
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Low Cost Sorting Network Circuits
using Unary Processing

M. Hassan Najafi, Student Member, IEEE, David. J. Lilja Fellow, IEEE,
Marc D. Riedel, Senior Member, IEEE,, and Kia Bazargan, Senior Member, IEEE,

Abstract—Sorting is a common task in a wide range of
applications from signal and image processing to switching
systems. For applications that require high performance, sorting
is often performed in hardware with ASICs or FPGAs. Hardware
cost and power consumption are the dominant concerns. The
usual approach is to wire up a network of compare-and-swap
units in a configuration called a Batcher (or Bitonic) network.
Such networks can readily be pipelined. This paper proposes a
novel area- and power-efficient approach to sorting networks,
based on “unary processing.” In unary processing, numbers are
encoded uniformly by a sequence of one value (say, 1) followed
by a sequence of the other value (say, 0) in a stream of 0’s and
1’s with the value defined by the fraction of 1’s in the stream.
Synthesis results of complete sorting networks show up to 92%
area and power saving compared to the conventional binary
implementations. However, the latency increases. To mitigate
the increased latency, the paper uses a novel time-encoding of
data. The approach is validated with two implementations of an
important application of sorting: median filtering. The result is
a low-cost, energy-efficient implementation of median filtering
with only a slight accuracy loss, compared to conventional
implementations.

Index Terms—Sorting networks, unary processing, time-
encoding data, stochastic computing, median filtering, low-cost
design.

I. INTRODUCTION

Sorting is an important task in applications ranging from
data mining, to databases [21][20][29], to ATM and com-
munication switching [14][1], to scientific computing [13], to
scheduling [47], to artificial intelligence and robotics [7], to
image [28], video [42][11] and signal processing [36]. For
applications that require high performance, sorting is often
performed in hardware with ASICs or FPGAs [12]. Based on
the target applications, hardware sorting units vary greatly in
the way that they are configured. The number of inputs can
be as low as 9 for some image processing applications (e.g.
median filtering) or as high as tens of thousands. The data
inputs are sometimes binary values, integers or floating-point
numbers ranging from 4 to 256-bit precision.

Hardware cost and power consumption are the dominant
concerns with hardware implementations. The total chip area
is limited in many applications. As fabrication technologies
continue to scale, keeping chip temperatures low is an impor-
tant goal since leakage current increases exponentially with

A perliminary version of this paper appeared as [32].
M. H. Najafi, D. Lilja, M. Riedel, and K. Bazargan are with the De-
partment of Electrical and Computer Engineering, University of Minnesota,
Twin Cities, MN 55455 USA (e-mail: najaf011@umn.edu; lilja@umn.edu;
mriedel@umn.edu; kia@umn.edu).

A

B

Max (A,B)

Min (A,B)

(a)

A

B

Min (A,B)

Max (A,B)

(b)

Fig. 1: The schematic symbol of a CAS block a) ascending
b) descending

temperature. Power consumption must be kept as low as
possible. Developing low-cost, power-efficient hardware-based
solutions to sorting is an important goal.

The usual approach is to wire up a network of compare-
and-swap (CAS) units in a configuration called a Batcher (or
Bitonic) network. Such networks can readily be pipelined. The
parallel nature of hardware-based solutions allows them to
outperform sequential software-based solutions. The hardware
cost and the power consumption depend on the number of
CAS blocks and the cost of each CAS block.

This paper proposes a novel area- and power efficient
approach to sorting networks based on “unary processing.”
Data is encoded as serial bit streams, with values represented
by the fraction of 1’s in a stream of 0’s and 1’s. This is an
evolution of prior work on stochastic processing. Our designs
inherit the fault tolerance and low-cost design advantages of
stochastic processing while producing completely accurate and
deterministic results. As with stochastic processing, however,
the approach is handicapped in term of latency. A serial
representation is exponentially longer than a conventional
binary positional representation.

To mitigate the long latency issue of unary processing, this
paper adopts a mixed-signal time-encoding approach recently
proposed in [30]. The approach is different to the work on
continuous time mixed-signal designs of [22] and [48] in the
sense that instead of converting data to (from) binary format
by using costly analog to digital (digital to analog) converters
and processing in binary domain, the data is encoded in time
using low-cost analog to time converters and processed in
unary domain. We represent the data with time-encoded pulse
signals. The proposed approach is validated with two imple-
mentations of an important application of sorting networks:
median filtering. Median filtering has been also used in [31] as
a case study for processing time-encoded values but no result
or discussion on the power consumption and energy efficiency
of the designs is presented. Our synthesis results show up
to 92% area and power savings compared to conventional
weighted binary implementations. Time-encoding the data

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 2

Fig. 2: The CAS network for an 8-input bitonic sorting [17].

provides a significant improvement in the latency and energy
consumption with only a slight loss in accuracy.

II. BACKGROUND

A. Sorting Networks

A sorting network is a combination of CAS blocks that
sorts a set of input data. Each CAS block compares two input
values and swaps the values at the output, if required. There
are two variants: an “ascending” type and a “descending” type.
Figure 1 shows their schematic symbols. In a conventional
design, each CAS block consists of an M -bit comparator and
two M -bit multiplexers, where M is the data-width of the
inputs.

Sorting networks are fundamentally different from software
algorithms for sorting such as QuickSort, MergeSort, Bubble-
Sort, etc., since the order of comparisons is fixed in advance;
the order is not data dependent as is the case with software
algorithms. The bitonic and odd-even merge sorting networks
proposed by Batcher [6] are two popular configurations of
sorting networks [24][26]. They have the lowest known latency
for hardware-based sorting [17][2].

Bitonic Sort uses a key procedure called Bitonic Merge
(BM). Given two equal size sets of input data, sorted in
opposing directions, the BM procedure will create a combined
set of sorted data. It recursively merges an ascending and a
descending set of size N/2 to make a sorted set of size N [19].
Figure 2 shows the CAS network for an 8-input bitonic sorting
network made up of ascending and descending BM units. The
total number of CAS blocks in an N-input bitonic sorting is
N × log2(N)× (log2(N)+1)/4. Thus, 8-input, 16-input, 32-
input, and 256-input bitonic sorting networks require 24, 80,
240, and 4,608 CAS blocks, respectively [17].

An odd-even merge sorting network recursively merges two
ascending sequences of length N/2 to make a sorted sequence
of length N. Odd-even merge sorting units requires fewer CAS
blocks than bitonic sorting units, but often have more complex
wiring [17]. Due to their simpler structure, in this paper we
will present designs based on bitonic sort networks. The pro-
posed design approach, however, is applicable to any sorting
network topology, including odd-even sorting networks; it will
accrue the same advantages.

B. Unary processing

Weighted binary radix has been the dominant format for
representing numbers in the field of computer engineering
since its inception. The representation is compact; however,
computing on this representation is relatively complex, since
each bit must be weighted according to its position. Also,
the representation is very susceptible to noise: a flipped bit
can introduce a large error (if it is a significant bit in the
representation.)

Poppelbaum [39] and Gaines [18] introduced stochastic
processing based on uniformly distributed random bit streams.
All digits have the same weight in this computing paradigm.
Numbers are limited to the [0, 1] interval and encoded by the
probability of obtaining a one versus a zero in the stream.
To represent a real number with a resolution of 2−M , a
stream of 2M bits is required. Beginning in 2001, Brown
and Card, [8], [9], and in 2008, Qian et al. reintroduced the
concept of stochastic processing to the computer engineering
community, [41], [40].

Clearly, a stochastic representation is much less compact
than conventional weighted binary; this translates to high
latency. However, complex functions can be computed with
remarkably simple logic, e.g. multiplication can be performed
using a single AND gate. Also, the representation can tolerate
high clock skew [33], timing errors [3], and soft logic errors
(i.e., bit flips) [40][27][34].

A recent evolution of the idea of stochastic computing
has been to perform the processing completely
deterministically [23][30][31]. If properly structured,
computation on deterministic bit streams can be performed
with same circuits as are used in stochastic computing. The
results are completely accurate with no random variations;
furthermore, the latency is greatly reduced. The idea of unary
(or burst) processing was first introduced in 1980s [38] [37]
as a hybrid information processing technique that has
characteristics common to both conventional binary and to
stochastic processing. It is deterministic, but borrows the
concept of averaging from stochastic methods. In this paper
we apply unary processing to problem of desiging low-cost,
power-efficient sorting networks.

Unary streams. In unary processing, numbers are encoded
uniformly by a sequence of one value (say, 1) followed by a se-
quence of the other value (say, 0) (See Figure 3). This uniform
sequence of bits is called a unary stream. In the literature, this
method of encoding is also called pulse-width encoding [15].
As with stochastic streams, all the bits have equal weight. This
property provides the immunity to noise. Multiple bit flips in a
long unary stream produce small and uniform deviations from
the nominal value. In stochastic processing, only real-valued

Fig. 3: Time-based vs. digital-stream unary representation.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 3

1111111000

1111000000

AND

OR

1111111000
1111000000

1100000000
1111111000

(0.4)

(0.7)
(0.4)

2

7

7

Fig. 4: Example of performing maximum and minimum oper-
ations on unary streams.

numbers can be represented: numbers in the [0, 1] interval with
the unipolar format and numbers in the [-1, 1] interval with
the bipolar format. In contrast, with unary streams both real-
valued and integer numbers can be represented. In representing
real-value numbers, the number of ones divided by the length
of stream determines the value. In representing integer values,
the number of ones directly determines the value. For example,
when using unary streams in the real domain, the streams 1000
and 11000000 are both representations of the value 0.25. In the
integer domain, on the other hand, these streams represent 1
and 2, respectively. Similar to the bipolar format for stochastic
streams, negative numbers can also be represented with unary
streams using a simple linear transformation [4].

Unary Operations. The maximum (Max) and minimum
(Min) value functions are two useful functions with simple
and low cost unary implementation. In a weighted binary
design, data-width dependent comparator and multiplexer
units must be used to implement these functions. In unary
processing, individual gates can synthesize these functions:
an AND gate gives the minimum of two unary streams when
two equal-length unary streams are connected to its inputs;
an OR gate gives the maximum value when its inputs are
fed with two equal-length unary streams. These gates showed
a similar functionality when fed with correlated stochastic
bit-streams [5]. Figure 4 shows an example of finding the
minimum and maximum values in unary processing. An
important advantage of unary processing is that synthesizing
a function is independent of the resolution of data (length of
streams). The same core logic is used for processing 128-bit
unary streams that is used for processing 256-bit unary
streams. While developing a general method for synthesizing
all operations with unary processing is still a work in progress,
recent work has shown absolute-value subtraction (using
an XOR gate), comparison (using a D-type flip-flop) [31],
and multiplication (using an AND gate) [23], [30] of unary
streams.

Time-based unary streams. The representation of numbers
in unary processing is not limited to purely digital bit streams.
A time-based interpretation of numbers is also possible us-
ing pulse modulation of data [30]. Figure 3 shows both
approaches. While both approaches can operate on the same
unary logic, the time-based representation offers a seamless
solution to the increasing number of time-based sensors and, as
we will show, can be exploited in addressing the long latency
problem of unary circuits.

(a)

A
Min (A,B)

Max (A,B)

AND

OR

B

(b)

Fig. 5: Hardware implementation of a CAS block a) Conven-
tional binary design b) Unary design.

III. COMPLETE SORT SYSTEM

In this section we discuss hardware implementation of
complete sort networks. We first discuss the conventional
binary design of the complete sorting networks and then
present the synthesis approach based on unary processing.

A. Conventional Design

As discussed in Section II, sorting networks are made
of CAS blocks. The hardware cost of a sorting network is
therefore a direct function of the number of CAS blocks and
the cost of each block. As shown in Figure 5a, in a weighted
binary design with a data-width of M bits, each CAS block
consists of one M -bit comparator and two M -bit multiplexers.
Thus, by increasing the resolution of data, the complexity of
the design will also be increased. Increasing the complexity of
the design directly affects the cost of the hardware implemen-
tation, latency, power, and as a result energy consumption.
Another issue with the conventional binary design is noise
immunity and fault tolerance. In a noisy environment, faults
due to bit flips on high-order bits can produce large errors.
Thus, additional fault-tolerance techniques must be used if the
goal is to design a noise tolerant system.

B. Unary Design

The essential operations in CAS blocks are maximum and
minimum functions. This makes unary processing a good
fit for hardware implementation of CAS blocks and sort-
ing networks. As shown in Figure 5, instead of data-width
dependent complex logic, one AND and one OR gate is
sufficient to synthesize the CAS block in unary domain. The
sorting networks can therefore be synthesized regardless of the
resolution of the input data. While the synthesized circuit will
be much less costly than the circuit synthesized in the binary
approach, additional overhead must be incurred for conversion
units which are required to convert the data between the binary
and the unary fomart and a longer operation time due to
performing the operation on 2M -bit long streams.

Assuming that the input data is given in binary format and
the result must again be in binary, a unary stream generator
is required to convert the data from binary to unary and
a counter is required to count the number of ones in the
final unary stream and convert the result back into binary.
Figure 6 shows the design of a unary stream generator
responsible for converting the data from binary to unary. For

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 4

TABLE I: Synthesis results of complete bitonic sort networks (Non-Pipelined).

of inputs
and outputs

of CAS
units

Data
width

Area (µm2) Critical Path (ns) Power (@max f) — (@50MHz) (mW)
Conven. Unary Conven. Unary Conven. Unary Conven. Unary

8 24
8-bit 3,086 2,194 1.85 0.74 1.30 3.26 0.12 0.13
16-bit 6,865 4,531 2.05 0.75 2.63 5.59 0.27 0.23
32-bit 14,868 9,456 2.41 0.77 4.90 10.1 0.62 0.44

16 80
8-bit 10,534 4,511 2.73 0.87 3.66 5.30 0.49 0.25
16-bit 22,920 8,901 3.42 0.89 6.61 8.94 1.17 0.44
32-bit 49,812 17,274 3.80 0.93 13.4 15.9 2.63 0.83

32 240
8-bit 32,508 9,235 4.06 1.07 8.86 8.40 1.75 0.49
16-bit 68,621 17,643 5.05 1.13 16.6 13.8 4.18 0.86
32-bit 149,669 27,811 5.90 1.12 31.8 25.4 11.3 1.52

64 672
8-bit 90,691 19,028 5.71 1.33 19.8 13.4 5.48 0.96
16-bit 191,174 29,259 7.03 1.35 39.2 22.5 13.6 1.60
32-bit 431,182 56,598 8.00 1.37 78.5 41.2 33.1 3.03

128 1,792
8-bit 242,049 33,916 7.49 1.62 44.4 21.4 15.7 1.80
16-bit 523,565 60,686 9.27 1.63 89.8 37.1 41.1 3.19
32-bit 1,047,646 115,835 10.14 1.63 165.7 69.1 85.4 6.05

256 4,608
8-bit 586,456 74,719 9.71 1.91 88.7 36.5 42.2 3.64
16-bit 1,239,154 126,804 11.79 1.94 181.3 62.1 102 6.40
32-bit 2,560,803 234,957 12.89 1.97 367.7 113 221 12.0

M-bit
Comparator

M-bit
Counter

M-bit
Input Register

Unary Stream

Fig. 6: Unary stream generator.

each input data, one unary stream generator and, for each
output, one counter is required. A significant cost saving
in implementing the CAS blocks, particularly for large-scale
sorting circuits, will compensate for the overhead of converters
in unary designs. Note that while the converters are data-
width dependent, the CAS blocks synthesized with the unary
approach are independent of data resolution.

C. Design Evaluation

In order to evaluate the costs and benefits of the proposed
design approach, we developed Verilog hardware descriptions
of complete bitonic sorting networks for 8, 16, 32, 64, 128, and
256 data inputs, for both the conventional binary and for the
proposed unary approach. For the unary approach, the archi-
tectures include the required conversion units from/to binary.
The developed designs are synthesized using the Synopsys
Design Compiler vH2013.12 and a 45nm standard-cell library.
We report synthesis results for three different data widths of
8, 16, and 32 bits. In order to find the minimum hardware cost
and also the maximum speed of the developed architectures
we synthesized a non-pipelined and also a pipelined version
of each architecture.

1) Non-Pipelined Design: Table I shows the synthesis
results for the non-pipelined implementations. As can be seen,
the unary approach could save the hardware cost of the
implemented sort networks up to 91%. For small networks
like the 8-input sort networks, the cost overhead of unary
stream generators and output converters was comparable to
the saving due to using a low-cost CAS implementation and
so lower savings are achieved. By increasing the number of

inputs and so the number of CAS blocks, the savings dominate
the overheads and a hardware area saving of around 91% is
achieved when implementing the 256-input sorting network
with the unary approach.

The total (dynamic plus static) power consumption of the
synthesized designs at the maximum feasible working fre-
quency of each architecture, and also at a constant working
frequency of 50 MHz, are presented in Table I. The static
power or leakage is the dominant power when the system
operates at low frequencies. It is directly proportional to the
hardware cost and so a sort network with a lower hardware cost
will have a lower leakage power. When a system works at its
maximum frequency, dynamic power, which is an increasing
function of the working frequency, is the dominant one. Thus,
although the unary designs would have a much lower power
consumption at low speeds, due to a lower critical path
latency and so higher maximum working frequency, the power
numbers reported for unary implementation of the 8 and 16
input sorting networks are greater than the power numbers
reported for their corresponding binary implementations. As
shown in Table I, for larger sorting networks (32-input and
above), the simplicity of the unary design has led to even a
lower power consumption at the maximum working frequency
than the power consumption of the binary implementation.

Due to a simpler architecture, the critical path (CP) latency
of the designs synthesized with the unary approach is lower
than that of the conventional binary designs. However, the
total latency of the unary approach which is the product of the
CP latency and 2M (the number of clock cycles the system
must operates to generate and process the unary stream), is
much more than the latency of the conventional design (one
clock cycle × CP latency). Although the longer latency of
the unary approach is still acceptable for many applications,
a more important issue is the energy consumption. Energy
consumption is evaluated by the product of the processing
time and the total power consumption. Although the unary
implementations of the sorting networks have often shown a

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 5

TABLE II: Synthesis results of complete bitonic sort networks (Pipelined).

of inputs
and outputs

CAS
units

Pipeline
Stages

Data
width

Area (µm2) Critical Path (ns) Power (@max freq) (@50MHz) (mW)
Conven. Unary Conven. Unary Conven. Unary Conven. Unary

8 24 6
8-bit 6,926 2,659 0.42 0.39 19.5 8.1 0.46 0.16

16-bit 14,383 5,024 0.49 0.42 35.6 11.6 0.97 0.27
32-bit 25,066 9,916 0.53 0.49 66.5 17.2 1.88 0.48

16 80 10
8-bit 19,338 5,834 0.42 0.40 67.9 17.0 1.50 0.37

16-bit 39,554 10,323 0.48 0.44 126 23.3 3.17 0.56
32-bit 83,102 18,065 0.52 0.50 241 33.9 6.64 0.94

32 240 15
8-bit 57,900 13,095 0.42 0.41 213 38.5 4.68 0.86

16-bit 118,202 17,029 0.50 0.46 381 48.2 9.95 1.16
32-bit 248,129 29,682 0.53 0.50 748 70.0 21.0 1.88

64 672 21
8-bit 161,934 25,248 0.42 0.44 602 83.0 13.3 1.92

16-bit 329,787 37,726 0.50 0.47 1105 104 28.7 2.61
32-bit 718,216 63,144 0.52 0.50 2201 149 61.9 4.02

128 1,792 28
8-bit 431,062 59,579 0.42 0.47 1625 182 36.0 4.53

16-bit 901,206 84,646 0.49 0.50 3070 221 78.8 5.90
32-bit 1,834,850 134,746 0.52 0.52 5990 310 167 8.70

256 4,608 36
8-bit 1,107,998 140,006 0.42 0.49 4228 407 93.0 10.6

16-bit 2,294,989 189,903 0.49 0.51 7859 489 204 13.3
32-bit 4,714,805 289,723 0.54 0.54 15024 648 437 18.9

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

8-
bi

t
16

-b
it

32
-b

it

Unary Design Conventional Binary Design

Area - NonPipelined Power - NonPipelined Area - Pipelined Power - Pipelined

8 16 32 64 128 256Inputs: 8 16 32 64 128 256 8 16 32 64 128 256 8 16 32 64 128 256

Fig. 7: Normalized area and power (@50MHz) cost numbers reported for the non-pipelined and pipelined structures of the
implemented complete sort networks.

lower power consumption for a fixed frequency, a very long
processing time would lead to a higher energy consumption
than their conventional binary counterparts. We will address
the long latency and high energy consumption problem of
unary designs in the next section.

2) Pipelined Design: Table II shows the synthesis results
for a fully pipelined structure (only one CAS block between
pipeline registers) of the developed designs. Although due to
using a large number of pipeline registers, the fully pipelined
structure is significantly more costly than the non-pipelined
structure, a higher working frequency is achieved with the
pipelined one. Designing the sorting network with only one
CAS block between pipeline registers leads to a higher latency
and total area than the case with more number of CAS
blocks between pipeline registers. However, the one CAS
block approach (fully pipelined) results in a higher sorting
throughput [17]. Thus, choosing the number of CAS blocks
between pipeline registers is a trade-off between the total area
and latency, and the throughput, and is a design decision.

As can be seen in Table II, the hardware area cost of
the pipelined unary designs are 61% to 92% lower than the
hardware cost of the pipelined binary designs. Observing a
high saving in the area of the small-scale sorting circuits,
such as the 8-input sorting network (61% for 8-bit data), is
due to using simpler pipeline registers (1-bit instead of M -

bit) in the pipelined unary design compared to the pipelined
binary design. Figure 7 shows normalized diagrams for area
and power cost numbers of the synthesized architectures. In
each configuration, the results are normalized to the value of
the conventional design with that configuration.

Critical path latency of the unary design in the pipelined
structure of small sorting networks was slightly lower than that
of the binary designs. The reason was a simpler CAS block
between the pipeline registers in the unary approach. For large
networks (e.g. 128-input, 256-input), however, the CP latency
of binary design was lower than the unary implementation.
Although in these designs still the CAS blocks of the unary
approach are simpler, a more complex unary stream generator
and a larger output counter limit the performance of the
circuit and increase the CP. The total processing time of the
pipelined binary design is the product of the CP latency and the
number of pipeline stages. The throughput, however, is higher
than the non-pipelined binary design because at each cycle a
new set of inputs can enter the system and a set of sorted
numbers is leaving the system. For pipelined unary designs,
the total latency is the CP latency × number of pipeline stages
×2M , where M is the data-width. Thus, similar to the non-
pipelined structure, the total latency of the pipelined unary
implementations is much higher than the total latency of their
conventional binary counterparts. This long latency further

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 6

makes the total energy consumption higher than the energy
consumption of the binary designs. We will address this issue
in the next section by time-encoding of data using a mixed-
signal design of sorting network-based median filtering.

IV. HIGHLY EFFICIENT MEDIAN FILTERS

A median filter is a popular non-linear filter widely used in
image, speech, and signal processing applications. It replaces
each input data with the median of all the data in a local
neighborhood. This results in filtering out impulse noise and
smoothing of the image while preserving important properties
such as the edge information [35]. In real-time image and
video applications, the digital image data are affected by
noise resulting from image sensors or transmission of images.
A hardware implementation of the median filter is therefore
required for denoising. The high computational complexity of
median filters, however, makes their hardware implementation
expensive and inefficient for many applications. In this section
we first propose a low-cost implementation of median filters
similar to the unary sorting networks introduced in Section III.
We then exploit a time-based representation of input data using
pulse-width modulation to address the long latency problem
of the implemented circuits.

A. Circuit Design

There are a variety of methods for hardware implementation
of median filters [44], [25]. Sorting network-based architec-
tures [10] consisting of a network of CAS blocks are one of
the most common approaches. The incoming data is sorted as
it passes the network. The middle element of the sorted data
is the median. As the sorting network can be easily pipelined,
the approach provides the best performance [35]. The local
neighborhood in median filtering is often a 3x3 or 5x5 window
with the target input data at the center. Figures 8 and 9
show the sorting networks for a 3x3 and a 5x5 median filter,
respectively. We developed a non-pipelined and a pipelined
structure of these median filters with both the conventional
binary and the proposed unary design approach with 8-bit
input data resolution. The CAS blocks presented in Figure 5
were used in the developed architectures. A separate unary
stream generator was used for converting each input data and
a counter was used for converting the output median stream
back to binary form in the unary designs.

Table III shows the synthesis results for the developed archi-
tectures. For now let us ignore the rows representing Unary-
Time-based designs, they will be discussed in Section IV-B2.
The overhead in pipelined designs includes pipeline registers
and for unary designs include the required converters from/to
binary. Similar to the results reported for the complete sort
networks, the unary implementation of the median filters
significantly improves the hardware cost, up to 90% for the
5x5 median filter architecture. The pipelined implementations
have a higher working frequency and a higher throughput.
Comparing the power consumption of the pipelined implemen-
tations show that, for the same working frequency, the unary
designs have a significantly lower power consumption. For
applications in which hardware cost and power consumption

Fig. 8: The CAS network for a 3x3 Median Filter made of 19
CAS blocks [28].

Fig. 9: The CAS network for a 5x5 Median Filter made of
246 CAS blocks [46].

are the main priorities, the proposed unary designs outperform
the conventional weighted binary designs. However, for high-
performance low-energy applications the binary design can be
a better choice. In the following section we exploit the concept
of near sensor processing and time-based representation of
data to improve the latency and energy consumption of the
unary-based median filtering designs at the cost of a slight
accuracy loss.

B. Time-based unary design

1) Overview: Image sensors convert the light intensity
to an analog voltage/current. The conventional approach for
processing these sensed data is to first convert the analog data
to digital binary form using a conventional analog-to-digital
(ADC) and then process the binary data using digital logic. In
unary processing, this binary data is first converted to a unary
bit stream and then processed using unary circuits. Processing
of image pixels with 8-bit resolution requires running the
unary circuit for 256 cycles. Even with a higher working
frequency, due to a large number of clock cycles running the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 7

TABLE III: Synthesis results of the sorting network-based median filters for data-width=8.

Median
Filter Design Approach Area (µm2) Latency (ns) Power (mW)

(@max freq) Energy (pJ)CAS Logic Overhead Total CP Total

3x3

Binary-NonPipelined 2,167 - 2,167 2.10 2.10 1.03 2.1
Binary-Pipelined (8-stage) 2,167 3,384 5,551 0.43 3.44 15.56 6.6

Unary-NonPipelined 79 917 996 0.70 179.2 0.95 170.2
Unary-Pipelined (8-stage) 79 1,292 1,371 0.40 102.4 3.08 315.3

Unary-Time-based 79 776 855 0.39 0.39 1.78 0.69

5x5

Binary-NonPipelined 32,772 - 32,772 6.77 6.77 5.76 38.9
Binary-Pipelined (26-stage) 32,772 28,208 60,980 0.43 11.18 219 94.1

Unary-NonPipelined 1,051 1,988 3,039 1.07 273.9 0.93 254.7
Unary-Pipelined (26-stage) 1,051 6,377 7,428 0.40 102.4 19.68 2015.2

Unary-Time-based 1,051 1,960 3,011 0.78 0.78 2.71 2.11

Unary
Circuit

Sensing
Circuit

Analog
to-Time
Conv.

Time-to
Analog
Conv.

ADC Digital
Processing

Near-Sensor Processing

Fig. 10: Near Sensor Processing with unary circuits.

circuit, the total latency of the processing using unary circuit
is more than that of processing with the binary design.

Near sensor image processing (NSIP) [16] is an interesting
concept that suggests integrating some of the processing
circuits (i.e. median filter circuit) with the sensing circuit. This
can potentially improve the power consumption, size, and costs
of vision chips. With more and more sensors providing time-
encoded outputs and ways to convert signals from voltage or
current to time signals [43], the sensed data in the form of
time-encoded signals can directly be fed to unary circuits.
Inspired from the NSIP concept and based on the idea of
time-encoding data introduced in [30], we time-encode the
sensed input data to address the long latency of processing
using unary circuits. Figure 10 depicts a simple flow of the
method. Assuming that the output of the sensing circuit is in
voltage or current form, an analog-to-time converter (ATC)
(i.e. low-cost circuit shown in Figure 11) is used to convert
the sensed data to a time-encoded pulse signal. The converted
signal is processed using the unary circuit and the output is
converted back to a desired analog format using a time-to-
analog converter (TAC) (i.e. a voltage integrator).

2) Evaluation: Table III shows the area, latency, power,
and energy consumption of the implemented median filter-
ing circuits synthesized with the conventional binary, digital
bit-stream based unary, and the proposed time-based unary
approach. The low-cost pulse-width modulator shown in Fig-
ure 11 was used as the ATC and a Gm-C active integrator [45]
was used as the TAC to convert the output signal back to
analog form in the time-based unary designs. While a pulse-
width modulator generates a periodic signal with a specific
duty cycle and frequency, only one period of the generated
signal will be sufficient for processing the data using the
unary designs [31]. The duty cycle of the generated signal is
determined by the DC level of the sensed data. The hardware
cost and the energy consumption of the implemented ATC
and TAC are a function of the target working frequency.
We extracted the area and energy numbers from [30] and

Ramp Generator

Reset pulse

−

+

Vref

Analog
Comparator

Sensing
Circuit

Fig. 11: A low-cost Analog-to-Time converter proposed
in [30]. The Reset pulse defines the frequency of the output
signal and is generated using the clock signal.

report them as the overhead of the time-based unary design in
Table III.

A separate ATC is used for time-encoding each input data
(9 ATCs for 3x3 median filter circuit). For each time-based
unary design, the reported overhead numbers are for a working
frequency equal to the inverse of the critical path latency of the
circuit. Assuming that the clock signal that drives the ATC is
available in the system, a lower working frequency translate to
a lower area and energy overhead. As can be seen in Table III,
the total area of the time-based designs including the overhead
of ATCs and TAC is lower than the area cost of the digital bit
stream-based non-pipelined version of the unary design. The
total latency and the energy consumption of the time-based
unary designs are better than those of the pipelined and non-
pipelined structure of the unary design and also lower than
those of the binary designs. A lower CP latency in the time-
based unary designs in comparison to the non-pipelined unary
design is due to not using unary stream generator and counter
in the time-based approach.

The down-side of the time-based unary design, however, is a
slight accuracy loss. The working frequency of the ATC affects
the effective number of bits in representing and processing
data, hence the accuracy of computation. To evaluate the per-
formance of the median filtering unary designs when working
with time-encoded input signals, we developed SPICE netlists
of both 3x3 and 5x5 median filtering circuits and simulated
their operation on a 128×128 noisy soldier image. The sample
input image is shown in Figure 12. Simulations were carried

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 8

TABLE IV: Average error rate of processing the sample image
using the time-based unary circuits.

Median Filter
Time-based Unary

Length of input signals (1/freq.)
CP 1ns 2ns 5ns

3x3 Ideal ATC 2.09% 0.84% 0.45% 0.19%
ATC of [30] 2.65% 1.05% 0.56% 0.21%

5x5 Ideal ATC 4.70% 3.33% 1.83% 0.94%
ATC of [30] 4.86% 3.66% 1.90% 1.01%

out using a 45-nm standard cell library in HSPICE. Table IV
shows the average output error rates for the images produced
using the time-based unary designs. Image pixel intensities
were converted to pulse signals using the ATC shown in Fig-
ure 11 and also using the HSPICE built-in pulse generator (an
ideal ATC). In Table IV, these two methods correspond to the
rows ”ATC of [30]” and ”Ideal ATC”, respectively. Comparing
the output images with the expected output image (produced
using a software-based implementation of the algorithm in
Matlab), the mean of the output error rates was calculated
as follows:

AverageErrorRate =

∑W
i=1

∑H
j=1 |Pi,j − Ei,j |

255.(W ×H)
× 100

where Ei,j is the expected value for location (i, j) in the
output image, Pi,j is the pixel value for the same location
produced using the circuit, and W and H are the dimensions of
the image. As can be seen in Table IV, increasing the length of
the input signal (a lower working frequency) leads to a higher
accuracy in the time-based approach. An average error rate
of less than 1 percent is achieved in the 3x3 median filtering
circuit with 1ns and in the 5x5 circuit with 5ns processing
time. The inherent inaccuracy in converting the values with
the ATC of [30] resulted in a slightly higher error rates when
comparing to the error rates where using ideal ATC.

3) Sources of inaccuracy: Error in generating pulse signals
(analog value to time conversion), error in measuring the
output signal (time to analog conversion), and error due to
skew noise [30] are the main sources of errors in the time-
based unary processing. A different gate delay for AND and
OR gates, particularly, can be a main source of skew in the
unary sorting networks. Such a skew is negligible for small
sorting networks (e.g. 3x3 median filtering). However, for
large sorting networks (e.g. 5x5 median filtering) the skew
in each stage is propagated to the next stage, resulting a
considerable skew error. With careful gate sizing and adjusting
gate delays, or simply increasing the length of the input signals
we can mitigate this source of inaccuracy in the time-based
unary design.

V. NOISE-TOLERANT BEHAVIOR

To evaluate the noise-tolerance of the proposed unary de-
signs in comparison to that of the corresponding conventional
binary implementations, we randomly injected soft errors, i.e.,
bit flips, for 0%, 1%, 5%, and 10% noise injection rates on
the inputs of CAS blocks of the 3x3 median filtering circuits
and measured the corresponding average output error rates. A

(a) Sample Input Image

0% 1% 5% 10%

(b) Conventional Binary Implementation

(c) Proposed Unary Implementation

Fig. 12: (a) Sample input image, and comparison of the noise-
tolerance capability of (b) the conventional binary vs. (c) the
proposed unary implementation for the 3x3 median filtering
circuit for different noise injection rates.

noise injection rate of 10% means that 10% of the total bits
in the inputs of CAS blocks are randomly chosen and flipped.
The sample image shown in Figure 12 was used as the input
to the circuits. For the conventional binary implementation the
data-width was fixed at 8 bits and bit streams of length 256
were used to represent values in the unary designs. Figure 12
shows the performance of the implemented circuits at various
noise injection rates. As can be seen, the proposed unary
implementation has shown a higher noise-tolerance compared
to the conventional binary implementation. For injection rates
higher than 1%, the quality of the output image produced
by the binary design degrades drastically leading to a useless
image for injection rates higher than 5%. This noise-immunity
observed in the unary design is mainly due to its data encoding
approach, a common property between the unary and the
stochastic processing. Bits are equally weighted in unary
streams and so bit flips produce small and uniform deviation
from the nominal value.

VI. CONCLUSIONS AND FUTURE WORK

Batcher sorting networks have been widely used in differ-
ent applications. Their regular structure makes them popular
for signal processing systems and communication switching
networks. However, a conventional weighted binary-based im-
plementation of a large sorting networks is costly considering
the large number of compare-and-swap (CAS) units that such
a network entails. The VLSI cost increases significantly with
increasing resolution of the input data. The high hardware cost
and the high power consumption of such networks restrict their
application.

This work proposes an area and power efficient implemen-
tation of sorting networks based on unary processing. The core
processing logic consists of simple gates and is independent

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 9

of the resolution of data. The only overhead in the approach,
the cost of converting data from/to binary, is small. More than
90% area and power savings are observed when compared to
the costs of a conventional weighted binary implementation.

The penalty is latency. Processing digital unary streams,
requires a relatively long running time, e.g., more than 100ns
to process each set of input data. Although this is a 100×
increase in latency over conventional weighted binary, this
increase may be tolerable for many applications. For example,
ten gray-scale HD (1280×720) images or four gray-scale Full
HD (1920× 1080) images can be processed per second with
the proposed scheme for a task such as median filtering, when
operating on 256-bit long unary streams. In spite of the latency,
a 90% decrease in power consumption might often make this
a winning proposition.

To mitigate the latency of the approach, we further devel-
oped a time-based unary design approach in which the input
data is encoded in time and represented with pulse signals.
The result is a significant improvement in the latency and
energy consumption, at the cost of a slight loss in accuracy. For
example, more than 1000 gray-scale HD images or 400 gray-
scale Full HD images can be processed per second with the
proposed time-based unary implementation of the 3x3 median
filtering at the cost of only 1% loss in accuracy.

In future work we will explore other applications of sorting
based on unary processing, for instance in hardware imple-
mentations of weighted and adaptive median filters. We will
also explore applications in communications and coding.

ACKNOWLEDGMENT

This work was supported in part by National Science
Foundation grant no. CCF-1408123. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the NSF. A perliminary version of this paper appeared
as [32].

REFERENCES

[1] J. P. Agrawal. Arbitrary size bitonic (asb) sorters and their applications
in broadband atm switching. In Conference Proceedings of the 1996
IEEE Fifteenth Annual International Phoenix Conference on Computers
and Communications, pages 454–458, Mar 1996.

[2] S. W. Al-Haj Baddar and B. A. Mahafzah. Bitonic sort on a chained-
cubic tree interconnection network. J. Parallel Distrib. Comput.,
74(1):1744–1761, Jan. 2014.

[3] A. Alaghi, W.-T. J. Chan, J. P. Hayes, A. B. Kahng, and J. Li. Trading
accuracy for energy in stochastic circuit design. J. Emerg. Technol.
Comput. Syst., 13(3):47:1–47:30, Apr. 2017.

[4] A. Alaghi and J. P. Hayes. Survey of stochastic computing. ACM Trans.
Embed. Comput. Syst., 12(2s):92:1–92:19, 2013.

[5] A. Alaghi, C. Li, and J. Hayes. Stochastic circuits for real-time image-
processing applications. In DAC, 2013 50th ACM/EDAC/IEEE, pages
1–6, May 2013.

[6] K. E. Batcher. Sorting networks and their applications. In Proceedings
of the April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS
’68 (Spring), pages 307–314, New York, NY, USA, 1968. ACM.

[7] V. Brajovic and T. Kanade. A vlsi sorting image sensor: global massively
parallel intensity-to-time processing for low-latency adaptive vision.
IEEE Transactions on Robotics and Automation, 15(1):67–75, Feb 1999.

[8] B. Brown and H. Card. Stochastic neural computation. i. computational
elements. Computers, IEEE Transactions on, 50(9):891–905, Sep 2001.

[9] B. D. Brown and H. C. Card. Stochastic neural computation. II. Soft
competitive learning. IEEE Transactions on Computers, 50(9):906–920,
Sep 2001.

[10] C. Chakrabarti. Sorting network based architectures for median filters.
IEEE Trans. on Circuits and Systems II: Analog and Digital Signal
Processing, 40(11):723–727, 1993.

[11] C. Chakrabarti and L.-Y. Wang. Novel sorting network-based archi-
tectures for rank order filters. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2(4):502–507, Dec 1994.

[12] R. Chen and V. K. Prasanna. Computer generation of high throughput
and memory efficient sorting designs on fpga. IEEE Transactions on
Parallel and Distributed Systems, 28(11):3100–3113, Nov 2017.

[13] A. Colavita, E. Mumolo, and G. Capello. A novel sorting algorithm and
its application to a gamma-ray telescope asynchronous data acquisition
system. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment,
394(3):374 – 380, 1997.

[14] A. A. Colavita, A. Cicuttin, F. Fratnik, and G. Capello. Sortchip: a vlsi
implementation of a hardware algorithm for continuous data sorting.
IEEE Journal of Solid-State Circuits, 38(6):1076–1079, June 2003.

[15] K. Cushon, C. Leroux, S. Hemati, S. Mannor, and W. J. Gross. A min-
sum iterative decoder based on pulsewidth message encoding. IEEE
Transactions on Circuits and Systems II: Express Briefs, 57(11):893–
897, Nov 2010.

[16] J. E. Eklund, C. Svensson, and A. Astrom. Vlsi implementation of
a focal plane image processor-a realization of the near-sensor image
processing concept. IEEE TVLSI, 4(3):322–335, Sept 1996.

[17] A. Farmahini-Farahani, H. J. D. III, M. J. Schulte, and K. Compton.
Modular design of high-throughput, low-latency sorting units. IEEE
Transactions on Computers, 62(7):1389–1402, July 2013.

[18] B. Gaines. Stochastic computing systems. In Advances in Information
Systems Science, Advances in Information Systems Science, pages 37–
172. Springer US, 1969.

[19] B. Gedik, R. R. Bordawekar, and P. S. Yu. Cellsort: High performance
sorting on the cell processor. In Proceedings of the 33rd International
Conference on Very Large Data Bases, VLDB ’07, pages 1286–1297,
2007.

[20] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. Gputerasort:
High performance graphics co-processor sorting for large database
management. In Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’06, pages 325–336,
New York, NY, USA, 2006. ACM.

[21] G. Graefe. Implementing sorting in database systems. ACM Comput.
Surv., 38(3), Sept. 2006.

[22] N. Guo, Y. Huang, T. Mai, S. Patil, C. Cao, M. Seok, S. Sethumadhavan,
and Y. Tsividis. Energy-efficient hybrid analog/digital approximate
computation in continuous time. IEEE Journal of Solid-State Circuits,
51(7):1514–1524, July 2016.

[23] D. Jenson and M. Riedel. A deterministic approach to stochastic
computation. In Proceedings of the 35th International Conference on
Computer-Aided Design, ICCAD ’16, pages 102:1–102:8, New York,
NY, USA, 2016.

[24] K. Kantawala and D. L. Tao. Design, analysis, and evaluation of
concurrent checking sorting networks. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 5(3):338–343, Sept 1997.

[25] M. Karaman, L. Onural, and A. Atalar. Design and implementation
of a general-purpose median filter unit in cmos vlsi. IEEE Journal of
Solid-State Circuits, 25(2):505–513, Apr 1990.

[26] S. Y. Kuo and S. C. Liang. Design and analysis of defect tolerant
hierarchical sorting networks. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 1(2):219–223, June 1993.

[27] B. Li, M. H. Najafi, and D. J. Lilja. Using Stochastic Computing to
Reduce the Hardware Requirements for a Restricted Boltzmann Machine
Classifier. In Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’16, pages 36–
41, New York, NY, USA, 2016. ACM.

[28] P. Li, D. Lilja, W. Qian, K. Bazargan, and M. Riedel. Computation on
stochastic bit streams digital image processing case studies. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 22(3):449–462,
2014.

[29] B. A. Mahafzah. Performance assessment of multithreaded quicksort
algorithm on simultaneous multithreaded architecture. The Journal of
Supercomputing, 66(1):339–363, Oct 2013.

[30] M. H. Najafi, S. Jamali-Zavareh, D. J. Lilja, M. D. Riedel, K. Bazargan,
and R. Harjani. Time-Encoded Values for Highly Efficient Stochastic
Circuits. IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
25(5):1–14, 2017.

[31] M. H. Najafi and D. J. Lilja. High-Speed Stochastic Circuits using
Synchronous Analog Pulses. In 2017 22nd ASP-DAC, pages 481–487,
Jan 2017.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 10

[32] M. H. Najafi, D. J. Lilja, M. Riedel, and K. Bazargan. Power and Area
Efficient Sorting Networks using Unary Processing. In Computer Design
(ICCD), 2017 IEEE 35th International Conference on, Nov 2017.

[33] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan. Polysyn-
chronous Clocking: Exploiting the Skew Tolerance of Stochastic Cir-
cuits. IEEE Transactions on Computers, 66(10):1734–1746, Oct 2017.

[34] M. H. Najafi and M. E. Salehi. A Fast Fault-Tolerant Architecture
for Sauvola Local Image Thresholding Algorithm Using Stochastic
Computing. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 24(2):808–812, Feb 2016.

[35] E. Nikahd, P. Behnam, and R. Sameni. High-speed hardware imple-
mentation of fixed and runtime variable window length 1-d median
filters. IEEE Transactions on Circuits and Systems II: Express Briefs,
63(5):478–482, May 2016.

[36] D. S. K. Pok, C. I. H. Chen, J. J. Schamus, C. T. Montgomery, and
J. B. Y. Tsui. Chip design for monobit receiver. IEEE Transactions on
Microwave Theory and Techniques, 45(12):2283–2295, Dec 1997.

[37] W. Poppelbaum. Burst processing: A deterministic counterpart to
stochastic computing. In Proceedings of the 1st International Symposium
on Stochastic Computing and its Applications. 1978.

[38] W. Poppelbaum, A. Dollas, J. Glickman, and C. O’Toole. Unary
processing. In Advances in Computers, volume 26, pages 47 – 92.
Elsevier, 1987.

[39] W. J. Poppelbaum, C. Afuso, and J. W. Esch. Stochastic computing
elements and systems. In Proceedings of the Joint Computer Conference,
AFIPS ’67 (Fall), pages 635–644, New York, NY, USA, 1967. ACM.

[40] W. Qian, X. Li, M. Riedel, K. Bazargan, and D. Lilja. An architecture
for fault-tolerant computation with stochastic logic. Computers, IEEE
Trans. on, 60(1):93–105, Jan 2011.

[41] W. Qian and M. Riedel. The synthesis of robust polynomial arithmetic
with stochastic logic. In 45th ACM/IEEE Design Automation Confer-
ence, DAC’08, pages 648–653, 2008.

[42] K. Ratnayake and A. Amer. An fpga architecture of stable-sorting on a
large data volume : Application to video signals. In 2007 41st Annual
Conference on Information Sciences and Systems, pages 431–436, March
2007.

[43] V. Ravinuthula, V. Garg, J. G. Harris, and J. A. B. Fortes. Time-mode
circuits for analog computation. Intern. Journal of Circuit Theory and
Applications, 37(5):631–659, 2009.

[44] D. S. Richards. VLSI median filters. IEEE Trans. on Acoustics, Speech,
and Signal, 38(1):145–153, Jan 1990.

[45] W. Sansen. Analog design essentials, ser. the international series in
engineering and computer science, 2006.

[46] J. Scott. Analysis of two-dimensional median filter hardware implemen-
tations for real-time video denoising. MS thesis, Penn State University,
December 2010.

[47] D. C. Stephens, J. C. R. Bennett, and H. Zhang. Implementing
scheduling algorithms in high-speed networks. IEEE Journal on Selected
Areas in Communications, 17(6):1145–1158, Jun 1999.

[48] Y. Tsividis. Continuous-time digital signal processing. Electronics
Letters, 39(21):1551–1552, Oct 2003.

M. Hassan Najafi received the B.Sc. degree in
computer engineering from University of Isfahan,
Isfahan, Iran, and the M.Sc. degree in computer ar-
chitecture from University of Tehran, Tehran, Iran, in
2011 and 2014, respectively. He is currently working
toward the Ph.D. degree as a research assistant at
ARCTiC Labs in the Department of Electrical and
Computer Engineering, University of Minnesota,
Twin cities. His research interests include stochastic
and approximate computing, computer-aided design
of integrated circuits, low power design, and design-

ing fault tolerant systems. In recognition of his research, he received the
Doctoral Dissertation Fellowship at the University of Minnesota and the Best
Paper Award at the 2017 35th IEEE International Conference on Computer
Design.

David J. Lilja (F06) received the B.S. degree in
computer engineering from Iowa State University in
Ames, IA, USA, and the M.S. and Ph.D. degrees in
electrical engineering from the University of Illinois
at Urbana-Champaign in Urbana, IL, USA. He is
currently the Schnell Professor of Electrical and
Computer Engineering at the University of Min-
nesota in Minneapolis, MN, USA, where he also
serves as a member of the graduate faculties in
Computer Science, Scientific Computation, and Data
Science. Previously, he served ten years as the head

of the ECE department at the University of Minnesota, and worked as a
research assistant at the Center for Supercomputing Research and Develop-
ment at the University of Illinois, and as a development engineer at Tandem
Computers Incorporated in Cupertino, California. He was elected a Fellow of
the Institute of Electrical and Electronics Engineers (IEEE) and a Fellow of
the American Association for the Advancement of Science (AAAS). His main
research interests include computer architecture, parallel processing, computer
systems performance analysis, approximate computing, and storage systems.

Marc D. Riedel (SM12) received the B.Eng. degree
in electrical engineering from McGill University,
Montreal, QC, Canada, and the M.Sc. and Ph.D.
degrees in electrical engineering from the California
Institute of Technology (Caltech), Pasadena, CA,
USA. He is currently an Associate Professor of elec-
trical and computer engineering with the University
of Minnesota, Minneapolis, MN, USA, where he is
a member of the Graduate Faculty of biomedical
informatics and computational biology. From 2004
to 2005, he was a Lecturer of computation and

neural systems with Caltech. He was with Marconi Canada, CAE Electronics,
Toshiba, and Fujitsu Research Labs. Dr. Riedel was a recipient of the Charl
H. Wilts Prize for the Best Doctoral Research in Electrical Engineering at
Caltech, the Best Paper Award at the Design Automation Conference, and the
U.S. National Science Foundation CAREER Award.

Kia Bazargan (SM07) received the B.Sc. degree
in computer science from Sharif University, Tehran,
Iran, and the M.S. and Ph.D. degrees in electri-
cal and computer engineering from Northwestern
University, Evanston, IL, USA, in 1998 and 2000,
respectively. He is currently an Associate Professor
with the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis,
MN, USA.

Dr. Bazargan was a recipient of the US National
Science Foundation Career Award in 2004. He was a

Guest Co-Editor of the ACM Transactions on Embedded Computing Systems
Special Issue on Dynamically Adaptable Embedded Systems in 2003. He was
on the technical program committee of a number of the IEEE/ACM-sponsored
conferences, including Field Programmable Gate Array, Field Programmable
Logic, Design Automation Conference (DAC), International Conference on
Computer-Aided Design, and Asia and South Pacific DAC. He was an
Associate Editor of the IEEE TRANSACTIONS ON COMPUTER-AIDED
DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS from 2005 to 2012.
He is a Senior Member of the IEEE Computer Society.

