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Abstract—Advances in the field of synthetic biology have been
key to demonstration of molecular computing systems in general
and DNA in particular. This paper presents an overview of
how continuous-time, discrete-time and digital signal processing
systems can be implemented using molecular reactions and DNA.
In this paper, discrete-time systems refer to sampled signals
with continuous signal amplitude. Signals that are sampled in
discrete time steps with digital amplitude are referred as digital
signals. Delay elements in sampled signals are implemented using
molecular reactions in the form of molecular transfer reactions.
Completion of all phases of transfer reactions once corresponds
to a computation cycle. These molecular systems can be im-
plemented in a fully-synchronous, globally-synchronous locally-
asynchronous or fully-asynchronous manner. The paper also
presents molecular sensing systems where molecular reactions
are used to implement analog-to-digital converters (ADCs) and
digita-to-analog converters (DACs). Molecular implementations
of digital logic systems are presented. A complete example of ad-
dition of two molecules using digital implementation is described
where the concentrations of two molecules are converted to digital
by two 3-bit ADCs, and the 4-bit output of the digital adder is
converted to analog by a 4-bit DAC. This system is demonstrated
using both molecular reactions and DNA. A brief comparison of
molecular and electronic systems is also presented.

Index Terms—Molecular systems, DNA, analog, digital, log-
ic, signal processing, digital signal processing, analog-to-digital
conversion, digital-to-analog conversion

I. INTRODUCTION

The field of Molecular computing in general and DNA
computing in particular have advanced remarkably in last
20-25 years. The progress in the broad field of synthetic
biology continues to accelerate at a rate faster than Moore’s
law that refers to doubling in the number of devices on an
integrated circuit (IC) chip every 18 months. A similar growth
in synthetic biology is referred as Carlson’s law [1], [2]. Early
publications on molecular computing [3] and DNA computing
[4] demonstrated the ability to compute using biological and
chemical molecules, as an alternative to computing using
silicon ICs [5]. Molecular computing has the potential to
revolutionize monitoring concentrations or rates of change of
concentrations of proteins and targeted drug delivery.

There is significant interest in synthesis of molecular cir-
cuits, in vitro or in vivo, to understand biological processes or
to re-engineer them by implementing particular computations
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[6]-[11]. This broad field, referred as synthetic biology, has
seen remarkable progress since its inception in 2000. Efforts
in synthetic biology have culminated in manipulation or even
construction of a variety of molecular systems [12]-[15].

Molecular computing does not need to compete with tradi-
tional computing. Rather it is meant for activating or inhibiting
pathways or monitoring proteins or delivering drugs at a very
slow rate. The computation rates in molecular systems are
typically 10-15 orders of magnitude slower than traditional
computing. For example, monitoring a protein 4 times a day
requires a sample period of 21,600 seconds compared to a
clock period of 1 ns for a clock speed of 1 GHz. Fortunately,
today’s DNA circuits can meet these sample rate constraints
for simple circuits. As the molecular computing technology
evolves, it will be possible to realize molecular circuits that
can implement computationally complex operations and/or
at faster rates. Furthermore, massive parallelization is an
important advantage of chemical and biological systems. For
example it is known that more than 10M reactions per second
can be performed in a human cell [16]. This power can be
exploited for a dense data processing or storage in a cell-sized
area.

A molecular system consists of a set of chemical reactions
where reactants combine to form products. For example (1)
shows a molecular reaction where S and E are reactants, P
and E are products and k is the rate constant.

S+E- P+E (1)

In this reaction, one molecule of F combines with one
molecule of S to produce one molecule of P and one molecule
of E. The dynamic behavior of reactant and product concentra-
tions can be modeled using mass-action kinetic model. In this
model the ordinary differential equations are used to model the
concentration of each species as a function of time [17] [18].
For reaction (1) we have

dp ds
& - . 7 = kSE @)
a
The speed of reaction is proportional to the concentration of
inputs and the rate constant.

Whereas the mass-action kinetics model is a natural lan-
guage for describing biochemical reactions, additional issues
need to be considered for achieving more accurate modeling
of biochemical systems by ODEs from mass-action model. For



example if reaction (1) represents an enzymatic reaction with
E, S and P are enzyme, substrate and product, respectively,
the Michaelis-Menten kinetics provides a more accurate mod-
eling of this reaction. Based on this model enzyme reactions
are initiated by a binding interaction between the enzyme (E)
and the substrate (S) to form a complex (F.5), which in turn
is converted into a product (P) and the enzyme. This can be
represented by the following reactions:

k
S+ELSEEY PR 3)
k.

where kf, k., and k.. denote the rate constants [19] and
the double arrows between .S and ES represent the fact that
enzyme-substrate binding is a reversible process. The ODEs
for these reaction can be solved for different assumptions
of the system to obtain the dynamic behavior of molecules.
For example for a more probable situation, when the enzyme
concentration is much less than the substrate concentration,
the rate of product formation is given by

dP S S
kcat EO 7 |, o (4)

P o

K s is Michaelis constant and defined as the substrate con-
centration at which the reaction rate is at half-maximum and
FE) is the initial concentration of the enzyme. K, and F are
specific for each enzyme and can be obtained by experiment
and are available for most of enzymes.

Different in vivo or in vitro mediums have been used
for synthesizing a desired molecular system. For example,
for in wvivo case, promising approaches have used RNA
interference(RNAi) and silencing (siRNA) to construct logic
gates [20], [21], [22]. For the in wvitro the DNA strand-
displacement [23] is a well established medium for imple-
menting and scaling up molecular systems. In this paper we
use DNA strand-displacement as the medium for implementing
and simulating our designs.

Computing or signal processing systems can either be
analog or discrete-time. In analog processing, the input and
output correspond to continuous-time signals. In discrete-
time processing, the continuous-time signal is first sampled
using a sampler, then processed in discrete time steps, and
finally converted to a continuous-time signal if necessary
by some form of interpolation. If the sampled signal in a
discrete-time system is also discretized in amplitude, then it
is referred to as a digital signal. A digital signal processing
(DSP) system requires an analog-to-digital converter (ADC),
processing of digital signals and finally a digital-to-analog
conversion (DAC). Most information processing systems today
store, process or transmit digital information. Discrete-time
signal processing provides significantly higher accuracy than
continuous-time since the delay elements can be realized with
high-precision. In [24], it was recognized that the strength
of a molecule was significantly degraded in an analog delay
line with increase in the order of the system or the number
of delays. In contrast, delay lines implemented in a discrete-
time molecular or DNA system do not suffer from significant
degradation. Digital processing provides even higher robust-
ness and precise control in processing the signal in temporal
or spectral domain than discrete-time signals. We differentiate

discrete-time as sampled in time but continuous in amplitude
and digital as sampled in time and discretized in amplitude.

This paper presents synthesis of molecular computing sys-
tems that can be analog, discrete-time or digital. Analog
and discrete-time processing of molecular systems have been
published before. Synthesizing molecular and DNA reactions
to implement continuous-time linear filters was first presented
in [25]. Signal processing systems, implemented as either
discrete-time or digital, contain delay elements. Delay ele-
ments transfer the molecules from their inputs to outputs
without altering the concentration every computation cycle.
Delay elements were first synthesized using molecular reac-
tions in [26]. These systems can operate either in a fully-
synchronous manner [27] using a two-phase clock, or in a
locally-asynchronous globally-synchronous manner [26], [28],
or in a fully-asynchronous manner [29] and [30]. The goal
of this paper is two-fold. First, this paper presents a review
of past work on continuous-time and discrete-time processing
systems. Second, a new methodology to synthesize molecular
ADCs and molecular DACs are presented. Molecular and
DNA implementations of a complete digital processing system
using ADC, digital computing and DAC are presented. These
molecular designs can be scaled up with respect to their
complexity. However, due to the resource limitation in living
cells, they are more suitable for ¢n vitro implementation.

This paper is organized as follows. In Section II, We
provide a brief review of continuous-time systems and illus-
trate molecular implementation of a simple first-order analog
filter. Discrete-time signal processing systems using fully-
synchronous and locally-asynchronous globally-synchronous
manner are reviewed in Section III. Molecular circuits for
ADCs, digital logic, DACs, and a complete digital processing
system that adds two numbers using 2 ADCs, one digital adder,
and 1 DAC are described in Section IV. DNA implementation
of the complete digital system and its simulation results
are presented in Section V. A comparison of molecular and
electronic systems is presented in Section VI. Finally Section
VII provides discussion and concluding remarks.

II. MOLECULAR CONTINUOUS-TIME SYSTEMS

Molecular implementations of continuous-time or analog
systems have been described in many past publications [31]-
[34]. Study of analog molecular systems is important since it
has been proven that computations in living cells are mostly
analog [31]-[33].

Analog computations can be implemented with chemical
reaction networks (CRNs) efficiently with respect to the
number of reactions and molecular species. For example, as
presented for the first time in [33] and [34], implementing a
molecular adder via analog computation is simple: we have
two input concentrations to be added; both are transferred
to the same molecular type by means of two independent
reactions. In one application of an in vivo analog adder, two
inputs may correspond to regulating the expressions of a
common protein from two independent genetic promoters [33].
Analog multiplication can be simply implemented by two



molecular reactions [35]:

Tty £> rt+y+z

K (5
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From mass-action kinetics model we have

dz

— = kixy — koz 6

i 12y — ka (6)
where x,y, and z are molecular concentrations of their cor-
responding molecular types. In the steady-state (ciTi = 0,
thus, z = k—xy The output z represents a scaled version

of the product zy. Analog implementation of more complex
functions such as square roots and logarithmic additions have
been presented in [34]. Implementation of linear continuous-
time systems with biochemical reactions has been presented
in [25]. We briefly describe this method with an example. Each
signal, u, is represented by the difference in concentration
between two particular molecular types, u™ and u~, where
u™ and u~ are defined as:

+ _Ju if u>0
wo= { 0 otherwise )
and | ‘
N (7 if u<0
vo= { 0 otherwise. ®)

Any linear continuous-time system can be implemented using
three building blocks: integrator, gain and summation. Using
mass-action kinetics model, these blocks can be approximated
by a minimal set of chemical reactions, referred as: catalysis,
degradation, and annihilation reactions described by (9), (10),
and (11), respectively.

AN ut +y* )]
v D o (10)
tru L g, (11)

where v and 7 € R™. Reaction (9) is a concise representation
of the following two reactions:

ut L w4yt (12)
s u +y .
This notation is also adopted for other reactions with double
superscripts. For each molecular type, an annihilation reac-
tion is necessary to ensure a minimal representation of the
molecule. For example, if y is used in a reaction network, the
reaction ¥ + 4y~ — @ should be added.

Integration: Reactions (13) implement integration, y(t) =
[3u(r)dr +y(0) with t € R:

+

u N —|—yi7 (13)

where oo € R*. For these reactions we have

W= out | dy _dyt  dy
%_ = au— dt dt dt

t
=aut —au” =au=y(t) = a/ u(7)dr 4+ y(0).(14)
0

Gain and Summation: The following reactions output a
linear combination of the input signals, u;, with corresponding
gain k;.

ki
w5 uf + yﬂE

3

vyt o,

15)
where y represents the output, k;,y € Rt fori € 1,2,...,n
In the special case n = 1, this chemical representation approx-
imates the gain block, y = kju; for k£ > 0. For n > 2 this
chemical representation approximates the summation block,
y = >, kiu; [25]. Suppose U(s) and Y (s) represent the
Laplace transforms of input and output, res ect1vely Any
linear I/O system with the transfer function U(i) = Ijg; can
be approximated by using integration, gain, and summation
blocks where B(s) = b,s" + b,_18""1 + ... + b1s + by
and A(s) = 8™ + ap_18™ 1 + ... + a;s +ag and m > n.
Figure 1 illustrates how g(s) can be constructed using these

basic building blocks [36], [37].

ol

Fig. 1 Constructln linear I/O systems based on transfer
= A( ), using integration, gain, and summation

U( )
blocks.

A PI controller has been implemented in [25] using these
blocks. Here, we illustrate an example molecular implementa-
tion of a first-order low-pass continuous-time filter, shown in

1
s+a
be approximated by the following reactions: ’
y* ALY yt 4T
uwt L ouE +o*
z(t) = u(t) — aoy(t) { at L o
t+2- L o
ut+u L @
(16)
d + 2 + +
Y () — oo Ty (17)
dt yt+y- — o

III. MOLECULAR DISCRETE-TIME SYSTEMS

For discrete-time systems the corresponding computations
start after the inputs are sampled at specific points in time.
In these systems the timings of signal transfers need to be
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Fig. 2: A first order low-pass continuous-time filter.

u(t)

(1 t);

synchronized in order to avoid any interference in computa-
tions. The concept of a computational cycle in a molecular sys-
tem is critical. Three different synchronization schemes have
been proposed; these include: fully-synchronous, globally-
synchronous locally-asynchronous, and fully-asynchronous.
Fully synchronous systems are synchronized by a two-
phase clock [27], [26]. In a globally-synchronous locally-
asynchronous systems, three proteins, referred as Red (R),
Green (G) and (Blue) are introduced. The transfer of R to
G, G to B and B to R completes a computational cycle.
The global RGB clock provides global synchronization [28],
[26]. Fully-asynchronous systems do not make use of any
global clock [29], [30]. Typically, RGB clocked systems
are the fastest, while the fully-asynchronous systems are the
slowest as these involve more phases of transfers. The protein
transfer operation is a slow operation and is the bottleneck in
molecular systems with respect to sample period. Although
fully-synchronous systems require a two-phase clock, this
clock is designed from a 4-phase protein transfer mechanism.
This paper presents a brief review of the fully-synchronous
and the RGB systems. Fully-asynchronous systems are not
reviewed in this paper; however, the reader is referred to [29],
[30].

All reactions in the discrete-time system are implemented
using only two coarse rate categories for the reaction rate
constants, i.e., krqs¢ and kg0 Given reactions with any such
set of rates, the computation is correct. It does not matter how
fast the fast reactions are or how slow the slow reactions are
- only that all fast reactions fire relatively faster than slow
reactions. We illustrate both schemes with a simple example,
a moving-average filter. In fact, it is a first-order discrete-
time low-pass filter. The circuit diagram for the filter is shown
in Figure 3. It produces an output value that is one-half the
current input value plus one-half the previous value. Given a
time-varying input signal X, the output signal Y is a moving
average, i.e., a smoother version of the input signal. Since
there is no feedback in the system, it is called a finite impulse
response (FIR) filter [38].

A. Fully-Synchronous Framework

In this framework a global clock signal synchronizes signal
transfers in the system. For a molecular clock, reactions are
chosen that produce sustained oscillations in terms of chemical
concentrations. With such oscillations, a low concentration
corresponds to a logical value of zero; a high concentra-
tion corresponds to a logical value of one. Techniques for
generating chemical oscillations are well established in the
literature. Classic examples include the Lotka-Volterra, the

Input
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Fig. 3: Block diagram for the moving-average filter [26].

Brusselator, and the Arsenite-Iodate-Chlorite systems [39],
[40]. Unfortunately, none of these schemes is quite suitable
for synchronous sequential computation: the required clock
signal should be symmetrical, with abrupt transitions between
the phases. A new design was proposed in [26] and [27] for
multi-phase chemical oscillator. For a 4-phase oscillator the
phases can be represented by molecular types R, G, B, V.
First consider the reactions

o

925, v .06
25, ©v 493, as)
25, IM b+ 25,
25, Sy 4498,
R4r =t R
G+g =t @ (19)
B+b 5=t p
Vo Moy

In reactions (18), the molecular types r, g, b, v are generated
slowly and constantly, from source types S;., Sy, St, Sy, whose
concentrations do not change with the reactions. In reaction-
s (19), the types R, G, B, V quickly consume the types 7, g,
b, v, respectively. Call R, G, B, V the phase signals and 7, g,
b, v the absence indicators. The latter are only present in the
absence of the former. The reactions

R+v = @
kslo
G+r = B
- (20)
B+g =% v
Vb Sy R

transfer one phase signal to another, in the absence of the
previous one. The essential aspect is that, within the R, G, B, V
sequence, the full quantity of the preceding type is transferred
to the current type before the transfer to the succeeding type
begins. To achieve sustained oscillation, we introduce positive



feedback. This is provided by the reactions

kstow
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Consider the first two reactions. Two molecules of G combine
with one molecule of R to produce three molecules of G. The
first step in this process is reversible: two molecules of G
can combine, but in the absence of any molecules of R, the
combined form will dissociate back into GG. So, in the absence
of R, the quantity of G will not change much. In the presence
of R, the sequence of reactions will proceed, producing one
molecule of G for each molecule of R that is consumed. Due
to the first reaction 2G kﬂ I, the transfer will occur at a
rate that is super-linear in the quantity of G; this speeds up
the transfer and so provides positive feedback. Suppose that
the initial quantity of R is set to some non-zero amount and
the initial quantity of the other types is set to zero. We will
get an oscillation among the quantities of R, G, B, and V.

One requirement for a clock in synchronous computation is
that different clock phases should not overlap. A two-phase
clock is used for synchronous structures: concentrations of
molecular types representing clock phase 0 and clock phase
1 should not be present at the same time. To this end, two
nonadjacent phases, say R and B in a four-phase RGBV
oscillator, are chosen as the clock phases. The scheme for
chemical oscillation works well. Figure 4 shows the concen-
trations of R and B as a function of time, obtained through
differential equation simulations of the Reactions (18), (19),
(20), and (21). It may be noted that the two phases R and B
are essentially non-overlapping.
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Fig. 4: simulation results for R and B phases of a four-phase
oscillator [26].
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Fig. 5: Block diagram for synchronous implementation of the
moving-average filter [26].
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Fig. 6: Set of molecular reactions for the synchronous imple-
mentation of the moving-average filter [26].

The delay and computation elements for the moving average
filter in Figure 5 are implemented by the reactions in Figure 6.
As Figure 5 shows each delay element, D, is modeled by two
molecular types, D and D’. In the presence of B, the input
signal X is transferred to molecular types A and C these are
both reduced to half and transferred to D" and Y, respectively.
In the presence of R, D’ is transferred to D. Therefore, in the
following phase B, half of the new sample adds with the half
of the previous sample stored in D.

B. Globally-Synchronous Locally-Asynchronous Framework

The globally-synchronous locally-asynchronous framework
is illustrated in Figure 7. It contains no clock signal; rather
it is 7self-timed” in the sense that a new phase of the
computation begins when an external sink removes the entire
quantity of molecules Y, i.e., the previous output value, and
supplies a new quantity of molecules X, i.e., the current input
value. Each delay element in this framework is modeled by
three molecular types, namely RGB. Figure 8 shows how
the computations in asynchronous framework are performed
in three phases and how delay elements are implemented
using three molecular types R;, G;, B;. In this framework,
the moving-average filter is implemented by the reactions in
Figure 9. The molecular types corresponding to signals are X,
A, C, R, G, B, and Y. To illustrate the design, we use colors
to categorize some of these types into three categories: Y and
R in red; G in green; and X and B in blue. The group of
the first three reactions shown in the S1 column of Figure 9
transfers the concentration of X to A and to C, a fanout
operation. The concentrations of A and C' are both reduced
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Fig. 9: Set of molecular reactions for the asynchronous implementation of the moving-average filter [26].
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Fig. 7: Block diagram for the asynchronous implementation
of the moving-average filter [26].

to half, scalar multiplication operations. The concentration of
A is transferred to the output Y, and the concentration of C'
is transferred to R. The transfer to R is the first phase of a
delay operation. Once the signal has moved through the delay
operation, the concentration of B is transferred to the output
Y. Since this concentration is combined with the concentration
of Y produced from A, this is an addition operation. The final
group of three reactions shown in the S1 column of Figure 9
implements the delay operation. The concentration of R is
transferred to G and then to B. Transfers between two color
categories are enabled by the absence of the third category: red
goes to green in the absence of blue; green goes to blue in the
absence of red; and blue goes to red in the absence of green.
The reactions are enabled by molecular types 7, g, and b that
we call absence indicators. The absence indicators ensure that
the delay element takes a new value only when it has finished
processing the previous value. In the group of reactions shown
in the S2 column of Figure 9 molecules of types R’, G’, and
B’ are generated from the signal types that we color-code
red, green, and blue, respectively. The concentrations of the
signal types remain unchanged. This generation/consumption

Phase 2

———e e e — o —_———,— e e e — o

Fig. 8: (i) Implementing delay elements using the 3-phase
asynchronous scheme. (ii) Cascaded delay elements imple-
mented using asychronous scheme [26].

process ensures that equilibria of the concentrations of R’, G,
and B’ reflect the total concentrations of red, green, and blue
color-coded types, respectively. Accordingly, we call R, G’,
and B’ color concentration indicators. They serve to speed up
signal transfers between color categories, and provide global
synchronization.

In the group of reactions shown in the S3 column of
Figure 9, molecules of the absence indicator types r, g, and
b are generated from external sources S,,S,, and S,. At
the same time, they are consumed when R’,G’, and B’ are
present, respectively. Therefore, the absence indicators only
persist in the absence of the corresponding signals: 7 in the
absence of red types; g in the absence of green types; and b in
the absence of blue types. They only persist in the absence of
these types because otherwise “fast” reactions consume them
quickly.

Finally, the reactions shown in the S4 column of Figure 9
provide positive feedback kinetics. These reactions effectively
speed up transfers between color categories as molecules in



one category are “’pulled” to the next by color concentration
indicators. Note that the concentration of the input X is
sampled in the green-to-blue phase. The output Y is produced
in the blue-to-red phase.

Although the RGB scheme doesn’t have an independent
global clock signal it provides a global synchronization by
categorizing signals into three phases, so called RG B phases.
Many local RGB blocks enable locally-asynchronous com-
putation while global color concentrations, R/,G’,B’, provide
global synchronization. In fact, they form a nonsymmetric
clock dependent on the signal values of local RGB blocks.

Another fully-asynchronous framework has been proposed
in [30]. In a fully-asynchronous system signal transfers and
computations start from the input of the system and progress
to its output in multiple phases. Each delay element in a fully-
asynchronous system is modeled by two molecular types [30]
and introduces two phases. Reactions for each phase are fired
as soon as the preceding phase is completed. In addition to FIR
filter, an IIR filter and an 8-point FFT have been implemented
using this framework [26], [30].

IV. MOLECULAR SENSING AND DIGITAL COMPUTING
SYSTEMS

Although analog computing systems are important due to
their efficiency and their application in in vivo systems, digital
computing systems are more robust [41], [33], [42]. In fact,
regardless of the implementation technology, the fundamental
reason for the robustness of the digital computation lies in
information theory: information is coded across many 1-
bit-precise interacting computational channels in the digital
approach but on one channel in the analog approach [33].

Although complex molecular digital systems may be im-
practical today, these will be practical in near future as syn-
thetic biology is seeing remarkable progress for synthesizing
more complex systems in vitro especially from DNA. As
a practical in vitro example, implementation of a scalable
digital system, so called seesaw gates, with DNA strand-
displacement reactions have been used to implement simple
logical AND/OR gates, and 2-bit-precise square roots in [42].

Roughly speaking, in a digital molecular system, absence
or existence of a molecular type defines whether the related
signal is logically 0’ or ’1’, respectively. More precisely, if the
concentration of a molecular type is close to 0 nM it represents
logical ’0’, while if it is close to a distinguishable nonzero
value, it represents logical *1’. In this paper, for in vitro DNA
implementations, we consider concentrations near 1 nM as the
logical value 1’ and near O nM as logical value *0’.

Molecular digital systems require molecular analog-to-
digital conversion (ADC). This paper, presents a new molecu-
lar implementations of ADCs and DACs. Figure 10 illustrates
a complete digital system.

We present molecular implementations of a k-bit analog
to digital converter and a k-bit digital to analog converter. We
also review the molecular implementation of basic digital logic
gates. Using these gates, we demonstrate a 3-bit molecular
binary adder including two ADCs required to sample and
digitize the two input operands and a DAC to output an analog
signal. A DNA implementation of the complete system is also
demonstrated in Section V. It can be noted that all of the

Digital Logic

L
)
) Circuit
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input

output

Fig. 10: Block diagram of a general system developed in this
paper.

molecular reactions are rate-independent. In other words, no
matter what the speed rates of the reactions are and how
they may change during the computation, the steady-state
concentrations compute the correct desired outputs.

A. Analog to Digital Converter (ADC)

This subsection describes molecular implementation of ana-
log to digital converter. A 3-bit example is considered. Let
the input molecular type, ¢, have an analog concentration
between 0 nM and 8 nM. The output is a 3-bit digital number
r = xox1x9. Each bit is considered as logical *0’ if its
concentration is approximately 0 nM and logical ’1’ if its
concentration is approximately 1 nM.

We start with the most significant bit, 5. This bit should be
set to 1 when ¢ is larger than 4 nM and to zero when 1 is less
than 4 nM. Reactions (22) implement a one-bit comparator
that determines 5. The initial concentration of 75 represents
the threshold for the comparator which is set to 4 nM.

i+Ty — wo
i+ Toy — Toti (22)
Ty +x9 — xop+1Th

In the first reaction, 7 and 75 molecules combine and the
one with larger initial concentration remains and the other one
vanishes. The first reaction is independent of the second and
third reactions because 7 and 15 remain unaltered in the second
and third reactions. However, activation of the second or third
reactions depends on the outcome of the first reaction. After
completion of the first reaction only one of the second or third
reactions is active. If ¢ is larger than 75, the third reaction stops
firing while the second reaction transfers all molecules of s,
to xo. Alternately, if ¢ is less than 7%, second reaction stops and
third reaction transfers o to x9, completely. o and x5, are
initialized to O nM and 1 nM, respectively. Note that in general
for a k-bit ADC, each bit, i.e., z; where j = 0,1, ...,k —1, is
modeled by two molecular types, i.e., x; and x;,, called the
bit and its complement molecular types. All of the x; species
are initialized to O nM and x,, species are initialized to 1 nM.
Furthermore, for each j, the total concentration of z; and x;y,,
is constantly 1 nM, i.e., if the concentration of z; is C, then
the concentration of z,, is (1 — C'), both in nM.

Table I shows the final concentrations for 7, zo and ws
after completion of Reactions (22). iy denotes the initial
concentration of ¢. If 79 > T5 then ¢ can be used to compute
the second bit of z, i.e., x1. If 79 < Ty then wy can be used
to determine x1. Reactions (23) and (24) determine x; for the



TABLE I: Stable concentration of molecules i, x2, and wo
after completion of Reactions (22).

7 w2 X2
10 < 4 0 10 0
w0>4 | ig—4 4

TABLE II: Stable molecular concentrations after completion
of Reactions (23) and (24).

i wa w1 wl [z [ a1

19 < 2 0 0 0 i0 0 0
2<i9<4 0 10 — 2 0 2 0 1
4<19<6 0 4 i9g—4 0 1 0
6 < ig 190 — 6 4 2 0 1 1

above two cases. The initial concentrations for both threshold
molecules, 77 and 77, are equal to 2 nM. Similar to Reactions
(22), the first three reactions of (23) implement a one-bit
comparator. However, here, the molecular concentration of
and T} are compared to determine x; when x5 is nonzero. This
is equivalent to comparing initial ¢y to 6 nM. Similarly the first
three reactions of (24) compare wo and 7T} to determine
when x5 is zero. This is equivalent to comparing initial iy to
2 nM.

To+1+T] — w1+ a9
$2+i+$1n —r I +Z+JJ2 (23)
1'2+T1+"E1 — 1’1n+T1+£L'2
Ton, +w1 — 1+ 717+ x9p,

ZTop +we +T] — wi + x2,
Top + W2 +T1n —> Z1+ w2+ T2y (24)
Top + Tll +x1 — T, + Tll + ZTon

xo+w)] — wo+T]+ o

Before the concentration of xo reaches its stable value, both
x9 and z9, may have nonzero concentrations and both sets of
Reactions (23) and (24) can be fired. The fourth reactions
of (23) and (24) are added to undo undesired reactions
fired during the transient time. For example, when the final
concentration of x4 is zero the fourth reaction of (23) transfers
w1 back to ¢ and 73 in order to undo the first reaction. The
initial concentrations for x; and 1, are 0 nM and 1 nM,
respectively. After x; and z1, are stabilized to their final
concentrations, depending on the initial value of ¢, one of them
has the concentration of 1 nM and the other 0 nM.

Except ¢, none of the molecular types participating in
Reactions (22) is altered by Reactions (23) and (24). However,
Reactions (23) and (24) need the final concentrations of xo
and xs, from Reactions (22). Thus, the concentrations of
molecules of Reactions (23) and (24) reach stable values after
reactions in (22) are completed. For different values of ¢,
Table II shows the final concentrations after Reactions (23)
and (24) are completed.

Finally, in order to determine the least significant bit (LSB)
of z, i.e.,, g, depending on %y’s value, the molecular types
underlined in Table II are used. For each range of iy, the
concentration of its related molecular type is compared to
1 nM to determine xy. For example when ¢y > 6, Reactions
(25) are used to determine xzo. The initial concentration of
threshold molecules T is 1 nM. Because both x5 and z; are

nonzero for 79 > 6, the first three reactions compare ¢ with
1 nM. It is equivalent to comparing 7o with 7 nM. That is
to say, for ig > 6, zo=1 nM if iy >7 nM and z¢=0 nM if
19 <7 nM. The last two reactions of (25) are used to undo the
undesirable combination of 7 and T during the transient time
when any of x5 or xy is zero.

Tot+x1+i+Ty — wo+ a2+ 21
xo+r1+1t+Tr0n — Xo+i+ T2+ 21
XTo + 11 +T0+5L'0 — l‘on+T0+Z2+$1 (25)
ZTon +wo — i+ Ty + oy
T, +wyg — t4+To+x10

Similarly for each range of iy five reactions are used to
determine xy. Due to space limit, these three sets of reactions,
each containing five reactions, are not listed here.

The number of bits or the resolution of ADC can be
increased by adding the required comparisons and their related
undo reactions. In general for k-bit ADC 2F+1 + 2(k — 1)
molecular types are required while the number of required
reactions is Z§:1 (j +2)27~1 = (k+1)2* — 1. The precision
(sensitivity) of ADC depends on its acceptable input range and
the number of its output bits.

Figure 11 shows results for the mass-action kinetic model
simulation of the proposed ADC for different values of 7 .

B. Molecular Digital Logic Circuits

In this section we demonstrate how digital designs can be
implemented by molecular reactions. We describe molecular
implementations of simple logic AND/OR/XOR gates, a bina-
ry adder, and a square-root unit. The method we use here for
implementing logical gates is similar to the method presented
in [43]. However, in [43] three regulation bit operation reac-
tions are needed for each bit, Whereas these reactions are not
required in our complete system implementation due to the
self-regulated bits output by the proposed ADC. Here, self-
regulated means for each bit only the related molecular type,
x;, or its complement, 5, but not both, has stable non-zero
concentration.

1) Logic Gates: We only consider two-input gates AND,
OR, and XOR. Gates with more than two inputs can be easily
implemented by cascading two-input gates. Let X and YV
denote the inputs of a gate and Z the output.

AND Gate: We start with an AND gate. The output of a
logical AND gate is 1’ only if both inputs are *1’. It means
that if either X="0" or Y="0" then the output Z should be
zero. In other words, when concentration of z, or y,, i.e.,
complement molecular types of inputs, is nonzero molecules
of z should be transferred to z,, in order to set Z="0’. This
can be implemented by Reactions (26).

Ty + 2
y’!L+Z

— Tp +2n

When both z and y have stable nonzero concentrations, all
molecules of z, should be transferred to z in order to set
Z="1". This can be implemented by Reactions (27).

x4+y — z+y+2
22 — o
24z, — oz

27)
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Fig. 11: Simulation results of 3-bit molecular ADC for different input concentrations.

In the first reaction of (27), 2 combines with y to generate 2/,
an indicator that Z should be set to ’1’. 2’ is transferred to
an external sink, denoted by @, in the second reaction. (This
could be a waste type whose concentration we do not track.)
When molecules of both x and y are present, these reactions
maintain the concentration of z’ at an equilibrium level. When
either z or y is not present, z’ gets cleared out. In the last
reaction, 2’ transfers z,, to z.

One should note that the input concentrations don’t change
in logic computations. This enables the outputs of the ADC
to be input to other logic gates if needed.

OR Gate: The output of an OR gate is "1’ if any of its inputs
is 1. For molecular implementation it means that if either x
or y has nonzero concentration then all molecules of z,, should
be transferred to z. It is implemented by Reactions (28). In
the other case, i.e., when both inputs have zero concentrations,
molecules of z should be transferred to z,, as implemented by

Reactions (29).

rT+z, — TH+2z
2
Yy+zn, — Y+=z. (28)
27 — O 29)
Z+z — oz

XOR Gate: The output of a two-input XOR gate is ’1’
when inputs are complements of each other. In molecular
implementation it means that when either z and y, or x,
and y have nonzero concentrations, molecules of z,, should
be transferred to z as implemented by Reactions (30). For the
inputs with the same logical level the output should set to
zero and molecules of z should be transferred to z,,. This is



Fig. 13: Block diagram of the system for verifying molecular
3-bit adder.

implemented by Reactions (31).

Tpn+y — Tpt+y+2

x+ — T4y, +2
T o

24z, — oz

Tn+Yn — Tntyn+72,

r+y — x+y+z, 31
22, — © (1)

zZh+ 2z — zZn.

NAND, NOR, and XNOR gates can be implemented by
exchanging z and its complement in the transfer reactions, z,
in the opposite directions of those of the AND, OR, and XOR
gates, respectively.

2) Binary Adder: By cascading AND, OR, and XOR gates
we implement more complex digital systems such as a 3-bit
adder. The adder consists of one half adder (HA) for the LSB
and two full adders (FA) as shown in Figure 12a. Internal
schematics of HA and FA are shown in Figure 12b. A general
n-bit adder can be easily implemented by extending 3-bit
adder using additional FAs for new bits. Cascaded gates for
the adder are implemented by molecular reactions presented
in Section IV.B. However, other molecular logic gates such
as seesaw gates [42] can also be used. In order to verify the
functionality of the 3-bit adder we implement the structure
shown in Figure 13. Two analog concentrations, x and y, are
converted to two 3-bit digital data using the proposed ADC.
These two digital numbers are added using the 3-bit adder. The
output, s = S3525150, IS a 4-bit digital number representing
the digital sum of = and y. Figure 14 shows the simulation
results for different concentrations of inputs, x and y.

3) Square-root Unit: As another example of digital com-
puting, we implement square-root of a 4-bit number. Figure 15
shows the schematic of its circuit. In Figure 15, the three-input
NAND gate can be implemented by cascading a two-input
AND gate with a two-input NAND gate. However, it is more
efficient to implement three-input NAND by reactions (32). In

these reaction z1, z9, and x3 are inputs and y is the output.

Tin + Yn — Tin + Yy
Ton +Yn —> ToptY
T3n +Yn — Tapt+Y
Ty +x2 — T+ T2+ T2 (32)
T2 +x3 — x3+y
2y — @
Y+y — Y
Xo
X1 *—
Yo
X2
X3

:D V1

Fig. 15: Schematic for 4-bit Square-root unit.

The strategy used for the direct implementation of three-
input NAND in (32) is similar to that of two-input NAND.

Figure 16 shows the simulation results for the square root
circuit implemented by molecular reactions.

C. Digital to Analog Converter (DAC)

After performing computations in digital form, in order to
convert the computed signal to its analog form, a DAC is
required. Using recombinase-based logic and memory, a DAC
has been implemented in [44]. For this DAC various digital
combinations of the input inducers result in multiple levels
of analog gene expression outputs on the basis of the varying
strengths of the promoters used and the sum of their respective
outputs. This section presents molecular implementations of
a k-bit DAC with controlling the impact of each bit on
the analog output concentration. Reactions (33) show a 1-bit
template for implementing DAC.

z; +V, — out+z;+ M;

out +xjp +M; — xzjp+Vj (33)

where z; and x;,, respectively, represent the input bit and its
complement molecular type. out is the analog output of DAC
with initial concentration of zero. Molecular type V;; denotes
the value of the input bit. In other words, it defines the amount
of concentration that is added to the output if input bit, x;, is
nonzero. If x; is the LSB then Vj is initialized to 1 nM and
if it is the bit next to the LSB then V; is initialized to 2 nM
and so on.

Even when the stable value of x; is zero, during the
transient state x; may have nonzero concentration. The second
reaction of (33) prevents undesired output increase due to the
nonzero concentration of x; in transient state. M; controls
the amount of deducted concentration from the output such
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Fig. 12: Schematic of the 3-bit adder; (a) Block diagram, (b) Internal circuits for HA and FA blocks.

that this amount is the same as the amount added to output
undesirably during the transient state. In other words, without
M;, the second reaction continues transferring out molecules
to V; during the steady-state. However, this degrades the
effects of other bits on the DAC’s output, since the molecular
type out is common for all bits. The initial concentration for
M; is zero.

The 1-bit template presented here can be easily extended
to a k — bit DAC; for each additional bit, one instance of
Reactions (33) is added. Therefore, to construct a k-bit DAC,
a chemical reaction network including k copies of the 1-
bit template are used with proper initial values of V;. As
an example, Reactions (34) illustrate a 4-bit DAC using the
proposed template. The initial concentrations of Vg, Vi, Vs,
and V3 are 1, 2, 4, and 8 nM, respectively.

xo+ Vo — out+ xg+ My
out + xgp + My — xon + Vo
1 +Vi — out+x1+ M
out +x1p, + My — x1,+WVi (34)
To+ Vo — out+ xo+ Mo
out + xon + My — T2, + V2
r3+ Vs — out+ x3+ Ms
out + x3y, + My — x3, + V3

D. A complete molecular digital System

We now illustrate molecular implementation of a digital
adder where concentrations of two analog molecules x and y
are converted to 3-bit digital, then added using a binary adder,
and the 4-bit output is converted to an analog value s. Two
molecular ADCs, a molecular digital adder, and a molecular
DAC are used to construct a complete system as shown in
Figure 17. The functionality of the complete molecular system
is verified. Figure 18 shows the simulation results for the

DAC

Fig. 17: Block diagram of a simple prototype developed and
verified in this paper.

complete system illustrated in Figure 17 for different input
concentrations.

V. DNA IMPLEMENTATION

This section describes mapping of the molecular reactions
to DNA. We illustrate mapping the complete digital adder of
Section IV.D including ADC, adder and DAC to DNA strand
displacement reactions.

Considering each strand (single or double) of DNA as a
molecule, it is possible to implement CRNs with DNA strand-
displacement mechanism. For example Figure 19 shows DNA
strand-displacement primitive for implementing A+ B é C+
D. '

Toehold 1 of strand A starts binding to its complement
toehold 1* of B. Then branch migration happens and domain
2 of A displaces domain 2 of strand 2 — 3. Finally, toehold 3
and 3* are separated and two new strands (molecules), C' and
D, are produced.
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C + D using DNA
strand-displacement mechanism.

A general method of mapping CRNs to DNA strand-
displacement reactions has been presented in [23] by Solove-
ichik, et. al. In their method based on the number of reactants
a chemical reaction is converted to a series of DNA strand-
displacement reactions similar to Figure 19. Similarly, for
our design we generate the corresponding DNA reactions and
simulate the system using the kinetic differential equations to

i, characterize the behavior of the system.

The initial concentrations of auxiliary complexes is set to

Jl'l'l’l]]]]]]]]]]]]t ,,,,,, Crae = 107°M, and the maximum strand displacement rate

constant iS gmaz = 105 M~! s71. For all of the reactions the

rate constant is considered as 105M 1S—1. Figure 20 shows
the ODE simulation results for the DNA implementation of the
complete system illustrated in Figure 17 for different inputs.

VI. COMPARISON BETWEEN MOLECULAR AND
ELECTRONIC CIRCUITS

Just as electronic systems implement computation in terms
of voltage (energy per unit charge), molecular systems com-
pute in terms of chemical concentrations (molecules per unit
volume). One of the great successes of electronic circuit design
has been in abstracting and scaling the design problem. The
physical behavior of transistors is understood in terms of
differential equations — say, with models found in tools such
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Fig. 16: Kinetics simulations that compute the Square-root of 0, 1, 4, and 9 using the molecular implementation of unit shown

in Figure 15.

as SPICE [45]. However, the design of circuits occurs at more
abstract levels — in terms of switches, gates, and modules.
Research in molecular computation could benefit from this
hierarchical approach.

We point out several fundamental differences in character-
istics of molecular and electronic circuits. These are sum-
marized in Table III. Fanout operations in electronic circuits
are free while these are expensive in molecular implemen-
tations. Addition operations are free in molecular systems,
but are expensive in electronic circuits. The critical path of
an electronic circuit is typically bounded by computation
time; the delay elements enable reduction of critical path and
faster computation. However, molecular implementations of
delay elements require inherently slow transfer reactions; the
speed of molecular systems is bounded by the communication
bound as opposed to the computation bound. The computations
in molecular systems are inherently highly parallel unlike
in electronic systems where parallelism requires significant
increase in hardware resources. Finally the electronic cir-
cuits are highly integrated while the molecular systems are
not suitable for highly integrated implementations. DNA and
electronic systems also differ fundamentally with respect to
storage properties. DNA systems can hold their concentrations
indefinitely while the charge or stored value in an electronic
system can leak and needs to be refreshed periodically.

VII. DISCUSSION AND CONCLUDING REMARKS

This paper presented methodologies for implementing
continuous-time, discrete-time and digital processing with
molecular reactions. Several examples are presented to illus-
trate the approaches presented in the paper.

Although pertaining to biology, the contributions of this
paper are neither experimental nor empirical; rather they are
constructive and conceptual. We design robust digital logic
with molecular reactions. For the molecular digital systems,
our designs do not depend on specific reaction rates; the
computation is accurate for a wide range of rates. This is
crucial for mapping the design to DNA substrates.

Intense efforts by the synthetic biology community have
been devoted to the implementation of computation and logical
functions with genetic regulatory elements [46]-[50]. For ex-
ample design of robust logical circuits using chemically wired
cells have been presented in [41] for single logic gates. Also
genetic circuits consisting of multi-layer logical gates have
been implemented in single cell in [51]. Yet, progress seems to
have stalled at the complexity level of circuits with perhaps 7-
15 components. In fact, in vivo engineering of such circuits is
full of experimental difficulties. In contrast, in vitro molecular
computation with DNA strand displacement is following a
Moore’s Law-like trajectory in the scaling of its complexity.
Thus, due to their complexity, systems presented in this paper
are more likely to be physically realizable in vitro than in vivo.
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Fig. 18: Simulation results for the system shown in Figure 17.

The impetus of the field is not computation per se; chemical
systems will never be useful for number crunching. Rather
the field aims for the design of custom, embedded biological
“sensors” and “controllers” — viruses and bacteria that are
engineered to perform useful tasks in situ, such as cancer
detection and drug therapy. Exciting work in this vein in-
cludes [52], [53], [54], [55].

One should notice that there is quantization error in the
ADC component. This is similar to the quantization error for
other types of ADC usually used in digital signal processing
systems [56]. The error can decrease the accuracy of system.
The quantization error can be reduced by increasing the ADC
resolution and, consequently, increasing the number of bits of
ADC and DAC components.

In future work, we will perform more detailed studies of
the characteristics of biomolecular continuous-time, discrete-
time and digital processing systems including noise analysis.
For instance, we will study how the resolution correlates
with changing molecular concentrations and how robust the
designs are to parametric variations. Also, we will develop
faster implementations. The main bottleneck in current im-

plementations has been speed. Unlike in electronic systems,
where the speed is limited by changes in electric charge, the
speed in molecular systems is limited by changes in molecular
concentrations, which are inherently slow.

We will investigate new scheduling approaches where multi-
ple computations are mapped into different phases of transfer.
Reducing currently achievable sample periods from hundreds
of hours to a few hours, or even a few minutes, will enable ex-
perimental demonstration of some example signal processing
functions using DNA.
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