the failures.
Extensions to this protocol also allow all the firewall nodes
to share the knowledge of virtual IP assignment, machine
health, machine load, and other global state relevant to
Rainwall. The fail-over time of Rainwall is about two
seconds. This enables transparent fail-over of all TCP traffic
going through the cluster.

6.3 Load Balancing and Performance

Rainwall monitors the total traffic going into each node.
When an imbalance is detected, i.e., one firewall node is
heavily loaded while another one carries a much lighter
load, it moves one or more of the virtual IPs on the more
heavily-loaded node to the more lightly-loaded node. The
load balancing is based on load request and not load
assignment. A heavily-loaded machine does not dump load
to other machines; rather, a less-loaded machine requests
load from heavily-loaded machines. This avoids the ªhot
potatoº effect, where a particularly busy virtual IP gets
bounced from machine to machine.

Rainwall can be configured to manage multiple virtual IP
addresses per subnet. The larger the total number of

virtual IPs to which traffic is routed, the finer the
granularity in load balancing that Rainwall achieves. To
utilize multiple virtual IPs, routers can be configured to use
multiple routes of equal weight, or individual machines can
be configured to use different default routes from within
the virtual IP pool on their subnet.

With Rainwall's dynamic load balancing, users experi-
ence a dramatic performance boost. According to reports
from the Rainfinity Lab, a four-node Rainwall NT cluster
running on a Pentium II 450 MHz single processor Dell
Dimension system, achieves a benchmark of 251 Mbps. In
comparison, the single-node performance is 67 Mbps. In
other words, a four-node Rainwall cluster is 3.75 times as
powerful as a single-node firewall. (Traffic was generated
using Ziff-Davis WebBench.)

6.4 Ease of Use

Rainwall comes with a Java-based management console.
From this GUI, the user can monitor the health of firewall
nodes, the load, and the virtual IP address assignment in
the cluster. The administrator can set virtual IPs to be sticky,
so that they stay on particular nodes and do not participate
in load balancing. Virtual IPs can be preconfigured with a
preference for particular machines, and the GUI allows
drag-and-drop of virtual IPs between machines. Thus,
virtual IPs can be sticky, have a preference, or be free
floating. In all cases, virtual IPs migrate to healthy machines
in the event of a machine failure. Fig. 13 shows the graphic
user interface of Rainwall.

These sticky, preference, and drag-and-drop options
allow for manual adjustment of traffic flow through the
network. This flexibility allows endless variations on how
a firewall administrator can make the cluster more robust
and useful. For example, high priority traffic may be
assigned to go through one firewall node, while low
priority web-surfing traffic goes through the other,
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guaranteeing quality-of-service for the high-priority traf-
fic. As another example, if hacker activity is suspected,
the administrator can drag-and-drop a virtual IP into a
ªtrapº firewall, where the behavior can be analyzed,
without compromising the network or closing down the
firewall.

7 CONCLUSIONS

The goal of the RAIN project has been to build a testbed for
various building blocks that address fault-management,
communication, and storage in a distributed environment.
The creation of such building blocks is important for the
development of a fully functional distributed computing
system. One of the fundamental driving ideas behind this
work has been to consolidate the assumptions required to
get around the ªdifficultº parts of distributed computing
into several basic building blocks. We feel that the ability to
provide basic, provably correct services is essential to
building a real fault-tolerant system. In other words, the
difficult proofs should be confined to a few basic
components of the system. Components of the system built
on top of those reliable components should then be easier to
develop and easier to establish as correct in their own right.
Building blocks that we consider important and that are
discussed in this paper are those providing reliable
communication, group membership information, and reli-
able storage. Among the current and future directions of
this work are:

. Development of API's for using the various building
blocks. We should standardize the packaging of the
various components to make them more practical for
use by outside groups.

. The implementation of a real distributed file system
using the data partitioning schemes developed here.
In addition to making this building block more
accessible to others, it would help in assessing the
performance benefits and penalties from partition-
ing data in such a manner.
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