Difference between revisions of "Research of Weikang Qian"

From The Circuits and Biology Lab at UMN
Jump to navigationJump to search
 
 
Line 1: Line 1:
<sidebar>
(My research while at UMN.)
* Navigation
 
** Weikang_Qian|About Weikang
** Research_of_Weikang_Qian|Research
** Publications_of_Weikang_Qian|Publications
** Main_Page|My Advisor's Group
</sidebar>
Most digital circuits are designed to map ''deterministic'' inputs of zero and one to deterministic outputs of zero and one. In my research, I consider an alternative paradigm: digital circuits that operate on '''random Boolean variables'''. A random Boolean variable with probability ''p''
Most digital circuits are designed to map ''deterministic'' inputs of zero and one to deterministic outputs of zero and one. In my research, I consider an alternative paradigm: digital circuits that operate on '''random Boolean variables'''. A random Boolean variable with probability ''p''
(0 &le; ''p'' &le; 1) of being one represents a real-valued number ''p''. Thus, circuits can be viewed as constructs that accept real-valued probabilities as inputs and compute real-valued probabilities as outputs.
(0 &le; ''p'' &le; 1) of being one represents a real-valued number ''p''. Thus, circuits can be viewed as constructs that accept real-valued probabilities as inputs and compute real-valued probabilities as outputs.
Line 25: Line 20:
{| style="background:#F0E68C"
{| style="background:#F0E68C"
|- valign="top"
|- valign="top"
| width="100" | '''title''':
| width="100" | '''title''':
| width="500"| [[Media:Qian_Riedel_Synthesizing_Logical_Computation_on_Stochastic_Bit_Streams.pdf | Synthesizing Logical Computation on Stochastic Bit Streams]]
| width="500" | [[Media:Qian_Riedel_Synthesizing_Logical_Computation_on_Stochastic_Bit_Streams.pdf | Synthesizing Logical Computation on Stochastic Bit Streams]]
|- valign="top"  
|- valign="top"  
| '''authors''':
| '''authors''':
Line 34: Line 29:
| [http://cacm.acm.org/ Communications of the ACM '''Research Highlight'''].
| [http://cacm.acm.org/ Communications of the ACM '''Research Highlight'''].
|}
|}
| align=center width="70" |  
| align="center" width="70" |  
<span class="plainlinks">
<span class="plainlinks">
[http://cadbio.com/wiki/images/6/64/Qian_Riedel_Synthesizing_Logical_Computation_on_Stochastic_Bit_Streams.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
[http://cadbio.com/wiki/images/6/64/Qian_Riedel_Synthesizing_Logical_Computation_on_Stochastic_Bit_Streams.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
<br>
<br>
[[Media:Qian_Riedel_Synthesizing_Logical_Computation_on_Stochastic_Bit_Streams.pdf  | Paper]]
[[Media:Qian_Riedel_Synthesizing_Logical_Computation_on_Stochastic_Bit_Streams.pdf  | Paper]]
Line 54: Line 49:
| [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5601694 IEEE Transactions on Computers], vol. 60, no. 1, pp. 93-105, 2011.
| [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5601694 IEEE Transactions on Computers], vol. 60, no. 1, pp. 93-105, 2011.
|}
|}
| align=center width="70" |  
| align="center" width="70" |  
<span class="plainlinks">
<span class="plainlinks">
[http://cadbio.com/wiki/images/2/21/Qian_Li_Riedel_Bazargan_Lilja_An_Architecture_for_Fault-Tolerant_Computation_with_Stochastic_Logic.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
[http://cadbio.com/wiki/images/2/21/Qian_Li_Riedel_Bazargan_Lilja_An_Architecture_for_Fault-Tolerant_Computation_with_Stochastic_Logic.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
<br>
<br>
[[Media:Qian_Li_Riedel_Bazargan_Lilja_An_Architecture_for_Fault-Tolerant_Computation_with_Stochastic_Logic.pdf  | Paper]]
[[Media:Qian_Li_Riedel_Bazargan_Lilja_An_Architecture_for_Fault-Tolerant_Computation_with_Stochastic_Logic.pdf  | Paper]]
Line 95: Line 90:
| [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WDY-51WP38J-1&_user=10&_coverDate=04%2F30%2F2011&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_searchStrId=1678369105&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=057c5b37ffe293c8c2fa1d00b17d26c7&searchtype=a European Journal of Combinatorics], vol. 32, no. 3, pp. 448-463, 2011.
| [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WDY-51WP38J-1&_user=10&_coverDate=04%2F30%2F2011&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_searchStrId=1678369105&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=057c5b37ffe293c8c2fa1d00b17d26c7&searchtype=a European Journal of Combinatorics], vol. 32, no. 3, pp. 448-463, 2011.
|}
|}
| align=center width="70" |  
| align="center" width="70" |  
<span class="plainlinks">
<span class="plainlinks">
[http://cadbio.com/wiki/images/a/ab/Qian_Riedel_Rosenberg_Uniform_Approximation_and_Bernstein_Polynomials_with_Coefficients_in_the_Unit_Interval.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
[http://cadbio.com/wiki/images/a/ab/Qian_Riedel_Rosenberg_Uniform_Approximation_and_Bernstein_Polynomials_with_Coefficients_in_the_Unit_Interval.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
<br>
<br>
[[Media:Qian_Riedel_Rosenberg_Uniform_Approximation_and_Bernstein_Polynomials_with_Coefficients_in_the_Unit_Interval.pdf  | Paper]]
[[Media:Qian_Riedel_Rosenberg_Uniform_Approximation_and_Bernstein_Polynomials_with_Coefficients_in_the_Unit_Interval.pdf  | Paper]]
Line 124: Line 119:
| [http://tcad.polito.it/ IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems].
| [http://tcad.polito.it/ IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems].
|}
|}
| align=center width="70" |  
| align="center" width="70" |  
<span class="plainlinks">
<span class="plainlinks">
[http://cadbio.com/wiki/images/d/db/Qian_Riedel_Zhou_Bruck_Transforming_Probabilities_with_Combinational_Logic.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
[http://cadbio.com/wiki/images/d/db/Qian_Riedel_Zhou_Bruck_Transforming_Probabilities_with_Combinational_Logic.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
<br>
<br>
[[Media:Qian_Riedel_Zhou_Bruck_Transforming_Probabilities_with_Combinational_Logic.pdf  | Paper]]
[[Media:Qian_Riedel_Zhou_Bruck_Transforming_Probabilities_with_Combinational_Logic.pdf  | Paper]]
Line 152: Line 147:
| nominated for '''IEEE/ACM William J. McCalla ICCAD Best Paper Award'''
| nominated for '''IEEE/ACM William J. McCalla ICCAD Best Paper Award'''
|}
|}
| align=center width="70" |  
| align="center" width="70" |  
<span class="plainlinks">
<span class="plainlinks">
[http://www.cctbio.ece.umn.edu/wiki/images/5/5d/Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
[http://www.cctbio.ece.umn.edu/wiki/images/5/5d/Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
<br>[[Media:Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.pdf | Paper]]
<br>[[Media:Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.pdf | Paper]]
| align=center width="70" |  
| align="center" width="70" |  
<span class="plainlinks">[http://cctbio.ece.umn.edu/files/Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.ppt http://cctbio.ece.umn.edu/wiki/images/3/36/Ppt.jpg]</span>
<span class="plainlinks">[http://cctbio.ece.umn.edu/files/Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.ppt http://cctbio.ece.umn.edu/wiki/images/3/36/Ppt.jpg]</span>
<br> [http://cctbio.ece.umn.edu/files/Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.ppt Slides]
<br> [http://cctbio.ece.umn.edu/files/Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.ppt Slides]
Line 181: Line 176:
| [http://www.sigda.org/iwls/iwls2010/ International Workshop on Logic and Synthesis], Irvine, CA, 2010
| [http://www.sigda.org/iwls/iwls2010/ International Workshop on Logic and Synthesis], Irvine, CA, 2010
|}
|}
| align=center width="70" |  
| align="center" width="70" |  
<span class="plainlinks">
<span class="plainlinks">
[http://www.cctbio.ece.umn.edu/wiki/images/4/4c/Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
[http://www.cctbio.ece.umn.edu/wiki/images/4/4c/Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
<br>[[Media:Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.pdf | Paper]]
<br>[[Media:Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.pdf | Paper]]
| align=center width="70" |  
| align="center" width="70" |  
<span class="plainlinks">[http://cctbio.com/wiki/images/4/42/Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.ppt http://cctbio.ece.umn.edu/wiki/images/3/36/Ppt.jpg]</span>
<span class="plainlinks">[http://cctbio.com/wiki/images/4/42/Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.ppt http://cctbio.ece.umn.edu/wiki/images/3/36/Ppt.jpg]</span>
<br> [http://cctbio.com/wiki/images/4/42/Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.ppt Poster]
<br> [http://cctbio.com/wiki/images/4/42/Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.ppt Poster]
Line 203: Line 198:
| [http://www.sigda.org/iwls/iwls2010/ International Workshop on Logic and Synthesis], Irvine, CA, 2010
| [http://www.sigda.org/iwls/iwls2010/ International Workshop on Logic and Synthesis], Irvine, CA, 2010
|}
|}
| align=center width="70" |  
| align="center" width="70" |  
<span class="plainlinks">
<span class="plainlinks">
[http://www.cctbio.ece.umn.edu/wiki/images/2/2f/Qian_Riedel_Synthesizing_a_Set_of_Cubes_to_Satisfy_a_Given_Intersection_Pattern.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
[http://www.cctbio.ece.umn.edu/wiki/images/2/2f/Qian_Riedel_Synthesizing_a_Set_of_Cubes_to_Satisfy_a_Given_Intersection_Pattern.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span>
<br>[[Media:Qian_Riedel_Synthesizing_a_Set_of_Cubes_to_Satisfy_a_Given_Intersection_Pattern.pdf | Paper]]
<br>[[Media:Qian_Riedel_Synthesizing_a_Set_of_Cubes_to_Satisfy_a_Given_Intersection_Pattern.pdf | Paper]]
| align=center width="70" |
| align="center" width="70" |
<span class="plainlinks">[http://cctbio.com/wiki/images/5/5b/Qian_Riedel_Synthesizing_Cubes_to_Satisfy_a_Given_Intersection_Pattern.ppt http://cctbio.ece.umn.edu/wiki/images/3/36/Ppt.jpg]</span>
<span class="plainlinks">[http://cctbio.com/wiki/images/5/5b/Qian_Riedel_Synthesizing_Cubes_to_Satisfy_a_Given_Intersection_Pattern.ppt http://cctbio.ece.umn.edu/wiki/images/3/36/Ppt.jpg]</span>
<br> [http://cctbio.com/wiki/images/5/5b/Qian_Riedel_Synthesizing_Cubes_to_Satisfy_a_Given_Intersection_Pattern.ppt Slides]
<br> [http://cctbio.com/wiki/images/5/5b/Qian_Riedel_Synthesizing_Cubes_to_Satisfy_a_Given_Intersection_Pattern.ppt Slides]
|}
|}
<!--== The Synthesis of Stochastic Circuits for Nanoscale Computation ==
<!--== The Synthesis of Stochastic Circuits for Nanoscale Computation ==



Latest revision as of 09:03, 7 July 2023

(My research while at UMN.)

Most digital circuits are designed to map deterministic inputs of zero and one to deterministic outputs of zero and one. In my research, I consider an alternative paradigm: digital circuits that operate on random Boolean variables. A random Boolean variable with probability p (0 ≤ p ≤ 1) of being one represents a real-valued number p. Thus, circuits can be viewed as constructs that accept real-valued probabilities as inputs and compute real-valued probabilities as outputs.

I consider three topics pertaining to circuit synthesis in this probabilistic domain. The first is how to synthesize circuits that implement arbitrary arithmetic functions. The second is how to synthesize circuits that transform a set of source probabilities into target probabilities. The third is a special case of the second one, in which the source inputs are independent random Boolean variables with probability 0.5.


The Synthesis of Logical Computation on Random Boolean Variables

Logical computation on random Boolean variables implements a function mapping real values into real values. For example, given an input probability x, an inverter will have an output with probability 1-x. In this work, I consider a general synthesis problem: how can we implement an arbitrary arithmetic function y=f(x) by logical computation on random Boolean variables?

Logical computation on random Boolean variables. (a): Given input probability x, an inverter implements the function f(x)=1-x. (b): A general synthesis problem is how to implement an arbitrary arithmetic function y=f(x) by logical computation on random Boolean variables.

Selected Publications

title: Synthesizing Logical Computation on Stochastic Bit Streams
authors: Weikang Qian and Marc Riedel
submitted to: Communications of the ACM Research Highlight.

Pdf.jpg
Paper

title: An Architecture for Fault-Tolerant Computation with Stochastic Logic
authors: Weikang Qian, Xin Li, Marc Riedel, Kia Bazargan, and David Lilja
appeared in: IEEE Transactions on Computers, vol. 60, no. 1, pp. 93-105, 2011.

Pdf.jpg
Paper

title: The Synthesis of Robust Polynomial Arithmetic with Stochastic Logic
authors: Weikang Qian and Marc Riedel
presented at: Design Automation Conference, Anaheim, CA, 2008

Pdf.jpg
Paper

Ppt.jpg
Slides

title: Uniform Approximation and Bernstein Polynomials with Coefficients in the Unit Interval
authors: Weikang Qian, Marc Riedel, and Ivo Rosenberg
appeared in: European Journal of Combinatorics, vol. 32, no. 3, pp. 448-463, 2011.

Pdf.jpg
Paper

The Synthesis of Combinational Logic to Generate Probabilities

In probabilistic computation that requires many different probability values, it is expensive to generate all of the probabilities directly from random sources. In this work, I demonstrate novel techniques for synthesizing combinational logic that transforms a set of source probabilities into different target probabilities.

Given a set S of source probabilities {0.4, 0.5}, we can synthesize a combinational circuit to generate an arbitrary decimal output probability. The example shows how to generate 0.119. Each AND gate performs a multiplication of its input probabilities and each inverter performs a one-minus operation of its input probability.

Selected Publications

title: Transforming Probabilities with Combinational Logic
authors: Weikang Qian, Marc Riedel, Hongchao Zhou, and Jehoshua Bruck
will appear in: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

Pdf.jpg
Paper

title: The Synthesis of Combinational Logic to Generate Probabilities
authors: Weikang Qian, Marc Riedel, Kia Bazargan, and David Lilja
presented at: International Conference on Computer-Aided Design, San Jose, 2009
nominated for IEEE/ACM William J. McCalla ICCAD Best Paper Award

Pdf.jpg
Paper

Ppt.jpg
Slides

Two-Level Logic Synthesis for Probabilistic Computation

Assuming that we are given independent copies of probabilistic inputs with probability 0.5 of being one, how can we synthesize a two-level logic circuit that generates an arbitrary target output probability? This problem is equivalent to finding a Boolean function with m minterms and having a sum-of-product expression with the minimum number of products.

The Karnaugh maps of two different Boolean functions both containing 7 minterms. (a): The optimal sum-of-product expression contains 3 product terms. (b): The optimal sum-of-product expression contains 2 product terms. Figure (b) gives a Boolean function with the minimum number of products to cover 7 minterms.

Selected Publications

title: Two-Level Logic Synthesis for Probabilistic Computation
authors: Weikang Qian and Marc Riedel
presented at: International Workshop on Logic and Synthesis, Irvine, CA, 2010

Pdf.jpg
Paper

Ppt.jpg
Poster

title: Synthesizing Cubes to Satisfy a Given Intersection Pattern
authors: Weikang Qian and Marc Riedel
presented at: International Workshop on Logic and Synthesis, Irvine, CA, 2010

Pdf.jpg
Paper

Ppt.jpg
Slides