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4 ABSTRACT: Chemical reaction networks (CRNs) provide a
5 fundamental model in the study of molecular systems. Widely used
6 as formalism for the analysis of chemical and biochemical systems,
7 CRNs have received renewed attention as a model for molecular
8 computation. This paper demonstrates that, with a new encoding,
9 CRNs can compute any set of polynomial functions subject only to
10 the limitation that these functions must map the unit interval to itself.
11 These polynomials can be expressed as linear combinations of
12 Bernstein basis polynomials with positive coefficients less than or
13 equal to 1. In the proposed encoding approach, each variable is
14 represented using two molecular types: a type-0 and a type-1. The value is the ratio of the concentration of type-1 molecules to
15 the sum of the concentrations of type-0 and type-1 molecules. The proposed encoding naturally exploits the expansion of a
16 power-form polynomial into a Bernstein polynomial. Molecular encoders for converting any input in a standard representation to
17 the fractional representation as well as decoders for converting the computed output from the fractional to a standard
18 representation are presented. The method is illustrated first for generic CRNs; then, an example is mapped to DNA strand-
19 displacement reactions.
20 KEYWORDS: molecular computing, polynomials, DNA strand-displacement reaction, mass-action kinetics

21 I t has long been recognized that, viewed from a mathematical
22 standpoint, a set of chemical reactions can exhibit rich
23 dynamical behavior.1 On the computational front, there has
24 been a wealth of research into efficient methods for simulating
25 chemical reactions, ranging from ordinary differential equations
26 (ODEs)2 to stochastic simulation.3 On the mathematical front,
27 entirely new branches of theory have been developed to
28 characterize chemical dynamics.4 The idea of computation
29 directly with chemical reactions, as opposed to writing
30 computer programs to analyze chemical systems, dates back
31 to the seminal work of Adleman.5 In this context, a chemical
32 reaction network (CRN) transforms input concentrations of
33 molecular types into output concentrations and thus imple-
34 ments computation. It should be noted that the equilibrium
35 concentrations of the output molecules are considered as the
36 computed output of the system.
37 The question of the computational power of chemical
38 reactions has been considered by several authors. Magnasco
39 demonstrated that chemical reactions can compute anything
40 that digital circuits can compute.6 Soloveichik et al.
41 demonstrated that chemical reactions are Turing Universal,
42 meaning that they can compute anything that a computer
43 algorithm can compute.7 This work was applicable to a discrete,
44 stochastic model of chemical kinetics. The computation is
45 probabilistic; the total probability of error of the computation
46 can be made arbitrarily small (but not zero).
47 Either explicitly or implicitly, prior work has considered two
48 types of encodings for the input and output variables of
49 CRNs:8,9

501. The value of each variable corresponds to the
51concentration of a specific molecular type; we will call this
52the direct representation.
532. The value of each variable is represented by the difference
54between the concentrations of a pair of molecular types; we will
55call this the dual-rail representation.9

56In this paper, we introduce a new representation that we call
57the fractional representation. A pair of molecular types is
58assigned to each variable, e.g., (X0,X1) for a variable x. The
59value of the variable is determined by the ratio

= +x
X

X X
[ ]

[ ] [ ]
1

0 1 60(1)

61Evidently, the value is confined to the unit interval [0, 1]. The
62proposed encoding method is inspired by prior work in
63designing stochastic circuits.10−12,15 Such circuits operate on
64randomized bit streams with the values of variables represented
65as the fraction of 1s versus 0s in the streams. In a sense, the
66main contribution of this paper is the application of this theory
67from stochastic circuit design to CRNs.
68On the basis of the fractional representation in eq 1, we
69propose a CRN framework for computing univariate
70polynomials that map the unit interval [0,1] to itself. We
71demonstrate that a CRN exists that computes any such
72polynomial. The full system consists of an encoder, the
73 f1computation CRNs, and a decoder, as shown in Figure 1. The
74encoder converts the input molecular type, X (for 0 ≤ [X] ≤
751), into two molecular types, X0 and X1, such that
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76 The decoder converts the ratio of two molecular types, Y0 and
77 Y1, into a single molecular type, Y, as the final output such that

= +Y
Y

Y Y
[ ]

[ ]
[ ] [ ]

1

0 1

78 We describe the design of the encoder and decoder in the
79 Encoding and Decoding section.
80 We first illustrate the computation CRN block with a simple
81 example. Consider the following CRN
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85 Although not obvious, it may be shown that this CRN
86 computes the function

= − +y x x x( ) 3
4

3
4

2

87 (2)

88 where 0 ≤ x ≤ 1.
89 Note that any unit could have been used in this paper for the
90 molecular concentrations; nM has been used due to the
91 practical utility.
92 The CRN is composed of two sets of reactions: the three
93 reactions in group (a) are referred as control generating
94 reactions, and the six reactions in group (b) represent the

95transferring reactions. The control generating reactions
96generate the molecules that control the transferring reactions
97(similar to the way that the control bits select outputs from
98inputs with multiplexors in electronic circuits). However, the
99control molecules represent analog values and transfer inputs to
100outputs proportionally. We note that the transferring reactions
101are conceptually similar to the molecular reactions proposed in
102ref 13 for implementing Markov Chains.
103We provide details regarding the synthesis method in the
104Synthesizing CRNs for Computing Polynomials section. Here,
105we simply note that, given a polynomial y(x), the first step is to
106convert it to its Bernstein polynomial equivalent g(x). For the
107polynomial y(x) in eq 2

= − + − +g x x x x x( ) 3
4

[(1 ) ] 1
4

[2 (1 )] 1
2

2 2

108(3)

109(A discussion of the math behind this is given in the Proof
110Based on the Mass-Action Kinetics section.)
111Note that the coefficients of the Bernstein polynomial
112correspond to the values of bi for i = 0,1,2. These values are
113used to initialize the molecular types Bi,0 and Bi,1 for i = 0,1,2. In
114fact, computing with chemical reaction networks consists of
115two parts. First, choose a CRN as a means of building the
116dynamical system. Second, simulate a purposefully chosen
117dynamical system to equilibrium. By introducing the Bi,0 and
118Bi,1 species, the concentrations of which are time-invariant and
119fixed to what would have been rate constants, we propose
120changes to the first part that result in the same dynamical
121system simulated in the second part.
122Suppose we want to evaluate y(x) at x = 0.5. We would
123initialize X0 = X1 = 0.5 nM such that

= + =x
X

X X
[ ]

[ ] [ ]
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0 1 124(4)

125We would set the initial concentration of the other types to
126zero. The control generating reactions use X0 and X1 to
127produce the control molecules S0, S1, and S2, and transferring
128reactions use control molecules to compute the output. The
129output value, y(x), is computed as the ratio of the final
130concentrations of Y0 and Y1, i.e.,

= +y x
Y

Y Y
( )

[ ]
[ ] [ ]

1

0 1 131(5)

132The simulation results for evaluating this example at x = 0.5
133using a continuous mass-action kinetics model are shown in
134 f2Figure 2. As time t → ∞, the ratio

+
Y t

Y t Y t
[ ( )]

[ ( )] [ ( )]
1

0 1 135(6)

136approaches the correct value of y(0.5) = 0.4375.

137■ RESULTS AND DISCUSSION
138Representation. In our method, the Bernstein representa-
139tion of a polynomial is a key element. We briefly describe the
140relevant mathematics. The family of n + 1 polynomials of the
141form

= − =−⎜ ⎟⎛
⎝

⎞
⎠B x n

i
x x i n( ) (1 ) , 0, ...,i n

i n i
,

142(7)

143are called Bernstein basis polynomials of degree n. A linear
144combination of Bernstein basis polynomials of degree n,

Figure 1. Whole system performing computation in fractional
representation.
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146 is a Bernstein polynomial of degree n. The bi,ns are called
147 Bernstein coefficients.
148 Polynomials are usually represented in power form, i.e.,

∑=
=

y x a x( )
i

n

i n
i

0
,

149 (9)

150 We can convert such a power-form polynomial of degree n into
151 a Bernstein polynomial of degree n. The conversion from the
152 power-form coefficients, ai,n, to the Bernstein coefficients, bi,n, is
153 a closed-form expression
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0

,
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155 For a proof of this, the reader is referred to ref 14.
156 Generally speaking, a power-form polynomial of degree n can
157 be converted into an equivalent Bernstein polynomial of degree
158 greater than or equal to n. The coefficients of a Bernstein
159 polynomial of degree m+1 (m ≥ n) can be derived from the
160 Bernstein coefficients of an equivalent Bernstein polynomial of
161 degree m as
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163 Again, for a proof, the reader is referred to ref 14.
164 By encoding the values of variables as the ratio of the
165 concentrations of two molecular types,

= +x
X

X X
[ ]

[ ] [ ]
1

0 1

166 we can only represent numbers between 0 and 1. Accordingly,
167 our method synthesizes functions that map the unit interval
168 [0,1] onto itself. The method can also synthesize functions that
169 map the unit interval to the negative unit interval [−1,0]. This

170computes the negative of a function that maps the unit interval

171to itself. As was shown in Example 1, the coefficients of the

172polynomials that we compute are also represented in this

173fractional form. Fortunately, Qian et al. proved that any

174polynomial that maps the unit interval onto the unit interval

175can be converted into a Bernstein polynomial with all
176coefficients in the unit interval.15

177Synthesizing CRNs for Computing Polynomials. In this

178section, we present a systematic methodology for synthesizing

179CRNs that can compute polynomials. As discussed in the

180previous section, we assume that the target polynomial is given

181in Bernstein form with all coefficients in the unit interval. The

182method is composed of two parts, designing the CRN and

183initializing certain types to specific values, as discussed in the
184following section.

185Designing the CRN. The CRN reactions consist of two sets

186of reactions that we call the control generating reactions and
187the transferring reactions.

188First, consider the control generating reactions. When our

189proposed CRN is computing a polynomial of degree m, each

190control generating reaction should have m reactants. The

191reactions consist of all possible combinations of m molecules

192chosen from X0 and X1. These (m + 1) reactions are listed in eq

19312. In the first reaction of eq 12, all reactants are chosen from

194molecules of X0 and produce molecules of S0. In the second, (m

195− 1) molecules of X0 and one molecule of X1 are combined to

196produce molecules of S1. Similarly, the (i + 1)st reaction

197contains i molecules of X1 and (m − i) molecules of X0. The

198total number of possible reactions, as shown in eq 12, is (m +
1991).

→ +
+ − → + + −

+ − → + + −
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⋮
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⎛
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⎞
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i

S X iX m i X
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( 1) ( 1)

2 ( 2)
2

2 ( 2)

( ) ( )i

m

0 0 0

1 0 1 1 0

1 0 2 1 0

1 0 0,1 1 0

1 1
200(12)

201A degree m Bernstein polynomial has (m + 1) Bernstein

202coefficients. We consider (m + 1) pairs of types (Bj,0, Bj,1) for j

203= 0,1, ..., m to represent these coefficients. The transferring

204reactions produce the final output, Y0 or Y1, from the products

205of the control generating reactions, the Sjs. They do so

206proportionally to the Bernstein coefficients. Sj goes to Y0 if it

207combines with Bj,0 and goes to Y1 if it combines with Bj,1.

208Accordingly, there are 2(m + 1) transferring reactions as listed
209in eq 13.

Figure 2. Simulation results for the CRN implementing the
polynomial = − +y x x x( ) 3

4
2 3

4
at x = 0.5. These were obtained

from an ODE simulation of the mass-action kinetics.
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211 The number of required reactions for the implementation of
212 a Bernstein polynomial of degree m is equal to 3m + 5. We also

t1 213 need 3m + 7 molecular types listed in Table 1.

214 Initialization. We initialize the pair (Bj,0,Bj,1) according to

215 the Bernstein coefficients bj,m, i.e., we have

= +b
B

B B
[ ]

[ ] [ ]j m
j

j j
,

,1

,0 ,1216 (14)

217 For simplicity, we initialize Bj,0 and Bj,1 such that the sum

218 [Bj,0] + [Bj,1] is the same arbitrary value for all js. Call the sum

219 [Bj,0] + [Bj,1] = B for all js. In fact, we first calculate the values of

220 Bernstein coefficients using eq 10 and then initialize Bj,1 and Bj,0

221 as [Bj,1] = B × bj,m and [Bj,0] = B−[Bj,1]. (For the example in

222 the introduction, we considered B = 1 nM.)

223 We initialize the corresponding molecular type in the input

224 pair (X0, X1) based on the value xin at which the polynomial is

225 to be evaluated, i.e.,

= +x
X

X X
[ ]

[ ] [ ]in
1

0 1226 (15)

227 All of the other intermediate types, i.e., the Sjs as well as the

228 output types Y0 and Y1, are initialized to zero.

229 Proof Based on the Mass-Action Kinetics. We use an

230 ordinary differential model of the mass-action kinetics to prove

231 the correctness of our proposed CRN design.

232 The control generating reactions (eq 12) produce type Sj

233 whereas the transferring reactions (eq 13) consume them.

234 Therefore, the ODEs for type Sj are
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At equilibrium,
S
t

d[ ]

d
j = 0 for all js. Accordingly, we can

236compute the Sjs as
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238
Now, we write the ODEs for the output types Y0 and Y1. On

239the basis of the transferring reactions (eq 13), we have
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241At equilibrium, = = 0Y
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243
According to the fractional encoding, the output value y is

244calculated as
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246With the assumption that ([Bj,0] + [Bj,1]) = B for all js, we have

Table 1. Number of Required Molecular Types in the
Proposed CRN for a Polynomial of Degree m

represented molecular type number of molecular types

X0, X1 2
Sj m + 1
Bi,0, Bi,1 2m + 2
Y0, Y1 2
total 3m + 7
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248 By substituting [Si] from eq 16,
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254 Eq 22 is exactly the expression for a Bernstein polynomial
255 representation of degree m for y(x). Thus, this CRN computes
256 y(x). Note that y is finite because 0 ≤ [X0] ≤ 1 and 0 ≤ [X1] ≤
257 1. Therefore, for every initial state of interest, our proposed
258 CRN computes a stable equilibrium state.
259 Note that, in general, all the rate constants in our CRNs are
260 assumed to be equal to each other. More precisely, on the basis
261 of the proof, there are three categories of reactions with respect
262 to the rate constants: the control generating reactions, the
263 transferring reactions, and the last two annihilation reactions of
264 the transferring reactions. All reactions in each of these
265 categories are required to have the same rate constant.
266 Encoding and Decoding. Our proposed CRNs perform
267 computations on the fractional representation in eq 1. In this
268 section, we present chemical reactions that convert between
269 this representation and a “direct representation”, where the
270 value of each variable is represented directly the concentration
271 of a molecular type.
272 Encoding. Let a molecular type X denote the direct
273 representation of the input value x and (X0,X1) denote the
274 molecular pair for its fractional representation. Assume that the
275 total concentration of X0 and X1 is 1 nM. Then, we have
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277Because the concentration values for X1 and X are the same
278and subsequent stages do not consume them, type X can be
279directly used as type X1 in the fractional representation.
280For generating X0, we must implement subtraction, which is
281a little tricky. We designed the following reactions (eq 24) for
282this task. T is initialized to 1 nM, and B is an intermediate
283molecular type with an initial value of zero.
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285For these reactions, the ODEs are

= − −

= −

X
t

T B X X

B
t

X B X

d[ ]
d

[ ] [ ][ ] [ ]

d[ ]
d

[ ] [ ][ ]

0
0 0

1 0
286(25)

287and at equilibrium, we have
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290By substituting [B][X0] from eq 27 to 26, we have

= −X T X[ ] [ ] [ ]0 1 291(28)

292Eq 28 is valid when [T] ≥ [X1]. Because [X0] cannot be
293negative, for [T] ≤ [X1], [X0] = 0. Thus, the equilibrium ODE
294solution for these reactions is

=
− ≥

≤⎪

⎪⎧⎨
⎩

X
T X T X

T X
[ ]

[ ] [ ] if [ ] [ ]

0 if [ ] [ ]0
1 1

1 295(29)

296If T is initialized to 1 nM, the reactions in 24 compute [X0] = 1
297− [X1].
298Thus, the reactions in 24 encode the input concentration of
299X as a pair of concentrations (X0,X1) in a fractional
300representation. Here, in fact, X1 can substitute for X, as
301discussed above. Note that the concentration of X0 is initialized
302to zero at the outset.
303Decoding. For the output of our molecular computing
304system, we convert the fractional representation back to a direct
305representation. If the fractional output is represented by the
306pair of molecules (Y0,Y1) and the direct output by Y, we have

= +Y
Y

Y Y
[ ]

[ ]
[ ] [ ]

1

0 1 307(30)

308In other words, we need to compute the summation of [Y0]
309and [Y1] and then the ratio of [Y1] over this summation. For
310this computation, we use the reactions proposed in ref 16. We
311will show that the reactions in 31 compute [Y′] = [Y0] + [Y1]
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312 and the reactions in 32 compute the final output

= =′ +Y[ ] Y
Y

Y
Y Y

[ ]
[ ]

[ ]
[ ] [ ]

1 1

0 1
.

→ + ′
→ + ′

′ → ⌀

Y Y Y

Y Y Y

Y

0 0

1 1

313 (31)

→ +
′ + → ′

Y Y Y

Y Y Y
1 1

314 (32)

315 According to the ODEs of the reactions in 31, we have

′ = + − ′Y
t

Y Y Yd[ ]
d

[ ] [ ] [ ]0 1

316 and at equilibrium

′ = ⇒ ′ = +Y
t

Y Y Yd[ ]
d

0 [ ] [ ] [ ]0 1
317 (33)

318 Similarly, for the reactions in 32, we have

= − ′Y
t

Y Y Yd[ ]
d

[ ] [ ][ ]1

319 and the equilibrium value of [Y] is

= ⇒ = ′ = +
Y
t

Y
Y
Y

Y
Y Y

d[ ]
d

0 [ ]
[ ]
[ ]

[ ]
[ ] [ ]

1 1

0 1320 (34)

321 Therefore, the set of reactions in 31 and 32 implement the

322 decoding of the output.

323 ■ METHODS AND MATERIALS

324 DNA Implementation. The proposed CRN for computing

325 polynomials is general in the sense that it can be implemented

326 by any chemical or biochemical system with mass-action

327 kinetics. As a practical medium, we choose DNA strand-

328 displacement reactions. Indeed, Soleveichik et al. demonstrated

329 that DNA strand-displacement reactions can emulate the

330 kinetics of any CRN.17 They presented a software tool that

331 maps chemical CRNs to DNA reactions.
332 We illustrate with the following target function

= + − +y x x x x( ) 1
4

9
8

15
8

5
4

2 3

333 (35)

334 The CRN includes reactions for the encoder, computation,

335 and decoder parts. The Bernstein polynomial for y(x) is

= − + − + − +g x x x x x x x( ) 2
8

[(1 ) ] 5
8

[3 (1 ) ] 3
8

[3 (1 )] 6
8

3 2 2 3

336 (36)

337 From the Bernstein coefficients, we initialize the types (Bi,0,Bi,1)

338 for i = 0,1,2,3 as

=
= ⇒ + =

=
= ⇒ + =

=
= ⇒ + =

=
= ⇒ + =

⎫
⎬⎪
⎭⎪
⎫
⎬⎪
⎭⎪
⎫
⎬⎪
⎭⎪
⎫
⎬⎪
⎭⎪

B

B

B

B

B

B

B

B

[ ] 0.6 nM

[ ] 0.2 nM
0.2

0.6 0.2
2
8

[ ] 0.3 nM

[ ] 0.5 nM
0.5

0.3 0.5
5
8

[ ] 0.5 nM

[ ] 0.3 nM
0.3

0.5 0.3
3
8

[ ] 0.2 nM

[ ] 0.6 nM
0.6

0.2 0.6
6
8

0,0

0,1

1,0

1,1

2,0

2,1

3,0

3,1

339(37)

340We map our design to DNA strand-displacement reactions
341and evaluate it for 11 different input values between 0 and 1.
342The values of y computed by these CRNs are plotted against x
343 f3t2and shown with the target polynomial y(x) in Figure 3. Table 2
344tabulates the computed values of y(x) and the corresponding
345errors.

346For the DNA implementation, we used the parameters based
347on the examples in ref 17. The maximum strand displacement
348rate constant is qmax = 106 M−1 s−1, and the initial concentration
349of auxiliary complexes is set to Cmax = 10−5 M. If the
350concentration of auxiliary species, Cmax, is much larger than the
351maximum concentration of other species (i.e., in proposed
352CRNs, Cmax ≫ 1 nM), then, as described in ref 17, we can
353assume that over the simulation time the auxiliary concen-
354trations remain effectively constant. Therefore, DNA reactions
355correctly emulate the CRN independent of the auxiliary
356concentrations. Note that, for this assumption, the simulation
357time and reaction rates should not be very large values.17

358Although these requirements have been met in our simulations,
359errors exist.
360As we describe later, the error stems from the fact that each
361molecular reaction is implemented by a sequence of DNA

Figure 3. Values of y(x) computed by a DNA implementation of
proposed CRN. Blue line: target y(x). Red stars: computed by DNA
reactions.
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362 strand displacement reactions; the concentrations of auxiliary
363 molecules, Cmax, is bounded. In fact, if Cmax → ∞, the DNA
364 simulation results converge to ODE simulation results. Further
365 details concerning the analysis of errors when implementing
366 CRNs with DNA strand displacement reactions, as well as a
367 proof of convergence of a DNA implementation to the target
368 CRN, can be found in the Supporting Information of refs 17
369 and 18.
370 Using the method presented in ref 17, each chemical reaction
371 with m reactants and nonzero products can be emulated by m +
372 1 DNA strand displacement reactions. For example, bimolec-
373 ular reactions are mapped to three DNA strand displacement
374 reactions. To illustrate this, we present a sequence of DNA
375 strand displacement reactions that are used to simulate a
376 bimolecular reaction with three products.
377 As described in refs 17 and 18, three DNA reactions, R1−R3

f4 378 shown in Figure 4, implement the molecular reaction

+ → + +A B A B C
ki . Unimolecular reactions without prod-

379 uct, e.g., Y → ⌀, can be implemented by a single DNA strand
f5 380 displacement reaction. The DNA reaction shown in Figure 5

381 emulates the reaction → ⌀A
ki . The toehold of strand A binds to

382its complementary part of gate molecule G and produces
383double strand W1 and single strand W2. Because W1 and W2
384cannot bind together, the reaction is unidirectional.
385 t3Table 3 summarizes the number of chemical and DNA
386strand displacement reactions for each group in our proposed
387method for computing the polynomial of degree m.

388■ CONCLUSIONS
389We have introduced a new encoding for computation with
390CRNs: the value corresponding to each variable consists of the
391ratio of the concentration of a molecular type to the sum of two
392types. On the basis of this fractional representation, we
393proposed a method for computing arbitrary polynomials that
394map the unit interval [0,1] to itself or to [−1,0]. This is a rich
395class of functions.
396Computation of polynomials with chemical kinetics has been
397attempted before by Buisman et al.16 Compared to our method,
398their method requires fewer molecular types and fewer
399reactions (m molecular types and 3m molecular reactions for

Table 2. Accuracy of a DNA Strand Displacement
Implementation of a CRN Computing

= + − +y x x x x( ) 1
4

9
8

15
8

2 5
4

3 Using the Proposed Method

xin computed y(x) error (%)

0 0.261 4.4
0.1 0.3626 5
0.2 0.4207 2.5
0.3 0.4588 1.4
0.4 0.4838 0.8
0.5 0.5010 0.2
0.6 0.5180 0.4
0.7 0.5426 0.9
0.8 0.5823 1.3
0.9 0.6356 3
1 0.723 4

Figure 4. DNA strand displacement reactions that emulate reaction + → + +A B A B C
ki .

Figure 5. DNA strand displacement reaction that emulates reaction

→A
ki ⌀.

Table 3. Number of Chemical and DNA Strand-
Displacement Reactions for Each Group of the Proposed
CRN for Computation of a Bernstein Polynomial of Degree
m

group of
reactions

type of chemical
reaction

number of
chemical
reactions

number of DNA
reactions

control
generating

reactions with m
reactants

m + 1 (m + 1) × (m + 1)

transferring bimolecular 2m + 2 (2m + 2) × 3
unimolecular
without product

2 2 × 1

total 3m + 5 m2 + 8m + 9
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400 a complete polynomial of degree m). However, unlike our
401 approach, their CRNs are dependent on reaction rates. In fact,
402 for each coefficient of the desired polynomial, they need a
403 distinct reaction rate. This is unrealistic. Note that our approach
404 only requires a single rate.
405 Soloveichik et al.,7 as well as earlier work,6,19,20 attempted to
406 achieve Turing universality with chemical reactions. Although it
407 is possible to compute polynomials with their CRNs, they did
408 not provide a systematic framework for doing so.
409 The fractional representation that we propose is a non-
410 standard representation. However, we note that it is similar to
411 encodings found in nature. Many biological systems have
412 species with two distinct states. For example, it is common for
413 an enzyme to have active and inactive states. The ratio of the
414 concentrations of the two states is a meaningful value. This is
415 quite analogous to our representation.
416 Clearly, the primary interest of this work is theoretical. CRNs
417 are a fundamental model of computation, abstract yet
418 conforming to the physical behavior of chemical systems.
419 Delineating the range of behaviors of such systems has
420 intellectual merit. These results may also have practical
421 applications.
422 Control theory has played a remarkable role in mathematical
423 biology, providing a framework for modeling and designing the
424 dynamic behavior of systems such as biological oscillators.21−23

425 Polynomials play a central role in control and oscillation. In
426 fact, the transfer function of a control system, which is the ratio
427 of its output to its input in the Laplace domain, is the ratio of

428
two polynomials, i.e., = = + ++

+ ++H z( ) A z
B z

a a z a z
b b z b z

( )
( )

n
n

m
m

0 1

0 1
.24 Non-

429 linear feedback in oscillators can be implemented by
430 polynomials.25,26

431 Practitioners in synthetic biology are striving to create
432 “embedded controllers”, viruses and bacteria that are
433 engineered to perform useful molecular computation in situ
434 where needed, for instance, for drug delivery and biochemical
435 sensing. Such embedded controllers may be called upon to
436 perform computation such as filtering or signal processing.
437 Computing polynomial functions is at the core of many of
438 these computational tasks.
439 In future work, we will attempt to optimize the CRNs that
440 we propose for computing polynomials, reducing the number
441 of molecular types as well as the number of reactions. We will
442 also attempt to generalize the method to compute a wider class
443 of operations.
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