
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Time-Encoded Values for Highly Efficient
Stochastic Circuits

M. Hassan Najafi, Student Member, IEEE, Shiva Jamali-Zavareh, David J. Lilja, Fellow, IEEE,
Marc D. Riedel, Senior Member, IEEE, Kia Bazargan, Senior Member, IEEE,

and Ramesh Harjani, Fellow, IEEE

Abstract— Stochastic computing (SC) is a promising tech-
nique for applications that require low area overhead and
fault tolerance, but can tolerate relatively high latency. In the
SC paradigm, logical computation is performed on randomized
bit streams. In prior work, streams were generated with linear
feedback shift registers; these contributed heavily to the hard-
ware cost and consumed a significant amount of power. This
paper introduces a new approach for encoding signal values: com-
putation is performed on analog periodic pulse signals. Exploiting
pulse width modulation, time-encoded signals corresponding to
specific values are generated by adjusting the frequency and
duty cycles of pulse width modulated (PWM) signals. With
this approach, the latency, area, and energy consumption are
all greatly reduced. Experimental results on image processing
applications show up to 99% performance speedup, 98% saving
in energy dissipation, and 40% area reduction compared to prior
stochastic approaches. Circuits synthesized with the proposed
approach can work as fast and energy-efficiently as a conven-
tional binary design while retaining the fault-tolerance and low-
cost advantages of conventional stochastic designs.

Index Terms— Energy-efficient computing, mixed-signal
design, pulse width modulation, stochastic computing (SC)
circuits, stochastic number generator (SNG), time-encoded
values.

I. INTRODUCTION

STOCHASTIC computing (SC) [1], [2] was originally
advocated by Gaines [3], and has gained traction in

recent years again. It has been applied to a wide variety of
applications, such as image processing [4]–[7], error correc-
tion [8], [9], and neural networks [10]–[13]. In SC, circuits
operate on randomized bit streams. The signal value is encoded
by the probability of obtaining a one versus a zero in the
stream. In the “unipolar” representation, a real-valued number
x (0 ≤ x ≤ 1) is represented by a stream in which each bit
has probability x of being one and probability 1 − x of being
zero. In the “bipolar” representation, a real-valued number
y (−1 ≤ y ≤ 1) is represented by a stream in which each
bit has probability (y + 1)/2 of being one and probability
1 − (y + 1)/2 of being zero.

A stochastic representation is much less compact than
conventional binary radix. However, complex operations can

Manuscript received July 7, 2016; revised October 26, 2016; accepted
December 5, 2016. This work was supported by the National Science
Foundation under Grant CCF-1408123.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Minnesota, Twin Cities, MN 55455 USA (e-mail:
najaf011@umn.edu; jamal036@umn.edu; lilja@umn.edu; mriedel@umn.edu;
kia@umn.edu; harjani@umn.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2016.2645902

be performed with remarkably simple logic [14]. For example,
a single AND performs multiplication with the unipolar rep-
resentation; a single XNOR gate performs multiplication with
the bipolar representation. A multiplexer (MUX) implements
scaled addition and subtraction. Complex functions, such as
exponentials and trigonometric functions, can be computed
through polynomial approximations.

In addition to producing simple and compact logic, a sto-
chastic representation offers the advantage of error tolerance.
In a noisy environment, bit flips will affect all the bits with
equal probability. With a conventional binary radix repre-
sentation, the high-order bits represent a large magnitude;
accordingly, faults in these bits can produce large errors.
In contrast, with a stochastic representation, all the bits are
equally weighted. Hence, a single flip results in a small error.
This error tolerance scales to high error rates, so that multiple
bit flips produce only small and uniform deviations from the
nominal value.

A premise for SC is the availability of stochastic bit streams
with the requisite probabilities. In prior work, these streams
were generated from physical random sources [15], [16] or
with pseudo-random constructs, such as linear feedback shift
registers (LFSRs). These stochastic number generator (SNG)
modules contributed heavily to the hardware cost. Indeed, in
some cases, they accounted for 80% or more of the overall
hardware cost [14]. Consequently, they also consumed a sig-
nificant amount of power. Noting that energy = power× time,
the long runtime of stochastic circuits, together with the high
power consumption of the SNGs, could lead to higher energy
use than their conventional binary counterparts [17].

This paper introduces a new, energy-efficient, high-
performance, and much less costly approach for generating
stochastic bit streams using analog periodic pulse signals.
Pulse width modulated (PWM) signals corresponding to spe-
cific values are generated by adjusting the frequency and duty
cycles of PWM signals. The duty cycle (0 ≤ D ≤ 1) describes
the amount of time the signal is in the high (ON) state as a
percentage of the total time it takes to complete one cycle.
As a result, the signal is encoded in time. The frequency
f = (1/T) of the PWM signal determines how long it takes
to complete a cycle T and, therefore, how fast it switches
between the high and the low states. Fig. 1 shows three PWM
signals with different duty cycles D when T = 1, yhigh = 1 V,
and ylow = 0 V.

Our approach is motivated by the following observation:
a stochastic representation is a uniform, fractional representa-
tion. All that matters in terms of the value that is computed is

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 1. PWM signals with different duty cycles. (a) 20% duty cycle.
(b) 50% duty cycle. (c) 80% duty cycle.

the fraction of the time the signal is high [18]. For example,
if a signal is high 25% of the time, it is evaluated as 0.25 in
the unipolar format. Similarly, PWM signals can be treated as
time-encoded inputs with values defined by their duty cycle.
For example, the PWM signals shown in Fig. 1 represent 0.2,
0.5, and 0.8 in the unipolar and −0.6, 0.0, and 0.6 in the
bipolar representation.

The challenge is that PWM signals are not, in themselves,
random or pseudo-random. Consider the stochastic operation
of multiplication with a single AND gate. Taking the logical
AND of bits in two independent bit streams yields the product
of their probabilities, so an AND gate performs multiplication
on stochastic bit streams. With PWM signals, we set the duty
cycle to be the value represented. If two PWM signals have
the same frequency, then the scheme will not work; the logical
AND of the signals will not compute the product of the values.
As we will show, the key is choosing different frequencies,
and letting the system run over multiple PWM cycles. With
the appropriate choice of frequencies for input signals, the
high values intersect roughly as they would randomly. Thus,
we achieve an inexpensive form of pseudo-randomness with
PWM signals.

This paper is structured as follows. In Section II, we discuss
prior approaches to stochastic number generation, introduce
PWM signals as a representation, and demonstrate how to gen-
erate PWM signals. In Section III, we describe a methodology
for performing SC on PWM signals. In Section IV, we validate
the approach with experimental results. Finally, in Section V,
we present conclusions.

II. STOCHASTIC NUMBER GENERATION

A. Conventional Stochastic Number Generators

Given an input value, say in binary radix, the conventional
approach for generating a stochastic bit stream with probabil-
ity x is as follows. Obtain an unbiased random value 0 ≤ r ≤ 1
from a random [15], [16] or pseudo-random source [19], [20];
compare it with the target value x ; output a one if r ≤ x
and a zero otherwise. Fig. 2 illustrates the approach. The
“random number generator” is usually an LFSR, which pro-
duces high-quality pseudo-randomness [19]. In this approach,

Fig. 2. Conventional stochastic number generator.

Fig. 3. SNG proposed in [6] for vision chips.

the period of the clock feeding the generator corresponds to
the duration of a single bit in the output stream. Assuming
that the pseudo-random numbers are uniformly distributed
between 0 . . . 2M − 1, the value stored in the constant number
register should be 2M × x . In the output, each bit is one with
probability (2M × x)/2M = x [3], [10].

Pseudo-random number generators contribute heavily to the
overall hardware cost. To represent real numbers with a reso-
lution of 2M , i.e., numbers of the form (a/2M) for integers a
between 0 and 2M , a stochastic representation requires a
stream of 2M bits. Generating streams with such resolution
requires a generator that can produce 2M unique values.
Indeed, the high cost of the pseudo-random number generation
diminishes one of the main advantages of SC: low hardware
cost. Factoring in the cost of the generators, the overall
hardware cost of an SC implementation is often comparable
to that of a conventional representation [14].

Alaghi et al. [6] proposed a specific design of an SNG unit
for vision chips. Vision chips have image sensors that convert
the perceived light intensity to an analog electrical voltage.
The sensed voltage is converted to a stochastic number by
comparing it with a random voltage generated by an LFSR-
based counter and a digital-to-analog converter (DAC). Fig. 3
illustrates their approach. We will show that, by working with
PWM signals, we can eliminate both the DAC as well as the
LFSR. The result is much less costly SNGs for applications
that have analog electrical voltages as inputs.

B. PWM as the Stochastic Number Generator

In many electronic systems, existing analog inputs or
onboard microcontrollers can be employed to generate PWM
signals [22]. The simplest way to generate a PWM signal is
to feed a sawtooth wave into the first input of an analog com-
parator and a control voltage into the second. The frequency
of the sawtooth waveform determines the sampling rate of the
signal. Thus, by changing the frequency of this wave, one can
adjust the frequency of the generated PWM signal.

Fig. 4 shows a common design for an analog PWM gen-
erator. The duty cycle of the PWM signal is set by changing
the DC level of the input signal. The higher the DC level
is, the wider the PWM pulses. The range of the DC signal
varies between the minimum and maximum voltages of the
triangle wave. For example, if we adjust the DC signal to have
a level exactly halfway between the minimum and maximum,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAJAFI et al.: TIME-ENCODED VALUES FOR HIGHLY EFFICIENT STOCHASTIC CIRCUITS 3

TABLE I

AREA–POWER COMPARISON OF DIFFERENT SNGs

Fig. 4. A common analog PWM generator.

Fig. 5. Design of our PWM generator. The duty cycle is determined by the
current coming from the sensing circuit (a photodiode, or a voltage controlled
current source, etc) and the Reset pulse defines the frequency of the PWM
signal. Vref is a fixed reference voltage.

the circuit will generate a PWM signal with a duty cycle of
50%. This will correspond to an input value of 0.5 in the
unipolar and 0.0 in the bipolar representation.

Fig. 5 shows the design of a low-cost PWM generator,
consisting of a ramp generator, a clock signal generator, and
an analog comparator. The input is a current coming from a
sensing circuit that controls the duty cycle of the PWM signal.
The clock generator provides the required Reset signal, which
determines the frequency of the PWM signal. Ring oscillators
consisting of an odd number of inverter gates can be used as
the clock generator. The frequency of the Reset clock can be
adjusted by either changing the supply voltage or changing the
number of inverters in the oscillator. In the 45-nm technology,
a ring of approximately 89 inverter gates can generate a local
clock with a period of 1 ns with a supply voltage of 1.0 V.

Table I shows an area–power comparison of the proposed
PWM generator shown in Fig. 5 with prior methods for
SNGs: 1) the LFSR-based method in [14] and 2) the method
proposed for vision chips in [6]. The results are for 45-nm
technology. We assume that the inputs are analog voltages or
currents coming from a sensing circuit. The effective number
of bits (ENOB) corresponding to different frequencies of
the PWM generator is shown in Fig. 6. Analog-to-digital
convertors (ADCs) are used to obtain a digital representation
for the LFSR-based method. The cost of a 45-nm SAR ADC
is taken from [21]. The special SNG proposed for vision chips

Fig. 6. ENOB of the proposed PWM generator shown in Fig. 5 when
generating PWM signals with frequencies from 0.5 to 3 GHz. More detail on
the noise modeling of the implemented PWM generator will be discussed in
Section V.

resembles an ADC; we assume that it is roughly as expensive
as a SAR ADC. The Synopsys Design Compiler was used
to synthesize the SNGs. The results in Table I demonstrate
that our mixed-signal method, based on PWM generators, has
much lower area and power costs than the prior methods in
cases where the inputs are in analog voltage or current form.
Accordingly, the approach is a good fit for real-time image
processing circuits, such as those in vision chips. These have
image sensors that convert the perceived light intensity to an
analog voltage or current.

Note that in prior methods, a counter was used to convert
stochastic streams back into real values in the digital domain.
To convert the stochastic signals directly to a value in the
analog domain, prior work used a simple RC integrator circuit
to average the signal [23]. For a faster response time, we use a
Gm-C active integrator to average the output from processing
PWM signals and measure the fraction of the time that the
signal is high.

III. STOCHASTIC SYSTEMS WITH PWM SIGNALS

In this section, we first discuss the implementation of basic
stochastic operations operating with PWM signals. Then, we
extend the discussion to more complex examples consisting of
a multi-level combination of stochastic operations.

A. Stochastic Operations With PWM Signals

1) Multiplication: In the SC representation, a single
AND (XNOR) gate performs multiplication if the unipo-
lar (bipolar) format is used. The multiplication opera-
tion presumes that the inputs are independent, uncorrelated
streams [10]. Connecting two PWM signals with the same duty
cycle and the same frequency to the inputs of an AND gate will

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 7. Average error rates when performing a multiplication operation using an AND gate for 1000 ns on 1000 sets of random input values when the inputs
are represented using PWM signals. The period of the first input is set at 20 ns while the period of the second changes from 1 to 20 ns.

evidently not work. It produces an output signal equal to the
two inputs, not the square of the value as required. However,
as we will show, one can use PWM signals provided that they
have different frequencies (recall that we represent values by
the duty cycle of PWM signals, not their frequency).

Instead of continuous-valued time signals, assume, for the
sake of argument, that PWM signals are represented as bit
streams. For instance, assume that an input value X = 3/5
(a signal with duty cycle of 60%) is represented by the bit
stream 11 100, and an input Y = 1/2 (a duty cycle of 50%)
is represented by the bit stream 1100. Note that the stream
for X has length 5 while that for Y has length 4. Suppose we
multiply X and Y with an AND gate. Let the bit streams run
for 20 clock cycles, corresponding to 4 repetitions of X and 5
repetitions of Y . Taking the bit-wise AND of the streams

X = 11100111001110011100
Y = 11001100110011001100

X.Y = 11000100000010001100

we observe 6/20 ones in the output, the expected value, since
3/5 × 1/2 = 6/20. The results of this sort of multiplication
operation are always correct if one chooses stream lengths
that are relatively prime and let them run up to the common
multiple. This is because when the length of the inputs is
relatively prime, the difference between the lengths results
in a new phase between the signals in each repetition until
they get to the common multiple. A new initial phase in
each repetition causes each bit of the first bit stream to see
every bit of the second stream. This is, intuitively, equivalent
to sliding one bit stream past the other. The bit streams
are, therefore, multiplied by convolving through sliding and
ANDing repeatedly [24], [25].

Proof: Let a/m be represented by a stream of m bits
consisting of a bits of 1s with the rest of the bits being 0.
Similarly, let b/n be represented by a stream of n bits
with b bits of 1s and the remaining bits being 0. Assume
that we repeat both streams to reach a total of the least
common multiple (LCM) number of bits, or for simplicity
mn bits in each stream. Applying an AND gate to these
streams, we will have a × b bits of 1s if and only if the
set {mk + i (mod n) : k = 0, 1, . . . , n − 1} is a complete set
of residues mod n. Here, i is the position of any 1 bit in the
first stream. The first observation is that, whether the above
holds or not does not depend on i . The second observation is
that, when i = 0, this statement is true if and only if m and n
are relatively prime. Therefore, ANDing the above-mentioned

Fig. 8. Discretizing a continuous PWM signal.

streams produces (a/m) × (b/n) if and only if m and n are
relatively prime. Q.E.D.

This argument can be easily expanded to analog PWM sig-
nals if the continuous signals are discretized into bit streams,
as shown in Fig. 8. A PWM signal can be discretized into a
bit stream by dividing the signal into pulses of size epsilon
and assigning 0/1 bits to these pulses. The relatively prime
length rule is then applicable to this discrete representation of
the PWM signals and continues to hold as ε → 0. Note that
in signal processing terminology, PWM signals with relatively
prime periods are inharmonic.

To illustrate this argument, we simulated multiplication
on a thousand sets of random input values represented by
PWM signals in MATLAB [26]. We fixed the period of the
first PWM signal at 20 ns while varying the period of the
second from 1 to 20 ns in the increments of 0.1 ns. For
each pair of periods, we converted the randomly generated
sets into corresponding PWM signals and then performed
multiplication for 1000 ns. The accuracy of the results was
verified by calculating the difference between the expected
value and the measured output value for all sets. To convert
the output signals into deterministic real values, we measured
the fraction of the time that the output is high and divided this
by the total time. The average error rates for multiplication for
different pairs of periods are shown in Fig. 7.

As can be seen in Fig. 7, with the period of the first PWM
input signal fixed at 20 ns, choosing 1 ns, 2 ns, 2.5 ns,
4 ns, 5 ns, 8 ns, 10 ns, 12 ns, 15 ns, 16 ns, or values very
close to 20 ns as the period of the second PWM input signal
produces poor results. This can be attributed to an aliasing
effect that occurs with periodic signals that are harmonically
related. Eliminating these choices, the measured average error
rate for other values was always less than 0.5%. Note that
these results could ideally be extended to any other range

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAJAFI et al.: TIME-ENCODED VALUES FOR HIGHLY EFFICIENT STOCHASTIC CIRCUITS 5

Fig. 9. Example of multiplying two PWM signals using an AND gate.
IN1 represents 0.5 (50% duty cycle) with a period of 20 ns, and IN2 represents
0.6 (60% duty cycle) with a period of 13 ns. The output signal from t = 0
to 260 ns represents 0.30 (78 ns/260 ns = 3/10), the expected value from
multiplication of the inputs.

Fig. 10. Average error rate of multiplying 1000 pairs of random numbers
represented by PWM signals when varying the operation time. The period of
the PWM signals corresponding to the first and to the second number in each
trial is 20 and 13 ns, receptively.

of periods.1 For example, knowing that 20 and 13 ns is a
good pair, periods of 2 and 1.3 ns, or 10 and 6.5 ns would
work equally well. From this observation, we make our first
conclusion.

Conclusion 1: Stochastic multiplication of numbers repre-
sented by PWM signals produces highly accurate results if the
signals are not harmonically related.

With inharmonic PWM signals as inputs of multiplication,
the fraction of time that the output signal is high will converge
to the expected value eventually. However, stochastic circuits
are not energy-efficient if the operations run more than what
they actually need to. The question is: How many cycles of
PWM signals are required to reach to a reasonable accuracy?
Fig. 9 shows an example of multiplying two stochastic num-
bers, 0.5 and 0.6, represented using two PWM signals. The
period of the first PWM signal is 20 ns and that of the second
is 13 ns. Fig. 9 shows that, after performing the operation
for 260 ns, the fraction of the total time the output signal
is high equals the value expected, when multiplying the
two input values, namely, 0.3.

Expanding the example mentioned earlier to different opera-
tion times, Fig. 10 shows the average error rates of multiplying
1000 pairs of random numbers represented by PWM signals
when a fixed period of 20 ns is selected for the first and a
fixed period of 13 ns is chosen for the second. We vary the

1In practice, the resolution or ENOB of the PWM signals can affect the
accuracy and so limits the extension range.

Fig. 11. Average error rate for multiplying 1000 pairs of random numbers
represented by PWM signals when the period of the first and the second PWM
signal is relatively prime integers in the interval [2, 20]. A lower average error
rate in the figure means a higher ENOB in the computations.

operation time. As Fig. 10 shows, the output of multiplications
converges to the expected value if the operations continue at
least up to the LCM of the periods of the input signals (here,
20 × 13 = 260 ns). The best possible accuracy is obtained
when the operation is run for exactly the LCM (260 ns) or
multiples of the LCM (520 and 780 ns). Running the operation
longer than the LCM does not help the accuracy. This is in
contrast to prior SC approaches where increasing the length
of bit streams improves the quality of the results.

Let us consider the X.Y stream produced before. The LCM
of the input streams was 4 × 5 = 20, and after exactly
20 cycles, the expected output was produced. Continuing the
operation for another 20 cycles produces exactly the same
output with the same ratio of ones to the length of stream

X = 11100111001110011100 11100111001110011100
Y = 11001100110011001100 11001100110011001100

X.Y = 11000100000010001100 11000100000010001100.

Thus, we can say that the output has a period of 20 cycles.
A similar result is observed when ANDing continuous PWM
signals. The output has a period of the LCM. The signal
produced from the first LCM to the second LCM is exactly
the same as the signal produced from time = 0 to the first
LCM. This motivates our second conclusion.

Conclusion 2: The best accuracy when multiplying numbers
represented by PWM signals is obtained when running the
operation for the LCM or multiples of the LCM of the period
of the inputs.

Knowing that relatively prime periods must be selected for
the input signals and the multiplication operation should be
run for the LCM of the periods, a new question arises:

Considering available sets of relatively prime periods, each
with a different LCM, what is the best set of periods to
reach to a desired accuracy? For example, (17 and 3 ns) and
(17 and 7 ns) are two possible sets of periods to generate the
PWM input signals for a multiplication operation. The first set
has an LCM of 51 ns while the second’s is 119 ns. Which one
of these two sets is a better choice?

Fig. 11 shows the average error rates of multiplying
1000 pairs of random numbers represented by PWM signals
when different sets of relatively prime periods are selected as
the periods of the input signals and the operations are run for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 12. Example of the scaled addition of two PWM signals using a MUX.
IN1 and IN2 represent 0.2 and 0.6 with a period of 5 ns, and Sel represents
0.5 with a period of 4 ns. The output signal from t = 0 to 20 ns represents
0.40 (8 ns/20 ns = 4/10), the expected value from the scaled addition of the
inputs.

the LCM of the periods. Each set of periods has a different
LCM. As can be seen in Fig. 11, the larger the LCM, the
lower the average error rate. The reason is that larger LCMs
are produced by longer periods and a longer period means
a higher ENOB in representing the input values and so a
higher ENOB in the computations. Note that while generating
PWM signals with longer periods and so larger LCMs gives
more accurate results, this requires a longer operation time.
Thus, if a set of periods with a smaller LCM can satisfy the
accuracy requirements, this might be the better choice. Thus,
we conclude the following.

Conclusion 3: The larger the LCM of the periods of the
PWM input signals, the higher the accuracy when performing
multiplication.

2) Scaled Addition and Subtraction: Stochastic values are
restricted to the interval [0, 1] (in the unipolar case) or
the interval [−1, 1] (in the bipolar case). So one cannot
perform addition or subtraction directly, since the result might
lie outside these intervals. However, one can perform scaled
addition and subtraction. These operations can be performed
with a MUX [4]. The performance of a MUX as a stochastic
scaled adder/subtractor is insensitive to the correlation between
its inputs. This is because only one input is connected to
the output at a time. Thus, highly overlapped inputs, such as
PWM signals with the same frequency can be connected to the
inputs of a MUX. The important point when performing scaled
addition and subtraction with a MUX on PWM signals is that
the period of the select signal should not be harmonically
related to the period of the input signals. For example, 5, 5,
and 4 ns is a good set of numbers for the period of the first,
the second, and the select input signals, respectively.

Fig. 12 shows an example of scaled addition on
two stochastic numbers, 0.2 and 0.6, represented by two PWM
signals (both have periods of 5 ns). A PWM signal with duty
cycle of 50% and period of 4 ns is connected to the select
input of the MUX. As shown, after performing the operation
for 20 ns, the fraction of the total time the output signal is high
equals the expected value, 0.40. The same argument we had
for the multiplication operation also exists here—the scaled
addition/subtraction operation should be run for the LCM or
multiples of the LCM of the period of the input signals and

Fig. 13. Average error rate of performing scaled addition on 1000 pairs of
random numbers represented by PWM signals when the period of the first and
the second PWM signal is the same but different and relatively prime with
the period of the PWM select signal. The periods are selected from integers
in [2, 20] interval.

that of the select signal to produce the correct output. Note
that choosing different periods for the main inputs of the MUX
results in a larger LCM and so results in a longer operation
time. Furthermore, generating inputs with different periods
requires extra clock generator circuitry. We conclude that it
is most efficient to generate signals for the main inputs of the
MUX with the same period.

A unique property of MUX-based operations is that large
LCMs are not necessarily required to produce accurate results.
Similar to what we saw for the multiplication operation,
selecting inharmonic periods with a large LCM guarantees
the accuracy of the results for the scaled addition/subtraction.
However, it is possible for the stochastic MUX-based oper-
ations to produce accurate results even with inputs with
very small periods. Fig. 13 shows the average error rate of
performing scaled addition when inharmonic PWM signals are
connected to the main and select inputs of the MUX.

Each point in Fig. 13 represents the accuracy and the LCM
corresponding to one set of periods. The first and the second
numbers in each set are the period of the main PWM inputs
and the third number is the period of the select input. As the
results show, when the period of the PWM select signal is
an “even” value (2 ns, 4 ns,…), choosing “odd” periods as
the period of the main PWM inputs result in highly accurate
outputs. When choosing an “even” period for the inputs and
an “odd” period for the select signal, a large LCM is needed
to produce accurate results. The reason is shown in Fig. 14.
A select signal with an “even” period perfectly splits an input
with an “odd” period in two periodic parts with the same
duration at the high level. Thus, it does not matter to which
input of the MUX the input signal is connected. However, in
the case of an “odd” period for the select signal, connecting the
input signal to different inputs of the MUX selects different
parts of the input signal with different high durations. This
motivates our fourth conclusion.

Conclusion 4: Optimal choices for MUX-based operations
are those with an “even” value for the period of the select
input and an “odd” value for the period of the main inputs.
The operation should run for the LCM of the periods.

3) Absolute Value Subtraction: Correlation between the
inputs of a stochastic circuit can sometimes change the func-
tionality of a circuit, which might result in a more desirable

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAJAFI et al.: TIME-ENCODED VALUES FOR HIGHLY EFFICIENT STOCHASTIC CIRCUITS 7

Fig. 14. Examples of choosing an “odd” or an “even” number as the period
of the MUX’s select signal. The input is a PWM signal with D = 30%.
Black (blue) lines are parts of the input signal that will be connected to the
output of the MUX when the input is connected to the first (second) input.

Fig. 15. Example of performing stochastic absolute value subtraction using
an XOR gate when two synchronized PWM signals are used as the inputs of
the gate, one representing 0.5 (D = 50%) and the other 0.8 (D = 80%). Both
PWM signals have a period of 20 ns. The output signal from t = 0 to 20 ns
represents 0.3, the expected value for |I N1 − I N2|.

operation. An XOR gate with independent inputs performs the
function z = x1(1− x2)+ x2(1− x1). However, when fed with
correlated inputs where the two input streams have maximum
overlap in their 1s, the circuit computes |x1−x2| [6]. Consider
x1 = 11101 and x2 = 10001, two 5-bit-long correlated
stochastic streams representing 4/5 and 2/5. Connecting these
streams to the inputs of an XOR gate produces Y = 01100, the
expected value from performing absolute valued subtraction.
In this case, the output stream has the same number of bits as
the input streams.

When working with PWM signals, high correlation or
maximum overlap is provided by satisfying two requirements:
1) choosing the same frequency for the input signals and
2) having maximum overlap between the high parts of the
signals. Thus, two PWM signals that have the same period,
with the high part in each one located at the start or end of each
period, are called correlated (or synchronized) signals [27].
Fig. 15 shows an example of performing absolute value
subtraction on two synchronized PWM signals. As Fig. 15
shows, the correct output with the highest possible accuracy is
ready right after performing the operation for only one period
of the PWM input signals. Thus, the following holds.

Conclusion 5: For operations, such as absolute value sub-
traction, which work only with correlated inputs (synchronized
PWM signals), the period of the output signal, and, thus, the
operation time, equals the period of the input signals.

This conclusion introduces an important advantage of work-
ing on the synchronized PWM signals, which is that they
eliminate the requirement of running the operation for several
repetitions of the input signals to obtain an accurate output

Fig. 16. Examples of multilevel stochastic circuits.

signal. An important point, however, is that there is a limitation
in using such operations that require highly correlated inputs.
Providing the required synchronization (maximum high part
overlap between the input signals) is difficult for the second
(or higher) level of the circuit where the signals are the outputs
of a previous level. Nonetheless, performing these operations
can still be advantageous at the first level of circuits.

B. Multilevel Circuit PWM Signals

In the following, we briefly discuss the functionality of
multilevel stochastic logic when PWM signals are used as
the inputs of the circuit. An interesting point in performing
stochastic operations on PWM signals is that the output of
each level can be used as the input of the next level even
though the output is not a PWM signal. When connecting
two PWM signals to a stochastic operator, the output is a
conventional stochastic number whose value cannot be found
from the duty cycle but rather by probability of being in the
“high” state. However, the main difference between such an
output with a conventional random stochastic signal is that,
since the primary inputs were PWM signals, the generated
output is a periodic signal. This property allows us to use the
output of each level as the input to the next level. By knowing
the period of the output signal, the obtained signal and some
new signals that are not harmonically related can be used in
the subsequent levels.

Consider the example presented in Fig. 16(a), a three-level
circuit multiplying four PWM signals with periods of P1–P4.
We want to choose the periods of the inputs and the required
operation time, which can lead to accurate outputs. Based
on the conclusions in Section II, P1 and P2 should not
be harmonically related. The AND1 gate should operate for
i × P1 × P2 (i is an integer ≥1). The output of the AND1
gate is a signal with a period of P1× P2. The accuracy of the
output produced by AND2 depends on the output of AND1 and
also on P3, the period of the third PWM signal. P3 should not
be harmonically related to the period of the signal generated at
the output of AND1, and so to P1 and P2. Finally, P4 should
not be harmonically related to P1–P3. The final output has
a period of P1 × P2 × P3 × P4, so the circuit must run for
this amount of time to produce an accurate result.

Expanding the example mentioned earlier to circuits mul-
tiplying N PWM signals with N periods that are not har-
monically related, the operation time must be the LCM of all

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 17. Robert’s cross edge detection algorithm. (a) Core stochastic logic [6].
(c) Conventional binary implementation. Gamma correction function. (b) Core
stochastic logic based on ReSC architecture [14]. (d) Conventional binary
implementation [6].

these periods. The important trade-off here is to select small
or large periods for these signals. Small periods result in a
small LCM, and so need a shorter operation time. Larger
periods have larger LCMs and so require a longer running
time. As shown in Fig. 11, the larger the LCM, the higher the
accuracy of multiplication. Thus, selecting the period of the
PWM signals for such circuits depends on the accuracy and
timing expectations.

The circuit presented in Fig. 16(b) incorporates all three
sorts of basic operations. The AND gate’s output has a period
of P1×P2 while the output of the XOR gate has a period equal
to the period of its inputs, or P3. The minimum operation time
for this circuit is obtained when the MUX’s inputs have the
same periods (P1 × P2 = P3). P3 must be an “odd” number
while a small even value must be selected for P4. For this
circuit, the total operation time will be P3 × P4. In cases
where P3 �= P1 × P2, the total operation time will be the
LCM of the period of all inputs, or P1 × P2 × P3 × P4.

IV. EXPERIMENTAL RESULTS

To validate our ideas, we used stochastic implementations
of two well-known digital image processing algorithms, the
Robert’s cross edge detection algorithm and the Gamma
correction function. The core stochastic computation circuit for
the Robert’s cross algorithm was taken from [6], and the core
logic for the gamma correction algorithm was taken from [14]
(both shown in Fig. 17). In the rest of this section, when we
refer to the “prior” approach, we pair the core stochastic logic
with input SNGs (LFSR + comparator as shown in Fig. 2),
and output counters to convert stochastic bit streams to binary

Fig. 18. Original 128 × 128 sample images and the outputs of processing
the input images using the “golden approach,” the “prior approach,” and the
proposed PWM approach with the Robert’s cross stochastic circuit (first row)
and the Gamma correction stochastic circuit (second row).

numbers. When we refer to the “PWM” approach, we pair
the core stochastic logic with PWM generators (Fig. 4) and a
voltage integrator to generate the analog output. The conven-
tional binary implementations of the selected algorithms are
also shown in Fig. 17.

We implemented SPICE netlists for the stochastic circuits
described earlier. Two 128×128 sample images (16 384 pixels
each) were selected for the simulations. Simulations were
carried out using a 45-nm gate library in HSPICE. We imple-
mented the PWM generator proposed in Fig. 5 for convert-
ing input pixel values into the corresponding PWM signals.
Fig. 18 shows the input sample images as well as the output
of processing these images using a deterministic, software-
based implementation of each algorithm in MATLAB.
We call this the “golden” approach, with a 0% average error
rate. Also, we simulated the circuit operation on randomized
stochastic streams in the “prior” approach. The conventional
SNG described in Fig. 2 was used for converting input pixel
intensities into stochastic bit streams. An 8-bit maximal period
LFSR was used as the pseudo-random number generator. bit
streams 256 bit long were generated for each input value. We
calculate the average output error rate for the output image
produced by the “prior” approach as follows:

E =
∑128

i=1
∑128

j=1 |Ti, j − Si, j |
255 · (128 × 128)

× 100

where Si, j is the expected pixel value in the output image
and Ti, j is the pixel value produced using the circuit.

To compare the operation time of the PWM approach
with the delay of the prior approach, and also that of the
conventional binary approach, we synthesized the Robert’s
cross and the gamma correction circuits using the Synopsys
Design Compiler vH2013.12 with a 45-nm gate library. The
stochastic circuits had a critical path of 0.34 and 0.60 ns,
respectively. In Sections IV-A and IV-B, we first describe the
process of synthesizing the selected circuits with the proposed
PWM approach and then compare performance, area, and
energy dissipation of the implemented circuits.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAJAFI et al.: TIME-ENCODED VALUES FOR HIGHLY EFFICIENT STOCHASTIC CIRCUITS 9

A. Case Study 1: Robert’s Cross Edge Detector

Each Robert’s cross operator consists of a pair of 2 × 2
convolution kernels that process an image pixel based on its
three neighbors as follows:

Si, j = 1

2
× (|ri, j − ri+1, j+1| + |ri, j+1 − ri+1, j |)

where ri, j is the value of the pixel at location (i, j) of the
original input image and Si, j is the output value computed
for the same location in the output image. Fig. 17(a) shows
the stochastic implementation of Robert’s cross algorithm
proposed by Alaghi et al. [6], consisting of a MUX for the
scaled addition and two XOR gates to perform the absolute
value subtractions. This circuit is the core computation logic
and is shared between the “prior” stochastic approach and our
PWM approach.

1) Prior Method [6]: To generate the circuit for the prior
approach, we pair the core stochastic logic of Fig. 17(a) with
one LFSR and four comparators to generate the input streams
feeding the XOR gates. Only one LFSR is used for the XOR

input lines, because Alaghi’s approach relies on correlated bit
streams. Another LFSR and comparator are also necessary to
generate the select stream. Note that when the input is given in
analog voltage, coming from a sensing circuit, an ADC must
also be used to convert the analog input signal into digital
form. We ignore the ADC unit in our comparisons. If the cost
of the ADC was to be added, our approach would have shown
even larger gains compared to prior work. The output of the
prior approach circuit is fed to a counter to convert the bit
stream to a binary number.

2) The PWM Method: Next, we describe how we imple-
mented the Robert’s cross algorithm using the PWM approach.
The core stochastic logic of Fig. 17(a) is paired with PWM
generators that provide the input signals feeding the XOR gates,
and the output of the MUX is fed to a voltage integrator circuit.
The following steps are used to synthesize the circuit in the
PWM approach.

Step 1. Frequency Selection: When using PWM signals as
inputs of a stochastic circuit, one has to select appropriate
frequencies. As discussed in Section III-A3, the inputs to
an XOR gate must be two synchronized PWM signals to
compute the absolute value subtraction. Since the MUX unit
is also insensitive to the correlation between input signals,
four synchronized PWM signals corresponding to four pixels
of the image can be connected to the main inputs of the
Robert’s cross circuit. The important point here is to appro-
priately select the frequency of the PWM signal connected to
the select line of the MUX. This select signal can be a clock
signal, which is a PWM signal with 50% duty cycle. The
period of this signal must not be harmonically related to the
period of the main inputs of the MUX. Considering the critical
path (0.34 ns) as the minimum allowed period of the PWM
signals, we chose 0.51 ns as the period of the main PWM input
signals and 0.34 ns as the period of the select signal. These
numbers are obtained by scaling (3 and 2 ns) down which is
one of the best set of periods extracted in Section III-A2.

Step 2. Operation Time Determination: We showed that the
results of performing stochastic absolute value subtraction are

ready after running the operation for only one period of the
input PWM signals. For scaled addition/subtraction operations,
the best operation time is the LCM of the periods of the MUX
select and input signals. Since we scaled (3 and 2 ns) down to
(0.51 and 0.34 ns), the best operation time is also obtained by
scaling their LCM down by the same scaling factor. Thus, the
best operation time for the synthesized Robert’s cross circuit
in the PWM approach is 1.02 ns.

Step 3. Clock Generation: Since the frequency of all four
PWM inputs is the same, a clock generator with an oscillation
period of 0.51 ns is enough to drive the main PWM generators.
A second clock signal with a period of 0.34 is also necessary
for the select line of the MUX. Thus, a total of two clock
generators would be sufficient for generating the inputs of the
Robert’s cross circuit. We used rings of 43 and 29 inverters
to generate the required clock signals.

3) Comparison: We processed each image pixel separately
and computed the corresponding output value. Comparing the
produced output image in the PWM approach with the golden
image, the mean of the output error rates was 1.28%. Thus,
the proposed approach could decrease the average error rate of
processing the sample image when it is compared to that of
the prior stochastic approach with 256-bit streams (1.49%).
Considering the delay of the prior stochastic approach
(256 × 0.34 ns = 87.04 ns), the PWM approach decreases
the processing time of each pixel by more than 98%, to
only 1.02 ns. Even if one argues that the quality of the
32-bit streams (1.98%) is enough for the prior approach, still
the PWM approach has improved the operation time by 90%.
The area, power, and energy consumption of the circuit when
working with PWM signals are also presented and compared
to the prior approach in Table II. From the area, area–delay,
and energy numbers, we see that the proposed PWM approach
has a significant cost advantage when compared to the prior
stochastic approach.

Compared to the conventional binary implementation,
although the PWM approach is slightly slower, it costs 63%
less area, dissipates 12% less energy, and reduces the area–
delay product by more than 50%. The main barrier to practical
use of the prior stochastic implementation was its long latency
and correspondingly high energy use. However, as the results
presented in Table II show, the proposed PWM approach is
able to implement the Robert’s cross edge detection algorithm
with the advantages of the stochastic design but as fast and
energy-efficiently as the conventional binary design.

B. Case Study 2: Gamma Correction

A flexible and straight-forward method to utilize SC in
different applications is to synthesize the SC circuits with
a MUX-based architecture, called ReSC [14]. This design
approach is simple and area-efficient, and is able to realize
polynomial functions that can be translated to Bernstein poly-
nomials. The gamma correction function [f (x) = xγ] is a
popular pixel value transformation that can change luminance
and tristimulus values in video and image processing systems.
This function can be approximated using a Bernstein polyno-
mial. A stochastic implementation of the gamma correction

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE II

AREA, DELAY, POWER, AND ENERGY COMPARISON OF THE IMPLEMENTED CIRCUITS FOR THE CONVENTIONAL BINARY, PRIOR STOCHASTIC, AND THE
PROPOSED PWM APPROACH. FOR THE PRIOR STOCHASTIC APPROACH, WE IGNORE THE COST OF THE ADC. DELAY AND POWER NUMBERS

ARE REPORTED FOR THE MAXIMUM WORKING FREQUENCY

function for γ = 0.45 based on the ReSC architecture is
shown in Fig. 17(b). The inputs to this system consist of six
independent bit streams, each with a probability corresponding
to the value x of the input pixel [denoted as x in Fig. 17(b)],
as well as seven random bit streams set to constant values,
corresponding to the Bernstein coefficients, b0 = 0.0955,
b1 = 0.7207, b2 = 0.3476, b3 = 0.9988, b4 = 0.7017,
b5 = 0.9695, and b6 = 0.9939. Additional details of the circuit
can be found in [14].

In the following, just as we did in Case Study 1, we use the
same core stochastic logic for the prior and the PWM methods,
but use different input SNG and output accumulation circuits.

1) Prior Method [14]: Based on the analysis done in [28],
we can use delayed outputs of the same bit stream to generate
multiple bit streams with small correlations. That results
in significant area savings to the original implementation
in [14]. A second LFSR was used for generating the Bernstein
coefficients, making a total of two LFSRs and eight compara-
tors to generate all the necessary bit streams in the “prior”
approach.

2) The PWM Method: Here, we discuss the process of
synthesizing the gamma correction circuit using the PWM
approach. The same process can be easily adapted to imple-
ment any other function that can be realized with the ReSC
architecture.

Step 1. Frequency Selection: At any time, only one input of
the MUX is selected to be connected to the output. As a result,
the PWM signals corresponding to the Bernstein coefficients
can be generated with the same frequency. However, the circuit
needs some level of independence between the six PWM
signals corresponding to the input value of x . Fortunately,
providing the required independence does not necessarily
require generating signals with different frequencies, as was
the case with multiplication. In the prior stochastic approach,
such independence could be provided by shifting the x streams
for one or a few bits and so have a huge savings in the cost of
SNG [28], [29]. Similarly, we can use a phase shift technique
for the PWM approach to make independent copies of x .
An additional step will select the best set of shift phases for the
x signals that can lead to high quality outputs. Synthesis results
showed a critical path of 0.60 ns for the gamma correction
circuit. Thus, accordingly, we chose 0.60 ns as the period of
the x signals and 0.9 as the period of the Bernstein coefficient
signals. These periods are the scaled versions of (2 and 3 ns).

Step 2. Operation Time Determination: Since the gamma

correction circuit is built on a MUX-based architecture, accu-
rate outputs can be produced if the circuit runs for the LCM
of the period of the inputs and the period of the PWM signals
corresponding to the input x . Thus, the best operation time for
the selected periods is their first common multiple or 1.8 ns.
Note that using the phase shifting technique does not increase
the operation time and highly accurate output can still be
produced in LCM time by choosing the phases of the x signals
appropriately.

Step 3. Clock Generation: Two clock generators are nec-
essary for the Gamma correction circuit. One for generating
a clock signal with a period of 0.9 ns for the Bernstein
PWM signals and another one for generating a clock signal
with a period of 0.6 ns. The latter drives the PWM genera-
tors responsible for generating the x signals. We used rings
of 79 and 53 inverters to generate the required clock signals
with the periods of 0.9 and 0.6 ns, respectively.

Step 4. Phase Shift Calibration: A supplementary step is
required to synthesize the ReSC architecture in the PWM
approach. In the ReSC circuits, the results of adding indepen-
dent copies of signal x determine which input of the MUX
at any time must be connected to the output. Having six
similar PWM signals, each signal can be shifted for a phase
between 0 to the period of the signal. When using a ring of
inverters as the clock generator, clock signals with the same
frequency but different phases can be extracted from different
stages of the ring. For the gamma correction circuit, we needed
six clock signals all with a fixed period of 0.6 ns but each with
a different phase. In several trials, we measured the average
error rates of processing 1000 random pixels when clock
signals with different phases were extracted from different
stages of the ring. For the final implementation, we chose the
set of ring stages that led to the minimum average error rate.

3) Comparison: The pixels of the sample image were con-
verted to their corresponding PWM signals and then processed
by the implemented circuit. The mean of the error rates
in processing all pixels of the sample image in the PWM
approach was 2.18%, which is very close to the number
reported for processing the sample image by the prior stochas-
tic approach. The operation time for processing each image
pixel has decreased from 153.6 ns for the prior approach to
only 1.8 ns in the PWM approach. Also, the area–delay cost
and energy consumptions are all significantly improved by
the PWM approach when compared to the prior stochastic
implementation. Note that we did not consider the cost of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAJAFI et al.: TIME-ENCODED VALUES FOR HIGHLY EFFICIENT STOCHASTIC CIRCUITS 11

required clock generator in the prior approach. If this cost was
to be added, the improvement from the PWM approach would
have been even greater.

Comparing the conventional binary implementation of the
gamma correction function with the prior stochastic approach,
we see that the latency of processing each image pixel, the
energy dissipation, and the area–delay product of the stochastic
approach are all significantly increased. The benefits of the
prior stochastic approach are limited to around a 36% area
saving and adding the ability to tolerate noise, which is an
inherent property in SC. The PWM approach, on the other
hand, not only inherits the noise tolerance advantage of the
stochastic design, it also increases the area saving to 56% and
brings the latency very close to the latency of the conventional
binary design. Although the energy dissipation of the PWM
approach is still more than that of the conventional design, it
is much less than the energy dissipation of the prior stochastic
approach.

V. ERROR ANALYSIS

In this section, we first define different sources of error
in performing stochastic operations on PWM signals and
then discuss the noise model and noise performance of the
implemented PWM generator.

A. Sources of Computational Error

There are five primary sources of error in performing
stochastic operations on PWM signals.

1) EG = Error in Generating the PWM Signals: A PWM
generator has some inherent inaccuracies in converting real
values to corresponding PWM duty cycles. This inaccuracy
can be defined as the difference between the expected and the
measured duty cycle in the generated signal

EG = |D − 1

T
× Thigh|.

In addition, achieving the desired frequency for the PWM
signals is not always feasible, particularly when using ring
oscillators as the clock generator. Changing the number of
inverters is the simplest way to adjust the frequency of the
oscillator. The oscillation period is twice the sum of the delay
of all inverter gates, where the delay of one inverter gate in
the selected 45-nm library is 5.69 ps. Considering that an
odd number of inverter gates is required, the period can be
increased (decreased) by adding (removing) an even number
of inverters. Thus, the minimum change in period for this
generator is 0.022 ns. This limitation in controlling the period
of the PWM generators can affect the accuracy of operations.
Note that in our simulations, the error introduced in generating
PWM signals was always less than 0.4%.

2) ES = Error Due to Skew Noise: For some stochastic
operations, such as absolute value subtraction using XOR gates,
perfectly synchronized PWM signals are necessary to produce
accurate results. On-chip variations or other noise sources
affecting ring oscillators can result in deviations from the
expected period, phase shift, or the slew rate of the signals.

3) EM = Error in Measuring Output Signals: An analog
integrator can be used to measure the fraction of the time the
output signal is high. Longer rise and fall times and imperfect
measurement of the high and low voltages (corresponding to
digital “1” and “0” values) result in inaccuracies in measur-
ing the correct output value. We compared to output values
measured by our SPICE-level implementation of the integrator
with the expected values from measuring the outputs produced
by the Robert’s cross and Gamma circuit under ideal signal
levels (HSPICE .ideal) when processing sample images. The
average error rate of the measurements was 0.16% for the
Robert’s cross and 0.12% for the Gamma correction circuit.

4) ET = Error Due to Truncation: Truncation is another
source of error in the PWM-based approach if the operation
runs for any time other than the required operation time. For
example, the multiplication operation must run the LCM or
multiples of the LCM of the period of the PWM inputs to
generate an accurate output. Running the operation for any
time less or more than the LCMs introduces truncation error.

5) E A = Error Due to Function Approximation: Functions
implemented with SC typically must be approximated, since a
given function usually cannot be mapped directly to a stochas-
tic operation. Our gamma correction operation, for example,
used a Bernstein approximation of the exponential function.
Prior work [14] has shown that a Bernstein approximation
of degree of six is usually sufficient to reduce the average
approximation error to below 0.1%.

The overall error, ETotal, for the stochastic operations per-
formed on PWM signals is bounded by the sum of the above
error components

ETotal = EG + ES + EM + ET + E A.

Considering the error rates we measured when processing
the sample images using the synthesized Robert’s cross and
Gamma correction circuits with the PWM approach, some of
these sources of errors can offset or compensate for each other,
resulting in an acceptable total error. Note that, in an actual
chip fabrication, the effect of thermal noise and the influence
of process and temperature variations might introduce more
inaccuracy in the generated signals, which could produce
higher error rates. Still, as Fig. 19 shows, we expect that even if
these fabrication sources of error introduce up to 20% relative
error in the duty cycle and period of the PWM input signals,
the stochastic circuits can still produce outputs with acceptably
small errors.

B. Noise Modeling
Noise and linearity are definitely the most important con-

cerns in analog circuits. In the following discussion, we
analyze the noise contribution of each component in the PWM
generator, and show that the proposed technique can satisfy the
accuracy requirements even in the presence of thermal noise
or process variations.

The ramp required for pulse width modulation is generated
by charging a capacitor with a slope proportional to the input
signal. If the input is coming from an image sensor, for
instance, the output of the sensor is a current and can be
directly integrated on a capacitor. On the other hand, there are

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 19. Average error rate of the output images when processing the
sample images using the proposed PWM-based approach for different rates
of inaccuracy in the duty cycle (top) and in the period (bottom) of the PWM
input signals. PWM signals are generated using an ideal PWM generator in
HSPICE and the output signals are converted back to real values using an ideal
integrator. Twenty trials were performed for each inaccuracy rate to ensure
statistically significant results.

cases such as the coefficient inputs of the ReSC architecture
where the input signal is a constant voltage and an active
integrator, such as Gm-C or R-OTA-C integrator, must be used.
We analyze these two cases separately.

Input Source: Image Sensor: In order to achieve
8-bit accuracy in PWM generation, the pulse width error must
be less than (1/29) × T ≈ 0.002 T, where T is the period of
the PWM signal. There are two sources of error in the PWM
generator.

1) Thermal Noise:
a) Switched-capacitor noise: Capacitors are inherently

noiseless, but when they get switched, the thermal noise of
the switch resistance accumulates on the capacitor, resulting
in an equivalent rms noise voltage of KT/C [30]. This noise
depends only on the capacitor size. Therefore, the maximum
tolerable noise defines the minimum capacitance that can be
used

10 log10

0.52

2
K T
C

≥ 8 × 6.02 + 1.76 = 50 dB

K T

C
<

0.52

2
10−5 = 1.2510−6 → C > 3.3 fF.

Since C = 3.3 f F was derived for room temperature, we
choose C = 5 f F to allow some margin for temperature and
process variations. This analysis shows a trade-off between
capacitor area and circuit noise.

b) Comparator: The comparator is the key element
in PWM generation. The comparator’s resolution, i.e., the

minimum voltage that causes a change in the output, deter-
mines the minimum detectable input current

The integration slope: mLSB = Vres

tLSB
= CMPres

0.002 T
= iLSB

C

→ iLSB = C M Pres

0.002 T
.

The comparator’s resolution depends on the architecture.
A typical comparator consists of a differential pair followed
by a latch. The resolution of the comparator is given by
(Vdd/Compgain) where Compgain = pre-ampli f iergain ×
ex p (t/τ). We show pre-ampli f iergain with Av. τ is the
latch time constant measured by

τ = CL (load capacitance at the output of the comparator)

Gm (transconductance of the cross-coupled latch)
.

The above-mentioned equation shows that the comparator’s
resolution improves with time, i.e., one can achieve better
resolution at the expense of longer delay [31], [32].

For 8-bit resolution with 1 V Vdd for 1 GHz, the
frequency→ Compgain > 512, t � 1 ns, CL = 1 f F ,
Av = 16, and td , or the maximum time that the comparator
has to make a decision, is 0.001 = 1 ps. Thus

Av ∗ exp(t × 1015 × Gm) = 512

→ exp(103 × Gm) > 32 → 103 ∗ Gm > ln(32) = 3.45

→ Gm > 3.45 mA/v.

Since we have high gain in the input stage, the noise of the
latch does not matter (because the latch noise is divided by
the input gain). The noise of the input transistors can result
in pulse width variations, also known as jitter. A common
formula for calculating jitter noise is [30]

Jitterrms = Vnoiserms

Slew rate
.

Based on [33], we have

Jitterrms =
√

4K Tγ /Gm × √
f

I/Cm
.

It is worth noting that the effect of comparator noise on
the PWM generator is the same as the ADC circuit presented
in [6]. Also, note that process and temperature variation only
affect the gain of the comparator, which can be considered
during the design process.

2) Resetting Speed: In each pulse generation cycle, the
integrating capacitor must be discharged (reset) within the
minimum time step, i.e., T

2N+1 . Therefore, the reset pulse width
shrinks as the PWM frequency increases, imposing a limit
on the maximum achievable speed. As calculated before, for
1-ns period and 8-bit accuracy, tmin = 2 ps.

In summary, we have three sources of noise in the PWM
generator: switched-capacitor noise (KT/C), integrator noise,
and comparator noise, where the following holds.

1) KT/C is constant, because we change the current but the
capacitor is fixed. For C = 5 fF and room temperature,
(K T /C) = −57.81 dB.

2) The current has to scale linearly with speed, so the
integrator noise decreases.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAJAFI et al.: TIME-ENCODED VALUES FOR HIGHLY EFFICIENT STOCHASTIC CIRCUITS 13

3) Comparator noise results in jitter, so the impact increases
with frequency. For f = 1 GHz, it is 60 dB.

4) Total distortion = integrator distortion (i.e., nonlinearity)
= −60 dB.

5) SNDR = 10 ∗ log10((0.5 × V 2
sig/Totalnoise) +

Totaldistortion) = 6.02 ∗ N + 1.76 (dB).
6) For Vdd = 1v → 0.5 × V 2

sig = 0.5.
7) For f = 1 GHz, Totalnoise = 3 × 10−6, so SNDR =

51.5 dB and ENOB = 8.25.
Input Source: Constant Voltage: In case of voltage inputs,

the transconductor (Gm cell) or the amplifier in the integrator
also introduces noise, but the total noise is small and does not
degrade the performance substantially.

VI. CONCLUSION

With a stochastic representation, computation has a pseudo
analog character, operating on real-valued signals. This is
certainly counterintuitive: why impose an analog view on
digital values? Prior work has demonstrated that it is often
advantageous to do so, both from the standpoint of the hard-
ware resources required as well as the error tolerance of the
computation. Many of the functions that we seek to implement
for computational systems, such as signal processing, are
arithmetic functions, consisting of operations, like addition
and multiplication. Complex functions, such as exponentials
and trigonometric functions, are generally computed through
polynomial approximations, so through multiplications and
additions. Operations such as these can be implemented with
remarkably simple hardware in the stochastic paradigm.

The cost incurred is to provide randomness. While ran-
domness is never free, pseudo-randomness often suffices. The
strategy proposed in this paper is to provide a form of pseudo-
randomness through time encoding of signals using pulse
width modulation. Such signals can be constructed with very
common and inexpensive analog circuit structures. We have
demonstrated that all the basic operations discussed in the
literature on SC can be implemented on PWM signals.

Prior approaches to stochastic circuit design suffered from
high runtime latency and correspondingly high energy use.
Although the hardware cost of the core stochastic logic
was negligible compared to the hardware cost of the con-
ventional binary design, expensive SNGs made them area
and energy inefficient. With the proposed PWM approach,
however, the latency, area, and energy dissipation are all
greatly reduced compared to the prior stochastic approaches.
This new time-encoded approach inherits the fault-tolerant
advantage of stochastic design while working as fast and
energy efficiently as the conventional binary design. Fault-
tolerant capability, a lower hardware cost, and a smaller
area–delay product make the proposed PWM approach a better
choice than the conventional binary design.

ACKNOWLEDGMENT

The authors would like to thank Prof. M. Asgari of
Oklahoma State University for helpful discussions on rela-
tively prime periods and the proof provided in Section III-A,
and also the anonymous reviewers whose comments and

suggestions have helped to improve the quality of this paper.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

REFERENCES

[1] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Trans. Embedded Comput. Syst., vol. 12, no. 2s, pp. 92:1–92:19,
May 2013.

[2] J. P. Hayes, “Introduction to stochastic computing and its challenges,” in
Proc. 52nd ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2015,
pp. 1–3.

[3] B. R. Gaines, “Stochastic computing systems,” in Advances in Infor-
mation Systems Science, J. T. Tou, Ed. New York, NY, USA: Springer,
1969, pp. 37–172.

[4] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams digital image processing case studies,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 3, pp. 449–462,
Mar. 2014.

[5] M. H. Najafi and M. E. Salehi, “A fast fault-tolerant architecture for
sauvola local image thresholding algorithm using stochastic computing,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 2,
pp. 808–812, Feb. 2016.

[6] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time
image-processing applications,” in Proc. 50th ACM/EDAC/IEEE Design
Autom. Conf. (DAC), May 2013, pp. 1–6.

[7] D. Fick, G. Kim, A. Wang, D. Blaauw, and D. Sylvester, “Mixed-signal
stochastic computation demonstrated in an image sensor with integrated
2D edge detection and noise filtering,” in Proc. IEEE Custom Integr.
Circuits Conf. (CICC), Sep. 2014, pp. 1–4.

[8] S. S. Tehrani, W. J. Gross, and S. Mannor, “Stochastic decoding of
LDPC codes,” IEEE Commun. Lett., vol. 10, no. 10, pp. 716–718,
Oct. 2006.

[9] N. Onizawa, W. J. Gross, T. Hanyu, and V. C. Gaudet, “Asynchronous
stochastic decoding of LDPC codes: Algorithm and simulation model,”
IEICE Trans. Inf. Syst., vol. 97, no. 9, pp. 2286–2295, 2014.

[10] B. D. Brown and H. C. Card, “Stochastic neural computa-
tion. I. Computational elements,” IEEE Trans. Comput., vol. 50, no. 9,
pp. 891–905, Sep. 2001.

[11] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-
accuracy trade-off using stochastic computing in deep neural networks,”
in Proc. 53rd Annu. Design Autom. Conf. (DAC), New York, NY, USA,
2016, pp. 124:1–124:6.

[12] B. Li, M. H. Najafi, and D. J. Lilja, “Using stochastic comput-
ing to reduce the hardware requirements for a restricted Boltzmann
machine classifier,” in Proc. ACM/SIGDA Int. Symp. Field-Program.
Gate Arrays (FPGA), New York, NY, USA, 2016, pp. 36–41.

[13] Y. Liu, H. Venkataraman, Z. Zhang, and K. K. Parhi, “Machine learning
classifiers using stochastic logic,” in Proc. IEEE 34th Int. Conf. Comput.
Design (ICCD), Oct. 2016, pp. 408–411.

[14] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An archi-
tecture for fault-tolerant computation with stochastic logic,” IEEE Trans.
Comput., vol. 60, no. 1, pp. 93–105, Jan. 2011.

[15] Q. Tang, B. Kim, Y. Lao, K. K. Parhi, and C. H. Kim, “True random
number generator circuits based on single- and multi-phase beat fre-
quency detection,” in Proc. IEEE Custom Integr. Circuits Conf. (CICC),
Sep. 2014, pp. 1–4.

[16] W. H. Choi et al., “A magnetic tunnel junction based true random
number generator with conditional perturb and real-time output prob-
ability tracking,” in Proc. IEEE Int. Electron Devices Meeting (IEDM),
Dec. 2014, pp. 12.5.1–12.5.4.

[17] B. Moons and M. Verhelst, “Energy-efficiency and accuracy of stochastic
computing circuits in emerging technologies,” IEEE J. Emerg. Sel.
Topics Circuits Syst., vol. 4, no. 4, pp. 475–486, Dec. 2014.

[18] M. H. Najafi, D. J. Lilja, M. Riedel, and K. Bazargan, “Polysynchronous
stochastic circuits,” in Proc. 21st Asia South Pacific Design Autom.
Conf. (ASP-DAC), Jan. 2016, pp. 492–498.

[19] S. W. Golomb and G. Gong, “Signal design for good correlation: for
wireless communication, cryptography, and radar,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., 2004.

[20] K. Kim, J. Lee, and K. Choi, “An energy-efficient random number
generator for stochastic circuits,” in Proc. 21st Asia South Pacific Design
Autom. Conf. (ASP-DAC), Jan. 2016, pp. 256–261.

[21] B. Murmann. (2015). ADC Performance Survey 1997–2015. [Online].
Available: http://web.stanford.edu/~murmann/adcsurvey.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[22] X. Lu, S. Chen, C. Wu, and M. Li, “The pulse width modulation and its
use in induction motor speed control,” in Proc. 4th Int. Symp. Comput.
Intell. Design (ISCID), vol. 2. Oct. 2011, pp. 195–198.

[23] S. L. Toral, J. M. Quero, and L. G. Franquelo, “Stochastic pulse coded
arithmetic,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 1.
Geneva, Switzerland, May 2000, pp. 599–602.

[24] W. J. Poppelbaum, A. Dollas, J. B. Glickman, and C. O’Toole, “Unary
processing,” Adv. Comput., vol. 26, pp. 47–92, 1987.

[25] P. Mars and W. J. Poppelbaum, Stochastic and Deterministic Averaging
Processors (IEE Digital Electronics and Computing). London, U.K.:
IEE, 1981.

[26] MATLAB Version 9.0.0 (R2016a), MathWorks Inc., Natick, MA, USA,
2016.

[27] M. H. Najafi and D. J. Lilja, “High-speed stochastic circuits using
synchronous analog pulses,” in Proc. 22nd Asia South Pacific Design
Autom. Conf. (ASP-DAC), Feb. 2017.

[28] H. Ichihara, S. Ishii, D. Sunamori, T. Iwagaki, and T. Inoue, “Compact
and accurate stochastic circuits with shared random number sources,”
in Proc. 32nd IEEE Int. Conf. Comput. Design (ICCD), Oct. 2014,
pp. 361–366.

[29] Z. Wang, N. Saraf, K. Bazargan, and A. Scheel, “Randomness meets
feedback: Stochastic implementation of logistic map dynamical system,”
in Proc. Design Autom. Conf. (DAC), Jun. 2015, Art. no. 132.

[30] D. Johns and K. Martin, Analog Integrated Circuit Design. New York,
NY, USA: Wiley, 1997.

[31] B. Razavi, “The cross-coupled pair—Part I [a circuit for all seasons],”
IEEE Solid-State Circuits Mag., vol. 6, no. 3, pp. 7–10, Aug. 2014.

[32] B. Razavi, “The cross-coupled pair—Part II [a circuit for all seasons],”
IEEE Solid-State Circuits Mag., vol. 6, no. 4, pp. 9–12, Nov. 2014.

[33] T. Sepke, P. Holloway, C. G. Sodini, and H.-S. Lee, “Noise analysis for
comparator-based circuits,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 56, no. 3, pp. 541–553, Mar. 2009.

[34] M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise
self-calibrating dynamic comparator for high-speed ADCs,” in Proc.
IEEE ASSCC, Nov. 2008, pp. 269–272.

M. Hassan Najafi (S’15) received the B.Sc. degree
in computer engineering from University of Isfahan,
Isfahan, Iran, and the M.Sc. degree in computer
architecture from University of Tehran, Tehran, Iran,
in 2011 and 2014, respectively. He is currently
pursuing the Ph.D. degree with ARCTIC Labs,
Department of Electrical and Computer Engineering,
University of Minnesota, Twin cities, MN, USA.
His current research interests include stochastic and
approximate computing, computer-aided design of
integrated circuits, low-power design, and designing

fault tolerant systems.

Shiva Jamali-Zavareh received the B.Sc. degree in
electrical engineering from the University of Tehran,
Tehran, Iran, in 2011, and the M.Sc. degree in
microelectronic circuit design from Aalto University,
Espoo, Finland, in 2014. She is currently pursuing
the Ph.D. degree with the Analog Design Laboratory,
Department of Electrical and Computer Engineering,
University of Minnesota, Twin cities, MN, USA.

Her current research interests include analog front-
ends, data converters, RF circuit design, and stochas-
tic computing.

David J. Lilja (F’06) received the B.S. degree in
computer engineering from Iowa State University in
Ames, IA, USA, and the M.S. and Ph.D. degrees in
electrical engineering from the University of Illinois
at Urbana-Champaign in Urbana, IL, USA. He is
currently the Schnell Professor of Electrical and
Computer Engineering at the University of Min-
nesota in Minneapolis, MN, USA, where he also
serves as a member of the graduate faculties in
Computer Science, Scientific Computation, and Data
Science. Previously, he served ten years as the head

of the ECE department at the University of Minnesota, and worked as a
research assistant at the Center for Supercomputing Research and Develop-
ment at the University of Illinois, and as a development engineer at Tandem
Computers Incorporated in Cupertino, California. He was elected a Fellow of
the Institute of Electrical and Electronics Engineers (IEEE) and a Fellow of
the American Association for the Advancement of Science (AAAS).

Marc D. Riedel (SM’12)received the B.Eng. degree
in electrical engineering from McGill University,
Montreal, QC, Canada, and the M.Sc. and Ph.D.
degrees in electrical engineering from the California
Institute of Technology (Caltech), Pasadena, CA,
USA. He is currently an Associate Professor of elec-
trical and computer engineering with the University
of Minnesota, Minneapolis, MN, USA, where he is
a member of the Graduate Faculty of biomedical
informatics and computational biology. From 2004
to 2005, he was a Lecturer of computation and

neural systems with Caltech. He was with Marconi Canada, CAE Electronics,
Toshiba, and Fujitsu Research Labs.He was with Marconi Canada, Montreal,
Quebec, Canada, CAE Electronics, Montreal, Quebec, Canada, Toshiba,
Tokyo, Japan, and Fujitsu Research Labs, Kawasaki Japan. Dr. Riedel was a
recipient of the Charl H. Wilts Prize for the Best Doctoral Research in Elec-
trical Engineering at Caltech, the Best Paper Award at the Design Automation
Conference, and the U.S. National Science Foundation CAREER Award.

Kia Bazargan (SM’07) received the B.Sc. degree
in computer science from Sharif University, Tehran,
Iran, and the M.S. and Ph.D. degrees in electrical and
computer engineering from Northwestern University,
Evanston, IL, USA, in 1998 and 2000, respectively.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN, USA.

Dr. Bazargan is a Senior Member of the IEEE
Computer Society. He was a recipient of the U.S.
National Science Foundation Career Award in 2004.

He was a Guest Co-Editor of the ACM Transactions on Embedded Computing
Systems Special Issue on Dynamically Adaptable Embedded Systems in 2003.
He was on the Technical Program Committee of a number of the IEEE/ACM-
sponsored conferences, including Field Programmable Gate Array, Field
Programmable Logic, Design Automation Conference (DAC), International
Conference on Computer-Aided Design, and Asia and South Pacific DAC.
He was an Associate Editor of the IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS from 2005
to 2012.

Ramesh Harjani (F’05) received the B.S. degree
from the Birla Institute of Technology and Science,
Pilani, India, in 1982, the M.S. degree from IIT
Delhi, New Delhi, India, in 1984, and the Ph.D.
degree from Carnegie Mellon University, Pittsburgh,
PA, USA, in 1989, all in electrical engineering.

He was with Mentor Graphics Corporation,
San Jose, CA, USA. He co-founded Bermai, Inc.,
Palo Alto, CA, USA, a startup company developing
CMOS chips for wireless multimedia applications in
2001. He has been a Visiting Professor with Lucent

Bell Labs, Allentown, PA, USA, and the Army Research Labs, Adelphi, MD,
USA. He is currently the Edgar F. Johnson Professor with the Department of
Electrical and Computer Engineering, University of Minnesota, Minneapolis,
MN, USA. His current research interests include analog/RF circuits for wired
and wireless communications.

