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Abstract

Prior research has introduced the Single-Instruction-Multiple-Data
paradigm for DNA computing (SIMD DNA). It offers the potential
for storing information and performing in-memory computations on
DNA, with massive parallelism. This paper introduces three new SIMD
DNA operations: sorting, shifting, and searching. Each is a fundamen-
tal operation in computer science. Our implementations demonstrate
the effectiveness of parallel pairwise operations with this new paradigm.
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1 Introduction

Beginning with the seminal work of Adelman a quarter-century ago [1], DNA
computing has promised the benefits of massive parallelism in operations.
More recently, there has been considerable interest in DNA storage [2, 3]. A
particularly promising approach is to encode data by “nicking” DNA with edit-
ing enzymes such as PfAgo and CRISPR-Cas9 [4, 5]. A novel paradigm that
combines this form of data storage with computation, dubbed “SIMD DNA”,
was introduced in 2019 [6]. Data is stored on potentially long DNA strands,
divided into “cells”, each storing a single bit. Nicks and denaturing create open
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toeholds in each cell. Toehold-mediated strand displacement [7, 8] is used to
implement computation on the stored values.

This paper proposes an encoding system for SIMD DNA computation,
suitable for general pairwise operations. We had previously presented 3
novel applications using this encoding system [9]. The first was a binary
bubble sorting algorithm (equivalent to rule 184 with elementary cellular
automata [10, 11]). We showed that sorting could be performed in only N
parallel steps, where N was the number of bits to be sorted. The second appli-
cation was a left-shifting operation (equivalent to rule 170 with elementary
cellular automata), performed in a single parallel step. The third application
was a parallel search algorithm that checked if a query substring was present
in a target string. In principle, the algorithm could return an answer in log(n)
steps, but our implementation required between log(n) and n steps to com-
plete, where n was the length of the query string. This paper expands upon
this encoding system with a new application, a parallel Exclusive OR calcu-
lation. This XOR operation requires at most N steps to compute the XOR
of N bits. All 4 of these applications are of immediate practical interest, as
many forms of computation on stored data entail some form of sorting, XOR,
shifting, and searching.

2 Background

2.1 Parallel computation using SIMD

SIMD is a computer engineering acronym for Single Instruction, Multiple
Data [12], a form of computation in which multiple processing elements per-
form the same operation on multiple data points simultaneously. It contrasts
with the more general class of parallel computation called MIMD (Multiple
Instructions, Multiple Data), where multiple processing elements can perform
completely different operations on multiple data points simultaneously. While
general MIMD parallelism might be desirable, it is often not practical. Much
of the modern progress in electronic computing power has come by scaling up
SIMD computation with platforms such as graphical processing units (GPUs).

2.2 SIMD DNA structure

SIMD implemented on DNA is intriguing. It provides a means to transform
stored data, perhaps large amounts of it, with a single parallel instruction. We
will review the paradigm as we introduce our new encoding scheme and our
new applications; of course, we do not claim credit for the original concepts.
The reader is referred to [6].

SIMD DNA computation is predicated on the encoding scheme for data.
Conceptually, we divide stretches of double-stranded DNA into “domains”,
where each domain is a contiguous sequence of nucleotides of some small
specified length (typically 5 to 20). A sequence of several (typically 5 to 7)
domains maps to a “cell” storing one binary bit. Whether a cell stores a 0
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Fig. 1: General Outline of SIMD DNA Computations. Stage 1 shows the
encoding of binary bits 0 and 1 across the 7 domains per bit. Stage 2 shows
an example of encoding the bits 010. Stage 3 illustrates the step in which
computation is performed with strand displacement, in a general sense. Details
of this step will be provided for specific algorithms in later sections. Note that,
in this generic example, the location of nick in the second cell has changed at
the end of stage 3. Stage 4 illustrates how nanopore sequencing could be used
to perform readout.

or a 1 depends upon topological variations, specifically the location of nicks,
i.e., breaks in the DNA backbone. The nicks always occur on one strand of a
double-stranded complex (generally the top strand in our examples); the other
remains untouched.

The computation is carried out by a sequence of “instructions”, where
each instruction implements DNA strand displacement reactions on cells.
Instructions are initiated by single-stranded “instruction strands” added to
the solution. After the strand displacement cascades complete, all freely float-
ing fragments in the solution are washed away; the original strand is kept and
separated via a magnetic bead. After a sequence of instructions, the data is
transformed to its final state. The readout can be performed via fluorescence
or with Oxford nanopore devices [13], [4].

Our approach to computation is summarized as follows and illustrated in
Figure 1.

1. Design an encoding structure that best suits the algorithm.
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Fig. 2: Bit representation in the encoding scheme. Horizontal lines represent
DNA strands. Integers represent “domains”: specific sequences of nucleotides.
Arrow heads represent nicked positions: places where the phosphodiester bond
in the backbone of the DNA strand has been broken, via gene-editing tech-
niques. Cells store binary values. Each cell consists of 7 domains. Domain 1 is
always exposed, forming a toehold.

2. Encode the data at specific locations, using enzymes to nick corresponding
targets.

3. Gently denature the DNA, allowing segments between adjacent nicks to
detach, exposing toeholds.

4. Execute instructions, implemented as strand-displacement operations.
5. Finally, read out data using fluorescence or with nanopores.

3 Design of Encoding System

Several schemes for encoding binary data were proposed in prior work [6],
each chosen to minimize the number of operations for a specific algorithm.
Here we propose a new encoding scheme that works well for the broad class of
algorithms that consist of parallel operations on pairs of bits. A requirement
for running these algorithms is that the encoding scheme should allow the
algorithm to read bits adjacent to each other. This specification comes at the
expense of more complexity for some algorithms, i.e., more operations per step
than possible with a customized encoding.

The encoding scheme is shown in Figure 2. Each cell stores a single binary
value (a “bit”). Each cell consists of 7 domains. We do not specify the actual
nucleotide sequence of the domains here for simplicity. While preparing this
cell, the top DNA strand must be nicked before and after domain 1. This strand
can then be displaced by denaturing, creating an exposed toehold. Domain 1
is always exposed as a toehold in this representation. Domains 2 through 7 are
covered. When storing a bit 0, we will nick the top strand between domains
3 and 4; when storing a bit 1, we will nick between domains 5 and 6. There
are four possible pairings for two adjacent cells. Each will be detected using
different domain combinations: for (0, 0), domains 1, 2 and 3; for (0, 1), domain
1 only; for (1, 0), domains 6 through 3 with wrapping at domain 7 and 1; and
for (1, 1), domains 6, 7 and 1.

Before describing the implementation of specific algorithms for sorting,
shifting, and searching, we will present some general algorithmic steps useful
in implementing all of these.
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Fig. 3: Example of Identifying Different Pairs of Adjacent Bits.

3.1 Identifying Bit Pairs

A common task in our algorithms is “identifying” pairs of adjacent bits, i.e.,
recognizing the specific pair of cells at a location of interest. We will exploit the
fact that domain 1 is always exposed to identify these specific pairs. Figure 3
illustrates our approach on the string 11001, which contains all 4 possible
adjacent pairs: 00, 01, 10 and 11.

Identification is performed with three instructions. In instruction 1, the
strands (S1 6 7 1 2 3) are issued to all pairs of bits. S1 first binds at the toehold
of domain 1, between each pair. If this preceding bit has a value of 1, there will
be a nick between domains 5 and 6. Through branch migration, the left side
of S1 (i.e., the (S1 6 7) part) will displace the original strand covering domains
6 and 7 of the preceding bit. This is shown in Figure 3, instructions 1 and 2.
If the value of the following bit is 0, there will be a nick between domains 3
and 4. Through branch migration, the right side of S1 (i.e., the (S1 2 3) part)
will displace the original strand covering domains 2 and 3. This is shown in
Figure 3, instructions 1 and 2. Only if the preceding bit is 1 and the following
bit is 0 will S1 displace both these strands. For the pair (1, 1), domains 2 and
3 of S1 are left overhanging. For the pair (0, 0), domains 6 and 7 of S1 are left
overhanging. For the pair (0, 1) S1 will not bind at all, since the only exposed
toehold is domain 1. This is how the algorithm identifies the pair (1, 0).

In instruction 2, using the complementary strands (6* 7* 1* 2* 3*), the
strand S1 that attaches to the pairs (0, 0) and (1, 1) is pulled out. This is done
through the open domains 2 and 3 in the pair (0, 0) and the open domains 6
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Fig. 4: Example of Rewriting in Three Steps

and 7 in the pair (1, 1) on strand S1. After this instruction, strand S1 remains
only for the pair (1, 0).

In instruction 3, two instruction strands are issued at the same time: (S2
6 7 1) and (S3 1 2 3). Here (S2 6 7 1) will bind to the pair (1, 1) and (S3 1 2
3) will bind to the pair (0, 0). They will not bind with any other pairs since
the only exposed toehold for binding would be domain 1; they will prefer the
locations with more exposed domains.

The result is that the adjacent bit pairs (1, 1), (1, 0) and (0, 0) are each
labeled with strands S2, S1 and S3 respectively. Pairs (0, 1) are labeled with
an exposed toehold at domain 1. This toehold could be replaced by a strand
(Sx 4 5 6 7 1) or a strand (Sx 1 2 3 4 5); the choice would be made depending
on the use case.

3.2 Rewriting a cell

By exposing toeholds across domains 2 through 7 in a cell, we can rewrite the
content of that cell – so change a 1 to 0 or a 0 to 1 – with three instructions.
The idea is that, since there are exposed domains, we can displace the content
of the cell with a single strand covering all these domains. Then we can remove
the covering strand through the exposed “tag” domain (S in Figure 4) using
a complementary strand. The cell is now completely exposed. We can write
a new bit to it by hybridizing the strands according to our encoding scheme,
leaving domain 1 as a toehold and placing the nick at the desired location.

4 Parallel Binary Bubble Sorting

Sorting is a simple yet fundamental operation in computer science. Here we
consider sorting binary values.1 Sorting can be used to determine the “weight”
of a vector of 0’s and 1’s: the count of the number of 1’s relative to the length
of the vector. It can also be used to compute the majority function: whether
there are more 1’s than 0’s or not in the input set. Majority is a fundamental
operation for many machine-learning algorithms.

Our SIMD DNA implementation performs parallel bubble sorting on binary
bits [14]. It can be expressed as a pairwise operation in the form of f(a, b) =
(c, d), where (a, b) is the value of the input bit pair, and (c, d), the output pair.
f represents the action we take on a given bit pair – whether to rewrite or to
leave it as it is. The individual bit outputs can be 0 or 1, which means that we

1Perhaps counter-intuitively, sorting binary values in hardware is as difficult algorithmically as
sorting arbitrary values such as integers or real numbers [14]
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can arbitrarily change the value of the cell. We discuss what kind of pairwise
operations can be performed on our encoding in Section 8.2.

The sorting operation can be expressed in the following pairwise operation,

f(0, 0) = (0, 0), f(0, 1) = (0, 1), f(1, 0) = (0, 1), f(1, 1) = (1, 1).

Note that only the third input pair (1, 0) needs to be rewritten to (0, 1). The
rest of the bit pairs do not need to be changed.

Algorithmically, the following “bit swapping” is performed:

• If the current bit is 1, it changes it to 0 if and only if its right neighbor is 0.
• If the current bit is 0, it changes it to 1 if and only if its left neighbor is 1.

We argue that repeatedly performing such bit-swapping will sort the entire
sequence of binary values. An example is provided in Appendix F.

Proposition 1 The f(1, 0) = (0, 1) pairwise operation can only occur once in any
sequence of three bits.

Proof It is impossible to have two consecutive, overlapping pairs (1, 0) spanning
three bits. Therefore, the f(1, 0) = (0, 1) pairwise operation (i.e., the bit-swap step)
can only occur once in any sequence of three bits. Consequently, the bubble sort
algorithm only performs non-conflicting pairwise operations. (Please see Section 8.2
for more details.) □

Accordingly, bubble sorting binary values in parallel does not require an
odd and even index addressing scheme, as does bubble sorting arbitrary values.

Proposition 2 Sorting completes in at most N − 1 parallel steps where N is the
total number of bits.

Proof Suppose we have a sequence of binary bits of length N , in which all bits
except the first are 0. When applying the algorithm, the 1 located at the start will
be pushed back one position at a time with the f(1, 0) = (0, 1) bit swap operation.
Fully sorting the sequence, i.e., moving the 1 to the last position, requires N−1 total
swaps. Now suppose we are sorting an arbitrary bit sequence. We argue that, after
N − 1 swaps, all the 1’s will be at the end of the sequence. To see why, note that an
f(1, 0) = (0, 1) operation moves a 1 forward, while an f(1, 1) = (1, 1) operation does
not affect adjacent 1’s. Thus, in N − 1 steps, all 1’s will have moved to the end of
the sequence. □
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(e) Flipped fourth bit to 1, Result 0101

Fig. 5: Outline of the SIMD DNA parallel binary sorting algorithm.

4.1 Implementation

Here we give an instruction set for performing parallel binary bubble sort
with SIMD DNA, using the encoding in Figure 2. It consists of 12 individual
instructions. These are summarized as follows.

1. Label pairs (1, 0).
2. Uncover these, leaving domains 6 and 7 for the bits 1 and domains 2 and 3

for the bits 0 open in these pairs.
3. Protect the bits 0 of these pairs by covering the corresponding toehold at

domains 2 and 3.
4. Flip the bits 1 to 0 in these pairs.
5. Release the protective covers; flip the bits 0 to 1 in these pairs.

For the initialization, we can use the first two instructions described in
Section 3.1, with an additional instruction to fix open domains for bits that
do not change. We can use the rewriting method described in Section 3.2 to
flip the bits. A full description of the implementation of sorting is provided in
Appendix B.
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5 Parallel Exclusive OR

The Exclusive OR operation, shortened to XOR, is a useful bit operation with
many applications, including in error correction. Simply put, a multi-input
XOR operation checks if there are an odd number of 1’s in the input bits.
With our implementation, it is possible to compute the XOR of all bits on a
strand. This can be achieved with the following pairwise operations per step
of the algorithm:

f(0, 0) = (0, 0), f(0, 1) = (0, 1), f(1, 0) = (0, 1), f(1, 1) = (0, 0).

These pairwise operations are mostly similar to the ones for the parallel bubble
sorting, in particular with the f(1, 0) = (0, 1) that sorts all 1’s and pushes
them to the right. However, the f(1, 1) = (0, 0) modification ensures that any
contiguous pair of cells both containing 1 are overwritten to 0. This means
that after every individual step of the XOR algorithm, the parity of 1’s is
preserved, and all 1’s are shifted one bit towards the right. After a certain
number of steps, the last bit on the strand will store the XOR output. One
issue that must be addressed with this algorithm is how cells are paired per
step. For example, if the triplet of cells (1,1,1) are recognized as two pairs of
(1, 1), then the overwriting step will change all three 1’s to 0 and break the
parity of the sequence. To avoid this, all DNA strand instructions identifying
(1,1) pairs must be run on non-overlapping pairs of cells at each step. For
example, the first step should operate on pairs of cells i and i + 1 where i is
an even number, and then the next step should operate on pairs i and i + 1
where i is an odd number. However, the f(1, 0) = (0, 1) operation can be run
on overlapping pairs.

To perform such operations, i.e., one iteration on only even-to-odd pair-
ings and the next iteration on only odd-to-even pairings, the cells must have
unique sequences. The even and odd cells must have different DNA base
sequences – all even cells based on one sequence, and all odd cells are based
on another, distinct sequence. The nicking architecture, shown in Figure 2,
applies despite the different base sequences. Changing the sequences ensures
that instruction strands can be synthesized to bind to the appropriate i and
i+ 1 cells discussed above.

Each iteration of the XOR algorithm is thus as follows:

• Determine a pairing that is offset by 1 cell compared to the previous
iteration’s pairing.

• Detect all non-overlapping pairs of (1,1) and convert them to (0,0).
• Detect all pairs of (1,0) and convert them to (0,1). For this writing process,
pairs can be overlapping.

Each of these iterations pushes all 1’s to the end of the strand while also
overwriting any adjacent (non-overlapping) pairs of 1’s. Therefore, after a suf-
ficient number of iterations, all bits in the strand will be 0’s except for the last
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bit – that bit will only be 1 if there were an odd number of 1’s to begin with.
Therefore, the algorithm computes the XOR function.

Proposition 3 The parallel exclusive OR completes in at most N parallel steps
where N is the total number of bits.

Proof Consider the worst case of an array of N bits with two 1’s, one at the start
and one at the end. For the correct XOR computation, the first 1 must be moved
to the end of the array, which requires at most N − 1 steps. Then f(1, 1) = (0, 0)
requires one final step for the proper XOR output. Now any extra 1’s added to the
array occurr between the start and end. These will be moved to an adjacent position
in those N − 1 steps. The f(1, 1) = (0, 0) operation for these two 1’s in the middle of
the array does not impede sorting the first 1 in the array. Thus computing the XOR
of N bits requires at most 1 step more than the worst-case parallel sorting time.
Therefore, any arbitrary array of N bits requires (N − 1)+1 = N steps for a correct
XOR computation. □

5.1 Implementation

Here we give an instruction set for performing one step of the parallel exclu-
sive OR with SIMD DNA, using the encoding in Figure 2. It consists of 20
individual instructions. A few of these instructions can be merged, but for
the sake of completeness, we describe them separately. These instructions are
summarized as follows.

1. Label non-overlapping pairs (1, 1).
2. Cover all other pairs.
3. Uncover the identified (1, 1) pairs and expose both bits in this pair.
4. Rewrite all uncovered bits to 0.
5. Now label all pairs of (1, 0).
6. Uncover the (1, 0) pairs.
7. Protect the bits 0 of these pairs by covering the corresponding toehold at

domains 2 and 3.
8. Flip the bits 1 to 0 in these pairs.
9. Release the protective covers; flip the bits 0 to 1 in these pairs.

Please note that in each step, the non-overlapping pairing is offset by one
cell compared to the preceding step to ensure all (1,1) pairs are overwritten. A
full description of the implementation of the XOR is provided in Appendix C.

6 Parallel Left Shifting

We propose a SIMD DNA implementation of shifting, another fundamental
operation in computer science. Shifting left corresponds to multiplying a binary
number by 2; shifting right corresponds to dividing it by 2. It is a useful
operation in general for aligning data in a variety of algorithms [14]. We present
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(c) Release S1 from Pair (1, 0)
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(d) Rewrite bit 1 in the previous pair with 0

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

(e) Release S2, S3 and S4 then write 1, Result 10011

Fig. 6: Outline of the SIMD DNA parallel left shift operations. The initial
sequence S is 11001 and the result sequence T is 10011. The operation shifts
each bit to the left one position (T[5:1]=S[4:0]), while keeping the Least Sig-
nificant Bit unchanged.

a left shift algorithm, one that shifts all N binary bits one position to the left,
with the Least Significant Bit (LSB) remaining unchanged. This operation
is, of course, a parallel left shift, moving all bits simultaneously in lockstep.
Our implementation requires 11 instructions per shift. Note that unlike usual
arithmetic or a logical left shift that inserts a bit 0 to the LSB, the left shift
operation described here keeps the original LSB, thereby duplicating the LSB.
The usual left shift could be implemented by adding instructions rewriting the
LSB to 0 after the instructions we provide here.

We describe the shift operation using the following pairwise operation as
follows:

f(0, 0) = (0, X), f(0, 1) = (1, X), f(1, 0) = (0, X), f(1, 1) = (1, X).

Here X is a “don’t care” bit value (to use the parlance of digital design). When
computing on a specific input bit pair, the output for the X bit is not impacted
by that input pair (for example, in left shifting, X is actually calculated from
the bit pair to the right since that bit will be shifted to the left). For each
bit pair, the operation writes the value of the right bit to the left bit. Since
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only the value of the left bit is changed in each bit pair, the operation is non-
overlapping and can be implemented using the encoding scheme we propose.
We illustrate with the example of shifting 11001 to 10011, shown in Figure 6.

1. Label all the bit pairs. Cover the toeholds for the pairs (0, 0) and (1, 1).
2. For the pairs (1, 0), flip the bits 1 to 0.
3. For the pairs (0, 1), flip the bits 0 to 1.
4. Finally, uncover all the toeholds for the pairs (0, 0) and (1, 1).

A full description of the implementation of shifting is given in Appendix D.

7 Parallel Search Algorithm

Searching is fundamental to all branches of computer science that involve
data storage and retrieval. We consider the problem of deciding whether a
given substring exists in a stored string of bits. We first discuss a general
algorithm that returns an answer to such a question in log(n) parallel steps,
where n is the substring length. We then propose an implementation in SIMD
DNA. Due to practical constraints, the time complexity of the implementation
is not O(log(n)); it is closer to O(n), depending on the problem size and
implementation details. We note that a requirement of our algorithm is that
the length of the query string is a power of 2. We discuss the time complexity
and constraints in detail in Section 8.4.

7.1 Algorithm

Suppose we have a query substring Q of a length n, and we would like to
search whether it appears in a much longer target string A. Pseudocode for our
approach is given as Listing 1. We will elucidate the pseudocode by stepping
through examples.

7.1.1 Parallel search procedure

We illustrate searching for a query string Q = 1101 in the following target
string A:

A0 = 10101010110110100011110101000100

A1 = a2a2a2a2a3a1a2a2a0a3a3a1a1a0a1a0

A2 = b0b0b1b0b2b1b3b3

(1)

The original string is A0. In each step, two consecutive symbols are read and
replaced with a single symbol. Here a0 = 00, a1 = 01, a2 = 10, a3 = 11, b0 =
a2a2, b1 = a3a1, b2 = a0a3, b3 = a1a0. Note that Q = 1101 = a3a1 = b1. After
three steps, we conclude that the query string exists in the target string since
there are two matches in the string A2.
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Listing 1: Pseudo-code for Parallel Search Algorithm. Note that the opera-
tions inside the two while loops can be performed in parallel since they are
independent. The pair operation here is to find a corresponding symbol that
replaces the two symbols in the lookup table, and the identity operation is
to look up the symbol that represents the query string.

Q = Query St r ing
A = Target S t r ing
n = length o f Q
f o r i in range (0 , n−1):

A i = A
truncate f i r s t i cha r a c t e r s o f A i
p = 1
whi le p <= n :

j = 0
whi le j < ( l ength ( A i )−1):

x = A i [ j ]
y = A i [ j +1]
z = pa i r (x , y ) # Pair 2 cons e cu t i v e c e l l s
i f z . i d e n t i t y (Q) : # Check i f i t i s query

return True
r ep l a c e x , y in A i with z
j += 1

p = 2∗p
return Fal se

7.1.2 Search procedure with offset

It is possible that the query string does not align with divisions of length n
in the target string. Thus, we need to repeat the operation with offsets. The
following example illustrates the operation with an offset of 2 bits.

A0 = 10101011010110000011110001000100

A1 = 10a2a2a3a1a1a2a0a0a3a3a0a1a0a1a0

A2 = 10b0b1b2b3b4b5b5a0

(2)

Here, the replacement is given by the aggregated pairs a0 = 00, a1 = 01, a2 =
10, a3 = 11, b0 = a2a2, b1 = a3a1, b2 = a1a2, b3 = a0a0, b4 = a3a3, b5 = a0a1.
Again, an instance of the query string is found in the target string.

Searching for a query string with a given offset requires at most log(n)
steps. In general, for an arbitrary query string of a length n (a power of 2),
the search must be performed n times with offsets ranging from 0 to n− 1. In
principle, all of these searches could be performed in parallel, as none would
interfere with any other. Accordingly, our parallel implementation of searching
completes in log(n) steps.
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Note that the number of aggregated pair identifiers needed – the a’s and
b’s in the example above – grows exponentially with the length of the target
string. For example, to search for all possible queries of length 2, 4 identifiers
are needed. For all queries of length 4, 16 + 4 = 20 identifiers are needed. The
total number of identifiers needed for queries of length n can be formulated as:

log(n)∑
i=1

22
i

.

This number grows very quickly as n increases (so for longer query strings).
This would seem to be a serious limitation of our algorithm. However, this
calculation assumes that we are searching for all possible query strings. If the
search is for a specific query string, then the number of identifiers required
drops considerably. This is because the search only needs to identify pairs in
this specific string. The maximum number of identifiers needed is:

log(n)∑
i=1

2i = n− 1,

a much more manageable number.

7.2 Implementation

To implement the algorithm in SIMD DNA, we do not issue instruction strands
to each pair of overlapping bits. Instead, we consider the non-overlapping bit
pairs. In the example shown in Figure 7, for the bit sequence 1011, we would
consider operations on bit pair 10 and 11, but not on bit pair 01.

Figure 7 shows the critical steps when searching a target sequence 1011.
It provides an example of a successful search and also the potential outcome
of two failed searches. To implement the search operation with an offset, we
can simply skip the number of bits according to the offset. We use the word
symbol to represent the consecutive cells that we search for on a certain level.
For example, in the first level, the symbols are 10 and 11. We can use the bit-
identifying steps described in Section 3.1 to recognize these symbols. We use
identifiers A0 = 00, A1 = 01, A2 = 10, A3 = 11 to represent symbols in this
level. We then move on to the next level, searching for consecutive symbols
A2A3, which corresponds to the target string 1011.

In the first step of the second level, we first rewrite the topological structure
at symbols that appear to be a query result. In this example, A2 should be
found as the left symbol, and A3 should be found as the second symbol. We pull
identifier A2 out from every odd symbol (we only look at the first, third, fifth,
etc.) and rewrite the entire symbol with the technique described in Section 3.2.
After rewriting, we have the identifier A′

2 that covers domains (5 6 7) in the
right most cell, as seen in Figure 7c. For the second symbol A3, we repeat the
step described, except we pull the identifier out from every even symbol and



Springer Nature 2021 LATEX template

Sorting, XOR, Shifting, and Searching in DNA 15

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

(a) Initial Sequence 1011

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3A2

(b) Identifier A2 captures first pair 10, A3 captures second pair 11

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3A2'

(c) covering the domain 1 between the two bit pairs

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3'A2'

(d) Rewrite the content in the pair so that new identifiers are close to the
middle

B11

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

(e) Two identifier strands replaced by a single identifier if there is a perfect
match

B11

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A0

(f) Initial sequence is 0011. It will result in an open domain 4 in the cell left
of the identifier

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

B11 A1

(g) Initial sequence is 1010. It will result in an overhanging domain 4 on the
identifier strand itself

Fig. 7: Example implementation of search algorithm on target sequence 1011
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the new identifier A′
3 covers domains (2 3 4) in the left most cell. Through

these steps, we have essentially “moved” the identifier of the matching symbols
to the middle. In the final step, we issue the new identifier strand (B11 5
6 7 1 2 3 4) to the location between every two symbols. It will result in a
perfect binding only if there is a match at the current symbol level. Figure 7e
shows the example of a matching result. Figure 7f and 7g show two potential
examples of imperfect binding, indicating a non-matching result. We can pull
them out through the open domains either on the identifier itself or a nearby
open domain on the base strand. Therefore, the presence of the identifier B11

indicates a successful match.
We can repeat the process to recognize multiple symbols at the same level.

When we move to the next level l+1, we can use the identifiers from this level l
as a starting point for rewriting. To identify a symbol Sl+1,c = Sl,aSl,b at level
l + 1, we simply pull out identifiers for Sl,a at odd symbols and Sl,b at even
symbols at level l. Then we “move” the identifier to the middle. Finally, we
give identifiers for Sl+1,c to the middle of each pair and identify the symbol.

A possible weakness of our implementation is that the strand used for
rewriting could potentially be very long. The longer the query string, the longer
this strand. The longer the strand, the longer strand displacement takes [15].
The time required could become prohibitive. Another issue is that our search
algorithm rewrites, so destroys, the data on the target strand. While it may be
possible to reverse the process, so restore the original data, this process would
be cumbersome and require multiple steps (see, for example, E7). Another
limitation is that the algorithm cannot readily handle multiple overlapping
queries within the target string.

8 Discussion

We discuss the features and implementation constraints of the proposed
algorithms.

8.1 Initializing data on cells sharing the same sequences

Two of the algorithms that we discuss, namely XOR and searching, rely on
different cells having different underlying DNA sequences. This allows the algo-
rithms to perform pairwise operations that target specific cells, leaving others
untouched. The other two algorithms that we discuss, namely sorting and left-
shifting, do not have this requirement. As a result, sorting and left-shifting
require much smaller libraries of DNA strands. Sorting and left-shifting are
true “single instruction multiple data” (SIMD) algorithms while XOR and
searching are not. In order to exploit the SIMD aspect of sorting and left-
shifting, the underlying DNA sequences must be identical for all cells. The
challenge is that any nicking operation performed on one cell would apply to
other cells as well, so one cannot readily initialize the base strand with different
bit values in different cells.
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One approach to overcome this would be to utilize Gibson Assem-
bly, a procedure for concatenating small DNA molecules into larger DNA
molecules [16]. The small DNA molecules are synthesized with complementary
“sticky” single-stranded ends. When these small DNA molecules are mixed in
a solution, these sticky ends hybridize, yielding a longer DNA molecule. This
approach can be used to initialize data in our DNA strands where all cells
share the same sequence. Molecules containing only one cell are nicked sepa-
rately to store either 0 or 1. These molecules are then orderly concatenated to
build strands containing multiple cells. Please refer to H for a more detailed
outline on constructing a register storing two bits.

8.2 Ability to compute any non-conflicting pairwise
operation

In Section 4 and Section 6, we presented examples of algorithms that perform
pairwise operations, namely sorting and shifting, respectively. Given the ability
to identify pairs of bits and a universal way to rewrite a cell, we can readily
implement any algorithm that performs non-conflicting pairwise operations.
Such operations only entail rewriting pairs of adjacent bits. The result of the
operation on a specific sequence should always be the same, irrespective of the
execution order. To illustrate, consider the following operation:

f(0, 0) = (X,X), f(0, 1) = (X, 1), f(1, 0) = (X,X), f(1, 1) = (0, X).

Here X indicates a “don’t care” bit value – the function f for a specific input
pair does not compute the output X. The operation provided above is conflict-
ing. To see why, consider its effect on the sequence 011. The second bit should
change to 1 when the operation is applied to the first pair (0, 1). However,
this bit should change to 0 when the operation is applied to the second pair
(1, 1). Depending on the order of execution, the final result will be different. To
ensure an operation is non-conflicting, for every three adjacent bits that two
operations are performed on, the middle bit should be set to the same value.

Non-conflicting operations can be performed in parallel on all bit pairs. In
the first step, we identify the four bit pairs described in 3.1. After this step, we
supply strands with four labels covering the four bit pairs. Then, we release
strands with specific labels one at a time to obtain write access to specific
bit pairs. (Write access refers to a domain being exposed.) We rewrite these
cells with the operation described in Section 3.2. The full operation requires
rewriting all four bit pairs.

We conclude that our encoding scheme and design method are generally
applicable to parallel bitwise algorithms, provided that they can be expressed
in terms of such non-conflicted pairwise operations.
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S1    1    2    3

Bit 0 Bit 1

1     2     3     4     5     6     7 1     2      3     4     5     6     7

Fig. 8: One strand can be used to differentiate two bits

8.3 Converting to Different Encoding Schemes

A benefit of the encoding scheme that we are proposing is that it can easily be
converted to any other similar scheme since each cell always has an exposed
domain 1. In the original SIMD DNA scheme proposed in [6], the authors
designed two specific encoding schemes for the two applications proposed (rule
110 and a binary counter). We suggest that our encoding scheme could be used
as an intermediate form when converting to other encoding schemes, designed
for particular algorithms. Figure 8 illustrates how we can use a single strand
(S1 1 2 3) to differentiate bit values of 0 from bit values of 1. We can use
the technique discussed in 3.2 to re-write the data with a different encoding
scheme, so long as the scheme also encodes each bit with 7 domains. Complete
instructions for performing such encoding changes are given in Appendix A.

8.4 Time Complexity of Parallel Search

While the time complexity of the proposed parallel search is O(log(n)) in prin-
ciple, where n is the query substring length, the time complexity of our SIMD
DNA implementation is somewhat worse. While the abstract search algorithm
finds the query in the reference string by pairing individual characters in par-
allel, and thus completes in O(log(n)) steps, our implementation searches for
and identifies distinct symbols sequentially, that is to say, it first searches for
a specific symbol across all possible locations at once, then it searches for the
next symbol across all locations at once, and so on.

The abstract algorithm assumes all symbols are identified in one pass to
allow for further pairing. If we consider all the different symbols in a query
string, counting repeated symbols, n

2i symbols must be searched sequentially
at level i in our implementation. Accordingly, the total number of sequential
search steps could be as high as O(n). However, at each level, all the occur-
rences of a specific symbol are identified simultaneously. At level i, each symbol
represents a binary string with a length of 2i, so there are at most 22

i

distinct
symbols at level i. For example, in the first level, instead of searching for n

2
symbols, we only search for four distinct symbols. In the second level, there
are only 16 distinct symbols. Since we only search for distinct symbols, the
number of steps in the first few levels will be greatly reduced.

Our parallel search algorithm currently only works on query strings having
a length that is a power of two. However, we believe that our implementation
could be modified to allow for arbitrary-length query strings. We do not provide
details here, as they are cumbersome, but we outline the method as follows.
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Note that, in parallel search, the query string is searched reductively: at
each level, two symbols are reduced to one symbol. When working with query
strings having any arbitrary length, there might be an odd number of symbols
in the current level. In this case, we can add a method to identify the trailing
odd symbol at the current level and replace it in the next level. The reduction
can still be completed in a logarithmic number of levels.

9 Conclusion

We have presented algorithms for basic parallel operations within the SIMD
DNA framework. We note that there are, in fact, two layers of parallelism
possible:

1. Bit-level Parallelism: instructions applied to all bits in an array at once.
2. Data-level Parallelism: the same instructions applied to multiple arrays at

once.

While operations on DNA are slow and error-prone, with these levels of par-
allelism, perhaps DNA computation could scale to a truly impressive regime.
Consider the following back-of-an-envelope estimates, all admittedly widely
optimistic. Suppose:

• We have 1012 independent cells in parallel in a single test tube;
• A single operation takes approximately 10 minutes to complete [17];
• Different cells use the same DNA sequence. Using distinct sequences for dif-
ferent cells, as in our search operation, can result in a solution with multiple
competing DNA molecules. At larger scales, this would result in an increase
in reagent volume and could diminish reaction rates.

This means that we can perform approximately 109 operations per second in
a single test tube, already impressive. Now suppose that we have 100 test
tubes. This means we can compute at 100,000 MIPS (million instructions per
second). This is comparable to what very respectable existing silicon systems
can achieve. The key conceptual difference between the SIMD DNA approach
and other forms of DNA computing is that it exploits a substrate on which
data is stored. This enables the SIMD parallelism.

Many experimental hurdles remain in demonstrating and deploying this
paradigm. DNA synthesis remains prohibitively expensive. A possible alterna-
tive is to use gene-editing techniques to encode data on naturally occurring
DNA [18].
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Appendix A Instructions for Converting to
Another Scheme

Instruction 1 identifies and distinguishes the two different bits. In instruction
1, strand (S1 1 2 3) is issued. In bit 0, the strand will displace the short strand
over domains 2 and 3 but does not edit bit 1 since domain 1 is the only open
domain for binding. In instruction 2, all domains in bit 1 are replaced by a
single strand covering all domains with identifier Sa. Then in instruction 3,
the strand S1 is detached, so domains 1, 2, and 3 on bit 0 are exposed. In
Instruction 4, all domains in bit 0 are replaced by a single strand covering all
the domains with the identifier Sb. Then any encoding scheme with 7 domains
in 1 cell could be written to the bits by first detaching strand Sa and writing
the encoding for bit 1, then detaching strand Sb and writing the encoding for
bit 0.

Appendix B Detailed Implementation of Each
Step for Parallel Sorting

Here we give an instruction set for parallel binary bubble sort with the pre-
viously defined encoding scheme. We can implement each step of the sorting
algorithm in 12 individual operations. Details of the design are shown in
Figure B2.
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S1    1    2    3

Bit 0 Bit 1

1     2     3     4     5     6     7 1     2      3     4     5     6     7

Ins 1: Distinguish 0, 1

Ins 2: Replace Bit 1 with Strand Sa

S1

1     2     3     4     5     6     7 1     2      3     4     5     6     7

Sa     1     2     3     4     5     6     7 Sa     1     2     3     4     5     6     7

Ins 3: Detach S1

S1

1     2     3     4     5     6     7 1     2      3     4     5     6     7

S1*   1*   2*   3* S1*   1*   2*   3*

Sa

Ins 4: Replace Bit 0 with Strand Sb

1     2     3     4     5     6     7 1     2      3     4     5     6     7

Sa

Sb     1     2     3     4     5     6     7 Sb     1     2     3     4     5     6     7

Result

1     2     3     4     5     6     7 1     2      3     4     5     6     7

SaSb

Fig. A1: Current coding scheme can be converted to another coding scheme

The 12 instructions fall into 2 stages. The first stage is “identifying.” During
instructions 1-4, all the pairs (0, 1) are identified, and in both bit 0 and 1, a
toehold is exposed for writing new data. More specifically, Instructions 1 and
2 identify the combination of (1, 0). In instruction 1, (S1 6 7 1 2 3) is issued to
each pair of bits. In pair (0, 0), S1 and domains 6, 7 are exposed. In pair (0, 1),
since the only open domain is 1, it will not form a strong enough bond. In
pair (1, 0), only S1 is exposed. In pair (1, 1), S1 and domains 2, 3 are exposed.
In instruction 2, strand (6* 7* 1* 2* 3*) is issued to each pair of bits. Since
pair (1, 0) is the only pair that does not have exposure 5 or 2, this strand will
detach strand S1 in each pair except pair (1, 0). After Instruction 2, the toehold
between a bit value of 1 and a bit value of 0 in the pair (1, 0) is replaced by a
strand with an identifier of S1. Instruction 3 seals off the domain exposed in
the other pairs during Instruction 1 and 2 so that it will not be edited later.
In instruction 4, the strand with identifier S1 is detached, exposing domains
6 and 7 in the left cell containing bit 1, or domains 2 and 3, in the right cell
containing bit 0. After this instruction, toeholds are exposed only in the 1s
and 0s in pair (1, 0). Other bits are not affected.
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1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1    6      7      1      2      3S1    6      7      1      2      3S1    6      7      1      2      3

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1S1

6*   7*   1*   2*   3* 6*   7*   1*   2*   3*6*   7*   1*   2*   3*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1

6     72     3 6     72     3 6     72     3 6     72     3

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1

S1*   6*   7*   1*   2*   3*S1*   6*   7*   1*   2*   3*S1*   6*   7*   1*   2*   3*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2   2   3 S2   2   3 S2   2   3 S2   2   3 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2 

S3    2     3     4     5     6     7 S3    2     3     4     5     6     7S3    2     3     4     5     6     7 S3    2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2 S3

S3*   2*   3*   4*   5*   6*   7* S3*   2*   3*   4*   5*   6*   7*S3*   2*   3*   4*   5*   6*   7* S3*   2*   3*   4*   5*   6*   7*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2 

2     3     4     5     6     7 2     3     4     5     6     7 2     3     4     5     6     7 2     3     4     5     6     7

1     2     3     4     5     6     7

S2 

S2*   2*   3*S2*   2*   3*S2*   2*   3*S2*   2*   3*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3    2     3     4     5     6     7S3    2     3     4     5     6     7S3    2     3     4     5     6     7S3    2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3

S3*   2*   3*   4*   5*   6*   7* S3*   2*   3*   4*   5*   6*   7*S3*   2*   3*   4*   5*   6*   7* S3*   2*   3*   4*   5*   6*   7*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

2     3     4     5     6     72     3     4     5     6     72     3     4     5     6     72     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 1: Identify the pair (1, 0)

Ins 2: Detach Strand on other pairs

Ins 3: Seals off region exposed previously

Ins 4: Expose Toehold on pair (1, 0)

Ins 5: Temporarily cover toehold on bit 0

Ins 6: Identify bit 1

Ins 7: Expose all domain in bit 1 identified earlier

Ins 8: Rewrite 0 to exposed bit

Ins 9: Remove the Protection Strand

Ins 10: Identify Bit 0 

Ins 11: Expose all domain in bit 0 identified earlier

Ins 12: Rewrite Bit 0 to exposed bit

Result

Original

Fig. B2: Instructions for Parallel Sorting



Springer Nature 2021 LATEX template

24 Sorting, XOR, Shifting, and Searching in DNA

The second stage is flipping the bits in the pair (1, 0). In instruction 5, in
the case of a bit value of 0, domains 2 and 3 are temporarily covered by a
strand with identifier S2 so that the writing process will not interfere with the
identified 0s at this moment. In instruction 6, a bit value of 1 is replaced by a
strand with identifier S3 via the open toehold at domains 6 and 7. The strand
is then detached in instruction 8, exposing all the domains of that bit. Then,
the bit value of 0 is written to the location of a bit value of 1 in instruction 8.
In instruction 9, the temporary cover for a bit 0 is lifted. Then, in instructions
10 through 12, a bit 1 is written to the location of a bit value of 0 using the
same scheme as instructions 6 through 8. Throughout the process, only bits
identified in the first stage with toeholds exposed are affected.

Appendix C Detailed Implementation of Each
Step for Parallel Exclusive OR

The instructions are shown below, alongside an example of the Exclusive OR
algorithm for sequence 11101 to 00000 in two iterations.

In each XOR iteration, the f(1,1) = (0,0) rewriting must be performed on
non-overlapping pairs of bits. In the first iteration, the pairing is as follows:
cell 0 with cell 1, cell 2 with cell 3, and so on. This means that all instruction
strands only operate on these pairs. For this algorithm specifically, this can
be achieved by using different sequences for the even versus the odd cells on
the strand. In instruction 1, the strand (S1 6 7 1 2 3) is issued to identify
(1,0) pairs. In instruction 2, strand (6* 7* 1* 2* 3*) is issued to detach any
S1 strands with exposed domains of 6 and 7, or 2 and 3. In instruction 3,
the strands (S2 6 7 1) and (S3 1 2 3) are issued to identify (1,1) and (0,0)
pairs respectively. Finally, (0,1) pairs are identified with strand (S4 4 5 6 7
1) for instruction 4. Now that all 1 domain toeholds are covered, strand (S2*
6* 7* 1*) is issued in instruction 5 to detach all S2 and expose (1,1) pairs. In
instruction 6, strand (S5 2 3 4 5 6 7 1 2 3 4 5 6 7) is issued to cover both cells
in (1,1) pairs. Both S5 and S4 are now detached using strands (S5* 2* 3* 4*
5* 6* 7* 1* 2* 3* 4* 5* 6* 7*) and (S4* 4* 5* 6* 7*) in instruction 7. Then
in instruction 8, all exposed cells are written to 0 using strands (2 3) and (4 5
6 7). In instruction 9, all S1 and S3 are detached using (S1* 6* 7* 1* 2* 3*)
and (S3* 1* 2* 3*). By covering all exposed domains using strands (2 3) and
(6 7) in instruction 10, all (1,1) pairs identified in the register are rewritten to
(0,0) pairs. At this point, instructions 1-11 of the parallel sorting in section B
are implemented to write all (1,0) pairs to (0,1). For these sorting steps, the
cell pairing can be overlapping. The result of this whole iteration of the XOR
algorithm is a DNA sequence that has the same bit parity as the input, but is
more ordered (i.e., closer to being sorted), and contains the same or fewer 1’s.
In figure C3, the first iteration is carried out with non-overlapping pairs for
cells 0 with 1, and so on. However, in figure C4, depicting a second iteration of
the XOR algorithm, the pairing is: cell 1 with cell 2, cell 3 with cell 4, and so
on. In the third iteration, the pairing can return to the original pairing in the



Springer Nature 2021 LATEX template

Sorting, XOR, Shifting, and Searching in DNA 25

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1    6    7    1    2    3 S1    6    7    1    2    3

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1

6*   7*   1*   2*   3* 6*   7*   1*   2*   3*

Original: 11101

Ins 1: Identifying pair (1, 0) on non-overlapping pairs

Ins 2: Detaching S1 on all other pairs

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2    6    7    1

S3    1    2    3

S2    6    7    1

S3    1    2    3

Ins 3: Identifying pair (1, 1) and (0, 0)

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2

S4     4     5     6     7     1S4     4     5     6     7     1
Ins 4: Identifying bit 0 in pair (0, 1)

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2

S2*   6*   7*   1*
Ins 5: Detach S2 to expose (1,1) pair

S2*   6*   7*   1*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 6: Cover both bits of (1,1) pair
S5     2     3     4     5     6     7     1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 7: Detach S5 to completely expose (1,1) pair, detach S4 as well

S5

S5*    2*    3*    4*    5*    6*    7*    1*    2*    3*   4*   5*   6*   7*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 8: Write 0 to empty location

Ins 9: Detach S1 and S3

S5     2     3     4     5     6     7     1     2     3     4     5     6     7

S5*    2*    3*    4*    5*    6*    7*    1*    2*    3*   4*   5*   6*   7*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1*   6*   7*   1*   2*   3*

S3*   1*   2*   3*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 10: Cover empty locations with 6,7 and 2,3

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 11: Intermediate result 00101. Now perform instruction 1-11 of parallel bubble sort to change (1,0) to (0,1)

Result of 1 iteration of XOR instructions: 00011

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1

S1

S1

S1

S1

S1

S1

S1

S1*   6*   7*   1*   2*   3*

S3*   1*   2*   3*

S4*   4*   5*   6*   7*   1*S4*   4*   5*   6*   7*   1*

Fig. C3: Instructions for the Exclusive OR. The first iteration converts 11101
to 00011.
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first iteration. For a n bit register, after n iterations of the XOR algorithm,
the last cell contains the output of the n bit XOR.

Appendix D Detailed Implementation of Each
Step for Parallel Left Shift cell

The instructions are shown as followed, with an example of shifting 11001 to
10011.

The first three instructions are exactly the same as those for identifying bit
pairs in Section 3.1. In instruction 1, the strand (S1 6 7 1 2 3), which identifies
the different patterns of two bits, is issued to each pair of bits. In instruction 2,
strand (6* 7* 1* 2* 3*) is issued, detaching strands with open domains 6 and
7, or 2 and 3. After this instruction, strands with identifier S1 only remain at
pair (1, 0). In instruction 3, we issue two species of strands at the same time:
(S2 6 7 1) and (S3 1 2 3). (S2 6 7 1) will bind with pair (1, 1) and (S3 1 2
3) will bind with pair (0, 0). S2 will not form a stable binding with pair (0, 0)
or (0, 1) because the binding area is only one domain. Same goes with S3 and
pair (1, 1) or (0, 1). After this instruction, only domain 1 between pair (0, 1)
is still exposed. In instruction 4, strand (S4 4 5 6 7 1) is issued. Through the
open domain 1 between pair (0, 1), the strand in bit 0 is replaced by S4. After
this step, the first bit in pair (1, 0) is identified with the strand S1, and the
first bit in pair (0, 1) is replaced with the strand S4.

Instructions 5 to 9 rewrite the first bit in pair (1, 0) to 0. In instruction
5, the strand S1 is detached, exposing domains 6, 7, 1, 2 and 3. The exposed
domains 2 and 3 are sealed off in instruction 6 to not interfere with subsequent
instructions. In instruction 7, strand (S5 2 3 4 5 6 7) is issued through the open
toehold on domains 6 and 7 in the bit 1 in pair (1, 0), and displaces the strand
in that bit. Since domains 2 and 3 are sealed off, bit 0 will not be modified in
this instruction. In instruction 8, strand S5 is detached, leaving the domains
in the bit open. In instruction 9, strands (2 3) and (4 5 6 7), which represent
0, are written to the bit containing open domains.

In the final two instructions, we write 1 to the first bit in pair (0, 1). In
instruction 10, 3 strands are issued to each pair of bits: (S2* 6* 7* 1*), (S3*
1* 2* 3*) and (S4* 4* 5* 6* 7* 1*). S2, S3 and S4 are detached through these
strands. Since S4 covers the bit 0 in pair (0, 1), after this step, domains 3 and
4 are exposed in these bits, ready to be written to 1. In the final step, strands
(2 3), (2 3 4 5), and (6 7) are issued to each cell. Strands (2 3) and (6 7) will
fix the exposed domains from strand S2 or S3, and strand (2 3 4 5) will write
bit 1 to the bit with domain 3 and 4 exposed. Details of the design are shown
in Figure D5.

For all the pairs of (0, 0) and (1, 1), the first bit in those pairs will not be
modified since the toehold 1 will be covered with S2 or S3 in the process.
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1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1    6    7    1    2    3 S1    6    7    1    2    3 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1 

6*   7*   1*   2*   3* 6*   7*   1*   2*   3*

Current: 00011

Ins 1: Identifying pair (1, 0) on non-overlapping pairs, offset from first iteration

Ins 2: Detaching S1 on all other pairs 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2    6    7    1 

S3    1    2    3 

S2    6    7    1 

S3    1    2    3 

Ins 3: Identifying pair (1, 1) and (0, 0) 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3 

S4     4     5     6     7     1S4     4     5     6     7     1
Ins 4: Identifying bit 0 in pair (0, 1) 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S2*   6*   7*   1*
Ins 5: Detach S2 to expose (1,1) pair 

S2*   6*   7*   1*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 6: Cover both bits of (1,1) pair 
S5     2     3     4     5     6     7     1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 7: Detach S5 to completely expose (1,1) pair, detach S4 as well 

S5 

S5*    2*    3*    4*    5*    6*    7*    1*    2*    3*   4*   5*   6*   7*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 8: Write 0 to empty location 

Ins 9: Detach S1 and S3 

S5     2     3     4     5     6     7     1     2     3     4     5     6     7

S5*    2*    3*    4*    5*    6*    7*    1*    2*    3*   4*   5*   6*   7*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1*   6*   7*   1*   2*   3*

S3*   1*   2*   3*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 10: Cover empty locations with 6,7 and 2,3 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 11: Intermediate result 00000. Now perform instruction 1-11 of parallel bubble sort (not needed in this case) 

Result of 2 iterations of XOR instructions: 00000 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1 

S2 

S1*   6*   7*   1*   2*   3*

S3*   1*   2*   3*

S4*   4*   5*   6*   7*   1*S4*   4*   5*   6*   7*   1*

S3 S2 

S3 

S3 

S3 

S3 

Fig. C4: Instructions for the Exclusive OR. The second iteration converts
00011 to 00000.
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1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1    6    7    1    2    3 S1    6    7    1    2    3 S1    6    7    1    2    3 S1    6    7    1    2    3

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1 S1 S1

6*   7*   1*   2*   3* 6*   7*   1*   2*   3* 6*   7*   1*   2*   3* 6*   7*   1*   2*   3*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1
S2    6    7    1

S3    1    2    3

S2    6    7    1

S3    1    2    3

S2    6    7    1

S3    1    2    3

S2    6    7    1

S3    1    2    3

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1 S3S2

S4     4     5     6     7     1S4     4     5     6     7     1S4     4     5     6     7     1S4     4     5     6     7     1

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S1 S3S2 S4

S1*   6*   7*   1*   2*   3*S1*   6*   7*   1*   2*   3* S1*   6*   7*   1*   2*   3*S1*   6*   7*   1*   2*   3*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3S2 S4

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3S2 S4

S5     2     3     4     5     6     7S5     2     3     4     5     6     7 S5     2     3     4     5     6     7S5     2     3     4     5     6     7 S5     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3S2 S4S5

S5*   2*   3*    4*   5*   6*   7* S5*   2*   3*    4*   5*   6*   7*S5*   2*   3*    4*   5*   6*   7* S5*   2*   3*    4*   5*   6*   7* S5*   2*   3*    4*   5*   6*   7*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3S2 S4

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

S3S2 S4

S2*   6*   7*   1*

S3*   1*   2*    3*

S4*   4*   5*   6*   7*   1*

S2*   6*   7*   1*

S3*   1*   2*    3*

S4*   4*   5*   6*   7*   1*

S2*   6*   7*   1*

S3*   1*   2*    3*

S4*   4*   5*   6*   7*   1*

S2*   6*   7*   1*

S3*   1*   2*    3*

S4*   4*   5*   6*   7*   1*

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Original: 11001

Ins 1: Identifying pair (1, 0)

Ins 2: Detaching S1 on all other pairs

Ins 3: Identifying pair (0, 0) and (1, 1)

Ins 4: Identifying bit 0 in pair (0, 1)

Ins 5: Detach S1

Ins 6: Sealing off exposed region 2 and 3

Ins 7: Displacing bit 1 in pair (1, 0) with S5

Ins 8: Detaching S5, emptying location

Ins 9: Write 0 to empty location

Ins 10: Detaching S2 S3 and S4

Ins11: Writing 1 to location with region 4 and 5 exposed, fix exposed 2,3 and 6,7

Final: 10011

Fig. D5: Instructions for the Left Shift cell
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Appendix E Detailed Implementation of the
Second Level in Parallel Search

Here we discuss the second level of the parallel search operation. The first level
of the search operation uses the instructions that were described in Section 3.1,
except we now only issue strands to non-overlapping bit pairs. We use iden-
tifiers A0 = 00, A1 = 01, A2 = 10, A3 = 11 to represent symbols in this level.
For instance, to search for the target string 1011, we search for the symbol A2

in odd symbols and A3 in even symbols. The cases of A2 in even symbols and
A3 in odd symbols are covered by searching with an offset.

In the first instruction of the second level, we uncover the A2 in the odd
symbols, creating an open region. In instruction 2, we use a long strand to
cover the entire right half of the symbol, from the start of identifier A2 to the
rightmost cell. This strand is pulled out in instruction 3. In instruction 4, we
use an identifier A′

2 to cover domains 5, 6, 7 in the rightmost cell while covering
all other domains.

Instructions 5 to 8 are essentially the same as instructions 1 to 4, but
with two significant differences. Firstly, since A3 is the second symbol in the
current level of query, we only search for even-numbered symbols (2, 4, 6, etc.).
Secondly, instead of rewriting the right half of the symbol, we write the left
half. We make the new identifier A′

3 to cover domains 2, 3, 4 in the left-most
cell. In instruction 9, we use identifier (B11 5 6 7 1 2 3 4) to recognize the
two consecutive symbols A2 and A3. Since, in the regular encoding, no strand
starts from domain 5 or ends at domain 4, it will only form a perfect binding
with a matched result.

After the identifier B11 binds, we also need to clean up the imperfect bind-
ings in case of a mismatch. Figure E6 shows the instructions for the cleanup
process. In instruction 10, we first use the complementary strand (5* 6* 7* 1*
2* 3* 4*) to pull out the imperfect bond identifier B11. Then we issue strands
covering the exposed domain. We first issue strands covering fewer domains,
then in following instructions, we issue strands covering more domains. As a
result, we always obtain a perfect fit; the strands will not be pulled out in
potentially unrelated rewriting processes.

Appendix F Example of Parallel Bubble Sort
on an arbitrary bitstring

Consider the 12-bit long string S = 110010010110. In each iteration of bubble
sort, we first identify all (1, 0) pairs (shown in red) and then rewrite them to
(0, 1) (shown in blue). For this string, the numerous iterations of the sorting
algorithm are:

110010010110 → 101001001101

101001001101 → 010100101011

010100101011 → 001010010111
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1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3A2
Initial state: Sequence 1011, Symbols is already identified in previous level 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3
A2*   6*   7*   1*   2*   3*

A2

Ins 1: Uncover Symbol A2 for every odd numbered symbol 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3
S     6     7     1     2     3     4     5     6     7

Ins 2: Cover the entire half of symbol for the odd A2 symbols

Ins 3: Remove the cover

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3S

S*

Ins 4: Write: A new identifier A2' covers domain 5, 6, 7 in right most register, cover the rest

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3

A2'

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A3A2'

A3*   6*   7*   1*
Ins 5: Uncover Symbol A3 for every even numbered symbol 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A2'
S     2     3     4     5     6     7     1

Ins 6: Cover the entire half of symbol for the even A3 symbols

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A2' S

S*Ins 7: Remove the cover

Ins 8: Write: A new identifier A6' covers domain 2, 3, 4 in left most register, cover the rest

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A2'

A3'

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A2' A3'

B11Ins 9: Add identifier for current level

Result

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

B11

Fig. E6: Instructions for a search operation of target sequence 1011
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1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

B11 A1
Initial state: Sequence 1010, After the identification step 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

B11 A1

5*   6*   7*   1*   2*   3*   4*
Ins 10: Pull out identifier B11 in an imperfect fit 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

A1

Ins 11: Cover the open domains 6, 7 or 2, 3 

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 12: Cover the open domains 5, 6, 7 or 2, 3, 4

A1

A3'A2'

1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7 1     2     3     4     5     6     7

Ins 13: Cover the open domains 4, 5, 6, 7 or 2, 3, 4, 5

A1A2'

Fig. E7: Instructions for the cleanup process for a failed searching. These
instructions won’t affect the result of a successful search.

001010010111 → 000101001111

000101001111 → 000010101111

000010101111 → 000001011111

000001011111 → 000000111111.

After 7 iterations, the final sorted string is 000000111111.

Appendix G Simulating the XOR algorithm

We used the SIMD DNA simulator written by Dave Doty and Aaron Ong
[19] to validate our XOR algorithm. We simulated two iterations of the XOR
algorithm as shown in Figures C3 and C4. First, we operated on odd-to-even
bit pairs on a strand storing 11101 to obtain 00101. Then we operated on
even-to-odd bit pairs on the strand storing 00011 (the sorted result of the first
iteration) to obtain the XOR 00000. To ensure non-overlapping pairing, we
used different domain sequences for odd bits compared to even bits – odd bits
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were sequenced as domains 1 to 7, while even bits were sequenced as domains
8–14.

The simulator validated our algorithm: all instructions shown in Figures
C3 and C4 simulated correctly. We have attached the simulation files and
the predicted results for the two iterations in the supplementary data. These
simulations show that the operation that rewrites non-overlapping (1, 1) pairs
to (0, 0) preserves the parity of the register.

Appendix H Gibson Assembly of a 2 bit
register

Gibson Assembly of DNA molecules is achieved through the use of “sticky
ends” – single stranded sequences at the ends of these molecules that allow
them to concatenate. To create registers storing unique bit sequences, we use
two different molecules to start off: pre-cell molecules (domains 2 to 7, with
sticky ends on domains 2 and 7), and linker molecules (domains 7 1 2, with
sticky ends on domains 7 and 2). To store a bit value of 0 in a pre-cell, a
toehold on domain 4 is created. To store a bit value of 1, a toehold on domain
5 is created. This is shown in Figure H8b.

Before concatenating two different pre-cells, their particular sticky ends
must be “sealed” – those ends are no longer single stranded and cannot link
together anymore. Sealing a particular sticky end can easily be done by adding
a single strand of DNA that binds to that sticky end. For example, by sealing
the sticky end on domain 2 of a pre-cell, that pre-cell can no longer concatenate
with itself when the linker molecule is mixed. In Figure H8c, pre-cell A only
has a sticky end on domain 7, and pre-cell B only has a sticky end on domain
7. When these pre-cells are mixed together with the linker molecule, they will
bind to each other in the order A to B. This creates a pre-register of those
two pre-cells. The starting end of the pre-register has a domain 1 concatenated
through a “cap” molecule (domains 1 and 2, with a sticky end at domain 2) as
shown in Figures H8e and H8f. After this stage, the pre-register can be treated
with DNA ligase to seal all nicks. The resulting DNA strand contains the cells
A and B which contain toeholds at domain 4 and 5 respectively. All 1 domains
across all cells in this strand can be exposed into to toehold domains through
nicking and gentle denaturing. Finally, this DNA molecule (which encodes 01
based on the pre-cell encoding scheme) can be converted to the bit encoding
scheme used in this paper 2 through the procedure described in Sections 3.2
and 8.3. This entire procedure yields a 2 bit register storing the bits 0 and 1
in that order.

This approach can be used to construct registers of any arbitrary number
of bits despite all cells having the same sequence. This is because pre-registers
can also be concatenated in the same manner as pre-cells as shown in Figure
H8c. For this, the sealed ends of a pre-register must be unsealed (through the
use of an exonuclease) to create sticky ends again.
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Pre-cell template Linker

2 3 4 5 6 7 27 1

(a) The two main types of molecules used for Gibson Assembly

Pre-cell storing 0 Pre-cell storing 1

2 3 4 5 6 7 2 3 4 5 6 7

(b) How to store bit values 0 or 1 through toeholds 4 or 5 respectively.

Pre-cell BPre-cell A

2 3 4 5 6 7 2 3 4 5 6 7

Linker

27 1+ +

(c) Pre-cell A stores 0, Pre-cell B stores 1. They are mixed together with
linker molecules to concatenate them. The blunt ends (domain 2 on A,
domain 7 on B) prevent linking of two same pre-cells.

Pre-register AB

2 3 4 5 6 7 3 4 5 6 721

(d) The resulting pre-register AB.

2 3 4 5 6 7 3 4 5 6 721

(e) Creating a sticky end on the first domain 2 of the pre-register.

+21 2 3 4 5 6 7 3 4 5 6 721

Pre-register ABCap

(f) Using a cap molecule to add a domain 1 at the start of the pre-register

21 3 4 5 6 7 3 4 5 6 721

(g) The resulting pre-register after ligation

21 3 4 5 6 7 3 4 5 6 721

(h) Toeholds are created on all 1 domains.

21 3 4 5 6 7 3 4 5 6 721

Register storing 01

(i) The pre-cell encoding is changed to the encoding proposed in Figure 2.

Fig. H8: Using Gibson Assembly to construct a register storing 01 from cells
with the same sequence.


	Introduction
	Background
	Parallel computation using SIMD
	SIMD DNA structure

	Design of Encoding System
	Identifying Bit Pairs
	Rewriting a cell

	Parallel Binary Bubble Sorting
	Implementation

	Parallel Exclusive OR
	Implementation

	Parallel Left Shifting
	Parallel Search Algorithm
	Algorithm
	Parallel search procedure
	Search procedure with offset

	Implementation

	Discussion
	Initializing data on cells sharing the same sequences
	Ability to compute any non-conflicting pairwise operation
	Converting to Different Encoding Schemes
	Time Complexity of Parallel Search

	Conclusion
	Instructions for Converting to Another Scheme
	Detailed Implementation of Each Step for Parallel Sorting
	Detailed Implementation of Each Step for Parallel Exclusive OR
	Detailed Implementation of Each Step for Parallel Left Shift cell
	Detailed Implementation of the Second Level in Parallel Search
	Example of Parallel Bubble Sort on an arbitrary bitstring
	Simulating the XOR algorithm
	Gibson Assembly of a 2 bit register

