
The Synthesis of Stochastic Logic to Perform
Multivariate Polynomial Arithmetic*

Weikang Qian and Marc D. Riedel
Department of Electrical and Computer Engineering,

University of Minnesota, Twin Cities
{qianx030, mriedel}@umn.edu

Abstract—As the feature size of integrated circuits scales to
ever smaller regimes, maintaining the paradigm of determin-
istic Boolean computation is increasingly challenging. Indeed,
mounting concerns over noise and uncertainty in signal values
motivate a new approach: the design of stochastic logic, that
is to say, digital circuitry that processes signals probabilistically,
and so can cope with errors and uncertainty. In this paper, we
present a general methodology for synthesizing stochastic logic
for the computation of multivariate polynomials, a category that
is important for applications such as digital signal processing.
The method is based on converting polynomials into a particular
mathematical form – multivariate Bernstein polynomials – and
then implementing the computation with stochastic logic. The
resulting logic processes serial or parallel streams that are
random at the bit level. In the aggregate, the computation
becomes accurate, since the results depend only on the precision
of the statistics. Experiments show that our method produces
circuits that are highly tolerant of errors in the input stream,
while the area-delay product of the circuit is comparable to that
of deterministic implementations.

I. INTRODUCTION

The successful paradigm for integrated circuit design has
been to maintain a sharp boundary in abstraction between
the physical and logical layers. From the logic level up, the
computation consists of a deterministic sequence of zeros
and ones. The precise Boolean functionality of a circuit is
prescribed; it is up to the physical layer to produce voltage
values that can be interpreted as the exact logical values
that are called for. This abstraction is firmly entrenched yet
costly: variability, uncertainty, noise – all must be compensated
for through ever more complex design and manufacturing.
As technology continues to scale, with mounting concerns
over noise and uncertainty in signal values, the cost of the
abstraction is becoming untenable.

We are developing a framework for digital IC design
based on the concept of stochastic logic. This paradigm has
been known in the literature for many years [6]. Instead
of computing with deterministic signals, operations at the
logic level are performed on random serial or parallel bit
streams. The streams are digital, consisting of zeros and ones;
they are processed by ordinary logic gates, such as AND
and OR. However, they convey values through the statistical
distribution of the logical values. Real values in the interval

∗This work is supported by a grant from the Semiconductor Research
Corporation’s Focus Center Research Program on Functional Engineered
Nano-Architectonics, contract No. 2003-NT-1107.

[0, 1] correspond to the probability of occurrence of logical
one versus logical zero in an observation interval. In this
way, computations in the deterministic Boolean domain are
transformed into probabilistic computations in the real domain.

Stochastic logic has the advantage that basic arithmetic
operations can be performed with simple logic circuits [4].
It suffers from small estimation errors due to the inherent
variance in the stochastic bit streams; however, this does not
hinder its applications in areas like artificial neural networks
and image processing where some inaccuracy can be toler-
ated [1], [3], [5].

Early work on the topic of stochastic logic discussed the im-
plementation of basic arithmetic operations like multiplication,
addition, division, etc., [4], [7], [11]. We have been studying
the synthesis of stochastic logic more broadly. We described
a procedure that, given a target Boolean function, builds
a multiplicative binary moment diagram (*BMD) and then
synthesizes the stochastic circuit from the *BMD [9]. Also, we
described a general method for synthesizing stochastic logic
to compute univariate polynomials [10].

In this work, we generalize the method in [10]: we propose
a method for synthesizing stochastic logic to perform multi-
variate polynomial computation. Given a target power-form
multivariate polynomial, we first convert it into a multivariate
Bernstein polynomial. Then, we synthesize stochastic logic to
compute that Bernstein polynomial. We present the results of
synthesis trials for bivariate polynomials. The results show that
our method produces circuits that are highly tolerant of errors,
while the area-delay product of the circuit is comparable to
that of deterministic implementations.

A. Mathematical Model of Stochastic Logic

In a conventional interpretation, a combinational circuit
performs deterministic computation: the inputs are determin-
istic Boolean values and we expect the outputs to be also
deterministic. In stochastic logic, the inputs to the circuit
are random Boolean variables. Consequently, the outputs are
also random Boolean variables, with probability distribution
determined by the probability distribution of the inputs. (In
general, stochastic logic can be implemented by sequential
circuits Here, we only consider combinational circuits.) We
can model stochastic logic as follows.

Assume that y = f(x1, x2, . . . , xn) is an output Boolean
function of a combinational logic circuit. Let X1, X2, . . . , Xn

be n independent random variables with Bernoulli distribution
and assume that the probability of Xi being 1 is pXi . We write
P (Xi = 1) = pXi and P (Xi = 0) = 1− pXi .

When the Boolean function has Xi’s as its arguments, the
result is also a random variable Y = f(X1, X2, . . . , Xn) with
Bernoulli distribution. We assume that the probability of Y
being 1 is pY . We write P (Y = 1) = pY and P (Y = 0) =
1− pY .

Evidently, pY is uniquely determined by the given n-
tuple (pX1 , pX2 , . . . , pXn), which we write as pY =
F (pX1 , pX2 , . . . , pXn). The function F is the computation
performed by the stochastic logic.

In [10] we showed that F is a specific kind of multivariate
polynomial on arguments pX1 , pX2 , . . . , pXn : each product
term of F has an integer coefficient and the degree of each
variable in that term is less than or equal to 1. Mathematically,
F is of the form

F (pX1 , . . . , pXn
) =

1∑
i1=0

· · ·
1∑

in=0

(
αi1...in

n∏
k=1

pik

Xk

)
, (1)

where αi1...in ’s are integer coefficients.
As an example, we consider stochastic logic built on a

multiplexer. The Boolean function of the multiplexer is

y = f(x1, x2, s) = (x1 ∧ s) ∨ (x2 ∧ ¬s),

where ∧ means logical AND, ∨ means logical OR and ¬
means logical negation. From the definition of pY , we have

pY = F (pX1 , pX2 , pS)
= P (X1 = 1, S = 1) + P (X2 = 1, S = 0)
= pX1pS + pX2(1− pS)
= pX2 + pX1pS − pX2pS ,

(2)

which confirms that F is an integer-coefficient polynomial on
the arguments pX1 , pX2 and pS and the degree of each variable
in each product term is less than or equal to 1.

B. Implementation of Stochastic Logic

If we want to implement stochastic logic based on a Boolean
function f(x1, x2, . . . , xn), we first build a combinational cir-
cuit implementing the Boolean function f . Then, we generate
n independent stochastic bit streams X1, X2, . . . , Xn, each
consisting of N bits. Each bit in the stream Xi equals logical
1 with independent probability pXi . The stream is fed into
the corresponding input xi. Thus, in a statistical sense, each
bit stream represents a random Boolean variable. In this way,
when we measure the rate of the occurrence of 1 in the output
bit stream, it gives us an estimate of pY . If the bit stream
is sufficiently long, we can get an accurate estimate of pY .
We assume that the input and output of the circuit are directly
usable in this form. For instance, in sensor applications, analog
voltage discriminating circuits might be used to transform real-
valued input and output values into and out of probabilistic bit
streams.

These bit streams may be serial or parallel. In serial
streams, the random bits arrive sequentially in time. For
parallel streams, we make N identical copies of the combina-
tional logic circuit and feed independent random bits to each

copy simultaneously. The choice between serial and parallel
stochastic logic translates into a trade-off between time and
area.

Figure 1 illustrates a serial implementation with two inputs
and one output. The inputs and output are stochastic bit
streams that are 8 bits in length. For the output, there are
four 1’s out of a total of 8 bits. Thus, the estimate is
pY = 4/8 = 0.5.

Combinational

Logic

1 0 1 0 1 0 1 1

0 1 1 0 1 0 0 1

0 0 1 1 0 1 0 1

Fig. 1. A serial implementation of stochastic logic with inputs and outputs
as serial bit streams.

II. SYNTHESIS OF STOCHASTIC LOGIC FOR
MULTIVARIATE POLYNOMIAL ARITHMETIC

Stochastic logic generally implements a specific type of
multivariate polynomial F on arguments pX1 , pX2 , . . . , pXn

.
If we associate some of the pXi ’s in the polynomial
F (pX1 , pX2 , . . . , pXn) with real constants in the unit interval,
some with a variable t1, some with a variable t2 and so on,
then the function F becomes a real-coefficient multivariate
polynomial. Specifically, if we set

pX1 = a1, pX2 = a2, · · · , pXr1
= ar1 ;

pXr1+1 = · · · = pXr2
= t1;

pXr2+1 = · · · = pXr3
= t2;

· · ·
pXrd+1 = · · · = pXn

= td,

we obtain a real-coefficient multivariate polynomial
g(t1, t2, . . . , td). For example, consider

y = F (pX1 , pX2 , . . . , pX6)
= pX1pX3 − pX1pX3pX4 + pX2pX5pX6 − pX2pX3pX5pX6 .

If we set pX1 = 0.4, pX2 = 0.7, pX3 = t1, pX4 = pX5 =
pX6 = t2, then we obtain a multivariate polynomial

g(t1, t2) = 0.4t1 − 0.4t1t2 + 0.7t22 − 0.7t1t22.

With different choices of the original Boolean function f and
different settings of the probabilities pXi ’s, we obtain different
polynomials g(t1, t2, . . . , td).

For applications, we need to perform the computation of
specific polynomials. Given an arbitrary multivariate polyno-
mial, how can we synthesize stochastic logic to implement
it?

In what follows, we first introduce the concept of a mul-
tivariate Bernstein polynomial [2]. Next, we show that a
multivariate Bernstein polynomial with coefficients in the unit
interval can be computed by stochastic logic. Finally, we show
how a general power-form polynomial can be converted into
a Bernstein polynomial with coefficients in the unit interval.

A. Multivariate Bernstein Polynomial
Definition 1
The family of n+ 1 polynomials in the form

Bn
i (t) =

(
n

i

)
ti(1− t)n−i, i = 0, . . . , n

are called univariate Bernstein basis polynomials of degree
n.

Definition 2
The multiplication of univariate Bernstein basis polynomials
gives a multivariate Bernstein basis polynomial, i.e.,

Bn1...nd
i1...id

(t1, . . . , td) =
d∏

k=1

Bnk
ik

(tk),

0 ≤ ik ≤ nk, for k = 1, . . . , d

(3)

is a multivariate Bernstein basis polynomial of degree
(n1, . . . , nd).

Definition 3
A linear combination of multivariate Bernstein basis polynomi-
als of degree (n1, . . . , nd)

Bn1...nd(t1, . . . , td) =
n1∑

i1=0

· · ·
nd∑

id=0

bn1...nd
i1...id

Bn1...nd
i1...id

(t1, . . . , td)

(4)
is called a Bernstein polynomial of degree (n1, . . . , nd). The
bn1...nd
i1...id

’s are the Bernstein coefficients.

B. Stochastic Logic Computing Multivariate Bernstein Poly-
nomial with Coefficients in the Unit Interval

If all the coefficients of a multivariate Bernstein polynomial
are in the unit interval, i.e., 0 ≤ bn1...nd

i1,...,id
≤ 1, for all 0 ≤

i1 ≤ n1, . . . , 0 ≤ id ≤ nd, then we can build stochastic logic
to compute the multivariate Bernstein polynomial. Figure 2
shows the block diagram that implements the computation.

Decoding

Block 1

11nx

11x

12x

⋮

Decoding

Block 2

22nx

21x

22x

⋮

Decoding

Block d

ddnx

1dx

2dx

⋮

⋮

Multiplexing

Block
y

1 di iz
…

1 1n +

2 1n +

1dn +

1

(1)
d

k
k

n
=

+∏

1s
2s

ds

⋮

Fig. 2. Stochastic logic computing the multivariate Bernstein polynomial
with coefficients in the unit interval.

The k-th decoding block in Figure 2 has nk inputs
xk1, xk2, . . . , xknk

and nk + 1 outputs sk0, sk1, . . . , sknk
. If

i (0 ≤ i ≤ nk) out of nk inputs of the k-th decoding block
are logical 1, then ski is set to 1 and the other outputs are
set to 0. Figure 3 gives the implementation of the decoding
block with 8 inputs. The eight inputs are grouped into 4 pairs
and each pair is fed into a 1-bit adder, which gives a 2-bit
sum as the output. The 4 sets of outputs of the 1-bit adder
are further grouped into 2 pairs and each pair is fed into a
2-bit adder, which gives a 3-bit sum as the output. The pair
of outputs of the 2-bit adder is fed into a 3-bit adder, which
gives a 4-bit sum as the output. Given an input binary number
equal to k (0 ≤ k ≤ 8), the decoder has its k-th output set
to 1 and its other outputs set to 0. The output of the decoder
gives the output signal s. A decoding block with n inputs can
be implemented in a similar way.

1-bit

adder
2-bit

adder

1-bit

adder

1-bit

adder

1-bit

adder
3-bit

adder

2-bit

adder

x1

x8

x7

x6

x5

x4

x3

x2

2

2

2

2

3

3

4-to-9

decoder
s

4 9

Fig. 3. The implementation of the decoding block.

The outputs of each decoding block are further fed into the
multiplexing block and act as the selecting signals. The data
signals of the multiplexing block consist of

∏d
k=1(nk +1) in-

puts z0...0, . . . , zn1...nd
. The Boolean logic of the multiplexing

block is

y =
n1∨

i1=0

· · ·
nd∨

id=0

(
zi1...id

∧
d∧

k=1

skik

)
. (5)

The output of the multiplexing block y is set to be the input
zi1i2...id

if and only if s1i1 = 1, s2i2 = 1, . . . , sdid
= 1. Since

each decoding block has exactly one output signal set to 1, the
multiplexing block selects one input data signal as its output.

Let X11, . . . , X1n1 , X21, . . . , X2n2 , . . . , Xd1, . . . , Xdnd
be

independent Boolean random variables with probability of
being 1 set to

pXkj
= tk, for 1 ≤ k ≤ d, 1 ≤ j ≤ nk,

and feed these signals to the corresponding inputs of the
decoding blocks. Thus, all the inputs to the k-th decoding
block are independent Boolean random variables with the same
probability tk of being 1. Let Skik

denote the corresponding
output random variable of the k-th decoding block. Since skik

is set to 1 if and only if ik out of nk inputs of the k-th decoding
block are 1, the probability of Skik

being 1 is

P (Skik
= 1) =

(
nk

ik

)
tik

k (1− tk)nk−ik = Bnk
ik

(tk). (6)

Let Z0...0, . . . , Zn1...nd
be independent Boolean random

variables with probability of being 1 set to

pZi1...id
= bn1...nd

i1...id
, 0 ≤ i1 ≤ n1, . . . , 0 ≤ id ≤ nd,

and feed these signals to the corresponding data inputs of
the multiplexing block. Notice that we can set the probability
value to be bn1...nd

i1...id
because we assume that 0 ≤ bn1...nd

i1...id
≤ 1.

Let Y denote the output random Boolean variable. Then, the
probability of Y being 1 is

pY = P (Y = 1)

=
n1∑

i1=0

· · ·
nd∑

id=0

(P (Y = 1|S1i1 = 1, . . . , Sdid
= 1)

· P (S1i1 = 1, . . . , Sdid
= 1)).

(7)

Since when S1i1 = 1, S2i2 = 1, . . . , Sdid
= 1, Y equals

Zi1...id
, we have

P (Y = 1|S1i1 = 1, . . . , Sdid
= 1) = P (Zi1...id

= 1)
= bn1...nd

i1...id
.

(8)

Based on the independence of the input random variables, as
well as Equations (3) and (6), we have

P (S1i1 = 1, . . . , Sdid
= 1) =

d∏
k=1

P (Skik
= 1)

=
d∏

k=1

Bnk
ik

(tk) = Bn1...nd
i1...id

(t1, . . . , td).

(9)

Thus, from Equation (4), (7), (8) and (9), we have

pY =
n1∑

i1=0

· · ·
nd∑

id=0

bn1...nd
i1...id

Bn1...nd
i1...id

(t1, . . . , td)

= Bn1...nd(t1, . . . , td),

(10)

which means that the stochastic logic shown in Figure 2
implements the given multivariate Bernstein polynomial with
coefficients in the unit interval. Thus, we have

Theorem 1
If all the coefficients of a multivariate Bernstein polynomial are
in the unit interval, i.e., 0 ≤ bn1...nd

i1,...,id
≤ 1, for all 0 ≤ i1 ≤

n1, . . . , 0 ≤ id ≤ nd, then we can build stochastic logic to
compute the multivariate Bernstein polynomial. �

C. Converting Multivariate Power-Form Polynomials into
Multivariate Bernstein Polynomials

Polynomials that we are interested in are usually represented
in the power form. If a multivariate power-form polynomial
can be converted into a multivariate Bernstein polynomial
whose coefficients are in the unit interval, then the power-form
polynomial computation can be implemented by stochastic
logic which computes the corresponding Bernstein polyno-
mial. In this section, we show how to do this.

We will call a multivariate Bernstein polynomial converted
from the original power-form polynomial an “equivalent Bern-
stein polynomial”. We will say a multivariate power-form
polynomial g(t1, t2, . . . , td) is of degree (n1, n2, . . . , nd), if

the degree of tk in g is nk, for all 1 ≤ k ≤ d. We will say
that degree (n′1, . . . , n

′
d) is greater than degree (n1, . . . , nd),

if n′k ≥ nk, for all 1 ≤ k ≤ d and, there is at least one
1 ≤ k ≤ d such that n′k > nk.

As shown in [2], a multivariate power-form polynomial

g(t1, . . . , td) =
n1∑

i1=0

· · ·
nd∑

id=0

(
an1...nd

i1...id

d∏
k=1

tik

k

)
can be uniquely converted into a multivariate Bernstein poly-
nomial of degree (n1, . . . , nd). The relationship between
bn1...nd
i1...id

and an1...nd
i1...id

is

bn1...nd
i1...id

=
i1∑

j1=0

· · ·
id∑

jd=0

(
an1...nd

j1...jd

d∏
k=1

(
ik

jk

)(
nk

jk

)) , (11)

for all 0 ≤ i1 ≤ n1, . . . , 0 ≤ id ≤ nd.
An equivalent formula to Equation (11) is

bn1...nd
i1...id

=
1

d∏
k=1

(
nk

ik

) i1∑
j1=0

· · ·
id∑

jd=0

(
an1...nd

j1...jd

d∏
k=1

(
nk − jk
ik − jk

))
.

(12)
A given multivariate power-form polynomial can also be

uniquely converted into a multivariate Bernstein polynomial
of degree greater than (n1, n2, . . . , nd). One way to obtain the
Bernstein coefficients of a higher degree Bernstein polynomial
is to raise the degree of the original power-form polynomial
by setting the coefficients of higher degree terms to be 0, and
then applying Equation (12). Another way is to derive the
coefficients of the higher degree Bernstein polynomial from
those of the lower degree Bernstein polynomial, as shown by
the following theorem.

Theorem 2
Suppose g(t1, . . . , td) is a multivariate power-form polynomial
of degree (m1, . . . ,md). Then, the coefficients of the equiva-
lent Bernstein polynomials of degree (n1, . . . , nk + 1, . . . , nd)
(m1 ≤ n1, . . . ,md ≤ nd) can be derived from the co-
efficients of the equivalent Bernstein polynomials of degree
(n1, . . . , nk, . . . , nd) based on the following recursive relation:

b
n1...(nk+1)...nd

i1...ik...id
=



bn1...nk...nd
i1...0...id

ik = 0,

(1− ik
nk + 1

)bn1...nk...nd
i1...ik...id

+
ik

nk + 1
bn1...nk...nd

i1...(ik−1)...id
1 ≤ ik ≤ nk,

bn1...nk...nd
i1...nk...id

ik = nk + 1,
(13)

where

0 ≤ i1 ≤ n1, . . . 0 ≤ ik−1 ≤ nk−1,

0 ≤ ik+1 ≤ nk+1, . . . , 0 ≤ id ≤ nd. �

Due to space limitations, we omit the proof.
If we apply Equation 13 l1 times for k = 1, l2 times

for k = 2, . . ., ld times for k = d, we obtain all co-
efficients for the equivalent Bernstein polynomial of degree

((n1+l1), . . . , (nd+ld)) from the coefficients of the equivalent
Bernstein polynomial of degree (n1, . . . , nd).

Conversely, if we know the coefficients of the equivalent
Bernstein polynomial of degree (n1, . . . , nk + 1, . . . , nd),
we can derive the coefficients of the equivalent Bernstein
polynomial of degree (n1, . . . , nk, . . . , nd) in increasing order
of ik as

bn1...nk...nd
i1...ik...id

=



b
n1...(nk+1)...nd

i1...0...id
ik = 0,

n+ 1
n+ 1− ik

b
n1...(nk+1)...nd

i1...ik...id

− ik
n+ 1− ik

bn1...nk...nd

i1...(ik−1)...id
1 ≤ ik ≤ nk − 1,

b
n1...(nk+1)...nd

i1...(nk+1)...id
ik = nk.

(14)
Similarly, if we apply Equation 14 l1 times for k = 1,

l2 times for k = 2, . . ., ld times for k = d, we obtain all
coefficients for the equivalent Bernstein polynomial of degree
(n1, . . . , nd) from the coefficients of the equivalent Bernstein
polynomial of degree ((n1 + l1), . . . , (nd + ld)).

D. Synthesis of Stochastic Logic to Compute Multivariate
Power-Form Polynomials

Since the input arguments t1, . . . , td and the polynomial
evaluation g(t1, . . . , td) are represented by probability values
in stochastic logic, we require that 0 ≤ g(t1, . . . , td) ≤ 1,
when (t1, . . . , td) ∈ [0, 1]d. However, even if the power-
form polynomial satisfies 0 ≤ g(t1, . . . , td) ≤ 1, when
(t1, . . . , td) ∈ [0, 1]d, it is still not guaranteed that the
polynomial computation can be implemented by stochastic
logic. Nevertheless, if the polynomial evaluation is strictly
greater than 0 and less than 1, i.e., 0 < g(t1, . . . , td) < 1, for
(t1, . . . , td) ∈ [0, 1]d, then we can implement the polynomial
computation by stochastic logic. This is due to the following
theorem.

Theorem 3
Suppose

g(t1, . . . , td) =
m1∑

i1=0

· · ·
md∑

id=0

(
am1...md

i1...id

d∏
k=1

tik

k

)
is a multivariate power-form polynomial of degree
(m1, . . . ,md). If 0 < g(t1, . . . , td) < 1, for any
(t1, . . . , td) ∈ [0, 1]d, then there exist n1 ≥ m1, . . . , nd ≥ md,
such that the multivariate Bernstein polynomial of degree
(n1, . . . , nd) equivalent to g(t1, . . . , td) has all its coefficients
in the unit interval. In other words, we can represent
g(t1, . . . , td) as

g(t1, . . . , td) =
n1∑

i1=0

· · ·
nd∑

id=0

bn1...nd
i1...id

Bn1...nd
i1...id

(t1, . . . , td),

with 0 ≤ bn1...nd
i1...id

≤ 1, for all 0 ≤ i1 ≤ n1, . . . , 0 ≤ id ≤ nd.
�

Due to the space limitations, we omit the proof.
Here, we should notice that the equivalent Bernstein poly-

nomial with coefficients in the unit interval may have degree

greater than that of the original power-form polynomial. For
example, consider

g(t1, t2) = 0.9− 1.6t2 + 1.6t22 − 0.8t1 + 4t1t2 − 4t1t22,

a multivariate power-form polynomial of degree (1, 2). It can
be verified that 0 < g(t1, t2) < 1, for any (t1, t2) ∈ [0, 1]2.

If g(t1, t2) is converted into a multivariate Bernstein poly-
nomial of degree (1, 2), we have

g(t1, t2) = 0.9B12
00(t1, t2) + 0.1B12

01(t1, t2) + 0.9B12
02(t1, t2)

+ 0.1B12
10(t1, t2) + 1.3B12

11(t1, t2) + 0.1B12
12(t1, t2).

Notice that the coefficient of B12
11(t1, t2) is 1.3 > 1.

However, if g(t1, t2) is converted into a multivariate Bern-
stein polynomial of degree (1, 3), we have

g(t1, t2) = 0.9B13
00(t1, t2) +

11
30
B13

01(t1, t2) +
11
30
B13

02(t1, t2)

+ 0.9B13
03(t1, t2) + 0.1B13

10(t1, t2) + 0.9B13
11(t1, t2)

+ 0.9B13
12(t1, t2) + 0.1B13

13(t1, t2).

All the Bernstein coefficients in the above equation are in
the unit interval. Thus, an equivalent Bernstein polynomial to
g(t1, t2) that has all coefficients in the unit interval has degree
greater than that of the power-form polynomial g(t1, t2).

Based on Theorem 1 and 3, we have the following corollary,
which gives a sufficient condition for the implementability of
a multivariate power-form polynomial.

Corollary 1
If a multivariate power-form polynomial g(t1, . . . , td) satisfies
0 < g(t1, . . . , td) < 1, for any (t1, . . . , td) ∈ [0, 1]d, then
the computation of that polynomial can be implemented by
stochastic logic. �

If we are given a multivariate power-form polynomial

g(t1, . . . , td) =
m1∑

i1=0

· · ·
md∑

id=0

(
am1...md

i1...id

d∏
k=1

tik

k

)
which satisfies 0 < g(t1, . . . , td) < 1 for any (t1, . . . , td) ∈
[0, 1]d, then we can synthesize stochastic logic to compute the
polynomial in the following steps:

1) Let s = 0, nk = mk, for all 1 ≤ k ≤ d. Get bn1...nd
i1...id

’s
from am1...md

i1...id
’s based on Equation (11) or (12). Then,

check to see if 0 ≤ bn1...nd
i1...id

≤ 1, for all 0 ≤ i1 ≤
n1, . . . , 0 ≤ id ≤ nd. If so, go to step 5. Otherwise, let
pk = nk, for all 1 ≤ k ≤ d.

2) Let s = s+ 1.
3) While there is still a solution (l1, l2, . . . , ld) to the

equation
∑d

k=1 lk = s that we have not checked, go
to step 4. Otherwise, go to step 2.

4) Let nk = mk + lk, for all 1 ≤ k ≤ d. Let
qk = min{pk, nk}, for all 1 ≤ k ≤ d. Since we
know bp1,...,pd

i1,...,id
, the coefficients of the equivalent mul-

tivariate Bernstein polynomial of degree (p1, . . . , pd),
from the previous computation, we can obtain bq1,...,qd

i1,...,id

from bp1,...,pd

i1,...,id
by recursively applying Equation (14).

Then, we can obtain bn1...nd
i1...id

, the coefficients of the
equivalent Bernstein polynomial of degree (n1, . . . , nd),

from bq1...qd

i1...id
by recursively applying Equation (13).

Then, we check to see if 0 ≤ bn1...nd
i1...id

≤ 1, for all
0 ≤ i1 ≤ n1, . . . , 0 ≤ id ≤ nd. If so, go to step 5.
Otherwise, Let pk = nk, for all 1 ≤ k ≤ d and go to
step 3.

5) Build stochastic logic to compute the equivalent Bern-
stein polynomial of degree (n1, n2, . . . , nd) as shown in
Section II-B.

In the case that the polynomial g(t1, . . . , td) is defined in
the interval [a1, b1]× [a2, b2]×· · ·× [ad, bd], where some ak’s
may be less than 0 and some bk’s may be greater than 1, we
can do a pre-processing on t1, t2, . . . , td by letting

t′k =
tk − ak

bk − ak
, for 1 ≤ k ≤ d. (15)

Then, the objective polynomial is changed to

g′(t′1, . . . , t
′
d) = g((b1 − a1)t′1 + a1, . . . , (bd − ad)t′d + ad),

(16)
with (t′1, . . . , t

′
d) defined in interval [0, 1]d.

If g′(t′1, . . . , t
′
d) evaluates in the interval [u, v], where u ≤ 0

or v ≥ 1, we need to further change our objective polynomial
into

h(t′1, . . . , t
′
d) =

g′(t′1, . . . , t
′
d)− u+ ε

v − u+ 2ε
, (17)

where ε is a small positive number. With the above linear
transformation (17), h(t′1, . . . , t

′
d) evaluates in the interval

(0, 1), for any (t′1, . . . , t
′
d) ∈ [0, 1]d. Thus, we can build

stochastic logic to compute h(t′1, . . . , t
′
d), by Corollary 1.

Corresponding to the linear transformation (17), we need
to do a post-processing on the output of stochastic logic by
letting

g = (v − u+ 2ε)h+ u− ε. (18)

The final result is given by g.

III. EXPERIMENTAL RESULTS

In our experiments, we use bivariate polynomials

g(t1, t2) =
n1∑

i1=0

n2∑
i2=0

an1n2
i1i2

ti11 t
i2
2

as our synthesis objective function. We first compare the
hardware cost of deterministic digital implementations to that
of stochastic implementations of the computation of bivariate
polynomials. Then, we compare the performance of these two
implementations on noisy input data.

A. Hardware Comparison

In a deterministic implementation of polynomial arithmetic,
the data is generally encoded as a binary radix. We assume
that the data consists of M bits, so the resolution of the
computation is 2−M .

We can rewrite a bivariate polynomial as

g(t1, t2) =
n1∑

i1=0

n2∑
i2=0

an1n2
i1i2

ti11 t
i2
2 =

n1∑
i1=0

(
n2∑

i2=0

an1n2
i1i2

ti22

)
ti11 .

Define a′i1(t2) =
∑n2

i2=0 a
n1n2
i1i2

ti22 . Then, g(t1, t2) is a uni-
variate polynomial on variable t1 with coefficients a′i1(t2), and

a′i1(t2) (0 ≤ i1 ≤ n1) is a univariate polynomial on variable
t2. Since a univariate polynomial g(t) =

∑n
i=0 a

n
i t

i can be
factorized as g(t) = a0 + t(a1 + t(a2 + · · ·+ t(an−1 + tan))),
we can evaluate the univariate polynomial in n iterations. In
each iteration, a single addition and a single multiplication are
needed. Therefore, we can evaluate the polynomial g(t1, t2)
in (n1 + 1)n2 + n1 iterations, each of which consists of a
single addition and a single multiplication. Hence, for such an
iterative calculation, the hardware consists of an adder and a
multiplier.

We adopt the same deterministic implementation as in [10],
which contains 10M2 − 4M − 9 gates; these are inverters,
fanin-2 AND gates, fanin-2 OR gates and fanin-2 NOR gates.
The critical path of the circuit passes through 12M −11 logic
gates.

We build the implementation computing the bivariate Bern-
stein polynomial of degree (n1, n2) based on the circuit
structure shown in Figure 2. Table I shows the area Ad(n)
and delay Dd(n) of the decoding block for different number
of inputs n = 2, 3, 4, 5 and 6. (When characterizing the area
and delay, we assumed that the operation of each logic gate
requires unit area and unit delay.) Each circuit is composed of
the same four types of gates that we used in the deterministic
implementation. For each specific value of n, we also properly
designed the adder tree. For example, for n = 3, we used a
full adder to construct the adder tree, since a full adder takes
3 inputs and gives a 2-bit sum.

TABLE I
THE AREA AND DELAY OF THE DECODING BLOCK IN FIGURE 2 FOR

NUMBER OF INPUTS n = 2, 3, 4, 5 AND 6.

number of
inputs n

area Ad(n) delay Dd(n)

2 6 4
3 15 7
4 31 13
5 38 16
6 45 16

The multiplexing block could be implemented by 3(n1 +
1)(n2 +1)−1 logic gates with a delay of dlog2(n1 +1)(n2 +
1)e + 2. Thus, stochastic logic implementing the bivariate
Bernstein polynomial of degree (n1, n2) has area

A(n1, n2) = Ad(n1) +Ad(n2) + 3(n1 + 1)(n2 + 1)− 1,

and delay

D(n1, n2) = max{Dd(n1), Dd(n2)}+dlog2(n1+1)(n2+1)e+2.

As stated in Section I-B, the result of the stochastic com-
putation is obtained as the fractional weight of the 1’s in the
output bit stream. Hence, the resolution of the computation
by a bit stream of N bits is 1/N . Thus, in order to get the
same resolution as the deterministic implementation, we need
N = 2M . Therefore, we need 2M cycles to get the result
when using a serial implementation; alternatively, we need 2M

copies when using a parallel implementation.
As a measure of hardware cost, we compute the area-delay

product. Note that a serial implementation of stochastic logic
takes less area and more delay; a parallel implementation takes

more area and less delay. In both cases, the area-delay product
is the same.

The area-delay product of the deterministic implementation
computing the bivariate polynomial of degree (n1, n2) is
(10M2 − 4M − 9)(12M − 11)(n1n2 + n1 + n2), where
n1n2 + n1 + n2 accounts for the number of iterations in
the computation. The area-delay product of the stochastic
implementation computing the Bernstein polynomial of de-
gree (n1, n2) is A(n1, n2)D(n1, n2)2M – no matter whether
implemented serially or in parallel

In Table II we compare the area-delay product for the de-
terministic implementation and the stochastic implementation
for (n1, n2) ∈ {2, 3, . . . , 6}2 and M = 8, 9, 10, 11. Each cell
in the main part of the table shows the ratio of the area-
delay product of the stochastic implementation to that of the
deterministic implementation for specific values of n1, n2, and
M . We can see that when M ≤ 9, the area-delay product of the
stochastic implementation is less than that of the deterministic
implementation and when M ≤ 11, the area-delay product of
the stochastic implementation is less than twice of that of the
deterministic implementation.

TABLE II
THE RATIO OF THE AREA-DELAY PRODUCT OF THE STOCHASTIC

IMPLEMENTATION TO THAT OF THE DETERMINISTIC IMPLEMENTATION OF
POLYNOMIALS WITH DEGREE (n1, n2) AND RESOLUTION 2−M .

n2
M n1 2 3 4 5 6

2 0.239 0.333 0.553 0.660 0.653
3 0.333 0.336 0.556 0.624 0.613

8 4 0.553 0.556 0.570 0.630 0.639
5 0.660 0.624 0.630 0.631 0.612
6 0.653 0.613 0.639 0.612 0.593
2 0.328 0.457 0.759 0.906 0.897
3 0.457 0.460 0.763 0.856 0.841

9 4 0.759 0.763 0.782 0.865 0.877
5 0.906 0.856 0.865 0.866 0.840
6 0.897 0.841 0.877 0.840 0.814
2 0.469 0.654 1.086 1.296 1.284
3 0.654 0.659 1.092 1.225 1.203

10 4 1.086 1.092 1.120 1.238 1.255
5 1.296 1.225 1.238 1.240 1.203
6 1.284 1.203 1.255 1.203 1.166
2 0.695 0.968 1.608 1.920 1.901
3 0.968 0.976 1.617 1.814 1.782

11 4 1.608 1.617 1.658 1.833 1.859
5 1.920 1.814 1.833 1.836 1.781
6 1.901 1.782 1.859 1.781 1.726

B. Comparison of Circuit Performance with Noisy Input Data

We compare the performance on polynomial evaluations
when the input data is corrupted with noise. Suppose that the
input data of a deterministic implementation is M = 10 bits. In
order to have the same resolution, the bit stream of a stochastic
implementation contains 2M = 1024 bits. We choose the error
ratio ε of the input data to be 0, 0.001, 0.002, 0.005, 0.01, 0.02,
0.05 and 0.1, as measured by the fraction of random bit flips
that occur.

To illustrate that our method is applicable to digital signal
processing, we choose the Butterworth polynomial as the
objective function of our implementation.

Butterworth filters are commonly used in signal process-
ing [8]. The transfer function of an n-th order low-pass
Butterworth with cutoff frequency ωc = 1 can be represented
as

H(s) =
G0

Bn(s)
, (19)

where G0 is the DC gain (i.e., gain at zero frequency) and
Bn(s) is an n-th order normalized Butterworth polynomial.

The n-th order normalized Butterworth polynomial has the
general form

Bn(s) = sn + an1s
n−1 + · · ·+ a1s+ 1. (20)

Table III gives the coefficients ai of the first 6 nontrivial
Butterworth polynomials.

TABLE III
COEFFICIENTS ai OF THE FIRST 6 NONTRIVIAL BUTTERWORTH

POLYNOMIALS. ALL COEFFICIENTS ARE UP TO FOUR DECIMAL PLACES.

n a1 a2 a3 a4 a5 a6

2 1.4142 - - - - -
3 2.0000 2.0000 - - - -
4 2.6131 3.4142 2.6131 - - -
5 3.2361 5.2361 5.2361 3.2361 - -
6 3.8637 7.4641 9.1416 7.4641 3.8637 -
7 4.4940 10.0978 14.5918 14.5918 10.0978 4.4940

If we set s to be the complex angle frequency σ+ jω then
each Bn(σ + jω) can be represented as

Bn(σ + jω) = Ren(σ, ω) + jImn(σ, ω),

where Ren(σ, ω) and Imn(σ, ω) are the real and imaginary
part of Bn(σ + jω), respectively.

In this experiment, we synthesize stochastic logic to im-
plement the computation of 8 polynomials: Ren and Imn, for
n = 2, 3, 4 and 5, which are all bivariate polynomials. Table IV
shows the polynomials Re2, Im2, Re3 and Im3. Due to the
space limitations, the other 4 polynomials are omitted.

TABLE IV
POLYNOMIAL Ren AND Imn , FOR n = 2, 3, 4 AND 5, THEIR DEGREES

AND THEIR MINIMUMS AND MAXIMUMS IN THE INTERVAL [0, 1]2 .

poly.
name polynomial

degree
of σ and
ω

min max

Re2 1−ω2+1.4142σ+σ2 (2, 2) 0 3.414
Im2 1.4142ω + 2σω (1, 1) 0 3.414

Re3
1−2ω2+2σ−3σω2+
2σ2 + σ3 (3, 2) -1.113 6

Im3 2ω−ω3+4σω+3σ2ω (2, 3) 0 8
Re4 omitted (4, 4) -5.661 10.641
Im4 omitted (3, 3) 0 14.668
Re5 omitted (5, 4) -23.180 18.944
Im5 omitted (4, 5) -1.197 23.877

Table IV also shows the degree of each bivariate polynomial.
Here, σ is treated as the first argument and ω as the second
argument in the bivariate polynomial. In the experiment, we
assume that these polynomials are defined in the interval
[0, 1]2. The minimums and maximums of these polynomials
are also listed in Table IV. Since all of their minimums are
less than or equal to 0 and all of their maximums are greater
than 1, we need to apply Equation (17) to transform them into
proper objective polynomials.

TABLE V
THE DEGREE OF THE EQUIVALENT MULTIVARIATE BERNSTEIN
POLYNOMIAL WITH ALL COEFFICIENTS IN THE UNIT INTERVAL.

poly.
name

degree of equiv.
Bern. poly.

poly.
name

degree of equiv.
Bern. poly.

Re′2 (2, 2) Re′4 (6, 4)
Im′2 (1, 1) Im′4 (3, 3)
Re′3 (4, 2) Re′5 (5, 4)
Im′3 (2, 3) Im′5 (4, 14)

We apply the synthesis steps 1 to 4 given in Section II-D to
obtain the equivalent multivariate Bernstein polynomial with
coefficients in the unit interval. Table V gives the degree
of those equivalent Bernstein polynomials. From Table V,
we can see that the degrees of the Bernstein polynomials
equivalent to Re2, Im2, Im3, Im4 and Re5 equal that of the
original power-form polynomials. However, the degrees of the
Bernstein polynomials equivalent to Re3, Re4 and Im5 are
higher than those of the original power-form polynomials.

We evaluated each Butterworth polynomial on 169 points:
(t1, t2) ∈ {0.2, 0.25, 0.3, . . . , 0.8}2. For each error ratio ε,
each objective polynomial, and each evaluation point, we
simulated both the stochastic and the deterministic implemen-
tations 5000 times. We averaged the relative errors over all
simulations. Finally, for each error ratio ε, we averaged the
relative errors over all polynomials and all evaluation points.

Table VI shows the average relative error of the stochastic
implementation and the deterministic implementation versus
different error ratios ε. This data is plotted in Figure 4.

TABLE VI
RELATIVE ERROR FOR THE STOCHASTIC AND DETERMINISTIC

IMPLEMENTATION OF BUTTERWORTH POLYNOMIAL COMPUTATION
VERSUS THE ERROR RATIO ε IN THE INPUT DATA.

error ratio rel. error of rel. error of
ε stoch. impl.(%) deter. impl.(%)

0.0 3.54 0.00
0.001 3.55 0.97
0.002 3.57 1.93
0.005 3.70 4.74
0.01 4.11 9.16
0.02 5.48 17.06
0.05 10.92 36.87
0.1 20.33 62.44

When ε = 0, meaning that no noise is injected into the input
data, the deterministic implementation computes without any
error. However, due to the inherent variance, the stochastic
implementation produces a small relative error. However, with
noise, the relative error of the deterministic implementation
blows up dramatically as ε increases. Even for small values,
the stochastic implementation performs much better.

It is not surprising that the deterministic implementation
is so sensitive to errors, given that the representation used is
binary radix. In a noisy environment, bit flips afflict all the bits
with equal probability. In the worst case, the most significant
bit gets flipped, resulting in relative error of 2M−1/2M = 1/2
on the input value. In contrast, in a stochastic implementation,
the data is represented as the fractional weight on a bit stream
of length 2M . Thus, a single bit flip only changes the input
value by 1/2M , which is minuscule in comparison.

0 0.001 0.002 0.005 0.01 0.02 0.05 0.1
0

20

40

60

error ratio of input data

re
la

ti
v
e

ev
al

u
at

io
n

 e
rr

o
r

(%
)

stoch. impl.

deter. impl.

Fig. 4. A plot of the relative error for the stochastic and the deterministic
implementation of Butterworth polynomial computation versus the error ratio
ε in the input data.

IV. CONCLUSION AND FUTURE WORK

In this work, we provide a general method to synthesize
stochastic logic to compute an arbitrary multivariate polyno-
mial. The synthesis results for the stochastic implementation of
polynomial arithmetic are convincing. The area-delay product
is comparable to that of deterministic implementations with
adders and multipliers. However, the circuits are much more
error tolerant. The precision of the results is dependent only on
the statistics of the streams that flow through the datapaths, and
so the computation can tolerate errors gracefully. Here we have
only considered stochastic logic obtained from combinational
circuits. In future work, we will generalize the synthesis
methodology to stochastic logic implemented by sequential
circuits with random Boolean inputs.

REFERENCES

[1] Z. Asgar, S. Kodakara, and D. Lilja, “Fault-Tolerant
Image Processing using Stochastic Logic,” Technical Re-
port,http://www.zasgar.net/zain/publications/publications.php, 2005.

[2] J. Berchtold and A. Bowyer, “Robust Arithmetic for Multivariate
Bernstein-form Polynomials,” Computer-Aided Design, Vol. 32, No. 11,
pp. 681–689, 2000.

[3] C.M. Bishop, Neural Networks for Patten Recognition, Clarendon Press,
1995.

[4] B. Brown and H. Card, “Stochastic Neural Computation I: Computational
Elements,” IEEE Transactions on Computers, Vol. 50, No. 9, pp. 891–
905, 2001.

[5] S.R. Deiss, R.J. Douglas, and A.M. Whatley, “A Pulse Coded Com-
munications Infrastructure for Neuromorphic Systems,” Pulsed Neural
Networks, W. Maass and C.M. Bishop, eds., MIT Press, 1999.

[6] B.R. Gaines, “Stochastic Computing Systems,” Advances in Information
Systems Science, J.F. Tou, ed., Vol. 2, pp. 37–172, Plenum, 1969.

[7] C.L. Janer, J.M. Quero, J.G. Ortega, and L.G. Franquelo, “Fully Paral-
lel Stochastic Computation Architecture,” IEEE Transactions on Signal
Processing, Vol. 44, No. 8, pp. 2110–2117, 1996.

[8] T.W. Parks and C.S. Burrus, Digital Filter Design, John Wiley & Sons,
1987.

[9] W. Qian, J. Backes and M.D. Riedel, “The Synthesis of Stochastic
Circuits for Nanoscale Computation,” International Workshop on Logic
and Synthesis, pp. 176–183, 2007.

[10] W. Qian and M.D. Riedel, “The Synthesis of Robust Polynomial Arith-
metic with Stochastic Logic,” Design Automation Conference, Anaheim,
CA, 2008.

[11] S.L. Toral, J.M. Quero and L.G. Franquelo, “Stochastic Pulse Coded
Arithmetic,” International Symposium on Circuits and Systems, Vol. 1,
pp. 599–602, 2000.

