
Counting Networks

120.

100.

80.

$
~ 60.
E.-

40-

20.

0- .

1039

/
Spin-1ock

Perlodic[16]

e Perlodlc[4]

\ Penod!c[8]

/

, I

o 10 20

concurrency (num of proc )

FIG. 10. Periodic shared counter implementations.

lieb et al. [1983], discussed in Section 5. Each implementation has 8 producer

processes, which continually produce items, and 8 consumer processes, which

continually consume items. If a producer (consumer) process finds its buffer

slot full (empty), it spins until the slot becomes empty (full).

We consider buffers with bitonic and periodic networks of width 2, 4, and 8.

As a final control, we tested a circular buffer protected by a single spin lock, a

structure that permits no concurrency between producers and consumers.

Figure 11 shows the time in seconds needed to produce and consume 2Z”

tokens. Not surprisingly, the single spin-lock implementation is much slower

than any of the others. The width-2 network is heavily oversaturated, the

bitonic width-4 network is slightly oversaturated, while the others are undersat-

urated.

6.4. BARRIER SYNCHRONIZATION. Figure 12 shows the time (in seconds)
taken by 16 processes to perform 2 J6 barrier synchronizations. The remaining

columns show BLOCK[k] networks of width 4, 8, and 16. The last column shows

a simple sense-reversing barrier in which the BLOCK network is replaced by a

single counter protected by a spin lock. The three network barriers are equally

fast, and each takes about two-thirds the time of the spin-lock implementation.



1040 J. ASPNES ~r AL.

FIG. 11. Producer/consumer buffer
spin width 2 width 4 width 8

bitonic
implementations.

57.74 17.51 10.44 14.25

periodic 17.90 12.03 19.99

I Spin lock I Barrier 4 I Barrier 8 I Barrier 16

time (seconds) I 62.051 43.53 I 41.271 42.32

FIG. 12. Barrier Implementations,

7. Vmifiing that a Network Coutlts

The “O-1 law” states that a comparison network is a sorting network if (and

only if) it sorts input sequences consisting entirely of zeroes and ones, a

property that greatly simplifies the task of reasoning about sorting networks. In

this section, we present an analogous result: A balancing network having in

balancers is a counting network if (and only if) it satisfies the step property for

all sequential executions in which up to 2’” tokens have traversed the network.

This result simplifies reasoning about counting networks, since it is not

necessa~ to consider all concurrent executions. However, as we show, the

number of tokens passed through the network in the longest of these sequen-

tial executions cannot be less than exponential in the network depth.

We begin by proving that it suffices to consider only sequential executions.

LEMMA 7.1. Lets be a Lalid schedLde of a gilwn balancing network. Thetl the?’e

exists a l!alid sequetltial sc~[edule s‘ such that the rll[mber of tokerls that pass

through each bala?lcer in s and s‘ is eqlud.

PROOF. Let s = S(l p . q . Sl, where St], SI are sequences of transitions. p

and q are individual transitions involving distinct tokens P and Q, and where

““” is the concatenation operator. If p and q do not occur at the same

balancer, then SO. q . p . S1 is a valid schedule. If p and q do occur at the same

balancer, then s,, “ q “p .s~ is a valid schedule, where sj is constructed from s,

by swapping the identities of P and Q. In each case, we can swap p and q

without changing the preceding sequence of transitions so and without chang-

ing the number of tokens that pass through any balancer during the execution.

Now suppose that s is a complete schedule. We will transform it into a

sequential schedule by a process similar to selection sorting. Choose some total

ordering of the tokens in s. Split s into SO“ tO where SU is the empty sequence

and tO = s. Now repeatedly carry out the following procedure that constructs

Sti- 1 -t from Si . t,: while t, is nonempty, let p be the earliest transition in t,1+1

whose token is ordered as less than or equal to all tokens in t,.Move p to the

beginning of t,by swapping it with each earlier token in t,as described above,

and let s,+ ~ = s, p and t,+,be the suffix of the resulting schedule after p.

This procedure is easily seen to maintain the following invariant:

(1) After stage i, St . t, is a valid schedule in which each balancer passes the

same number of tokens as in s.

(2) After stage i, s, is sorted by token.

Thus, when the procedure terminates, we have a valid sequential schedule s‘

in which each balancer passes the same number of tokens as in s. ❑



Counting Networks 1041

THEOREM 7.2. A balancing network with n~ balancers satisj7es the step property

in all executions if (and only if) it satisfies it in all sequential executions in which

at most 2 ‘“ tokens tralerse the network.

PROOF. Since the step property depends only on the number of tokens that

pass through the network’s output wires, it follows from Lemma 7.1 that a

balancing network satisfies the step property in all executions if (and only if) it

satisfies it in all seq14ential executions.

We now show that any failure to satisfy the step property can be detected in

some execution involving at most 2 ‘n tokens. Consider sequential executions of

a balancing network with m balancers. Any quiescent state is characterized by

specifying for each balancer the output wire to which it will send the next

token, yielding a maximum of 2’” distinct quiescent states. In a sequential

execution, each time a token traverses the network, it carries the network from

one quiescent state to another. Thus, in any execution, after at most 2“’

traversals, the network must reenter its initial state. Let H be the shortest

sequential execution needed to detect a violation of the step property. If H

involves more than 2 ‘“ tokens, then H can be split into a prefix Ho and a suffix

HI such that HO involves at most 2 ‘“ tokens and leaves the network in

its initial state. If H~, sends “illegal” numbers of tokens through two output

wires, then Ho alone suffices to detect the violation, and otherwise HI alone

suffices. ❑

How tight is this bound? We now construct a balancing network that is not a

counting network, yet satisfies the step property for any execution in which the

number of tokens is less than exponential in the network depth. Through the

remainder of this section, we will only consider networks in quiescent states, so

that we can ignore issues of timing and concentrate solely on the total number

of tokens that have passed along each wire.

First. consider the following balancing network STAGE[2 w ]. Take two count-

ing networks A and B of width w having outputs wires aO through a,,, _, and

b(~ through b,, _ ~. respectively. Add a layer of w balancers such that the ith

balancer has inputs a, and b,,,_, _i and outputs aj and b~v_, _,. The resulting

network STAGE[2W ] is not a counting network; however, it is easily extended to

one by virtue of the following lemma.

LEMMA 7.3. For any input to STAGE [2 w], there exists a permutation rr<, of the

output sequence u{], ..., a~, _, and a perr.nutation n-b of the output seqLLetlce

b{),..., b;,,_l such that the sequence T,,( a{,, . . . . a{v_ ~)“ n-~(b~,..., bJv_, ) has the
step prope~.

PROOF. Observe that the total inputs to any two balancers in the last layer

differ by at most 1.

Thus, there is always a k such that every balancer in the last layer outputs

either k or k + 1 tokens. If k is even, then b; = k/2 for all i and a; = al +

b – k/2, which is either k/2 or k/2 + 1.One can obtain a sequenceW-1-l

with the step property by setting mti to sort the values in cl’. If k is odd, then

each a: is (k + 1)/2 and each bj is aW_ ~_, + b, – (k + 1)/2, which will be

either (k + 1)/2 or (k + 1)/2 – 1. In this case, having n-~ sort the values in

b‘ produces the desired result. ❑



1042 J. ASPNES ET AL.

By Lemma 2.2 it follows that

COROLLARY 7.4. For any m tokens input to STAGE [2 w 1, ~T.-(FaL
= Z~:,l(m – i/2wl ami ~:,~bj = Z?!; ‘[m – i/2wl.

In other words, the total number of tokens that end up on the aj, ..., LZL- I

and b~, . . .. b~._l outputs wires is the same as in a proper counting network. In

fact, Lemma 7.3 guarantees an even stronger property: the actual number of

tokens on each wire correspond to the number of tokens that occur on some

wire in the output sequence of a proper counting network. However, there is

no guarantee that these numbers appear in the correct order (or even the same

order given different inputs). Because of Theorem 2.6, we can extend the

STAGE[2 w ] network into a (not very efficient) counting network by passing the

outputs a~, . . ..a~. _[ and b{l . . . .. bl. –l to two separate balancing networks

isomorphic to sorting networks. But we are not interested in getting a working

counting network; instead we will use a modified version of STAGE[2 w ] to

construct a balancing network that counts all input sequences with up to some

bounded number of tokens, but fails on sequences with more tokens.

We construct such a balancing network (denoted ALMOST[2 w]) as follows:

Take a STAGE[2W ] network and modify it by picking some x other than O or

w – 1 and deleting the final balancer between aX and bW_ ~_X. Denote this

balancing network as STAGE ‘[2 WI]. Let ALMOST[2 W] be the period network

constructed from k stages, for some k > 0, each a STAGE ‘[2 w ] network, with

the outputs of each stage connected to the inputs of the next.

Let A, and B, be the sums of the number of tokens input to each of the two

subnetworks A and B in the tth stage of ALMOST[2 w ]. A ~,and BO are thus the

numbers of tokens input to A and B, respectively. Let y = {Y(l, ..., yzW_ 1} be

the sequence given by yi = [( A,, + BO – i)/2wl. Thus, Y, counts the number

of tokens that would exit on output wire i if ALMOST[2k ] were a counting

network.

We now define the quantities A. and B. used in the proofs below. They

measure the number of tokens that would have come out of the respective

parts of network in the last stage (t = ~) if it were a counting network.
Formally, let Ax = ~~=-{jy{, and B. = ~~!,j ‘Y,. Note that A, + B, =A() +
B,l = Ax + B. for all t and that by Lemma 2.2, [( A,. – i)/wl = Y, and

[(BX – i)/wl =yW+, for all i.

Finally, let the imbalance 8, = At – A% = – (B, – B.); this quantity repre-

sents “how far” the network is from balancing the tokens between the A and

B subnetworks in stage t, in other words, how many excess tokens must be

moved from the A part of the network to the B part (or, if the quantity is
negative, how many tokens should be moved from 1? to A).

The following lemma follows from arguments almost identical to those of

Lemma 5.4:

LEMMA 7.5. If the input sequence to a balancing network has the step property,

then so does the outplLt sequence.

LEMMA 7.6. In the output seqzlerzce of stage t of ALMOST[2 w ], each al is equal

to y, + e,, where e, s O when S, < 0, and e, 2 ~ w~~en ~, ~ Q and eac~l b, is
< 0 when St > 0, and e, > 0 when ~r < 0.equa[ to yW+ ~ + e., h,. where e, —



Counting Networks

PROOF. For i <

1043

w, we have

ei=cz–yt

‘rA:i)lH(Axii)l——[‘s’+:x-i)lH(A”:i)l
which is at least zero when S > 0 and at most zero when 8 < 0.

The claim for eW+, = b, – yW,, follows by a similar argument. ❑

COROLLARY 7.7. If 8, = O, then the outpLLt sequences of stage t of ALMOST[2 W]

have the step propezly.

PROOF. If 8, = O, then, by the preceding lemma, each a, = y, and b, = y,,,,,,

so the output sequences of stage t form the sequence y. Since y has the step

property, it is left unchanged by the final layer of balancers (Lemma 7.5). ❑

LEMMA 7.8

1

[(A, -x)/w] - [(~, - (W -1 -x))/’wl
8t+l=

2 1

PROOF. If a balancer were placed between a; and b{v_, _,, after stage t,

then the STAGE’[2 w ] network would become a STAGE[2 w ] counting network,

and by Corollazy 7.4, exactly AZ tokens would emerge from the A half of the

network after stage t + 1, giving an imbalance would be O. The above quantity

at+ 1 is simply the number of tokens that this balancer would move from the A

part of the network to the B part in order to bring the parts into balance, and

is thus the actual imbalance that results from deleting the balancer. ❑

The following lemmas show that the imbalance tends toward zero as more

stages are added:

LEMMA 7.9. If 8, >0, then 8,+ ~ >0. If 8, s O, therz 8,+, s O.

PROOF. Suppose at z O. Then A, > A. and B, s B=, and so

1

[(A, -x)/wl - [(B, - (W -1 -x))/w]
8f+l =

2 I

-1

> [(A. –x)/wl – [(B= - (W – 1 –x))/wl

2 I

= o.

(The last equality holds because when the two parts ~f the network hold A.

and B. tokens there is no imbalance.)

Reversing the inequalities gives the corresponding result for 8, <0. ❑

LEMMA 7.10. i’f 18,1>0, then 18,+11 s 18,1 – 1.

PROOF. By virtue of Lemma 7.9, we need only show that 8 decreases when

positive and increases when negative.



1044 J. ASPNES ET AL.

LetaO,.. ,,aW_l, bU,. . ., b,ti_, be the outputs of the A and B subnetworks of

the (t + l)th stage before the last layer of balancers. Because 8, + O, this

sequence does not have the step property; however, each of the two subse-

quences a(l, . . ..aW. _l and be, ..., bW_, is the output of a counting network and

so has the step property. Thus, the step property of the whole sequence must

be violated by some al, b] such that a, – b] is either less than O or greater

than 1.

We consider two cases, depending on the sign of 8,:

Case 1. 8, <0. Then, by Lemma 7.6, each al < J’, and each b, > yW,+,.

(Recall that y, is the number of tokens that would exit from the i-th output of

a counting network with the same input sequence.) So for each at and each b,

we have, using the step property of the y sequence. a, < y, < y,, +, + 1 s b, + 1.

Thus:

(1) For each a, and b,, _, .,, at < b,, _,_, + 1, so the balancer between these
outputs moves no tokens from the A side to the B side.

(2) Given some a, and b, that violate the step property, it cannot be the case
that a, > b, + 1 and thus it must be the case that a, < b,. But then

u~t,– 1 S al < b] s btl, and since a}. _, and b(, are connected by a bakmcer,
that balancer moves at least one token from the B side to the A side.

Hence, at least one token moves from the B side to the A side and

a,+, > 8,.

Case 2. S, >0. Then, each a, > y, and each b, < y,,, +,. So a, > y, > y,,+,
> b,. Thus:

(1) For each a, and bW_l_l, a, > bW_l_,, so no final-stage balancer moves

tokens from the B side to the A side.

(2) Given some a, and b, that violate the step property, it must be the case
that a, > b, + 2. But aO > a, > b, + 2> b,v_l + 2; so the balancer be.

tween aO and b,, _ ~ moves at least one token from the A side to the B side.

Hence, at least one token moves from the A side to the B side and

8~+, <t$. ❑

PROOF. From Lemma 7.8, we have:

1[(A, -x)/wl - ((B, - (w -1 -x))/wI]
8t+l=

2 1°

Looking more closely at the B, term, notice that

[ ‘-(w~l-x)l=[B+:+ll-l
If (1? + x + 1)/w is not an integer then this is just [(B + x + 1)/w J, which is

equal to [(B + x)/w] since subtracting 1 from the numerator cannot bring it

below the next integral multiple of w. Now if ( B + x + 1)/w is an integer, then

this is [(B + x + 1)/wl – 1, which in this case is equal to [(B + .x)/w], since



Counting Networks 1045

subtracting 1 from the numerator does bring it below an integral multiple of w.

So in either case, we have

[

~_(w;l-x),=,B;x,,

and we can rewrite the original expression as:

1

[(A, -x)\w] - [(B, +X)/W]
6t+l= 2

‘1(~, –x)/w – (B, +X)\W + Cl

2 I

A, – B,
:+; –c2

2W– W

28, + (AX –Bz)
,— :+:–c?,

2W ‘w

where O s c1 <2 and O s c: < 1. Using the fact that O < A. – B. < w (hence
O s (Ax – Bx)/2w s 1/2), and that O < x s w – 1 (hence, 1/2 < –x/w <

O), we can rewrite all of the terms not containing 8 as a single value c and get

13,
8t+l = —+C,

w

where the bound – 3/2 < c < 3/2 is obtained by summing the bounds on the

individual terms. ❑

THEOREM 7.12. Let w be a power of 2 greater than 1. Then there exists a

width-2 w balancing network that has the step property in all executions with up to

W(h -‘~ tokens, yet is tzot a counting network.

PROOF. From Lemma 7.11, we have 181+~I < 18J\w + 3/2. Let U(t) be

defined by the recurrence U(O) = 16.1, U(t + 1) = U(t)/w + 3/2; then, U(t) is

a strict upper bound on 18,I for t > 0. Solving the recurrence using standard

methods yields

(3/2) (3/2)
u(t) = 1801M-’ +

M

–[

l–1/w– W–lw “

Now suppose the network is given an input involving at most w’ tokens.

Then 180I cannot possibly exceed w’, and after t stages.

(3/3 (3/’2) _,
18,[< u(f) <1 +

()l–1/w– W–lw ‘

which is at most 4 if w > 2 and t > 1. So by Lemma 7.10, 18,+ ~1 = O, and thus,
by Corolla~ 7.7, the outputs of stage t + 4 have the step property. Thus, a

network with k = t + 4 stages will count up to W(k – ~) tokens.

To see that this k-stage network is not a counting network, suppose 180I >
4w(k+1). From Lemma 7.11, we have 18,+11 > 18 J/w – 3/2. Let L(t) be de-



1046 J. ASPNES ET AL.

fined by L(O) = 1801 and L(t + 1) = L(t)\w – 2; L(t) is a strict lower bound

on Iat I for t > 0. Solving the recurrence gives

(3/2) (3/2) _,
L(f) = 1801M-’ – +

1 – l/w (1
—w.
w–1

Dropping the last term and setting 1801> 4W’[L+ ] ) gives

(3/’2)
laL+,l>L(k+l)>4– >1.

1 – I/w’

Since 8A+, # O, the outputs of stage k (and hence the entire network) cannot

have the step property. ❑

8. Discussion

Counting networks deserve further study. We believe that they represent a

start toward a general theory of low-contention data structures. Work is

needed to develop other primitives, to derive upper and lower bounds and new

performance measures. We have made a start in this direction by deriving

constructions and lower bounds for linearizable counting networks [Herliny et

al. 1991], networks that guarantee that the values assigned to tokens reflect the

real-time order of their traversals. Aharonson and Attiya [1992], Felton et al.

[1993], and Hardavellas, et al. [1993] have investigated the structure of counting

networks with fan-in greater than two. Klugerman and Plaxton [19xx] have

shown an explicit network construction of depth O(c[”~ “log n ) for some small

constant c, and an existential proof of a network of depth CKlog ~z).

Work is also needed in experimental directions, comparing counting net-

works to other techniques, for example, those based on exponential backoff

[Agw-wal, and Cherian 1989], and for understanding their behavior in architec-

tures other than the single-bus architecture provided by the Encore. We have

made a start in this direction by comparing the performance of counting

networks to that of known methods using the ASIM simulator of the MIT

Alewife machine [Herlihy et al. 1992]. Preliminary results show that there is a

substantial gain in performance due to parallelism on such distributed memory

machines.

Finally, we point out that smoothing networks, balancing networks that

smooth but do not necessarily count, are interesting in their own right since

they can be used as hardware solutions to problems such as load balancing (cf.

[Peleg and Upfal 1986]).

ACKNOWLEDGMENTS. Orli Waarts made many important remarks. The serial-

ization lemma and the observation that smoothing + sorting = counting, are
products of our cooperation with her ~nd with Eli Gafni, to whom we are also

in debt. Our thanks to Heather Well, and Shanghua Teng for several helpful

discussions, to Cynthia Dwork for hcr comments. and to David Kranz and

Randy Osborne for Mu1-T support, and to the helpful yet anonymous referees.

Finally, the first and third authors wish to thank David Michael Herlihy for

remaining quiet during phone calls.

REFERENCES

AG~RW~L, A , ~ND CHERIAN, M 1989. Adaptive backoff synchronization techniques. In F’ro-

cwdings of the 16th Symposium oiz Computer .4rclzitccture (June ). IEEE Computer Society Prcxs,
Los Alamitos, ~~lit., pp. 396–406.



Counting Networks 1047

AGARWAL, A., CHAIKEN, D., D’SOUZA, G., JOHNSON, K., KRANZ, D., KUBIATOWICZ, J., KURIHARA,

K., LIM, B.-H., MAA, G., NUSSBAUM,D., PARKIN,M., AND YOUNG, D. 1991. The MIT alewife

machine: A large-scale distributed-memory multiprocessor. In Proceedings of Workshop O)Z

Scalable Shared Memo;v Multiprocessors. Kluwer Academic Publishers. (An extended version of

this paper has been submitted for publication, and appears as MIT/LCS Memo TM-454, 1991.)

AHARONSON, E., AND ATTIYA, H. 1992. Counting networks with arbitrary fan-out. In Proceezl-

irz~s of tlze 3rd SjwIposiZwz on Discrete A lgorithnzs (Orlando, Fla., Jan. 27–29). ACM-SIAM, New

York, pp. 104-113.

AJT.AI, M., KOML6S, J., .AND SZEMER6DI, E. 1983. An 0( n log n) sorting network. In Proceed-

ings of tlze 15tlz ACM Sytnposizmz OIZ the Tlzeozy of Computing. (Boston, Mass., Apr. 25–27).

ACM, New York, pp. 1-9.

ANDERSON, T. E. 1989. The performance implications of spin-waiting alternatives for shared-

memory multiprocessors. Tech. Rep. 89-04-03. Univ. Washington, Seattle, Wash.

ASPNIS, J., HERLIHY, M. P., AND SI+AVIT, N. 1991. Counting networks and multi-processor

coordination. In Proceedings of the 23rd Annual Symposium on Theo~ of Computmg, New

Orleans, La., May 6-8). ACM, New York, pp. 348-358.

BATC1iER, K. E. 1968. Sorting networks and their applications. In Proceedazgs of AFZPS .loirzt

Computer Conference 32, 338–334.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1990. Zntroductio}t to Algorit}zms. MIT

Press, Cambridge, Mass.

DOWD, M., PERL, Y., RUDOLPH, L., AND SAKS, M. 1989. The periodic balanced sorting network.

J. ACM 36, 4 (Ott), 738-757.

ELLIS, C. S., AND OLSON, T. J. 1988. Algorithms for parallel memory allocation. ./. Parallel

Progr. 17, 4 (Aug.) 303-345.

FELTON, E. W., LAMARC~, A., AND LADNER, R. 1993. Building counting networks from larger

balancers. Tech. Rep, 93-04-09. Univ. Washington, Seattle, Wash.

FREUDENTHAL, E., .AND GOTTLIEB, A. 1991. Process coordination with fetch-and-increment. In

Proceedazg.s of t/Le 4th [nter~zatiotzal Conference o~t A rdlitectuw Suppoti jor Progranznzitzg Lan -

gzuzges and Operating Sjstenzs, (Santa Clara, Calif., Apr.).

GAWLICX, D. 1985. Processing “hot spots” in high performance systems. In Proceedi/zgs of

COMPCON”85. IEEE, Los Alamitos, Cahf.. pp. 249-251.

GOODM4N, J., VERNON, M., ANLZ WUEST, P. 1989. A set of efficient synchronization primitives

for a large-scale shared-memory multiprocessor. In Proceedings oj the 3rd International Confer-

ence on Archltecturcd Support jor Progrwnnurzg Langazzges and Operating Systems (Apr.). ACM.

Ncw York, pp. 64-77.

GIXTLIEB, A., GRISHMAN, R., KRUSKJW, C. P., MCAULIFFE, K. P., RUDOLPH, L., .AND SNIR, M.

1984. The NYU ultracomputer—Dcsigmng an mimd parallel computer. IEEE Trans. Conzput-

crs C-32, 2 (Feb.), 175–189.

GOrT.IEZ~, A., LUBACHEVSIO, B. D., .ANZI RUDLOPH, L. 19S3. Basic techniques for the efficient

coordination of very large numbers of cooperating sequential processors. ACM Trans. Prog.

Lcwg. Syst. .$, 2 (Apr.), 164-189.

HARDAVH.L,AS, N., KARAKOS, D., AND MAVRONICOLAS, M. 1993. Notes on sorting and counting

networks. In Proceedings of WDA G’93. to appear.

H~NSGEN, D., FINKEL, R., AND MANBER, U. 1988. Two algorithms for barrier synchronization.

Int.J. Para. Prog. 17, 1, 1-17.

HISRI.IHY, M. P., LIM. B. H. ,+ND SH~vrr, N. 1992. Low contention load balancing on kuygc-scale

mult iproccssors. In Proceedings of the Ah Annz{al A CM Synrposiwn on Parallel Algorithnzs arul

.4rchzrecrares, (San Diego, Calif., June 29–July 1). ACM, New York, pp. 21 9–222.

H~RLIHY, M. P., SH,+VIT, N., AND W&\RTs. O. 1991. Low-contention Iinearizable counting. In

Proceeding of’ dze 3M IEEE Synzposianr on Fourzdarions of Compawr Science (Oct.) IEEE, New

York, pp. 526-535,

KR~NZ, D., HALSTEAD, R., AND MOHR, E. 1989. MuI-T, A high-performance parallel LNp. In

Procccdazg.s of the ACM SIGPLAN ’89 Cotzferetzce on Programnzing Language Deszgn mzd

[ttzplet?te}ttat~o)z, (Portland, Ore., June 21-23). ACM, New York, pp. 81-90.

K~USKAL, C. P., RUDOLPH, L., AND SNIR, M. 1986. Efficient synchronization on multiprocessors

wit h shared memory. In Hoc eedirlg.s of the 3t/z,4 CM SrGA CT-SIGOPS Sympmiunz OTZI’ruzc iplcs

oj Dtstnbuted Cottzpufitzg, ACM. New York, pp. 2 18–228.

KLU~~RMAN, M. AND PL.&x-roN, C. G. 1992. Small-depth counting networks. In Proceedifig.s of

the 24t/z A/z?zual $wzposiurn on the Theory of Conzputmg. (Victoria, B.C., Canada, May 4–6).
ACM, New York, pp. 417-428.



1048 J. ASPNES ET AL.

L~NcH, N. A., J,NCI TUTr@ M. R. 1987. Hierarchical correctness proofs for distributed

algorithms. In Proceedings cf the 6t}l ACM Symposuun on Principles of Dcstnbutcd Compating

(Vancouver, B. C., Canada, Aug. 10-12 ). ACM, New York, pp. 137-151 .( Frrll version available
as MIT Tech. Rep. MIT/LCS/TR-387.)

M~IJ OR-CROMMEY, J. M., 4ND Scorn, M. L. 1990. Algorithms for scalable synchronization on

shared-memory multiprocessors. Tech. Rep. 342. Unw. Rochester, Rochester, N.Y. (Apr.).

RUDOLPI L L. 1983. Dccentrallzed cache scheme for an MIMD parallel processor, In Proceed-

[rzs.s of tlw 1 ltll A tmatrl Computing Arc hitec tzlre Conference. pp. 340–347.

MELI.OR-CR~MMEY, J. M., AND SCOTT, M. L. 1991, Synchronization without contention. In

Proceedmgv of the 4th Intematwnal Conference on Architectlwe Support for Prograrnmmg Latl -

gaages and Opcratzng Systenzs (Santa Clara, Cal if.. Apr.) ACM, New York, pp. 269-278.

PELE~, D., AND UPFAL, E. 1986. The token distribution problem. In Proccedmg.s of the 27t}z

IEEE Syt?lposuun on Foundations of Computer Science (Oct.). IEEE, New York.

P~TSTER, G. H., ET AL. 1985. The IBM research parallel pmccssor prototype (RP3): Introduc-

tion and architecture. In Proccedzng.s of the I~ltcmutlotzal Cotlference on Parallel Processing.

Pmsrt+?, G. H., AND NORTON, A, 1985. ‘Hot spot’ contention tind combmmg m multistage

mterconnectmn networks. IEEE Trans. Corrrput. C-34. 11(Nov.), 933–938,

STON~, H. S. 1984. Database applications of the fetch-and-add instruction. IEEE 7’rans

Conqru[. C-33, 7 (July), 604-612.

Vrsl lHN, U. 1984. A parallel-des]gn distributed-implementation (PDDI) general purpose com-

puter. Theorct. C’ot)tpat. Sci. 32, 157-172.

RFC’EIVED JUNE 1985; RE\ISED MARCH 1992: ,\~~EPT~D MA1 1993

Ioumal <,t [h. A,ma.tjm for C<mymt~ng M.u_h, ncrv. Vd 41. No 5, SCptLmlwr IW4


