
Unary Positional Computing

McKenzie van der Hagen and Marc Riedel
vand0955@umn.edu, mriedel@umn.edu

Department of Electrical and Computer Engineering, University of Minnesota

Abstract—This paper introduces a novel representation that is
a hybrid of unary and positional systems. It builds upon unary
computation, a recent evolution in the field of stochastic comput-
ing. In contrast to the stochastic approach, the unary approach
is completely accurate, with no random fluctuations. It requires
less area and has much lower latency. However, compared to a
conventional binary approach, the latency is still unacceptably
high for many applications. The unary positional system proposed
in this paper reduces the latency exponentially, with only a
modest increase in the hardware complexity. Constructs for
arithmetic operations such as addition and multiplication are
presented and their performance is evaluated.

I. INTRODUCTION & BACKGROUND

Stochastic computing allows complex operations to be per-
formed with simple logic, but it suffers from high latency and
poor precision [1], [2], [3], [4], [5]. Furthermore, the results
are always somewhat inaccurate due to random fluctuations.
The random or pseudorandom sources required to generate the
representation are costly, consuming a majority of the circuit
area (and diminishing the overall gains in area).

Prior work showed that randomness is not, in fact, a
requirement for this computational paradigm [6]. If properly
structured, the same arithmetical constructs can operate on
deterministic bit streams, with the data represented uniformly
by the fraction of ones versus zeroes.

Conceptually, an operation such as multiplication in stochas-
tic logic works by randomly sampling the inputs. This is
achieved by randomizing the input bit streams and then
intersecting them. This approach is easy to understand but
incurs a lot of overhead. Creation of the random bit streams,
say with constructs such as LFSRs, is costly. Furthermore, one
must do a lot of sampling. Indeed, in order to obtain a result
that is equivalent in precision to n binary bits, one must sample
22n bits. Randomness requires, in effect, “oversampling” to get
a statistically accurate result [7].

But is such random sampling necessary? Why not simply
intersect two deterministic bit streams? In [6], the authors
showed that all the constructs that work on stochastic bit
streams can operate on deterministically-generated bit streams
by utilizing convolution. Illustrated by Figures 1 and 2 convo-
lution intuitively consists of three operations: slide, multiply,
and sum. If we implement this operation on uniform deter-
ministic bit streams, the result will be the completely accurate
equivalent to a stochastic operation. Furthermore, it will be
completely absent of random fluctuations.

Without the requirement of randomness, bit streams can
be generated inexpensively. More importantly, the latency is
reduced by a factor of approximately 1/2n, where n represents
the number of bits necessary to achieve the desired precision

Fig. 1: Discrete Convolution. (a) Mathematical operation on two bit streams, X and Y .
(b) Intuition: convolution is equivalent to sliding one bit stream past the other.

A

B

C

100 100 100

111 111 000

100 100 000

Fig. 2: Multiplication via Convolution, by Clock Dividing a Signal.

in a traditional binary representation. (For example, for the
equivalent of 10 binary bits of precision, the bit stream length
is reduced from 220 to only 210.) As is the case with stochastic
bit streams, all bits in the deterministic streams are weighted
equally. Accordingly, as is the case with stochastic circuits,
the deterministic circuits have a high degree of tolerance to
soft errors. Throughout this paper, the approach in [6] will be
referred to as the unary approach.

This paper introduces a novel representation that is a hybrid
of the unary and positional systems. We note that an attempt
was made to introduce positional computation into stochastic
systems [8]. However, beyond the similarities of the underly-
ing approach, the technical details in this paper are completely
different, seeing as we target the unary representation.

This paper is structured as follows: Section II discusses the
unary positional representation. Section III compares and con-
trasts the representation to plain unary, as well as to stochastic
and binary representations. Section IV presents constructs for
performing arithmetic operations on the new representation.
Section V evaluates the time and area complexities of the
constructs in Section IV. Finally, VI presents conclusions and
discusses future directions.

II. UNARY POSITIONAL REPRESENTATION

In traditional positional representations such as decimal and
binary, numbers are expressed as the sum of values at adjacent
positions weighted accordingly by increasing powers of the
base (10 for decimal; 2 for binary). The raw value at each
position is represented by a unique symbol from a predefined
set (from {0, . . . ,9} for decimal; from {0,1} for binary).

In our unary positional representation, each position is
represented by a separate bit stream of length n, the base.
We assume that n is a power of 2. The value of each stream
is simply the number of ones that it contains, so we have a
unary (or uniform) representation in this respect. However, the
value of the complete number is the sum of the values of the
streams weighted according to their position, so it is positional
in this respect. With k positions, the weighting at position p is

1335978-1-5090-5990-4/17/$31.00 ©2017 IEEE GlobalSIP 2017

np, for p = 0, . . . ,k−1. We can represent a total of nk distinct
numbers.

We note that, with streams of length n, we could in principle
represent numbers from 0 to n, so n+1 distinct numbers with
each stream. However, for technical reasons, the last bit in each
stream is always 0. Accordingly, each stream represents values
from 0 to n−1, so n distinct values. This remains consistent
with the definition of a base-n positional representation.

A. Conversion

Conversion from conventional binary to the unary positional
representation is straightforward. Bits in each stream are filled
in expanding groups, based on the original binary bits: first 1
bit, then 2 bits, then 4 bits, and so on, from right to left. If the
binary bit is one, then the group is filled with ones; otherwise
it is filled with zeroes. The nth bit in each stream is always set
to zero. A stream is created for each group of log2 n bits in
the original binary representation. An example with 3 streams
each of length 8 is shown in Figure 3.

Fig. 3: Conversion of the decimal value 340 from a traditional binary
representation to a base-8 Unary Positional representation where n =
8 and k = 3.

III. COMPARISON OF REPRESENTATIONS

We compare the representation to conventional binary, to
the unary method from [6], and to a stochastic representation.
Comparisons are presented in terms of n, the base, and k, the
number of positions, in the representation.

TABLE I
Number of bits necessary to represent nk distinct numbers in various representations

where n is the unary positional base and k is the number of positions.

Stochastic Unary Unary Positional Binary
n2k nk nk (log2 n)k

A. Resolution

Table I summarizes the number of bits necessary to encode
values in the various representations. The number of bits
translates directly into the latency of the computation. Due
to the inefficiencies of random sampling, a stochastic repre-
sentation requires very long streams to represent a given value:
approximately n2k random bits to represent nk distinct values.
The unary approach proposed in [6] reduces this requirement
to nk bits, while the unary positional method presented here
shrinks it even further to the linear relationship of nk. A
conventional binary representation improves upon this yet
again, reducing the number of bits to (log2 n)k bits, the optimal
number. The four methods represent an exponential sliding
scale (with stochastic computing at the disastrous left end, in
our opinion).

B. Range

The stochastic representation produces fractional numbers
in the range from [0, . . . ,1], with the unipolar interpretation;
or fractional numbers in the range [−1, . . . ,1] with the bipolar
representation [1]. Although it is possible to map these values
to other ranges, the representation is naturally limited to these
fractional values.

The unary positional representation that we are propos-
ing here incorporates weighting. Depending on the assigned
weighting, the range be can extended to positive integer values
of arbitrary size. Furthermore, if we include a radix point,
mixed whole and fractional numbers can be represented. This
extension is straightforward; we do not explore it further
here. Note that the unary positional system can also be
used to represent negative numbers via a two’s complement
representation. An example is given in Figure 4.

Fig. 4: Conversion and interpretation of -172 in Two’s Complement
and Unary Positional.

Recall that a two’s complement number is interpreted as
negative if it has a leading one. Accordingly, a unary positional
number is interpreted as negative when at least half of the
bits in the highest weighted position are one. As usual, the
magnitude of a negative number can be determined by flipping
all of the bits and adding one. (Note that the leftmost zero in
each position should remain, as this is acting as a filler.)

C. Fault Tolerance

Any entirely uniform representation, including both stochas-
tic and unary, provides a high degree of tolerance to soft errors
(i.e., bit flips). With all bits weighted equally, a single bit flip
changes the value by only a single increment or decrement of
the precision of the representation. In contrast, conventional
binary provides poor tolerance to soft errors. A single bit flip
in the most significant bit changes the value by 1

2 nk

The unary positional representation presented here falls in
between these two extremes in terms of tolerance to soft errors.
The most impactful bit flips occur in the highest weighted
position. Here a single bit flip can change the value by
nk−1 times the resolution. Table II summarizes the soft-error
tolerance of the various representations.

TABLE II Comparison of Fault Tolerance:
Maximum error introduced with a single bit flip. Expressed in terms of the unary

positional values of n, the base, and k, the number of positions.

Unary Unary Positional Binary
1 nk−1 (1/2)nk

1336

IV. COMPUTATION

We discuss constructs for performing basic arithmetic op-
erations with the representation.

A. Carryover

As with any positional representation, the challenge with
arithmetic is the carryover between positions. Intuitively, car-
ryover in our unary positional representation occurs when we
have a full group of n bits in a given stream. This translates
to a single bit in the adjacent stream with the next highest
weighting.

Note that, within each stream, the representation is unary:
the value is solely dependent on the number of ones. Thus,
to recognize when a stream contains a full set of n ones, an
n-bit shift register is used. The output of the desired arithmetic
operation is used as the enable signal of this register, with the
data-in hardcoded as one. This way, the ones from the result
are captured and condensed while the zeroes are discarded.
Accordingly, when the last bit of the register fills with a one,
this indicates that the operation has produced a full set of n
ones, and a carryover should be generated: a one is generated
as the input to the next position, and the register for the
current position is reset to all zeroes.1 These operations happen
simultaneously in a single clock cycle. The hardware block for
the Carry Unit is shown in Figure 5.

Fig. 5: Carry Unit.

The output capture and carryover propagation is imple-
mented by separate carry units at each position. Thus, as with
conventional binary operations, registers must pause while
carry propagation is taking place. This behavior is controlled
by an “iterate” signal. This signal is the NOR of all of the
carry-out signals.

B. Addition

With a unary encoding, addition can be achieved through
simple concatenation: the sum of two quantities, each repre-
sented by the number of ones in a stream, is simply the total
number of ones. To retain the positional aspects, this con-
catenation is first performed at each position. The results are
then condensed and carryovers are appropriately propagated
to higher positions.

Figure 6 shows the architecture for 2-input addition. In
addition to controlling the shift registers in the carry units,
the “iterate” signal also holds the concatenated sums at each
position in place until the carryover propagation is complete.

1Note that multiple positions can receive carryovers simultaneously. So, in
fact, positions are parallel-loaded with the carry-in value and n− 1 zeroes,
rather than all zeroes.

Fig. 6: Unary Positional addition architecture for 2 base-n inputs, with
k positions.

C. Multiplication

Fundamentally, multiplication is performed by adding to-
gether as many copies of the multiplicand as specified by
the multiplier. With a unary encoding, multiplication can be
performed with an AND gate by matching every bit of the first
operand with every bit of the second [6]. This can be achieved
by holding each bit of the first operand constant, while rotating
through all the bits of the second operand. (This is termed the
“clock division” method.) Details of the approach are found
in [6].

Fig. 7: Full Unary Positional multiplication architecture for two base-n
inputs with k positions each. The multiplier is indicated as a and the
multiplicand as b.

For a unary positional representation, appropriately aligned
inputs are multiplied with an AND gate at each position and
carryover is accounted for as previously described. Figure 7
shows the architecture to support these operations. At the
outset, the operands are loaded in in the unary positional
format. The k positions of the multiplicand are loaded into
registers 1b through kb while the first position of the multiplier
is loaded in to register a. To perform the operation, register
a is continuously rotated, exposing each bit of the current
position of the multiplier, as a counter increments. When this
counter reaches n, indicating that a full rotation is complete,
the multiplicand registers are shifted by one, and the process
repeats. To account for the positional encoding, the action of
shifting the multiplicand also increments a counter. When this
counter reaches n, the next position of the multiplier is loaded
and each portion of the multiplicand is moved up one position.
This process continues for all k positions of the multiplier.
When computation completes, the final product is realized

1337

TABLE III
Complexity of Multiplication with Two Operands, with base n and k positions

Binary Stochastic Unary Unary Positional
Time O([(log2 n)k]2) n4k n2k kn2

Area O([(log2 n)k]2) 4(log2 n)k 2(log2 n)k 2log2 n+ log2 k+2k+2k(2n+3)+2n

in the shift registers of each carry unit. Notice in Figure 7
that 2k copies of the hardware are needed to account for 2-
input multiplication with k positions. Although the product is
condensed back to the original format, this expanded hardware
is necessary to account for the increased magnitude of the
product relative to the size of the inputs.

V. EVALUATION OF METHODOLOGY

The designs in Section IV were implemented in Verilog and
simulated to ensure correctness and to evaluate performance.
We compare the time-space complexity and scalability of the
proposed designs with existing methods.
A. Time-Space Complexity

The latency and area (in terms of gate count) required
to implement multiplication for various representations is
summarized in Table III.

Binary multiplication is well studied with many complex
variations and optimizations. However, it is generally accepted
that both the time and space complexities of a straightforward
implementation are on the order of [(log2 n)k]2.

In both the unary and stochastic methods, multiplication
itself can be performed with a single AND gate, but this
ignores the cost of generating the bit streams. The area values
in Table III include this cost which is proportional to (log2 n)k.
Addition operations in these methods have comparable com-
plexities.

For the unary positional method discussed here, the area
complexity directly reflects the circuit components in Figure 7:
two log2 n-bit counters, a log2 k-bit counter, 2k fan-in NOR
gate, 2 n-bit registers and three additional gates at each
position, as well as 2 n-bit registers to hold the multiplier and
final carry out. The time complexity reflects the time necessary
for each of the n bits of the multiplier to see each of the n
bits of the multiplicand at each of the k positions. Similar
examination of the addition architecture in Figure 6 yields an
area complexity of 3nk+n+ k and a time complexity of 2n.

Figure 8 plots time-area complexity for 2-input multiplica-
tion for the unary and unary positional methods. The length of
the unary bit streams creates an exponential relationship be-
tween n, the base, and k, the number of positions, that rapidly
compounds into an overwhelming time delay. In contrast, the
complexities for the unary positional representation reflect a
linear relationship between n and k that are influenced by only
constant exponential factors.

From the positional perspective, Figure 9 focuses on the area
complexity comparison between binary and unary positional
multiplication, which quickly favors the latter for large values
of k.

Multiplication with i inputs, for i > 2 is not discussed
here due to length restrictions. Its time-space complexity is
summarized in Table IV.

Fig. 8: Graphical comparison of time-space complexities for 2-input
multiplication with unary (red) and unary positional (blue) repre-
sentations for varying values of n, the base, and k, the number of
positions.

Fig. 9: Graphical comparison of space complexities for 2-input multi-
plication with binary (red) and unary positional (blue) representations
for varying values of n, the base, and k, the number of positions.

TABLE IV
Complexity of i-input multiplication

Stochastic Unary Unary Positional
Time n2ki nki k(i−1)n2

Area (log2 n)ki2 (log2 n)ki 2log2 n+ log2 k+ ki+ ki(2n+3)+2n

VI. FUTURE DIRECTIONS

Comparing stochastic methods, to the unary method in [6],
to the unary positional method proposed here, to conventional
binary, we see a sliding scale of tradeoffs: the stochastic and
unary methods require very long latency, but require very
simple hardware. Conventional binary is the most compact
representation, but operating on it requires relatively complex
hardware. The unary positional system proposed here hits
an attractive sweet spot, having much lower latency than
stochastic and unary, yet still smaller hardware complexity
than conventional binary. In future work, we will apply the
method to more complex functions, such as polynomials,
encountered in fields such as image and signal processing.

1338

REFERENCES

[1] B. R. Gaines, Stochastic Computing Systems, ser. Advances in Informa-
tion Systems Science. Springer US, 1969.

[2] B. D. Brown and H. C. Card, “Stochastic neural computation i: Com-
putational elements,” IEEE Transactions On Computers, vol. 50, no. 9,
pages 891-905, 2001.

[3] W. Qian and M. D. Riedel, “Synthesizing logical computation on stochas-
tic bit streams,” Proceedings of the Design Automation Conference, 2009.

[4] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Transactions on Computers, vol. 60, pp. 93–105, 2011.

[5] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Transaction on Embedded Computing, vol. 12, 2013.

[6] D. Jenson and M. Riedel, “A deterministic approach to stochastic com-
putation,” ICCAD.

[7] W. Qian, “Digital yet deliberately random: Synthesizing logical compu-
tation on stochastic bit streams,” Ph.D. dissertation, Ph.D., University of
Minnesota, 2011.

[8] Y. Zhu, P. Suo, and K. Bazargan, “Binary stochastic implementation of
digital logic,” in International Symposium on Field-Programmable Gate
Arrays (FPGA), 2014, pp. 171–180.

1339

