Chemical Reaction Networks for Computing Polynomials

${ }_{2}$ Sayed Ahmad Salehi,* Keshab K. Parhi, and Marc D. Riedel
3 Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States

Abstract

45

ABSTRACT: Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding, CRNs can compute any set of polynomial functions subject only to the limitation that these functions must map the unit interval to itself. These polynomials can be expressed as linear combinations of Bernstein basis polynomials with positive coefficients less than or equal to 1 . In the proposed encoding approach, each variable is represented using two molecular types: a type- 0 and a type- 1 . The value is the ratio of the concentration of type- 1 molecules to the sum of the concentrations of type- 0 and type-1 molecules. The proposed encoding naturally exploits the expansion of a power-form polynomial into a Bernstein polynomial. Molecular encoders for converting any input in a standard representation to the fractional representation as well as decoders for converting the computed output from the fractional to a standard representation are presented. The method is illustrated first for generic CRNs; then, an example is mapped to DNA stranddisplacement reactions. KEYWORDS: molecular computing, polynomials, DNA strand-displacement reaction, mass-action kinetics

It has long been recognized that, viewed from a mathematical standpoint, a set of chemical reactions can exhibit rich dynamical behavior. ${ }^{1}$ On the computational front, there has been a wealth of research into efficient methods for simulating chemical reactions, ranging from ordinary differential equations (ODEs) $)^{2}$ to stochastic simulation. ${ }^{3}$ On the mathematical front, entirely new branches of theory have been developed to characterize chemical dynamics. ${ }^{4}$ The idea of computation directly with chemical reactions, as opposed to writing computer programs to analyze chemical systems, dates back to the seminal work of Adleman. ${ }^{5}$ In this context, a chemical reaction network (CRN) transforms input concentrations of molecular types into output concentrations and thus implements computation. It should be noted that the equilibrium concentrations of the output molecules are considered as the computed output of the system.
The question of the computational power of chemical reactions has been considered by several authors. Magnasco demonstrated that chemical reactions can compute anything that digital circuits can compute. ${ }^{6}$ Soloveichik et al. demonstrated that chemical reactions are Turing Universal, meaning that they can compute anything that a computer algorithm can compute. ${ }^{7}$ This work was applicable to a discrete, stochastic model of chemical kinetics. The computation is probabilistic; the total probability of error of the computation can be made arbitrarily small (but not zero).
Either explicitly or implicitly, prior work has considered two types of encodings for the input and output variables of CRNs: ${ }^{8,9}$

1. The value of each variable corresponds to the 50 concentration of a specific molecular type; we will call this 51 the direct representation.
2. The value of each variable is represented by the difference 53 between the concentrations of a pair of molecular types; we will 54 call this the dual-rail representation. ${ }^{9}$

In this paper, we introduce a new representation that we call 56 the fractional representation. A pair of molecular types is 57 assigned to each variable, e.g., $\left(X_{0}, X_{1}\right)$ for a variable x. The 58 value of the variable is determined by the ratio

$$
\begin{equation*}
x=\frac{\left[X_{1}\right]}{\left[X_{0}\right]+\left[X_{1}\right]} \tag{1}
\end{equation*}
$$

Evidently, the value is confined to the unit interval [0, 1]. The 61 proposed encoding method is inspired by prior work in 62 designing stochastic circuits. ${ }^{10-12,15}$ Such circuits operate on 63 randomized bit streams with the values of variables represented 64 as the fraction of 1 s versus 0 s in the streams. In a sense, the 65 main contribution of this paper is the application of this theory 66 from stochastic circuit design to CRNs.
On the basis of the fractional representation in eq 1, we 68 propose a CRN framework for computing univariate 69 polynomials that map the unit interval $[0,1]$ to itself. We 70 demonstrate that a CRN exists that computes any such 71 polynomial. The full system consists of an encoder, the 72 computation CRNs, and a decoder, as shown in Figure 1. The 73 fl encoder converts the input molecular type, X (for $0 \leq[X] \leq 74$ 1), into two molecular types, X_{0} and X_{1}, such that

[^0]

Figure 1. Whole system performing computation in fractional representation.

$$
[X]=\frac{\left[X_{1}\right]}{\left[X_{0}\right]+\left[X_{1}\right]}
$$

$$
[Y]=\frac{\left[Y_{1}\right]}{\left[Y_{0}\right]+\left[Y_{1}\right]}
$$

Set the initial concentrations as

$$
\left.\begin{array}{l}
{\left[B_{0,0}\right]=0.25 n M} \\
{\left[B_{0,1}\right]=0.75 n M}
\end{array}\right\} \Rightarrow b_{0}=\frac{\left[B_{0,1}\right]}{\left[B_{0,0}\right]+\left[B_{0,1}\right]}=\frac{0.75}{0.25+0.75}=\frac{3}{4}
$$

85 Although not obvious, it may be shown that this CRN

$$
\begin{equation*}
y(x)=\frac{3}{4} x^{2}-x+\frac{3}{4} \tag{2}
\end{equation*}
$$

88 where $0 \leq x \leq 1$.
Note that any unit could have been used in this paper for the molecular concentrations; nM has been used due to the practical utility.

The CRN is composed of two sets of reactions: the three reactions in group (a) are referred as control generating 4 reactions, and the six reactions in group (b) represent the
transferring reactions. The control generating reactions 95 generate the molecules that control the transferring reactions 96 (similar to the way that the control bits select outputs from 97 inputs with multiplexors in electronic circuits). However, the 98 control molecules represent analog values and transfer inputs to 99 outputs proportionally. We note that the transferring reactions 100 are conceptually similar to the molecular reactions proposed in 101 ref 13 for implementing Markov Chains.

102
We provide details regarding the synthesis method in the 103 Synthesizing CRNs for Computing Polynomials section. Here, 104 we simply note that, given a polynomial $y(x)$, the first step is to 105 convert it to its Bernstein polynomial equivalent $g(x)$. For the 106 polynomial $y(x)$ in eq 2 107

$$
\begin{equation*}
g(x)=\frac{3}{4}\left[(1-x)^{2}\right]+\frac{1}{4}[2 x(1-x)]+\frac{1}{2} x^{2} \tag{3}
\end{equation*}
$$

(A discussion of the math behind this is given in the Proof 109 Based on the Mass-Action Kinetics section.)

Note that the coefficients of the Bernstein polynomial 111 correspond to the values of b_{i} for $i=0,1,2$. These values are 112 used to initialize the molecular types $B_{i, 0}$ and $B_{i, 1}$ for $i=0,1,2$. In 113 fact, computing with chemical reaction networks consists of 114 two parts. First, choose a CRN as a means of building the 115 dynamical system. Second, simulate a purposefully chosen 116 dynamical system to equilibrium. By introducing the $B_{i, 0}$ and 117 $B_{i, 1}$ species, the concentrations of which are time-invariant and 118 fixed to what would have been rate constants, we propose 119 changes to the first part that result in the same dynamical 120 system simulated in the second part.

Suppose we want to evaluate $y(x)$ at $x=0.5$. We would 122 initialize $X_{0}=X_{1}=0.5 \mathrm{nM}$ such that 123

$$
\begin{equation*}
x=\frac{\left[X_{1}\right]}{\left[X_{0}\right]+\left[X_{1}\right]}=0.5 \tag{4}
\end{equation*}
$$

We would set the initial concentration of the other types to 125 zero. The control generating reactions use X_{0} and X_{1} to 126 produce the control molecules S_{0}, S_{1}, and S_{2}, and transferring 127 reactions use control molecules to compute the output. The 128 output value, $y(x)$, is computed as the ratio of the final 129 concentrations of Y_{0} and Y_{1}, i.e.,

$$
\begin{equation*}
y(x)=\frac{\left[Y_{1}\right]}{\left[Y_{0}\right]+\left[Y_{1}\right]} \tag{5}
\end{equation*}
$$

The simulation results for evaluating this example at $x=0.5132$ using a continuous mass-action kinetics model are shown in 133 Figure 2. As time $t \rightarrow \infty$, the ratio

$$
\begin{equation*}
\frac{\left[Y_{1}(t)\right]}{\left[Y_{0}(t)\right]+\left[Y_{1}(t)\right]} \tag{6}
\end{equation*}
$$

approaches the correct value of $y(0.5)=0.4375$.

RESULTS AND DISCUSSION

Representation. In our method, the Bernstein representa- 138 tion of a polynomial is a key element. We briefly describe the 139 relevant mathematics. The family of $n+1$ polynomials of the 140 form

$$
\begin{equation*}
B_{i, n}(x)=\binom{n}{i} x^{i}(1-x)^{n-i}, \quad i=0, \ldots, n \tag{7}
\end{equation*}
$$

are called Bernstein basis polynomials of degree n. A linear 143 combination of Bernstein basis polynomials of degree n,

Figure 2. Simulation results for the CRN implementing the polynomial $y(x)=\frac{3}{4} x^{2}-x+\frac{3}{4}$ at $x=0.5$. These were obtained from an ODE simulation of the mass-action kinetics.

$$
\begin{equation*}
g(x)=\sum_{i=0}^{n} b_{i, n} B_{i, n}(x) \tag{8}
\end{equation*}
$$

146 is a Bernstein polynomial of degree n. The $b_{i, n} s$ are called 147 Bernstein coefficients.

Polynomials are usually represented in power form, i.e.,

$$
\begin{equation*}
y(x)=\sum_{i=0}^{n} a_{i, n} x^{i} \tag{9}
\end{equation*}
$$

150 We can convert such a power-form polynomial of degree n into 151 a Bernstein polynomial of degree n. The conversion from the 152 power-form coefficients, $a_{i, n}$, to the Bernstein coefficients, $b_{i, n}$, is 153 a closed-form expression

$$
\begin{equation*}
b_{i, n}=\sum_{j=0}^{i} \frac{\binom{i}{j}}{\binom{n}{j}} a_{j, n}, \quad 0 \leq i \leq n \tag{10}
\end{equation*}
$$

155 For a proof of this, the reader is referred to ref 14.

159 p
160 B
161

degree m as

$$
b_{i, m+1}= \begin{cases}b_{0, m} & i=0 \tag{11}\\ \left(1-\frac{i}{m+1}\right) b_{i, m}+\frac{i}{m+1} b_{i-1, m} & 1 \leq i \leq m \\ b_{m, m} & i=m+1\end{cases}
$$

162
163 Again, for a proof, the reader is referred to ref 14.
164 By encoding the values of variables as the ratio of the 165 concentrations of two molecular types,

$$
x=\frac{\left[X_{1}\right]}{\left[X_{0}\right]+\left[X_{1}\right]}
$$

166 we can only represent numbers between 0 and 1 . Accordingly, 167 our method synthesizes functions that map the unit interval 168 [0,1] onto itself. The method can also synthesize functions that 169 map the unit interval to the negative unit interval $[-1,0]$. This
computes the negative of a function that maps the unit interval 170 to itself. As was shown in Example 1, the coefficients of the polynomials that we compute are also represented in this fractional form. Fortunately, Qian et al. proved that any polynomial that maps the unit interval onto the unit interval can be converted into a Bernstein polynomial with all coefficients in the unit interval. ${ }^{15}$

Synthesizing CRNs for Computing Polynomials. In this section, we present a systematic methodology for synthesizing 178 CRNs that can compute polynomials. As discussed in the previous section, we assume that the target polynomial is given in Bernstein form with all coefficients in the unit interval. The method is composed of two parts, designing the CRN and initializing certain types to specific values, as discussed in the following section.

Designing the CRN. The CRN reactions consist of two sets of reactions that we call the control generating reactions and the transferring reactions.
First, consider the control generating reactions. When our ${ }_{18}$ proposed CRN is computing a polynomial of degree m, each control generating reaction should have m reactants. The reactions consist of all possible combinations of m molecules chosen from X_{0} and X_{1}. These $(m+1)$ reactions are listed in eq 192 12. In the first reaction of eq 12 , all reactants are chosen from 193 molecules of X_{0} and produce molecules of S_{0}. In the second, (m -1) molecules of X_{0} and one molecule of X_{1} are combined to produce molecules of S_{1}. Similarly, the $(i+1)$ st reaction contains i molecules of X_{1} and $(m-i)$ molecules of X_{0}. The total number of possible reactions, as shown in eq 12 , is $\left(m+{ }_{198}\right.$ $1)$.

$$
\begin{align*}
m X_{0} & \rightarrow S_{0}+m X_{0} \\
X_{1}+(m-1) X_{0} & \rightarrow m S_{1}+X_{1}+(m-1) X_{0} \\
2 X_{1}+(m-2) X_{0} & \rightarrow\binom{m}{2} S_{2}+2 X_{1}+(m-2) X_{0} \\
\vdots & \\
i X_{1}+(m-i) X_{0} & \rightarrow\binom{m}{i} S_{i}+X_{0,1}+i X_{1}+(m-i) X_{0} \\
\vdots & \tag{12}\\
m X_{1} & \rightarrow S_{m}+m X_{1}
\end{align*}
$$

A degree m Bernstein polynomial has $(m+1)$ Bernstein 201 coefficients. We consider $(m+1)$ pairs of types $\left(B_{j, 0}, B_{j, 1}\right)$ for j_{202} $=0,1, \ldots, m$ to represent these coefficients. The transferring 203 reactions produce the final output, Y_{0} or Y_{1}, from the products 204 of the control generating reactions, the $S_{j} s$. They do so 205 proportionally to the Bernstein coefficients. S_{j} goes to Y_{0} if it 206 combines with $B_{j, 0}$ and goes to Y_{1} if it combines with $B_{j, 1} \cdot 207$ Accordingly, there are $2(m+1)$ transferring reactions as listed 208 in eq 13 .

$$
\begin{align*}
S_{0}+B_{0,0} & \rightarrow Y_{0}+B_{0,0} \\
S_{0}+B_{0,1} & \rightarrow Y_{1}+B_{0,1} \\
S_{1}+B_{1,0} & \rightarrow Y_{0}+B_{1,0} \\
S_{1}+B_{1,1} & \rightarrow Y_{1}+B_{1,1} \\
\vdots & \\
S_{m}+B_{m, 0} & \rightarrow Y_{0}+B_{m, 0} \\
S_{m}+B_{m, 1} & \rightarrow Y_{1}+B_{m, 1} \\
Y_{0} & \rightarrow \varnothing \\
Y_{1} & \rightarrow \varnothing \tag{13}
\end{align*}
$$

$$
\begin{aligned}
\frac{\mathrm{d}\left[S_{0}\right]}{\mathrm{d} t}= & {\left[X_{0}\right]^{m}-\left[B_{0,0}\right]\left[S_{0}\right]-\left[B_{0,1}\right]\left[S_{0}\right] } \\
& =\left[X_{0}\right]^{m}-\left[S_{0}\right]\left(\left[B_{0,0}\right]+\left[B_{0,1}\right]\right) \\
\frac{\mathrm{d}\left[S_{1}\right]}{\mathrm{d} t}= & m\left[X_{0}\right]^{m-1}\left[X_{1}\right]-\left[B_{1,0}\right]\left[S_{1}\right]-\left[B_{1,1}\right]\left[S_{1}\right] \\
& =m\left[X_{0}\right]^{m-1}\left[X_{1}\right]-\left[S_{1}\right]\left(\left[B_{1,0}\right]+\left[B_{1,1}\right]\right) \\
\vdots & \\
\frac{\mathrm{d}\left[S_{k}\right]}{\mathrm{d} t}= & \binom{m}{k}\left[X_{0}\right]^{m-k}\left[X_{1}\right]^{k}-\left[B_{k, 0}\right]\left[S_{k}\right]-\left[B_{k, 1}\right]\left[S_{k}\right] \\
& =\binom{m}{k}\left[X_{0}\right]^{m-k}\left[X_{1}\right]^{k}-\left[S_{k}\right]\left(\left[B_{k, 0}\right]+\left[B_{k, 1}\right]\right) \\
\vdots & \frac{\mathrm{d}\left[S_{m}\right]}{\mathrm{d} t}= \\
& {\left[X_{1}\right]^{m}-\left[B_{m, 0}\right]\left[S_{m}\right]-\left[B_{m, 1}\right]\left[S_{m}\right] } \\
& =\left[X_{1}\right]^{m}-\left[S_{m}\right]\left(\left[B_{m, 0}\right]+\left[B_{m, 1}\right]\right)
\end{aligned}
$$

At equilibrium, $\frac{\mathrm{d}\left[\rho_{j}\right]}{\mathrm{d} t}=0$ for all js. Accordingly, we can compute the $S_{j} \mathrm{~s}$ as

$$
\begin{equation*}
\left[S_{j}\right]=\frac{\binom{m}{j}\left[X_{0}\right]^{m-j}\left[X_{1}\right]^{j}}{\left[B_{j, 0}\right]+\left[B_{j, 1}\right]} \quad 0 \leq j \leq m \tag{16}
\end{equation*}
$$

Now, we write the ODEs for the output types Y_{0} and Y_{1}. On the basis of the transferring reactions (eq 13), we have 239

$$
\begin{align*}
& \frac{\mathrm{d}\left[Y_{0}\right]}{\mathrm{d} t}=\left[B_{0,0}\right]\left[S_{0}\right]+\left[B_{1,0}\right]\left[S_{1}\right]+\cdots+\left[B_{m, 0}\right]\left[S_{m}\right]-\left[Y_{0}\right] \\
& \frac{\mathrm{d}\left[Y_{1}\right]}{\mathrm{d} t}=\left[B_{0,1}\right]\left[S_{0}\right]+\left[B_{1,1}\right]\left[S_{1}\right]+\cdots+\left[B_{m, 1}\right]\left[S_{m}\right]-\left[Y_{1}\right] \tag{17}
\end{align*}
$$

At equilibrium, $\frac{\mathrm{d}\left[Y_{0}\right]}{\mathrm{d} t}=\frac{\mathrm{d}\left[Y_{1}\right]}{\mathrm{d} t}=0$ and

$$
\begin{align*}
& {\left[Y_{0}\right]=\left[B_{0,0}\right]\left[S_{0}\right]+\left[B_{1,0}\right]\left[S_{1}\right]+\cdots+\left[B_{m, 0}\right]\left[S_{m}\right]} \\
& {\left[Y_{1}\right]=\left[B_{0,1}\right]\left[S_{0}\right]+\left[B_{1,1}\right]\left[S_{1}\right]+\cdots+\left[B_{m, 1}\right]\left[S_{m}\right]} \tag{18}
\end{align*}
$$

According to the fractional encoding, the output value y is calculated as

$$
\begin{align*}
y= & \frac{\left[Y_{1}\right]}{\left[Y_{0}\right]+\left[Y_{1}\right]} \\
= & \left\{\left[B_{0,1}\right]\left[S_{0}\right]+\left[B_{1,1}\right]\left[S_{1}\right]+\ldots+\left[B_{m, 1}\right]\left[S_{m}\right]\right\} \\
& /\left\{\left(\left[B_{0,0}\right]\left[S_{0}\right]+\left[B_{1,0}\right]\left[S_{1}\right]+\ldots+\left[B_{m, 0}\right]\left[S_{m}\right]\right)\right. \\
& \left.+\left(\left[B_{0,1}\right]\left[S_{0}\right]+\left[B_{1,1}\right]\left[S_{1}\right]+\cdots+\left[B_{m, 1}\right]\left[S_{m}\right]\right)\right\} \tag{19}
\end{align*}
$$

With the assumption that $\left(\left[B_{j, 0}\right]+\left[B_{j, 1}\right]\right)=B$ for all $j s$, we have 246

$$
\begin{align*}
y= & \left\{\left[B_{0,1}\right]\left[S_{0}\right]+\left[B_{1,1}\right]\left[S_{1}\right]+\cdots+\left[B_{m, 1}\right]\left[S_{m}\right]\right\} \\
& /\left\{\left(\left[B_{0,0}\right]+\left[B_{0,1}\right]\right)\left[S_{0}\right]+\left(\left[B_{1,0}\right]+\left[B_{1,1}\right]\right)\left[S_{1}\right]+\cdots\right. \\
& \left.+\left(\left[B_{m, 0}\right]+\left[B_{m, 1}\right]\right)\left[S_{m}\right]\right\} \\
= & \frac{\left[B_{0,1}\right]\left[S_{0}\right]+\left[B_{1,1}\right]\left[S_{1}\right]+\cdots+\left[B_{m, 1}\right]\left[S_{m}\right]}{B\left(\left[S_{0}\right]+\left[S_{1}\right]+\cdots+\left[S_{m}\right]\right)} \\
= & \frac{\sum_{j=0}^{m}\left[B_{j, 1}\right]\left[S_{j}\right]}{B\left(\sum_{j=0}^{m}\left[S_{j}\right]\right)} \tag{20}
\end{align*}
$$

247
248 By substituting [S_{i}] from eq 16,

249

$$
\begin{equation*}
y=\frac{\sum_{j=0}^{m}\left[B_{j, 1}\right] \frac{\binom{m}{j}\left[X_{0}\right]^{m-j}\left[X_{1}\right]^{j}}{B}}{B\left(\sum_{j=0}^{m} \frac{\binom{m}{j}\left[X_{0}\right]^{m-j}\left[X_{1}\right]^{j}}{B}\right)} \tag{21}
\end{equation*}
$$

We know that $\sum_{j=0}^{m}\binom{m}{j}\left[X_{0}\right]^{m-j}\left[X_{1}\right]^{j}=\left(\left[X_{0}\right]+\left[X_{1}\right]\right)^{m}$ due 251 to binomial theorem; therefore, the denominator can be 252 replaced by $\left(\left[X_{0}\right]+\left[X_{1}\right]\right)^{m}$.

$$
\begin{align*}
y & =\frac{\sum_{j=0}^{m}\left[B_{j, 1}\right] \frac{\binom{m}{j}\left[X_{0} m^{m-j}\left[X_{1}\right]^{j}\right.}{B}}{\left(\left[X_{0}\right]+\left[X_{1}\right]\right)^{m}} \\
& =\sum_{j=0}^{m} \frac{\left[B_{j, 1}\right]}{B}\binom{m}{j} \frac{\left[X_{0}\right]^{m-j}\left[X_{1}\right]^{j}}{\left(\left[X_{0}\right]+\left[X_{1}\right]\right)^{m}} \\
& =\sum_{j=0}^{m} b_{j, m}\binom{m}{j}(1-x)^{m-j} x^{j} \tag{22}
\end{align*}
$$

Eq 22 is exactly the expression for a Bernstein polynomial representation of degree m for $y(x)$. Thus, this CRN computes $y(x)$. Note that y is finite because $0 \leq\left[X_{0}\right] \leq 1$ and $0 \leq\left[X_{1}\right] \leq$ 1. Therefore, for every initial state of interest, our proposed CRN computes a stable equilibrium state.

Note that, in general, all the rate constants in our CRNs are assumed to be equal to each other. More precisely, on the basis of the proof, there are three categories of reactions with respect to the rate constants: the control generating reactions, the transferring reactions, and the last two annihilation reactions of the transferring reactions. All reactions in each of these categories are required to have the same rate constant.

Encoding and Decoding. Our proposed CRNs perform computations on the fractional representation in eq 1. In this section, we present chemical reactions that convert between this representation and a "direct representation", where the value of each variable is represented directly the concentration of a molecular type.
Encoding. Let a molecular type X denote the direct representation of the input value x and (X_{0}, X_{1}) denote the molecular pair for its fractional representation. Assume that the total concentration of X_{0} and X_{1} is 1 nM . Then, we have

$$
\left.\begin{array}{l}
{[X]=\frac{\left[X_{1}\right]}{\left[X_{0}\right]+\left[X_{1}\right]}} \tag{23}\\
{\left[X_{0}\right]+\left[X_{1}\right]=1 \mathrm{nM}}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
{\left[X_{1}\right]=[X]} \\
{\left[X_{0}\right]=1-\left[X_{1}\right]}
\end{array}\right.
$$

Because the concentration values for X_{1} and X are the same 277 and subsequent stages do not consume them, type X can be 278 directly used as type X_{1} in the fractional representation.

For generating X_{0}, we must implement subtraction, which is 280 a little tricky. We designed the following reactions (eq 24) for 281 this task. T is initialized to 1 nM , and B is an intermediate 282 molecular type with an initial value of zero.

$$
\begin{align*}
T & \rightarrow X_{0}+T \\
B+X_{0} & \rightarrow \varnothing \\
X_{1} & \rightarrow X_{1}+B \\
X_{0} & \rightarrow \varnothing \tag{24}
\end{align*}
$$

For these reactions, the ODEs are

$$
\begin{align*}
\frac{\mathrm{d}\left[X_{0}\right]}{\mathrm{d} t} & =[T]-[B]\left[X_{0}\right]-\left[X_{0}\right] \\
\frac{\mathrm{d}[B]}{\mathrm{d} t} & =\left[X_{1}\right]-[B]\left[X_{0}\right] \tag{25}
\end{align*}
$$

and at equilibrium, we have

$$
\begin{align*}
& \frac{\mathrm{d}\left[X_{0}\right]}{\mathrm{d} t}=0 \Rightarrow\left[X_{0}\right]=[T]-[B]\left[X_{0}\right] \tag{26}\\
& \frac{\mathrm{d}[B]}{\mathrm{d} t}=0 \Rightarrow\left[X_{1}\right]=[B]\left[X_{0}\right] \tag{27}
\end{align*}
$$

By substituting $[B]\left[X_{0}\right]$ from eq 27 to 26 , we have

$$
\begin{equation*}
\left[X_{0}\right]=[T]-\left[X_{1}\right] \tag{29}
\end{equation*}
$$

Eq 28 is valid when $[T] \geq\left[X_{1}\right]$. Because $\left[X_{0}\right]$ cannot be 292 negative, for $[T] \leq\left[X_{1}\right],\left[X_{0}\right]=0$. Thus, the equilibrium ODE 293 solution for these reactions is

$$
\left[X_{0}\right]= \begin{cases}{[T]-\left[X_{1}\right]} & \text { if }[T] \geq\left[X_{1}\right] \tag{295}\\ 0 & \text { if }[T] \leq\left[X_{1}\right]\end{cases}
$$

If T is initialized to 1 nM , the reactions in 24 compute $\left[X_{0}\right]=1296$ $-\left[X_{1}\right]$.

Thus, the reactions in 24 encode the input concentration of 298 X as a pair of concentrations $\left(X_{0}, X_{1}\right)$ in a fractional 299 representation. Here, in fact, X_{1} can substitute for X, as 300 discussed above. Note that the concentration of X_{0} is initialized 301 to zero at the outset.

Decoding. For the output of our molecular computing 303 system, we convert the fractional representation back to a direct 304 representation. If the fractional output is represented by the 305 pair of molecules $\left(Y_{0}, Y_{1}\right)$ and the direct output by Y, we have 306

$$
\begin{equation*}
[Y]=\frac{\left[Y_{1}\right]}{\left[Y_{0}\right]+\left[Y_{1}\right]} \tag{30}
\end{equation*}
$$

In other words, we need to compute the summation of $\left[Y_{0}\right] 308$ and $\left[Y_{1}\right]$ and then the ratio of $\left[Y_{1}\right]$ over this summation. For 309 this computation, we use the reactions proposed in ref 16. We 310 will show that the reactions in 31 compute $\left[Y^{\prime}\right]=\left[Y_{0}\right]+\left[Y_{1}\right] 311$
$[Y]=\frac{\left[Y_{1}\right]}{\left[Y^{\prime}\right]}=\frac{\left[Y_{1}\right]}{\left[Y_{0}\right]+\left[Y_{1}\right]}$.

$$
Y_{0} \rightarrow Y_{0}+Y^{\prime}
$$

$$
\begin{equation*}
Y_{1} \rightarrow Y_{1}+Y^{\prime} \tag{31}
\end{equation*}
$$

$313 \quad Y^{\prime} \rightarrow \varnothing$

315 According to the ODEs of the reactions in 31, we have

$$
\frac{\mathrm{d}\left[Y^{\prime}\right]}{\mathrm{d} t}=\left[Y_{0}\right]+\left[Y_{1}\right]-\left[Y^{\prime}\right]
$$

316 and at equilibrium

$$
\begin{equation*}
\frac{\mathrm{d}\left[Y^{\prime}\right]}{\mathrm{d} t}=0 \Rightarrow\left[Y^{\prime}\right]=\left[Y_{0}\right]+\left[Y_{1}\right] \tag{33}
\end{equation*}
$$

Similarly, for the reactions in 32, we have

$$
\frac{\mathrm{d}[Y]}{\mathrm{d} t}=\left[Y_{1}\right]-[Y]\left[Y^{\prime}\right]
$$

319 and the equilibrium value of $[Y]$ is

$$
\begin{equation*}
\frac{\mathrm{d}[Y]}{\mathrm{d} t}=0 \Rightarrow[Y]=\frac{\left[Y_{1}\right]}{\left[Y^{\prime}\right]}=\frac{\left[Y_{1}\right]}{\left[Y_{0}\right]+\left[Y_{1}\right]} \tag{34}
\end{equation*}
$$

Therefore, the set of reactions in 31 and 32 implement the

$$
\begin{equation*}
y(x)=\frac{1}{4}+\frac{9}{8} x-\frac{15}{8} x^{2}+\frac{5}{4} x^{3} \tag{35}
\end{equation*}
$$

The CRN includes reactions for the encoder, computation, 335 and decoder parts. The Bernstein polynomial for $y(x)$ is

$$
\begin{equation*}
g(x)=\frac{2}{8}\left[(1-x)^{3}\right]+\frac{5}{8}\left[3 x(1-x)^{2}\right]+\frac{3}{8}\left[3 x^{2}(1-x)\right]+\frac{6}{8} x^{3} \tag{36}
\end{equation*}
$$

336
${ }_{337}$ From the Bernstein coefficients, we initialize the types $\left(B_{i, 0}, B_{i, 1}\right)$ 338 for $i=0,1,2,3$ as

$$
\left.\begin{array}{l}
{\left[B_{0,0}\right]=0.6 \mathrm{nM}} \\
{\left[B_{0,1}\right]=0.2 \mathrm{nM}}
\end{array}\right\} \Rightarrow \frac{0.2}{0.6+0.2}=\frac{2}{8}
$$

We map our design to DNA strand-displacement reactions 340 and evaluate it for 11 different input values between 0 and 1. 341 The values of y computed by these CRNs are plotted against $x 342$ and shown with the target polynomial $y(x)$ in Figure 3. Table $2343 f 3 t 2$ tabulates the computed values of $y(x)$ and the corresponding 344 errors.

Figure 3. Values of $y(x)$ computed by a DNA implementation of proposed CRN. Blue line: target $y(x)$. Red stars: computed by DNA reactions.

For the DNA implementation, we used the parameters based 346 on the examples in ref 17 . The maximum strand displacement 347 rate constant is $q_{\max }=10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, and the initial concentration 348 of auxiliary complexes is set to $C_{\max }=10^{-5} \mathrm{M}$. If the 349 concentration of auxiliary species, $C_{\max }$, is much larger than the 350 maximum concentration of other species (i.e., in proposed 351 CRNs, $C_{\max } \gg 1 \mathrm{nM}$), then, as described in ref 17, we can 352 assume that over the simulation time the auxiliary concen- 353 trations remain effectively constant. Therefore, DNA reactions 354 correctly emulate the CRN independent of the auxiliary 355 concentrations. Note that, for this assumption, the simulation 356 time and reaction rates should not be very large values. ${ }^{17} 357$ Although these requirements have been met in our simulations, 358 errors exist.
As we describe later, the error stems from the fact that each 360 molecular reaction is implemented by a sequence of DNA 361

Table 2. Accuracy of a DNA Strand Displacement Implementation of a CRN Computing
$y(x)=\frac{1}{4}+\frac{9}{8} x-\frac{15}{8} x^{2}+\frac{5}{4} x^{3}$ Using the Proposed Method

$x_{\text {in }}$	computed $y(x)$	error $(\%)$
0	0.261	4.4
0.1	0.3626	5
0.2	0.4207	2.5
0.3	0.4588	1.4
0.4	0.4838	0.8
0.5	0.5010	0.2
0.6	0.5180	0.4
0.7	0.5426	0.9
0.8	0.5823	1.3
0.9	0.6356	3
1	0.723	4

362
363 molecules, C is bounded. In fact, if $C \quad \infty$ the DNA 377 As described in refs 17 and 18 , three DNA reactions, $R 1-R 3$

$$
A+B \xrightarrow{k_{i}} A+B+C . \text { Unimolecular reactions without prod- }
$$ 379 uct, e.g., $Y \rightarrow \varnothing$, can be implemented by a single DNA strand

strand displacement reactions; the concentrations of auxiliary molecules, $C_{\max }$, is bounded. In fact, if $C_{\max } \rightarrow \infty$, the DNA simulation results converge to ODE simulation results. Further details concerning the analysis of errors when implementing CRNs with DNA strand displacement reactions, as well as a proof of convergence of a DNA implementation to the target CRN, can be found in the Supporting Information of refs 17 and 18.
Using the method presented in ref 17 , each chemical reaction with m reactants and nonzero products can be emulated by $m+$ 1 DNA strand displacement reactions. For example, bimolecular reactions are mapped to three DNA strand displacement reactions. To illustrate this, we present a sequence of DNA strand displacement reactions that are used to simulate a shown in Figure 4, implement the molecular reaction 380 displacement reaction. The DNA reaction shown in Figure 5 381 emulates the reaction $A \xrightarrow{k_{i}} \varnothing$. The toehold of strand A binds to

Figure 5. DNA strand displacement reaction that emulates reaction $A \xrightarrow{k_{i}} \varnothing$.
its complementary part of gate molecule G and produces 382 double strand W_{1} and single strand W_{2}. Because W_{1} and $W_{2} 383$ cannot bind together, the reaction is unidirectional.

Table 3 summarizes the number of chemical and DNA 385 t3 strand displacement reactions for each group in our proposed 386 method for computing the polynomial of degree m.

387
Table 3. Number of Chemical and DNA StrandDisplacement Reactions for Each Group of the Proposed CRN for Computation of a Bernstein Polynomial of Degree m

group of reactions	type of chemical reaction	number of chemical reactions	number of DNA reactions
control generating transferring	reactions with m reactants bimolecular unimolecular without product	$m+1$	$(m+1) \times(m+1)$
total	$2 m+2$	$(2 m+2) \times 3$	

CONCLUSIONS

We have introduced a new encoding for computation with 389 CRNs: the value corresponding to each variable consists of the 390 ratio of the concentration of a molecular type to the sum of two 391 types. On the basis of this fractional representation, we 392 proposed a method for computing arbitrary polynomials that 393 map the unit interval $[0,1]$ to itself or to $[-1,0]$. This is a rich 394 class of functions.
Computation of polynomials with chemical kinetics has been 396 attempted before by Buisman et al. ${ }^{16}$ Compared to our method, 397 their method requires fewer molecular types and fewer 398 reactions (m molecular types and $3 m$ molecular reactions for 399

Figure 4. DNA strand displacement reactions that emulate reaction $A+B \xrightarrow{k_{i}} A+B+C$.
a complete polynomial of degree m). However, unlike our approach, their CRNs are dependent on reaction rates. In fact, for each coefficient of the desired polynomial, they need a distinct reaction rate. This is unrealistic. Note that our approach only requires a single rate.
Soloveichik et al., ${ }^{7}$ as well as earlier work, ${ }^{6,19,20}$ attempted to achieve Turing universality with chemical reactions. Although it is possible to compute polynomials with their CRNs, they did not provide a systematic framework for doing so.
The fractional representation that we propose is a nonstandard representation. However, we note that it is similar to encodings found in nature. Many biological systems have species with two distinct states. For example, it is common for an enzyme to have active and inactive states. The ratio of the concentrations of the two states is a meaningful value. This is quite analogous to our representation.
Clearly, the primary interest of this work is theoretical. CRNs are a fundamental model of computation, abstract yet conforming to the physical behavior of chemical systems. Delineating the range of behaviors of such systems has intellectual merit. These results may also have practical applications.
Control theory has played a remarkable role in mathematical biology, providing a framework for modeling and designing the dynamic behavior of systems such as biological oscillators. ${ }^{21-23}$ Polynomials play a central role in control and oscillation. In fact, the transfer function of a control system, which is the ratio of its output to its input in the Laplace domain, is the ratio of two polynomials, i.e., $H(z)=\frac{A(z)}{B(z)}=\frac{a_{0}+a_{1} z++a_{n} z^{n}}{b_{0}+b_{1} z++b_{m} z^{2}} .^{24}$ Nonlinear feedback in oscillators can be implemented by polynomials. ${ }^{25,26}$

Practitioners in synthetic biology are striving to create "embedded controllers", viruses and bacteria that are engineered to perform useful molecular computation in situ where needed, for instance, for drug delivery and biochemical sensing. Such embedded controllers may be called upon to perform computation such as filtering or signal processing. Computing polynomial functions is at the core of many of these computational tasks.
In future work, we will attempt to optimize the CRNs that we propose for computing polynomials, reducing the number of molecular types as well as the number of reactions. We will also attempt to generalize the method to compute a wider class of operations.

- AUTHOR INFORMATION

Corresponding Author

*E-mail: saleh022@umn.edu.
Notes
The authors declare no competing financial interest.

- ACKNOWLEDGMENTS

The authors gratefully acknowledge numerous constructive comments of the reviewers. This research is supported by the National Science Foundation Grant CCF-14234707.

- REFERENCES

(1) Horn, F., and Jackson, R. (1972) General Mass Action Kinetics. Arch. Ration. Mech. Anal. 47, 81-116.
(2) Érdi, P., and Tóth, J. (1989) Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models, Manchester University Press.
(3) Gillespie, D. (1977) Exact Stochastic Simulation of Coupled 459 Chemical Reactions. J. Phys. Chem. 81 (25), 2340-2361.

460
(4) Strogatz, S. (1994) Nonlinear Dynamics and Chaos with 461 Applications to Physics, Biology, Chemistry, and Engineering, Perseus 462 Books.
(5) Adleman, L. (1994) Molecular Computation of Solutions to 464 Combinatorial Problems. Science 266, 1021-1024.

465
(6) Magnasco, M. O. (1997) Chemical Kinetics is Turing Universal. 466 Phys. Rev. Lett. 78 (6), 1190-1193.
(7) Soloveichik, D., Cook, M., Winfree, E., and Bruck, J. (2008) 468 Computation with Finite Stochastic Chemical Reaction Networks. 469 Nat. Comput. 7 (4), 615-633.

470
(8) Chen, H., Doty, D., and Soloveichik, D. (2012) Deterministic 471 Function Computation with Chemical Reaction Networks. DNA 472 Computing and Molecular Programming, LNCS, Springer, Vol. 7433, pp 473 24-42.
(9) Chen, H., Doty, D., and Soloveichik, D. (2014) Rate- 475 Independent Computation in Continuous Chemical Reaction Net- 476 works. Conference on Innovations in Theoretical Computer Science, 313-477 326.
(10) Gaines, B. R. (1967) Stochastic Computing. In Proceedings of 479 AFIP spring join computer conference, ACM, pp 149-156.
(11) Qian, W., and Riedel, M. D. (2008) The Synthesis of Robust 481 Polynomial Arithmetic with Stochastic Logic. Design Automation 482 Conference, 648-653.
(12) Qian, W., Li, X., Riedel, M. D., Bazargan, K., and Lilja, D. J. 484 (2011) An Architecture for Fault-Tolerant Computation with 485 Stochastic Logic. IEEE Trans. Comput. 60 (No. 1), 93-105. 48
(13) Salehi, S. A., Riedel, M. D., and Parhi, K. K. (2015) Markov 487 Chain Computations using Molecular Reactions. Proc. IEEE Interna- 488 tional Conference on Digital Signal Processing (DSP), 689-693. 489
(14) Farouki, R., and Rajan, V. (1987) On the Numerical Condition 490 of Polynomials in Bernstein Form. Computer-Aided Geometric Design 4491 (3), 191-216.
(15) Qian, W., Riedel, M. D., and Rosenberg, I. (2011) Uniform 493 Approximation and Bernstein Polynomials with Coefficients in the 494 Unit Interval. European J. Comb. 32 (3), 448-463.
(16) Buisman, H. J., ten Eikelder, H. M. M., Hilbers, P. A. J., and 496 Liekens, A. M. L. (2009) Computing Algebraic Functions with 497 Biochemical Reaction Networks. Artif. Life. 15 (1), 5-19. 498
(17) Soloveichik, D., Seelig, G., and Winfree, E. (2010) DNA as a 499 Universal Substrate for Chemical Kinetics. Proc. Natl. Acad. Sci. U. S. A. 500 107, 5393-5398.
(18) Chen, Y., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., 502 Soloveichik, D., and Seelig, G. (2013) Programmable chemical 503 controllers made from DNA. Nat. Nanotechnol. 8, 755-762. 50
(19) Liekens, A. M. L., and Fernando, C. T. (2007) Turing complete 505 catalytic particle computers. In Proceedings of Unconventional 506 Computing Conference 4648, 1202.
(20) Angluin, D., Aspnes, J., and Eisenstat, D. (2006) Fast 508 computation by population protocols with a leader. Technical Report 509 YALEU/DCS/TR-1358, Yale University Department of Computer 510 Science.

511
(21) IMA Thematic Year on Control Theory and its Applications; 512 Workshop: Biological Systems and Networks, November 16-20 (2015) 513 http://www.ima.umn.edu/2015-2016/W11.16-20.15/abstracts.html. 514
(22) Chandra, F. A., Buzi, G., and Doyle, J. C. (2011) Glycolytic 515 Oscillations and Limits on Robust Efficiency. Science 333 (6039), 516 187-192.
(23) Iglesias, P. A., and Ingalls, B. P. (2010) Control Theory and 518 Systems Biology, MIT Press.
(24) Dorf, R. C., and Bishop, R. H. (2001) Modern Control Systems, 520 9th ed., Prentice Hall.
(25) Stan, G., and Sepulchre, R. (2007) Analysis of interconnected 522 oscillators by dissipativity theory. IEEE Trans. Autom. Control 52 (2), 523 256-270.
(26) Agrawal, D. K., Franco, E., and Schulman, R. (2015) A self- 525 regulating biomolecular comparator for processing oscillatory signals. J. 526 R. Soc., Interface 12 (111), 20150586.

[^0]: Received: September 24, 2015

