DNA Storage and Computation

Zoe Dormuth
Electrical Engineering Master’s Plan C Project

Abstract

This document explores a form of encoding bi-
nary data in DNA using nicks and DNA strand
displacement to applications in logic gates, quan-
tum computing and associative memory. A logical
AND operation implemented in DNA is analyzed
and simulated using Visual DSD. A model for
in-memory computing with DNA is applied to
the Toffoli quantum gate. A synthesis of previ-
ous research about implementations of associative
memory in DNA is performed. Encoding data
with nicks is applied to a previous implementation
of DNA associative memory. A linear threshold
circuit that implements a Hopfield neural network
is studied and the fundamental building blocks
of the DNA reactions are simulated using Visual
DSD.

1. Introduction

This project is part of research studying DNA computa-
tion and storage being done at the University of Minnesota,
University of Illinois at Urbana Champaign (UIUC) and
University of Texas - Austin. The University of Minnesota
group is exploring how DNA can be used to perform com-
putations and store data. UIUC and UT Austin are finding
new techniques to encode data in DNA and performing ex-
periments in a laboratory setting. The rise in the amount
of data we can collect has led to research different ways
to store and compute data. The benefits of using DNA as
an avenue for storage and computation is the high informa-
tion density, small area and easy access to DNA resources.
This research focuses on encoding and storing data in DNA
with an emphasis on using native DNA versus synthesized
DNA. Native DNA is naturally occurring DNA found in liv-
ing organisms. The experiments performed by the research
groups in Texas and Illinois are using E. coli DNA as native
DNA. Synthesized DNA is the result of artificial creating of
DNA molecules. This is costly and not as readily available
compared to native DNA. A technique to encode binary
bits in native DNA using nicks has been discovered and
will be applied to previous research using synthesized DNA
sequences. Performing computations on data stored in DNA

is also being studied. Simple computational concepts such
as Boolean logic gates, circuits and fundamental computer
science concepts are being implemented using DNA and the
tools of molecular biology.

1.0.1. DNA STRAND DISPLACEMENT

DNA strand displacement is an important tool in molecular
biology where one strand of DNA is exchanged with another
strand of DNA through branch migration. Hybridization
between complementary DNA strands based on the Watson-
Crick base pairings (A, C, T and G’s) is the fundamental
concept of DNA strand displacement. DNA strand displace-
ment occurs when there is exists a double stranded DNA
with a toehold. A toehold is a gap in the top strand of the
double stranded DNA exposing the base pairs on the bot-
tom strand seen in Figure 1. The input to a DNA strand
displacement reaction is a single strand of DNA that is com-
plementary to the base pairs exposed by a toehold on the
double stranded DNA. If the single stranded DNA is also
complementary to the base pairs in the double stranded
DNA next to the exposed toe hold, branch migration will
occur. Branch migration is when a single stranded DNA
binds to the complementary base pairs on a double stranded
DNA and displaces the top strand of the double stranded
DNA seen in Figure 1. The output is a double stranded DNA
that has the input strand bound to the bottom strand. The
top strand that was originally bound to the double stranded
DNA is now a single strand of DNA ready to perform DNA
strand displacement on another double strand of DNA with
an exposed toehold. These reactions will continue as long
as there are exposed toeholds with complementary base
pairings to single stranded DNA. When there are no ex-
posed toeholds as seen in the output in Figure 1, the double
stranded DNA is stable and no further reactions can take
place. The presence and absence of toeholds play a key
part in whether a reaction is a forward-only reaction or a
reversible reaction.

1.0.2. NICKING

A double stranded DNA has nucleotide bases that are
bonded together to create a stable DNA structure. A nick
is a cut in one of the strands in the double stranded DNA
between two base pairs. A nick can be placed anywhere in

DNA Storage and Computation

T¢ v
GAGTTATGGGATGC AGAGGTA

3
(o ;

- 5, -
f\\//\\// - /\)CCCT(M ‘CAATACCCTACG -
GGGAGT!

< -

3 5
Input
—_ s \ Output
—
N s .
>—> > > &
Branch migration
N

Complementary toenojg
region

Figure 1. Toehold and DNA Strand Displacement.

the double stranded DNA. When a double stranded DNA
is nicked, it breaks the phosphodiesterase bond between 2
adjacent nucleotides. This causes a discontinuity in the dou-
ble stranded DNA. The nicks in the double stranded DNA
will not affect the integrity of the bonds or DNA strand
unless heat is applied. When multiple nicks are placed close
together (3-5 base pairs in length) and the double stranded
DNA sequence is heated up, the bonds between base pairs
where the nicks are located will be broken and a section
of the double stranded DNA will come off (Wang et al.).
This creates toeholds in the double stranded DNA as shown
in Figure 1. These toeholds will be used to perform DNA
strand displacement.

Nicking is used to encode binary bits (1’s and 0’s) in a dou-
ble stranded DNA. A bit will encompass a defined number
of base pairs on the double stranded DNA. For example,
6 base pairs will encode a bit of information. A 1 can be
encoded if the first two base pairs out of the 6 total base
pairs are exposed toeholds. This would be done by placing
3 nicks in the double stranded DNA (Wang et al.). The three
nicks would be placed before the first base pair, before the
second base pair and before the third base pair. When heat
is applied to the double stranded DNA the nicks will not
hold the top strand together and the base pairs will unbind
from the bottom strand of DNA creating an opening in the
double stranded DNA, a toehold. A zero can be encoded
in a similar way where two toeholds would be placed at
the end of the 6 base pairs instead of the beginning (Wang
et al.).

Once a double stranded DNA has been nicked, reading the
binary bits encoded in the DNA requires heat and reporter
strands. Heat is applied to break the bonds where nicks are
located and expose the toeholds. Reporter strands are single
stranded DNA that are synthesized to match specific se-
quences in the double stranded DNA. Each bit location will
have its own, unique reporter strand. Based on where the
toeholds are located in that bit location, the reporter strand
will bind to a front toehold or a back toehold if the bit is 1
or 0, respectively. This causes a DNA strand displacement

reaction to occur. The strand originally bound to the double
stranded DNA will be released and the reporter strand will
bind to the double stranded DNA (Wang et al.). This erases
the bit stored at that location so memory is corrupted after
a read unless the released strands are reintroduced to the
solution at a later point. The strand that was released will
be sequenced and knowledge about the sequence at each bit
location must be known to identify if the strand is a 1 or O.

1.0.3. VisuaAL DSD

Visual DSD (DNA Strand Displacement) is a web-based
interface tool that allows users to code different DNA re-
actions without having to manually construct the reaction
network by hand. It implements a domain-specific language
to allow different encodings of the species in a DNA strand
displacement reaction (Lakin et al., 2011). Different levels
of abstraction are available to allow for low-level detailed
views and higher level simplified views (Lakin et al., 2011).
Visual DSD has a stochastic and deterministic simulation
tool as well as a chemical reaction network (CRN) that
makes it easy to visualize and understand the reactions oc-
curring between DNA strands. DNA logic gates and systems
involving low-level species populations have been designed
and analyzed with Visual DSD (Lakin et al., 2011).

2. AND Gate

2.1. Introduction

DNA is used to build logic gates that use binary bits as
inputs and outputs. The AND gate was built by the UT
Austin group where binary bits, 1’s and 0’s, are encoded
in a double strand of DNA. The bits are read at specific
addresses, an AND operation is performed and the result is
written to another location in the double strand of DNA. An
AND gate takes in a two inputs and outputs a 1 if both inputs
are 1, otherwise, it outputs a 0. An example of reading,
writing and performing the AND operation are shown in the
example below.

2.2. AND Gate with Addressing

A double strand of DNA is used to encode a string of 1’s and
0’s. Each bit is represented by 6 base pairings. Each base
pair can be considered an address. A bit is represented as 1
by nicking the top strand of the double stranded DNA before
the first base pair, before the second base pair and before
the third base pair seen in Figure 2. A bit is represented as
a 0 by nicking before the fourth base pair, before the fifth
base pair and before the sixth base pair seen in Figure 2.
This procedure is repeated to encode a string of bits along a
double stranded DNA. When heat is applied to the double
stranded DNA, the first two base pairs out of six will be
exposed where a 1 was encoded and the last two base pairs

DNA Storage and Computation

out of six will be exposed where a 0 was encoded.

. 1 . 1 .
LTI T I T T T T TP T T

012 3 45i6 7 8 910115121314151617;18192021 22 23

|IIIIIiIIIII!IIIII!IIIIII

0 and 1 need to be differentiated purely by sequences
—> Toehold exchange reaction for read out or reporter with
different double-stranded length

Figure 2. Encode and read binary bits at specific locations.

2.2.1. ENCODING A STRING OF BITS

A bit can be read as a 0 or 1 by supplying a reporter strand.
The reporter strand is unique to each location of each bit
meaning the A, T, C, and G pairing will be ordered specif-
ically for each location. The reporter strand for addresses
0 through 5 will be different than the reporter strand for
addresses 18 through 23. The reporter strand for each bit
is complementary to the base pairing of the middle 4 ad-
dresses out of the total six addresses available. This allows
for the reporter strand to bind to an exposed toe hold for a
bit encoded as a 0 or 1.

If a zero is encoded at a specific bit location, the reporter
strand will bind to the fifth base pairing out of six because it
is an exposed toe hold. DNA strand displacement will occur
and the reporter strand will displace the strand at the first
4 addresses and bind to the middle four base pairs that are
complementary. If a one is encoded at a specific bit location,
the reporter strand will bind to the second base pairing out of
six because it is an exposed toe hold that is complementary
to the reporter strand base pair. The reporter strand will
bind to that address and perform DNA strand displacement.
The strand at the third through the sixth base pairings will
displace from the double stranded DNA and the reporter
strand will bind to the second through the fifth base pairings
at the specific bit location because it is complementary to
them.

After a read, the bit location will no longer encode a O or 1
once the reporter strand performs DNA strand displacement.
The bit location will have two exposed toe holds, one at the
first base pair and one at the sixth base pair. This does not
follow the encoding of a 0 having two exposed toe holds
at the last two base pairs of the bit location and a 1 having
two exposed toe holds at the first two base pairs of the bit
location. Therefore, the data is lost when a reporter strand
is introduced at the specific bit location. If another reporter

strand for that specific bit location is introduced, it would
not bind to that location since there is not an exposed toe
hold that is complementary to that reporter strand and DNA
strand displacement would not occur.

The example in Figure 3 shows a string of bits, 01100, that
are encoded in a double strand of DNA using the nicking
scheme to nick the last two base pairs of out six for a 0
and the first two base pairs out of six for a 1. There are 30
addresses (base pairs) in the double stranded DNA which is
also called a deck. Each bit is allocated six addresses. The
first bit in the string 01100 is allocated addresses 0 through
5, the second bit is allocated addresses 6 through 11 and so
forth. The double stranded DNA is heated up to expose the
toeholds where the top strand was nicked.

Example (AND):
Perform AND operation at address “7”
and “13”, then rewrite a 1 at address “25”

Deck

012345167 8910111121314 15 1617:1819 20 2122 23124 25 26 27 28 29

5 5 e

heat up and add tribger strand to réad the information at addresse's “7”,“13” and “25”

8 910 11} 14 151617 1 124 2526 27
- - .

V25262728

o o o o

Deck

Figure 3. Read bits at addresses 7 and 13 and write result to address
25.

2.2.2. READING A STRING OF BITS

The goal is to read the bits at addresses 7 and 13 and perform
the AND operation on those bits. The result is written at
address 25. Two reporter strands are supplied to read the
bits at address 7 or the second bit of the string 01100 and
address 13 or the third bit of the string 01100. The reporter
strand to read the bit at address 7 is complementary to the
base pairs at address 7 through 10. The bit at address 7 is
a 1 and the reporter strand will bind to the open toehold at
address 7 and displace the strand at addresses 8 through 11.
The reporter strand will then bind to the addresses 8, 9 and
10. This will leave the second bit location with two exposed
toe-holds, one at address 6 and one at address 11. The
output of the read is the strand complementary to the base
pairs at addresses 8 through 11. The second reporter strand
will perform the same procedure at address 13. The reporter
strand is complementary to the base pairs at addresses 13
through 16. The third bit is a 1 and the reporter strand will
bind to the exposed toehold at address 13 and displace the
strand complementary to base pairs 14 through 17. The
reporter strand will then bind to the double stranded DNA
at addresses 13 through 16. The third bit location will have

DNA Storage and Computation

two exposed toeholds, one at address 12 and one at address
17. This location no longer holds a 0 or 1. The output of the
read will be the strand with complementary base pairs to 14
through 17.

The result of the AND operation for the input bits at ad-
dresses 7 and 13 will be written to the fifth bit of the string
01100 at address 25. A reporter strand must be bound to the
location of the fifth bit at address 25 to write the result at that
location. If the result of the AND gate is 1 the result strand
will bind to the open toehold at address 29 and displace the
reporter strand bound to addresses 25 through 28. The result
strand would encode a 1 at the fifth bit location by binding
to addresses 26 through 29 after DNA strand displacement.
Otherwise, the result would encode a O at the fifth bit loca-
tion by binding to the exposed toehold at address 24 and
displacing the reporter strand bound to addresses 25 through
28. The result strand would bind to addresses 24 through 27
after DNA strand displacement.

A reporter strand that is complementary to the base pairs
at addresses 25 through 28 is introduced to the deck. The
reporter strand binds to the exposed toehold at address 28
and displaces the strand complementary to the base pairs at
addresses 24 through 27. The reporter strand then binds to
addresses 25 through 28 and two exposed toeholds are at the
fifth bit location at addresses 24 and 29. The lower diagram
in Figure 3 shows the results after reading at addresses 7, 13
and 25.

2.2.3. PERFORMING THE AND OPERATION

An AND gate is constructed using a double stranded DNA
with two strands separated by a nick on the top and an
exposed toe hold at its first base pair seen in Figure 4. The
two strands are four base pairs long and six base pairs long.
The strand that is six base pairs long has three base pairs
that are not bound to the double stranded DNA. The second
strand will be displaced if both inputs are encoded as 1s.
The first strand will be displaced if either of the input strands
is encoded as 1. In this example, the exposed toe hold on the
AND gate has to be complementary to the first inputs base
pair at address 8. The strand on the AND gate that is four
base pairs long is complementary to addresses numbed 9
through 11 on input 1 and complementary to the first address
of the second input numbed address 14.

The first input strand (addresses 8 through 11) will bind
to the exposed toe hold at the first base pair of the AND
gate. The first input strand is complementary to the first
four base pairs of the AND gate. The first input strand will
bind to the AND gate at the first four base pairs. The result
of the DNA strand displacement reaction is an exposed
toe hold at the fifth base pair of the AND gate seen in
Figure 4. The top strand of the AND gate that is four base
pairs long was displaced by DNA strand displacement. The

exposed toehold is complementary to the first base pair,
numbered address 14, of the second input strand (addresses
14 through 17). The second input strand will bind to the
exposed toehold and displace the second top strand on the
AND gate. The second input strand is complementary to the
fifth through the eighth base pairs on the AND gate. This
allows the DNA strand displacement to occur and for the
second input strand to bind to the AND gate. The second
top strand of the AND gate is released as a single strand.

The result of the AND operation replaces the AND gate
with a double stranded DNA with no toeholds. The dou-
ble stranded DNA is stable because there are no exposed
toeholds. It is waste product because no further reactions
can occur. The second top strand that was released from
the AND gate and is now a single stranded DNA. This is
the output of the AND gate reactions. This strand was se-
quenced to have six base pairs in which the last two base
pairs, colored in purple, are complementary to addresses
26 and 27 on the deck. The first four base pairs, colored in
green, are complementary to the reporter gates first three
base pairs seen in Figure 4.

Example (AND):
Perform AND operation at address “7”
and “13”, then rewrite a 1 at address “25”
89101114 151617 2627

- -

2627
ANDGate _TTTTTTT]

2627 26272829

2829

4
Reporter Gate [TTTT ~ [LLLL]

. . . . 25262728
S A e o
Deck : : : i 25262728

H H H H 26272829
P e

Figure 4. AND operation on DNA strands.

2.2.4. THE REPORTER GATE

The reporter gate is a double stranded DNA that was con-
structed to release an output that will write a 1 to address
25 on the deck if the correct output from the AND gate is
released. The output from the AND gate cannot directly
write a 1 to address 25 on the deck, however, it is the correct
input to the reporter gate that will release the strand that will
write a 1 at address 25 on the deck. If the top strand that is
six base pairs long was designed to write a 1 to the address
25, the second input strand would not be complementary
to the double stranded DNA. It would not bind to the ex-
posed toehold and release the top strand that is six base pairs
long. The reporter gate was constructed and the output of
the AND gate will be the input strand to the reporter gate to
output the strand to write a 1 at address 25 in the deck.

The reporter gate is constructed to have an exposed toehold

DNA Storage and Computation

that is complementary to the second base pair on the 6 base
pair output strand from the AND gate. The second and third
base pairs on the reporter gate are complementary to the
third and fourth base pairs on the AND gate output strand.
The third through the sixth base pairs on the reporter gate are
complementary to the base pairs at addresses 26 through 27.
The top strand on the reporter gate has the same base pairs
as the third and fourth base pairs of the AND gate output
strand. It also has base pairs complementary to addresses
26 through 29 of the deck. This strand will be displaced
through DNA strand displacement.

The AND gate output strand will bind to the exposed toehold
and displace the strand that is bound to the reporter gate
using DNA strand displacement. The result is a double
stranded DNA with a base pair that is not bound to the
reporter gate but attached to the top strand of the double
stranded DNA reporter gate. The output strand from the
reporter gate is a 6 base pair long strand that is has its last
four base pairs complementary to addresses 26 through 29
and the first two base pairs not complementary to addresses
24 and 25.

2.2.5. WRITING TO A STRING OF BITS

The output from the reporter strand is able to write to the
deck. The current deck has the reporter strand bound to
addresses 25 through 28 at the fifth bit location. There are
exposed toeholds at addresses 24 and 29. The output strand
from the reporter gate will bind to the exposed toehold at
address 29 and displace the reporter strand through DNA
strand displacement since the output strand is complemen-
tary to addresses 26 through 29. The first two base pairs
on the output strand from the reporter gate will not bind to
addresses 24 and 25 since they are not complementary to
those base pairs. These base pairs will act as an overhang.

The encoding at the fifth bit or address 25 is now a 1 since
there are two exposed toeholds at the beginning of the bit
location and a strand of 4 base pairs at the end of the location.
The final encoding of the deck will 0XX11. The second and
third bits are not encoded as a O or a 1 since the reporter
strands are still bound to those locations and do not read a 1
or 0. The last bit switched from being a 0 to a 1 since the
second and third bits were 1s so a 1 was written to the last
bit of the string to reflect the AND gate operation.

2.3. Simulation with Visual DSD

The AND gate example seen in Figures 2-4 was simulated
using Visual DSD to better understand the reactions. Ini-
tially the deck was encoded as five bits, 01100, seen in
Figure 5. Six base pairs are used to encode one bit of infor-
mation. Nicks were placed around the last two base pairs to
encode a 0 and around the first two base pairs to encode a
1. The reactions for exposing the toeholds by applying heat

were shown for the first three bits of the deck, addresses O
through 17. The reactions show that each single strand that
will expose a toehold is released separately. The products
of the reaction have exposed toeholds at addresses 4 and 5,
6 and 7 and 12 and 13 to encode the bits 011.

Entire deck with nicks

Example: Part of deck with nicks (address 0 through 17 — first 3 bits in deck)
0 1 2 3 4 5|6 8 9 10 11 |12

8% 9% 10* 11* 12*%

14 15 16 17
1

or 1x 2% 3 ar 5 o 1a% 15% 16% 17*

Subset of reactions to expose toeholds from nicks for first 3 bits of deck

Figure 5. Encoding a string of bits into the deck.

The initial strands for reading the bits at addresses 7 and
13 are seen in Figure 6. The reporter strands have the same
addresses for the middle four addresses out of the six ad-
dresses used to encode a bit. Address 7 on the reporter
strand for the second bit will bind to the 7* exposed toehold
on the deck. Address 13 on the reporter strand for the third
bit will bind to the 13* exposed toehold on the deck.

Reading 2nd and 3rd bits in deck using helper strands

8 9 10 11 14 15 16 17
6% 7* 8% 9% 10* 11* 12* 14* 15* 16* 17*

1 7 8 9 10 Reporter strand for 2nd bit

1 14 15 16 Reporter strand for 3rd bit

Figure 6. Reading bits at addresses 7 and 13.

The reactions that occur when reading the bits at addresses 7
and 13 are shown in Figure 7. The first and second reactions
show the first reporter strand binding to the 7* exposed
toehold and displacing the strand covering addresses 8, 9,
10 and 11. The reactions show that this is done in two steps
since the output of the initial bind does not release the 8, 9,
10 and 11 strand right away. These reactions are reversible
since there are two arrows pointing opposite directions. The
output of this read is a strand with addresses 8, 9, 10 and
11 and a double stranded DNA with an exposed toehold at
address 11. The third through the fifth reactions in Figure 7
show both helper strands reading from the deck at the same
time. The outputs are the 8, 9, 10 and 11 address strand and
the 14, 15, 16, and 17 address strand which are the strands
that encode the bits used for the AND gate operation. The

DNA Storage and Computation

deck is also an output that can have a reverse reaction to
restore the data encoded in the deck if those strands are not
used in a later reaction.

Figure 7. Reactions from reporter strands reading bits at addresses
7 and 13.

The AND gate and reporter gate operations are simulated in
Figure 8. The initial strands are a double stranded reporter
gate, two inputs that were read in Figure 7 and the double
stranded AND gate. The first reaction simulates the 8, 9,
10 and 11 address input strand binding to the AND gate
at the 8* exposed toehold. The output is the 9, 10, 11, 14
strand being displaced through DNA strand displacement.
The second reaction shows the reporter gate and the second
input strand with addresses 14, 15, 16 and 17 binding to-
gether which is not what we want, however, this reaction is
reversible so it will restore to the second input strand and
reporter gate for later use. The third reaction is the AND
gate from the first reaction after DNA strand displacement
occurs. The second input strand with the addresses 14, 15,
16 and 17 binds to the 14* exposed toehold on the AND
gate and displace the strand with addresses 15, 16, 17, 18,
26 and 27. This is a forward-only reaction since there is one
arrow and the AND gate after the reaction does not have any
exposed toeholds. The fourth reaction shows the reverse re-
action that occurs due to the first reaction in this figure. The
output is the original AND gate and the first input strand.
The fifth reaction is the output of the AND gate seen in the
third reaction and the reporter gate. The AND gate output
strand binds to the 16* exposed toehold and displaces the
strand with addresses 17, 18, 26, 27, 28 and 29. This strand
will be used to write the result to address 25 in the deck.
This reaction is also forward-only because the reporter gate
does not have any exposed toeholds after this reaction.

The output strand from the reporter gate is used to write the
result from the AND operation to address 25 on the deck.
Figure 9 shows the reaction and final result for the deck
from the AND operation. The last two bits and the output
from the reporter gate seen in Figure 8 are inputs to the
reaction. The output strand from the reporter gate binds to

Initials
g e B U B B Reporter Gate
T e 1s 26 -

§ o4 15 16 17

Inputs

;89 10 1

9 10 11 14 15 16

pg—
T o 10+ 11t 1@ 15+ 160 170

718 26 27

AND Gate

Reactions

Figure 8. AND and Reporter gate reactions.

the 28* and 29* exposed toeholds on the deck and displace
the reporter strand that has addresses 24, 25, 26 and 27. The
result (not shown) has the addresses 17 and 18 as overhangs
since they are not complementary to addresses 24 and 25.
Therefore, the end result has two exposed toehold in the
front of the six base pairs used to encode a bit result in a
1 written to address 25. The final result shows the string
0XXO01 where the X’s are the reporter strands bound to the
second and third bit locations where the data was read from
the deck to perform the AND operation.

T 1 1 15 160 18 19v 20% 210 220 25 |2

w2

o 1r 2t 3 @ 5o 7t 8 ot 107 6 27 280 290

Figure 9. Writing result from AND operation to address 25 in deck.

2.4. Discussion

The motivation behind this example is to show that a string
of bits can be encoded in DNA and an AND operation
can be performed using specific bits of the bit string. An
important observation to note is that the result from the
AND operation between 2 specified bits can be written to
a specific address or bit location in the string. The AND
operation does not need to be performed with two bits in
a row in the bit string nor does it need to be written to the
bit location directly following the two bits chosen as inputs
for the AND operation from the bit string. This allows for
flexibility in choosing which data the AND operation should
be performed on and where the result is written.

This example was simulated using Visual DSD. The reac-
tions that occur during the AND operation were studied

DNA Storage and Computation

to determine which reactions are forward-only versus re-
versible. This provides a better understanding about DNA
strand displacement. The limitation to Visual DSD in this
example was the web-based interface. This example has a
long data strand for the number of reactions Visual DSD
can simulate due to the number of exposed toeholds. The
example was performed in separate steps to understand
encoding data, reading data, performing the AND opera-
tion and writing the result back to the deck. Ideally this
would be simulated in one program, however, each part
was performed separately to have the reactions run with the
resources of Visual DSD. Future work would be to model
this example with sequences that might allow Visual DSD
to simulate the entire example in one program.

3. SIMDNA and Quantum Gate

3.1. Introduction

DNA computing has been researched extensively with the
potential to be a new avenue of storage and computation for
the increasing amount of data. This section explores the idea
of building a quantum computer using DNA by introducing
a scheme to implement a Toffoli (CCNOT) gate. The Toffoli
gate is implemented using an in-memory computation model
proposed by the research group at UT Austin in their paper,
SIMDNA: Single Instruction, Multiple Data Computation
with DNA Strand Displacement Cascades (Wang et al.).
SIMDNA proposes an in-memory computation model that
is different from previous research in that synthesizing new
DNA is not required to transform stored data. This model
avoids the time consuming and expensive synthesizing and
sequencing steps seen in previous DNA storage schemes
(Wang et al.). A sequential procedure is introduced using
magnetic beads which allows for an easier transition from
electronic concepts to DNA models. Parallelism is achieved
which saves computation time. SIMDNA presents two ex-
amples, a Rule 110 and a binary counter, to demonstrate
their model (Wang et al.).

3.1.1. QUANTUM COMPUTING

A Toffoli (CCNOT) gate is a universal reversible logic gate.
Any circuit that is reversible can be constructed solely using
Toffoli gates. It is an important gate in the realm of quantum
computing. Quantum computers are built out of a set of
universal quantum gates. They are able to compute concepts
that classical computers cannot. All Boolean logic gates
can also be implemented using the Toffoli gate. This allows
for classical logic operations to be performed on a quantum
computer.

The motivation of implementing the Toffoli gate using DNA
is to eventually scale up and construct a quantum computer
using DNA. The Toffoli gate is not enough to construct a

universal quantum computer so other quantum gates such
as the Fredkin gate would need to be constructed as well.
Quantum computing takes qubits as inputs. Qubits can be
encoded as DNA to have a probability of 1 or O that is
determined by the sequence of their base pairings. This is a
start to open up an avenue into DNA quantum computing.

3.1.2. How SIMDNA WORKS

The research group at UT Austin has created a model to
perform in-memory computations on stored data. They use
a domain level abstraction for DNA strands that focus on
DNA strand displacement and not the sequences of base
pairs (Wang et al.). Data is stored in a multi-stranded com-
plex called a memory register. A memory register holds
multiple bits where each bit is stored in a cell that contains
a constant number of domains or base pairs (Wang et al.).
Bits are encoded by the location of toeholds in each memory
cell. Nicking is used to separate strands to create the multi-
stranded complex. The bottom strand is synthesized and a
magnetic bead is attached to it (Wang et al.). The memory
registers encoding different strings of bits are placed in a
master solution.

There are three different instruction events that are used to
compute the data in-memory. These instruction events are
illustrated in Figure 10. Attachment adds a new strand to
the pre-existing strands in a memory cell. It does not dis-
place any pre-existing strands. It can partially displace pre-
existing strands if both the new strand and the pre-existing
strand both have at least two domains bound to the bottom
strand (Wang et al.). Displacement adds new strands that
detach pre-existing strands through DNA strand displace-
ment (Wang et al.). Detachment removes strands from the
memory cell without adding new strands. New strands that
are complementary to pre-existing strands are added but do
not bind to the memory register. The use the overhang of
pre-existing strands as a toehold to bind and remove the
pre-existing strand from the memory register (Wang et al.).

The magnetic beads allow for sequential elution operations
(Wang et al.). After each instruction event, the master solu-
tion is rinsed and the waste products are washed away. The
magnetic beads keep each memory register in the master
solution and more instructions are able to be performed on
each memory register.

3.2. Toffoli Gate

A Toffoli gate was built using the three instruction events
seen in Figure 10 (Wang et al.). A total of eight instructions
are used to achieve a bit flip of the third input bit if the first
and second input bits are 1. Three bits are used to represent
the input bits. The output will be represented using three
bits after all instructions are executed. The bits are encoded
using 5 base pairs. A bit encoded as 1 has an exposed

DNA Storage and Computation

toehold at the first base pair out of five. A bit encoded as 0
has an exposed toehold at the last base pair out of five. The
three bits used in the memory registers can be encoded as
any input combination in the Toffoli gate truth table seen in
Figure 11. If the first two bits are not both 1’s, the output
will be the same as the input. This scheme demonstrates
the DNA strand displacement reactions if the first two bits
of the deck are encoded as 1’s. The instructions will be
performed on a 111 input and a 110 input simultaneously to
demonstrate that the same sequence of instructions will work
for both inputs. These two memory registers will be placed
in a master solution and the strands for each instruction will
be added to it and washed away after each instruction is
executed.

INPUT OUTPUT

0

0 0
0 0 1
o/1/0
o1 1
1/0 0
170 1
1111
1710

Figure 11. Truth table for Toffoli gate.

Figure 12 shows the initial strands of DNA for the two
cases in the Toffoli gate truth table that will flip the third
input bit. The first case is when the input is encoded as
111 and outputs 110, this will be referred to as the 111
memory register. The second case is when the input is 110
and outputs 111, this will be referred to as the 110 memory
register.

The first instruction protects the first and second bits that
need to remain 1’s. A long single stranded DNA that is
complementary to the base pairs used to encode the first and
second bits is added to the memory vessel seen in Figure 13.

It has an overhang that will not bind to the exposed toehold
at the third memory cell for the 111 memory register because
it is not complementary to that base pair. The first instruction
strand is synthesized to match the base pair ordering of the
first and second bits, but not the third bit. The reaction from
instruction 1 is seen in Figure 14. The strands encoding the
first and second bits on both memory registers are displaced
by the long input strands.

111 — 110 ‘

Initial data strands

110 - 111

Figure 12. Toffoli gate initial strands.

111 - 110 S

Instruction 1: Add
strand to protect
the first two bits
(sequenced)

110 - 111

Figure 13. Instruction 1.

111 — 110 g -
7 .

Reaction 1: Add
strand to protect
the first two bits

110 —» 111

Figure 14. Reaction 1.

The second instruction protects the third bit for the 110
memory register. An input strand that is complementary
to the fourth and fifth base pairs of the third bit location
is added to the memory register seen in Figure 15. The
reaction for the second instruction is seen in Figure 16.
The input strand cannot bind with the 111 memory register
because there are no exposed toeholds at those base pairs.
The input strand binds with the exposed toehold on the 110

DNA Storage and Computation

memory register and detaches one base pair from the strand
that encodes that location as a 0. This occurs because both
the input strand and the pre-existing strand still have at least
two base pairs bound to the double strand. The pre-existing
strand at the third bit location on the 110 memory register
now has an overhang. The input strand also has an overhang
that will be used as a toehold later.

111 — 110 -/
7
Instruction 2: Add
strand to protect
last bit if itis a 0
(sequenced)
110 — 111
-/
/
Figure 15. Instruction 2.
111 — 110
) 7
Reaction 2: Strand
binds to 110 strand
but not 111
110 - 111
. pak A

Figure 16. Reaction 2.

The third instruction flips the third bit to 0 if it is encoded
as a 1 seen in Figure 17. The only exposed toehold is on
the 111 memory register at the third bit location which is
encoded as a 1. The input strand at that location will bind
to the exposed toehold and displace the strand encoding the
bit as a 1. The reaction for instruction 3 is seen in Figure
18. The result of the DNA strand displacement is the third
bit on the 111 strand being encoded as a 0 instead of a
1. The 110 memory register and the first two bits of the
111 memory register were not affected by the instruction 3
reaction because there were no exposed toeholds.

The fourth instruction adds a protector strand to protect the
third bit of the 111 memory register since it has been flipped
to O which is the goal. This protector strand is different
from the protector strand added in instruction 2 because it
is shorter in length. The protector strand is complementary
to the last base pair of the third bit locations seen in Figure
19. The reaction for the fourth instruction is seen in Figure
20. The 110 memory register does not have any exposed
toeholds and the protector strand will not be able to bind

111 - 110
o~
Instruction 3: Add
strands to encode 0
to all bits
110 — 111
ol L/
Figure 17. Instruction 3.
111 - 110
ok
Reaction 3: One
strand attaches to
third bit on 111 and
displaced original
strand
110 — 111
pak L/

Figure 18. Reaction 3.

to it. The protector strand binds to the fifth base pair of the
third bit location of the 111 memory register.

111 - 110 —
e

Instruction 4: Add a

unique protector

strand to third bit if

not already there

(sequenced)

110 — 111 .

Figure 19. Instruction 4.

The fifth instruction removes the first protector bit from the
110 memory register. This is the detachment instruction
event where the strands added during the procedure can be
detached if their complementary strand is added to the mem-
ory register. The arrows are faced in a different direction
seen in Figure 21. The reaction for instruction 5 is seen in
Figure 22. The 111 memory register is not affected by the
input strand because it is not complementary to any strands
at that location or in the memory register. The 110 memory
register has the protector strand bound to the fourth and fifth
base pairs of the third bit location removed using the detach-
ment process. The original strand that encodes the third bit
location attaches the overhang to the double stranded DNA

DNA Storage and Computation

111 > 110

Reaction 4: Strand
binds to 111 strand but
not 110 strand because
there are no exposed
toeholds

110 — 111

Figure 20. Reaction 4.

and restores the bit to be encoded as a 0.

111 — 110

Instruction 5:
Remove protector
strand from 110
strand (sequenced)

110 — 111 %
- AN,
Figure 21. Instruction 5.
111 - 110
Wk _
Reaction 5:
Remove protector
strand from 110
strand
110 — 111 —
ak

Figure 22. Reaction 5.

The sixth instruction removes the strands that protect the first
two bits of both memory registers. The detachment process
is used again. Two long strands that are complementary
to the input strands added during the first instruction are
added in Figure 23. The reaction for instruction 6 is seen in
Figure 24. The long input strands displace the long strands
bound to the first and second bit locations for both memory
registers. This leaves the first ten base pairs exposed.

The seventh instruction adds a 1 to all bit locations on both
memory registers. Three input strands are added to each
memory register that are complementary to the last four base
pairs for each bit location seen in Figure 25. The reaction

111 — 110

Wk 7
Instruction 6:
Remove protector
strands from 111
and 110 for first two
bits
110 - 111

7
d
Figure 23. Instruction 6.
111 - 110 o
7

Reaction 6:
Remove protector
strands from 110
and 111 for first two
bits
110 —- 111

P

Figure 24. Reaction 6.

for instruction 7 is seen in Figure 26. The input strands bind
to the first two bit locations for both memory registers. The
third bit locations differ for each memory register. The 111
memory register does not have an exposed toehold at the
third bit location and no reaction occurs. The 110 memory
strand has an exposed toehold at the fifth base pair where
the input strand binds and displaces the strand encoding the
bit as a 0. The DNA strand displacement changes the third
bit from a 0 to a 1 which is the goal.

111 — 110

Instruction 7: Write
a 1to all bit
locations possible

110 — 111

Figure 25. Instruction 7.

The eighth instruction removes the protector strand from
the 111 memory register. The detachment process is used to
detach the protector strand seen in Figure 27. The input for
instruction 8 is complementary to the protector strand added
during instruction 4. The reaction for instruction 8 is seen

DNA Storage and Computation

111 - 110

Reaction 7: 1's
written to all bit
locations except
111 third bit

110 — 111

Figure 26. Reaction 7.

in Figure 28. The input strand removes the protector strand
from the 111 memory register. The 110 memory register is
not affected because the input strand is not complementary
to the strand at that location.

~/
111 — 110

7
Instruction 8:
Remove protector
strand from 111
strand
110 - 1M1

—/

Figure 27. Instruction 8.

—/

111 - 110 —

Reaction 8:
Remove protector
strand from 111
strand

110 — 111

Figure 28. Reaction 8.

The final result is achieved after instruction 8 executes seen
in Figure 29. The 111 memory register now encodes the
bits 110. The 110 memory register now encodes the bits
111. The input 111 has the output 110 and the input 110
has the output 111 seen in the Toffoli gate truth table in
Figure 11. The correct output was achieved by using the
same instructions for two different inputs.

111 — 110

Final Result

110 — 111

Figure 29. Final result of Toffoli operation.

3.3. Discussion

The Toffoli gate was implemented using the SIMDNA
model of in-memory computation. The case where the
inputs to the gate are 111 and 110 were modeled to demon-
strate the bit flip on the third input bit. The inputs to the
Toffoli gate that did not have 1’s as the first two bits were
not modeled. The next step to this process would be to se-
quence the first instruction as an if statement to check if the
the first two bits are 1’s. If they are, performed the sequence
of instructions seen above, else return the inputs without
modifications.

The attachment instruction event requires two free domains
to be present which might conflict with instruction 2. The
input strand for instruction 2 is complementary to the fourth
and fifth base pair on the third bit location. It binds to
the exposed toehold and partially displaces the pre-existing
strand on the fourth base pair in this example. If there are not
enough base pairs to allow the bind, the encoding scheme
can be increased to include 6 base pairs per bit instead of 5.
This would provide more area to allow the input strand to
bind to the memory register.

This procedure provides an example of how to flip a bit
from O to 1 and 1 to O which can be used in other func-
tions. Future work would include implementing this scheme
in a laboratory setting to confirm it is correct. In addi-
tion, more quantum gates can be implemented using the
SIMDNA model. Eventually a quantum computer could be
constructed using DNA. The probability of a qubit reading
a 1 or 0 should be studied in regard to the sequence of base
pairs in a strand of DNA.

4. Associative Memory
4.1. Introduction

Nicks and DNA strand displacement are used to store and
retrieve data in associative memory implementations. As-
sociative memory is an important component of human
intelligence (Baum, 1995). The combination of using DNA

DNA Storage and Computation

and associative memory allows for data to be stored that
is comparable to the human brain capacities (Baum, 1995).
Content addressable memory is a form of associative mem-
ory where an input that has partial knowledge of the contents
of the memory can retrieve the correct data. An example is
storing words or strings of bits into memory and retrieving
a specific word or set of words from an input that has partial
knowledge of the content of the words.

The benefit of content addressable memory is that a specific
address does not need to be known or given to retrieve data.
A subset of the data to be retrieved can be given and content
addressable memory will be able to match the partial input
to data stored in memory and output the matching data. This
is advantageous in regards to memory encoded in DNA
since they do not follow the same structure as computer
memory. Memory encoded in DNA is not in the form of an
array or vector and thus is not able to be addressed with a
location as seen in standard computer memories.

4.1.1. MEMORY IN DNA

Memory encoded in DNA follows a structure where a vessel
or solution holds DNA sequences (Baum, 1995). These
sequences are encoded to represent data such as words or
strings of bits. There are multiple words or strings of bits
in the memory vessel. This is how different information
is stored in memory. Each word can be thought of as a
memory cell (Baum, 1995). Different kinds of associative
memory models in DNA would structure a memory cell in
different ways.

4.2. Methods

A synthesis of previous research on associative memory
implemented in DNA is performed. Three papers are an-
alyzed to show how associative memory applications are
achieved using DNA sequences. Baum encodes data in sin-
gle stranded DNA using the ordering of a DNA sequence
(Baum, 1995). Nowak has each memory cell hold an ad-
dress and a data portion that also uses the DNA sequences to
encoded data. Nowak uses both single stranded and double
stranded DNA sequences to store information (Nowak et al.,
2006). Qian uses DNA strand displacement to implement
a seesaw gate out of DNA and builds linear thresholding
circuits from those reactions to implement a Hopfield neural
network (Qian et al., 2011).

Nicking is applied to Nowak’s implementation of associative
memory. A DNA strand displacement tool, Visual DSD, is
used to simulate the seesaw gate reactions. This will provide
a means to better understand artificial neural networks and
DNA strand displacement cascades.

4.3. Baum

One of the first approaches to content addressable memory
in DNA was shown by Baum in 1995 (Baum, 1995). He was
researching how to build an associative memory larger than
the human brain. His approach used single stranded DNA
sequences and the ordering of the base pairs to encode data.
Multiple approaches of implementing associative memory
in DNA were explored using hybridization, parallelism and
a native DNA encoding.

4.3.1. ENCODING AND STORING DATA IN DNA

Baum described the storage of information as having a mem-
ory vessel containing words that are represented as single
stranded DNA sequences. Words are strings of bits that are
Oor 1. AOor 1isencoded using a unique single stranded
sequence of DNA that is known. These sequences represent-
ing 1’s and 0’s are concatenated together to form words in
the memory vessel. Each bit in the word can be thought of
as a component.

4.3.2. RETRIEVING DATA IN DNA

The retrieval of a word given partial knowledge of the word
is as follows. A cue is made up of multiple components that
is a subsequence of a word. For each component in the cue, a
complementary subsequence can be introduced that matches
the bit represented by the component in the DNA sequence
word. The input complementary sequence will bond to the
complementary sequence on the DNA strand that contains
that component and memory. The input complementary
sequences are affixed with a magnetic bead.

The magnetic beads are extracted to read the data. The
molecules that have bonded with the DNA sequence would
also be extracted because they are bonded with the magnetic
bead that is attached to the complementary sequence that has
bonded with the DNA sequence in the memory vessel. The
words represented as single stranded DNA sequences that
matched the cue exactly would be the result. Thus, given
partial knowledge, different cues, the entire data strand
matching those cues would be retrieved.

4.3.3. RESTORING DATA IN MEMORY

After reading the data, the components are removed from
memory and the data is no longer stored in the memory ves-
sel. To restore the data in memory for another read, the DNA
molecules would be reintroduced into the memory vessel.
The data began as single stranded DNA sequences. After
reading, the data are represented as double stranded DNA
sequences since the input strands that have complementary
sequences to the component values bonded by hybridiza-
tion. These complementary sequences have a biotin bead
attached. The output double stranded DNA strands are split

DNA Storage and Computation

into single stranded DNA strands. The resulting strands are
the original strand that was stored in memory before the
read and the complementary strands with the biotin beads
attached. The strands without beads attached to them would
then be added back into the memory vessel and the original
data is preserved for the next read.

4.3.4. ACHIEVING PARALLELISM

Baum describes an approach where he introduces a par-
allel implementation. The same data encoding is used as
described above. Complementary subsequences for each
component value would be introduced to the memory at
one time. A marker is attached to each complementary
subsequence such that when the subsequence bonds to a
memory it is complementary to, the data in memory would
have an additional marker attached (Baum, 1995). The
data in memory with the most markers would be extracted
since it matched the input the most. A different technology
than biotin beads would have to be used as the markers are
relatively small compared to the biotin beads.

4.3.5. ENCODING DATA IN NATIVE DNA

The previous approaches Baum stated are using synthe-
sized DNA to encode binary data. Specific sequences of
nucleotide bases are ordered to represent a 1 or 0 and these
sequences are concatenated to form strings of bits or words.
Baum suggested using native DNA which is found in living
organisms. Although native DNA sequences cannot be or-
dered in a specific manner since it is naturally occurring, it
is cheaper and easier to use than synthesized DNA. Native
DNA would require a start and stop sequence that would be
encoded and concatenated onto native DNA to represent a 1
and use the idea of sparse vectors. A similar procedure to
those described above would be performed to retrieve the
correct data.

4.4. Nowak

A paper by Nowak published in 2006 describes an associa-
tive memory based on DNA strands built in a laboratory.
They use a slightly different approach where each mem-
ory strand that represents a different piece of information
stored in memory has an address portion and a data portion
(Nowak et al., 2006). Therefore, given an input, the output
would be extracted based on whether the input is associated
with the address portion of the data. For example, an input
can retrieve zero, one or multiple memory strands in the
memory if the input matches the address associated with
the memory strand. A binary relation is used to represent
the pairings of data and cues (Nowak et al., 2006). This
research is performed in a laboratory setting where the DNA
strands are built synthetically. The techniques to store data
in memory and recall specific strands of data are performed

using molecular techniques such as hybridization, denatura-
tion, ligation, cutting and polymerase chain reaction (PCR)
(Nowak et al., 20006).

4.4.1. ENCODING AND STORING DATA IN MEMORY

Data is stored into a memory vessel similar to Baums ap-
proach. Data is represented using double stranded DNA
sequences. The double stranded DNA sequences hold the
data which is encoded using the sequences of A, T, C and
Gs. Single stranded DNA sequences that represent two cues
are attached to either side of the double stranded DNA rep-
resenting the data portion as seen in Figure 30. The cue at
the beginning of the strand is the address cue and the cue at
the end of the strand is used later during PCR suppression.
Every memory cell has the same cue at the end of the mem-
ory cell and it is not used for addressing. The cues are also
encoded and addressed based on their sequence of A, T, C
and G pairings. Each strand that contains a data portion and
two cues is called a memory cell.

a)
5 cuel R, data R
K E— \
cue2
b) c)
5 cue X 5’ N Y

Figure 30. Memory cell (a), input signal (b), temporary signal (c).

The cues have a constant length of N nucleotides. The num-
ber of possible cues for a length N is 4 to the power of N
cues (Nowak). The data portion does not have a definite
length. In Nowaks experiment he used a data length ranging
from 65 base pairs to 517 base pairs. The number of differ-
ent words stored in memory is represented by the number
of memory cells in the memory vessel. Once the memory
cells are encoded and in the vessel, reading and retrieving
of data may begin.

4.4.2. RETRIEVING DATA IN DNA

An important part of reading data from memory is the input
and temporary signal strands added to the memory vessel.
These signals determine the data to be retrieved. An input
signal and a temporary signal are single stranded DNA that
are synthesized to match the cues attached to the memory
cells seen in Figure 30.

The input signal consists of two portions. One portion is a
sequence complementary to the cue that is associated with
the data to be retrieved. The other portion is a random
sequence that can be called X. This sequence will be the
same for all input signals and it will not be complementary

DNA Storage and Computation

to any cues in the memory vessel. The sequence X does
not have to be unique from the data portion of any of the
memory cells in the vessel since they are contained in a
double stranded DNA and cannot bind with single strands.
The cue portions of the memory cells are single stranded
DNA which are able to bind to new strands introduced.

Temporary strands also consists of two portions. Input
strands are built specifically to retrieve any data that is asso-
ciated with one cue. Temporary strands encompass all the
other cue sequences in the memory vessel. Thus, there may
be different sequences of temporary strands constructed and
added to the vessel. The temporary strands have a cue por-
tion that is complementary to any of the cues in the memory
vessel that are not the cue associated with the data to be
retrieved. The second portion of the temporary signal is the
sequence Y that is different from the sequence X and not
complementary to any cues in the memory vessel. Again,
the sequence Y does not need to be unique from the data
portions in the memory cells since they are bounded to a
double stranded DNA and cannot bind to any single stranded
DNA.

Reading from memory is performed by adding the input
signals and temporary signals to the vessel and performing
ligation and PCR suppression. First, the input signals are
added to the memory vessel. The input signals will contain
the complementary sequence to the cue that is attached to
the data to be retrieved. The number of input signals will
be greater than or equal to the number of memory cells in
the vessel in case all memory cells have the same given
cue and all should be retrieved. Once the input signals are
added they will bond to the complementary cues if they
exist during ligation.

Next, the temporary signals are added to the memory vessel.
The number of temporary signals will be greater than the
two times the number of memory vessels multiplied by the
number of possible cues. This will ensure that all remaining
cues will be bonded with the correct temporary signal.

After both the input and temporary signal strands are added,
ligation occurs. Ligation is the joining of two nucleic acid
fragments through an action enzyme, ligase (Nowak et al.,
2006). Ligation forms covalent bonds between the comple-
mentary cues such that every memory cell has a sticky end
of the X sequence or the Y sequence and the other end con-
taining the Y sequence. All memory cells will contain the
Y sequence on at least one of their ends due to the second
cue not being used for addressing, thus, no input signals
would be able to bond to both ends of a memory cell. The
memory cells that do not contain the correct data portion to
be retrieved will have Y sequence on both ends because the
X sequence is only associated with the input signals. This is
important for the next step which is PCR with suppression.

PCR with suppression is a molecular biology technique that
will amplify the DNA strands with different sequences on
the ends and suppress the DNA strands with the same se-
quences on the ends into pan-like structures (Nowak et al.,
2006). The data associated with the input signal is amplified
and can be identified after PCR with suppression using a
gel electrophoresis diagram seen in Figure 31. Each column
represents which cue is being searched and the lines repre-
sent the output of the data associated with the cue. Column
7 is a control to test suppression, therefore, no lines are
present which indicates it works correctly.

556
449

267

128
118

—_—
—_
—
—
—_—
—
—_—
—

CEeom

Figure 31. Experimental result from PCR with suppression.

4.4.3. RESTORING DATA IN MEMORY

When the sequences are amplified the number of memory
cells increases which makes it easy to identify the correct
data associated with the input signal. However, the memory
is corrupted after this process. Each memory cell has input
and temporary signals bonded to them from the ligation step.
Nowak created a scheme to restore the data in memory after
it has been read to prepare it for the next reading. The input
and temporary signals are removed from all memory cells
by cutting using restriction enzymes (Nowak et al., 2006).
The input and temporary signals are then separated from
the memory cells using electrophoresis gel (Nowak et al.,
2006). The memory vessel is then restored to the original
encoding and information as was present in the beginning
of the experiment.

4.4.4. MODIFICATIONS TO APPROACH

One major drawback with this approach is the retrieval of
data. Binary relations are used to define the structure of this
experiment. For example, there exist a data set D which
contains data d1, d2, d3, d4 and a cue set C which contains
cues cl, c2, c3. The binary relation for an example set of
memory cells would be the relation R which contains (c1,
dl), (c2, d3), (c3, d1), (c3, d2). Therefore, the data being
retrieved is measured as the presence of the data from the
correct given cue rather than reading the data. This form

DNA Storage and Computation

of an associative memory is slightly incomplete as content
addressable memory would have data stored in memory and
it would only be retrieved as the entire set of data given an
input that has partial information of the data. This scheme
uses cues and addresses which do not match data portion of
the associated memory cell and do not retrieve the data that
corresponds to the given cue.

This problem can be fixed by encoding the data specifically
for reading. Nicks can be used to encode the binary bits
in the data portion of the memory cells. This would allow
for reading after the correct memory cells were addressed
from a given cue. A couple of steps would be added to the
existing procedure stated above. If PCR with suppression
only provides readouts of data in an electrophoresis gel
diagram, a separate memory vessel/solution would need to
be created to hold copies of the data. This would allow the
data to be read using the nicking procedure explained below.

The existing procedure would be modified by adding a step
during the encoding of data. The data portion of the memory
cells would be nicked at specific nucleotide base locations
to encode a 1 or 0. The double stranded DNA would not
be affected during the rest of the procedure since heat is
not applied to the memory cells, thus the integrity of the
strand will hold. The memory cells could have data portions
that are nicked as a specific string of bits to represent words.
The rest of the procedure stated above will follow. The cues
are unchanged and the same procedure to add input and
temporary signals can be used although this does not fix the
problem addressing with partial data as an input.

The input and temporary strands would be added and liga-
tion and PCR with suppression would be performed. After
this occurs the correct memory cells that match the input
signal would be amplified. Instead of stopping at this point,
the data associated with that memory cell would be read.
Heat is applied to the memory vessel that contains the copy
of the memory cells for the nicking procedure. The result is
memory cells with toeholds in the data portion that repre-
sent the string of bits. This vessel would have helper strands
added to the vessel to read out the bits. Helper strands are
synthesized single stranded DNA that are complementary to
each bit location in the data portion. Thus, the helper strand
will perform DNA strand displacement when reading the
bit at a specific location in the data portion of the memory
cell. This will release the strand that represents the bit and
the helper strand will bind to that bit’s old location. Read-
ing the data using helper strands will corrupt the memory
and it would not be able to be restored unless the strands
representing the bits read were reintroduced back into the
memory vessel and a reverse reaction occurred.

4.5. Qian

Qian applies DNA strand displacement and DNA computing
concepts to an artificial neural network model to develop
a Hopfield associative memory. Linear threshold circuits
are an artificial neural network that mimics a biology neural
network (Qian et al., 2011). The human brain has neurons
that communicate with other neurons through synapses. A
neuron has an electric potential that when a threshold is
met, the neuron sends a pulse to other neurons (Qian et al.,
2011). The linear threshold gate works in a similar way. It
takes in inputs that are 1 or 0 and also have analog values
for weights. The linear threshold gate turns on when the
weighted sum of the inputs is greater than or equal to a given
threshold (Qian et al., 2011). This is similar to the electric
potential in a neuron and when it sends a pulse. This paper
explores different functions that can be constructed using the
linear threshold gate, specifically building a recurrent linear
threshold circuit to act as a neural network to implement a
content-addressable associative memory.

4.5.1. SEESAW NETWORK

A seesaw gate motif is use to build linear threshold cir-
cuits. The seesaw gate motif has been developed in previ-
ous research by Qian and is implemented using DNA and
toehold-mediated DNA strand displacement (Qian et al.,
2011). The seesaw network has three basic reactions that
occur, seesawing, thresholding and reporting.

The seesawing initial state has a single stranded DNA as in-
put and a DNA gate that has an exposed toehold as well as a
complementary sequence to part of the single stranded input
as seen in Figure 32. The input strand and DNA gate bind
at the toehold and DNA strand displacement occurs. The
seesawing final state contains an output that was originally
bound the the DNA gate and an input gate that is similar to
the DNA gate in the initial state, however, the input strand
is bound to it instead of the output strand. This reaction is
reversible since there is always an exposed toehold and the
input and output sequences are complementary to the DNA
gates.

The thresholding initial state has a single stranded DNA
input and a threshold gate. The threshold gate has two
exposed toeholds that will only bind to a specific input
that match the toehold sequences. The input DNA strand
matches both toeholds and binds to the threshold gate and
performs DNA strand displacement as seen in Figure 33.
The thresholding final state contains two waste products
that cannot be used to bind to strands because there are no
exposed toeholds and thus they are stable outputs.

The reporting initial state has a single stranded DNA with an
exposed toehold which is an output from a previous reaction
and a reporter gate. The reporter gate contains an exposed

DNA Storage and Computation

a seesawing (slower)

input gate:output
S2 S6,
T S5 S5

input:gate output
S2

TS5 $5_ T,

Figure 32. Seesawing (slower).

b thresholding (faster)

input threshold
S2
T S5 S5

Figure 33. Thresholding (faster).

toehold and a specific sequence attached that strands that
could bind to it would have to match the sequence. If a
strand binds to the reporter gate a florophore is released
indicating that a match has been found. The output matches
the reporter gate and performs DNA strand displacement

which causes the florophore to light up as seen in Figure 34.

The reporting final state contains two waste products, one
which lights up as a florophore, with no exposed toeholds
which indicate they are stable and can no longer react.

4.5.2. VISUAL DSD: SEESAW GATE MOTIF REACTIONS

Visual DSD was used to code the three basic reactions in
the seesaw gate motif network. Visual DSD allows a better
understanding DNA strand displacement and provides a way
to build and simulate linear threshold gates and circuits out
of the fundamental building blocks of seesaw gates.

The network for the seesawing reaction was implemented
in Figure 35. The input is a single stranded DNA with two

[reporting (slower)

output reporter

S5 T, $6_,q
°F

Figure 34. Reporting (slower).

different sequences connected by an exposed toehold. The
gate starts out bonded to the output strand seen in Figure
35 and has an exposed toehold as well as a sequence com-
plementary to the sequence in the input strand. The double
headed arrows indicate the reaction is reversible. The mid-
dle box shows DNA strand displacement occurring between
the two strands in the initial state. The bottom two boxes
are the outputs from the DNA strand displacement. Figure
36 shows the reactions that occur while seesawing. The
reaction between the two inputs is used to release the two
outputs where the DNA gate is now bound to the output
releasing the input strand as a single strand.

s6 T ss
ss T s2 —
La gateOutput

0.0003
0.1126

R
N

gl

Y
6. L% L S5 T s2 00003 S6 T S5°7T S2
=
TF S5% T* o126 T
& S5 T S2
S6 T S5 T S2 0.1126 s6 T S5

N0.0003 T* S5% T* I

i

Figure 36. Reactions for seesawing (slower) implemented in Visual
DSD.

The network for thresholding is implemented in Figure 37.
This network only shows initial and final states of the thresh-

DNA Storage and Computation

olding reaction. The outputs do not have any exposed toe-
holds and are stable. The reactions occurring during thresh-
olding bind to the two exposed toeholds and displace the
strand S5 from the threshold gate as seen in Figure 38. The
threshold gate with S2 has a portion of S2 as an exposed
toehold and part of it as a normal single stranded DNA.
Having two exposed toeholds indicates that this reaction
occurs faster than the seesawing and reporting reactions.
The single headed arrow indicates that this is a forward only
reaction and cannot be reversed.

S5
S5% T s2%
threshold

(0.0003 + 0.0003)

Figure 37. Visual DSD network implementing thresholding
(faster).

L, S5 T s2 s (0.0003+00003) \ 5% T 52 S2

S5% T* S2% S5% T* S2*

S5

Figure 38. Reactions for thresholding (faster) implemented in Vi-
sual DSD.

The network for reporting is implemented in Figure 39. This
network only shows initial and final state DNA strands. The
outputs are stable and do not have any exposed toeholds.
The reactions for the reporting are shown in Figure 40 where
fl represents a florophore that will be released when the
correct single stranded DNA binds to the exposed toehold.
This strand must be the same sequence as S6 since it is
attached to the florophore strand. The reaction only has one
exposed toehold in the initial state so it performs slower
than the thresholding reactions. The single headed arrow
indicates that this is a forward only reaction and cannot be
reversed.

S6* T*
reporter

Figure 39. Visual DSD network implementing reporting (slower).

fl S6 S6 T S5
e + S6 T S5 0.0003 + flS6
S6* T — S6* T
reporter output F-waste waste

Figure 40. Reactions for reporting (slower) implemented in Visual
DSD.

4.5.3. THE SEESAW CATALYST

The seesaw gate catalyst can be constructed from the seesaw
gate motif. The seesaw gate catalyst is a multi-step process
where fuel is introduced as a catalyst. An example of the
seesaw gate and DNA strands to implement the seesaw
gate are shown in Figure 41. The initial state has all the
strands that are in shaded boxes. The final state has all the
strands that are in outlined boxes. The seesaw gate catalyst
CRN was implemented in Visual DSD to understand the
network and reactions. These are seen in Figure 42 and
43, respectively. There are multiple reactions occurring
simultaneously through forward and reverse reactions. All
reactions are reversible such that the outputs are not stable
and can react with their exposed toeholds.

a b [gatefuel input gate:output
s7 s2 6
ss T T S5 S5 T,
— = = ==
S5t T T s T
gate output
input s2 S5 s7 s2 S5 6
T/s5 T T/ 85 T
fuel = —~ = =
T o5 T T s T
s2 S5 o7 sz S5 s6
T s5\T S5 \T,
gate 17 = = = =
output T s T T ™
input V/_/qu '/_/g\’
fue\ fuel input:gate output
- s7 2 s

s$5 T T S5 §5 T

Figure 41. The seesaw catalyst.

The code shown in Figure 44 demonstrates how strands are
built in Visual DSD. The concentration or the number of
strands can also be specified. The simulation followed the
numbers present in Figure 41 in the seesaw gate motif. The
initial state includes 10 fuel strands, 0.1 input strand and 1
gate:output strand. The final state includes 0.1 input strands,
1 gate:fuel strand, 1 output strand and 9 fuel strands since
one was used during the reaction.

Figure 45 shows the simulation results. The blue line rep-
resents the fuel being reduced from 10 to 9. The red line
represents the gate:fuel increasing from O to 1 since it was
not present in the initial state. The green line represents the
gate:output which goes from 1 to 0 as it is not present in the
final state. The yellow line which may not be visible from

DNA Storage and Computation

gateFuel

0.0003

Figure 42. Visual DSD network implementing the seesaw catalyst.

57 T S5 s T s2 0.0003 s7 T S5°°T s2
——— =0.0003\
T* S5* T* N0.1126 ¢ g% =
gate:fuel input sp7
8
S6 T S5 L, S5 T s2 00003, S6 T S5 °T s2
T+ S5x T* — So.1126 = —

gatezoutput input sp8

©

S7 T S5 T S2 _0.1126y S5 T %2

\0.0003 T* S5% T*

=
T+ ssx T
o fuel

p7 input:gate

&
s6 S5 U T s2 _0.4126\ S5 T s2
00003, T ssx 0

input:gate output

+ S6 T S5

T

=

TH S5 T*
sp8

Figure 43. Reactions for the seesaw catalyst implemented in Visual
DSD.

Figure 45 represents the output that goes from 0 to 1 since it
was not present in the initial state. The input is represented
by a pink line that roughly stays at 0.1 during the simulation.
The simulation results match with the output in Figure 41.

4.5.4. HOPFIELD ASSOCIATIVE MEMORY

The Hopfield associative memory was implemented using a
recurrent linear threshold circuit. The recurrence provides
feedback similar to how a brain processes information with
feedback from other neurons. The three basic reactions
from the seesaw gate are used to build three types of seesaw
gates that are combined to construct linear threshold gates.
A multiply seesaw gate have a fixed threshold of 0.2 can be
encoded with concentration or number of strands in DNA. It
takes in an input that is 0 or 1 and multiplies it by different
output weights to produce multiple outputs. The output
strand is where the weights are defined. An integrating
seesaw gate takes in multiple inputs and no threshold or fuel.
The output produced is the sum of all inputs. A thresholding
seesaw gate has a threshold and one output. The gate takes
in one input and if it is greater than or equal to the threshold
the output will be set to 1, otherwise 0.

These three gates are combined to create a linear threshold

directive simulation {

final=60000;
plots=[gateFuel();gateOutput();fuel();output();input()];
}

directive simulator deterministic

directive parameters [k=0.3;u=0.1]

directive compilation infinite

dom T = {bind=k;unbind=u;colour="red"}

def gateFuel() = <S7>[T~ S5]{T"*}
def fuell() = <§7 T~ S5>
def input() = <S5 T~ S2>
def gateOutput() = <S6>[T~ S5]{T"*}
def output() = <S6 T~ S5>

9.1 input()

1.0 gateOutput()
0.0 gateFuel()

(10.0 fuel()
|
\
\
| .0 output())

Figure 44. Code to simulate seesaw catalyst implemented in Visual
DSD.

10000 20000 30000 40000 50000 oo
Time (

Figure 45. Simulation of seesaw catalyst implemented in Visual
DSD.

circuit. A 2 input linear threshold gate starts with 2 multiply-
ing gates that feed their input into an integrating gate. The
integrating gate’s output are fed into the inputs of a thresh-
olding gate. This follows the procedure of a linear threshold
gate where a set of inputs are multiplied by their weight
which the multiplying gates achieve. Next, the products are
added together into an overall sum which is achieved using
the integrating gate. The final step is checking whether the
final sum is greater than or equal to the set threshold which
is accomplished by the thresholding seesaw gate. A reporter
gate uses the florophore to signal if the gate is on or off.

The Hopfield associative memory uses a combination of the
different types of seesaw gates and includes feedback. The
weights and thresholds are chosen based on in silico learning
and simulation. Four patterns of four bits were trained for
the DNA to remember based on the weights and threshold

DNA Storage and Computation

values. These are the data stored in memory that will be
compared to the input of partial data. Once the weights are
set the experiment can be performed in a laboratory setting.
Linear threshold gates are connected to each other to build
a linear threshold circuit. The correct weight and threshold
values enabled the neural network to retrieve the correct
data given a specific partial input. The results were accurate
for the associative memory and included states of unknown
variables. Visual DSD was used to confirm the experiments
using a stochastic simulation (Qian et al., 2011). This coding
of the associative memory used specific sequences of A, T,
C and G pairings. To implement a simple linear threshold
gate requires 60 different strands of DNA so the associative
memory simulation would be very complicated.

4.6. Discussion

Three different approaches to implementing associative
memory in DNA were studied. The original idea proposed
by Baum in 1995 is still being used in research today with
modifications and use of better molecular biology tools. The
Nowak and Qian papers demonstrated different approaches
that both used synthesized DNA to achieve the correct order-
ing of nucleotide bases. Nowak’s experiment was conducted
in a laboratory setting and Qian used both simulations and
a laboratory setting to conduct the experiment. A modifi-
cation to Nowak’s approach was provided that would be
able to read the data once the correct memory cells were
addressed. This would allow native DNA to be used for
the data portion of the memory cells with the procedure of
nicking to encode bits. This woudl reduce the cost of creat-
ing artificial DNA. Simulations were performed in Visual
DSD to understand seesaw gates and linear threshold gates.
Although this research has been simulated previously, there
had not been a high level simulation of the different seesaw
reactions or seesaw catalyst network. The three basic see-
saw reactions can be combined to form four types of seesaw
gates. These are simply DNA strands from the three basic
reactions set to specific sequences, weights and thresholds
combined together in a solution.

Future work would be to implement different Boolean gates
and the Hopfield associative memory in Visual DSD using
the basic building blocks of linear threshold circuits. The
experiment performed by Nowak would also need to be
modified to include native DNA and nicks. This would be
done in a laboratory setting. There are more approaches
to implementing associative memory in DNA that can be
explored. The mismatch during hybridization has been used
advantageously to implement learning within associative
memories. The goal of this synthesis of associative memory
implementations was to modify existing implementations
to use nicks instead of DNA sequences to encode data. A
better understanding of associative memory and DNA was
achieved.

5. Conclusion

DNA concepts and techniques were studied and applied to
three different concepts in computing. A simple Boolean
logic gate example was analyzed and simulated using Vi-
sual DSD. A model for in-memory computation was used
to build a quantum gate to explore the potential of DNA
quantum computing. Associative memory implementations
in DNA were analyzed to understand the different models
proposed to implement one concept. An implementation
of associative memory was modified to include the nicking
scheme to encode and read binary data. A Hopfield asso-
ciative memory implemented in DNA was studied to under-
stand how computation and biology pair together nicely to
implement a neural network using DNA. The applications
of DNA storage and computation is extensive and promising
for future developments in technology.

References

Baum, E. B. Building an associative memory vastly larger
than the brain. Science, 268:583-585, 1995.

Lakin, M. R., Youssef, S., Polo, F., Emmott, S., and
Phillips, A. Visual dsd. Bioinformatics, 27(22):3211-
3213, November 2011. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btr543. URL http://dx.doi.org/
10.1093/biocinformatics/btr543.

Nowak, R., J. Mulawka, J., and Pucienniczak, A. Molecular
associative memory built on dna. 03 2006. doi: 10.1117/
12.674904.

Qian, L., Winfree, E., and Bruck, J. Neural network com-
putation with dna strand displacement cascades. Nature,
475:368-72, 07 2011. doi: 10.1038/nature10262.

Wang, B., Chalk, C., and Soloveichik, D. Simdna: Single
instruction, multiple data computation with dna strand
displacement cascades. unpublished.

http://dx.doi.org/10.1093/bioinformatics/btr543
http://dx.doi.org/10.1093/bioinformatics/btr543

