Difference between revisions of "Research of Weikang Qian"
MarcRiedel (talk | contribs) |
|||
Line 1: | Line 1: | ||
(My research while at UMN.) | |||
Most digital circuits are designed to map ''deterministic'' inputs of zero and one to deterministic outputs of zero and one. In my research, I consider an alternative paradigm: digital circuits that operate on '''random Boolean variables'''. A random Boolean variable with probability ''p'' | Most digital circuits are designed to map ''deterministic'' inputs of zero and one to deterministic outputs of zero and one. In my research, I consider an alternative paradigm: digital circuits that operate on '''random Boolean variables'''. A random Boolean variable with probability ''p'' | ||
(0 ≤ ''p'' ≤ 1) of being one represents a real-valued number ''p''. Thus, circuits can be viewed as constructs that accept real-valued probabilities as inputs and compute real-valued probabilities as outputs. | (0 ≤ ''p'' ≤ 1) of being one represents a real-valued number ''p''. Thus, circuits can be viewed as constructs that accept real-valued probabilities as inputs and compute real-valued probabilities as outputs. | ||
Line 25: | Line 20: | ||
{| style="background:#F0E68C" | {| style="background:#F0E68C" | ||
|- valign="top" | |- valign="top" | ||
| | | width="100" | '''title''': | ||
| | | width="500" | [[Media:Qian_Riedel_Synthesizing_Logical_Computation_on_Stochastic_Bit_Streams.pdf | Synthesizing Logical Computation on Stochastic Bit Streams]] | ||
|- valign="top" | |- valign="top" | ||
| '''authors''': | | '''authors''': | ||
Line 34: | Line 29: | ||
| [http://cacm.acm.org/ Communications of the ACM '''Research Highlight''']. | | [http://cacm.acm.org/ Communications of the ACM '''Research Highlight''']. | ||
|} | |} | ||
| align=center width="70" | | | align="center" width="70" | | ||
<span class="plainlinks"> | <span class="plainlinks"> | ||
[http://cadbio.com/wiki/images/6/64/Qian_Riedel_Synthesizing_Logical_Computation_on_Stochastic_Bit_Streams.pdf | [http://cadbio.com/wiki/images/6/64/Qian_Riedel_Synthesizing_Logical_Computation_on_Stochastic_Bit_Streams.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span> | ||
<br> | <br> | ||
[[Media:Qian_Riedel_Synthesizing_Logical_Computation_on_Stochastic_Bit_Streams.pdf | Paper]] | [[Media:Qian_Riedel_Synthesizing_Logical_Computation_on_Stochastic_Bit_Streams.pdf | Paper]] | ||
Line 54: | Line 49: | ||
| [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5601694 IEEE Transactions on Computers], vol. 60, no. 1, pp. 93-105, 2011. | | [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5601694 IEEE Transactions on Computers], vol. 60, no. 1, pp. 93-105, 2011. | ||
|} | |} | ||
| align=center width="70" | | | align="center" width="70" | | ||
<span class="plainlinks"> | <span class="plainlinks"> | ||
[http://cadbio.com/wiki/images/2/21/Qian_Li_Riedel_Bazargan_Lilja_An_Architecture_for_Fault-Tolerant_Computation_with_Stochastic_Logic.pdf | [http://cadbio.com/wiki/images/2/21/Qian_Li_Riedel_Bazargan_Lilja_An_Architecture_for_Fault-Tolerant_Computation_with_Stochastic_Logic.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span> | ||
<br> | <br> | ||
[[Media:Qian_Li_Riedel_Bazargan_Lilja_An_Architecture_for_Fault-Tolerant_Computation_with_Stochastic_Logic.pdf | Paper]] | [[Media:Qian_Li_Riedel_Bazargan_Lilja_An_Architecture_for_Fault-Tolerant_Computation_with_Stochastic_Logic.pdf | Paper]] | ||
Line 95: | Line 90: | ||
| [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WDY-51WP38J-1&_user=10&_coverDate=04%2F30%2F2011&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_searchStrId=1678369105&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=057c5b37ffe293c8c2fa1d00b17d26c7&searchtype=a European Journal of Combinatorics], vol. 32, no. 3, pp. 448-463, 2011. | | [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WDY-51WP38J-1&_user=10&_coverDate=04%2F30%2F2011&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_searchStrId=1678369105&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=057c5b37ffe293c8c2fa1d00b17d26c7&searchtype=a European Journal of Combinatorics], vol. 32, no. 3, pp. 448-463, 2011. | ||
|} | |} | ||
| align=center width="70" | | | align="center" width="70" | | ||
<span class="plainlinks"> | <span class="plainlinks"> | ||
[http://cadbio.com/wiki/images/a/ab/Qian_Riedel_Rosenberg_Uniform_Approximation_and_Bernstein_Polynomials_with_Coefficients_in_the_Unit_Interval.pdf | [http://cadbio.com/wiki/images/a/ab/Qian_Riedel_Rosenberg_Uniform_Approximation_and_Bernstein_Polynomials_with_Coefficients_in_the_Unit_Interval.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span> | ||
<br> | <br> | ||
[[Media:Qian_Riedel_Rosenberg_Uniform_Approximation_and_Bernstein_Polynomials_with_Coefficients_in_the_Unit_Interval.pdf | Paper]] | [[Media:Qian_Riedel_Rosenberg_Uniform_Approximation_and_Bernstein_Polynomials_with_Coefficients_in_the_Unit_Interval.pdf | Paper]] | ||
Line 124: | Line 119: | ||
| [http://tcad.polito.it/ IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems]. | | [http://tcad.polito.it/ IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems]. | ||
|} | |} | ||
| align=center width="70" | | | align="center" width="70" | | ||
<span class="plainlinks"> | <span class="plainlinks"> | ||
[http://cadbio.com/wiki/images/d/db/Qian_Riedel_Zhou_Bruck_Transforming_Probabilities_with_Combinational_Logic.pdf | [http://cadbio.com/wiki/images/d/db/Qian_Riedel_Zhou_Bruck_Transforming_Probabilities_with_Combinational_Logic.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span> | ||
<br> | <br> | ||
[[Media:Qian_Riedel_Zhou_Bruck_Transforming_Probabilities_with_Combinational_Logic.pdf | Paper]] | [[Media:Qian_Riedel_Zhou_Bruck_Transforming_Probabilities_with_Combinational_Logic.pdf | Paper]] | ||
Line 152: | Line 147: | ||
| nominated for '''IEEE/ACM William J. McCalla ICCAD Best Paper Award''' | | nominated for '''IEEE/ACM William J. McCalla ICCAD Best Paper Award''' | ||
|} | |} | ||
| align=center width="70" | | | align="center" width="70" | | ||
<span class="plainlinks"> | <span class="plainlinks"> | ||
[http://www.cctbio.ece.umn.edu/wiki/images/5/5d/Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span> | [http://www.cctbio.ece.umn.edu/wiki/images/5/5d/Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span> | ||
<br>[[Media:Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.pdf | Paper]] | <br>[[Media:Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.pdf | Paper]] | ||
| align=center width="70" | | | align="center" width="70" | | ||
<span class="plainlinks">[http://cctbio.ece.umn.edu/files/Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.ppt http://cctbio.ece.umn.edu/wiki/images/3/36/Ppt.jpg]</span> | <span class="plainlinks">[http://cctbio.ece.umn.edu/files/Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.ppt http://cctbio.ece.umn.edu/wiki/images/3/36/Ppt.jpg]</span> | ||
<br> [http://cctbio.ece.umn.edu/files/Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.ppt Slides] | <br> [http://cctbio.ece.umn.edu/files/Qian_Riedel_Bazargan_Lilja_The_Synthesis_of_Combinational_Logic_to_Generate_Probabilities.ppt Slides] | ||
Line 181: | Line 176: | ||
| [http://www.sigda.org/iwls/iwls2010/ International Workshop on Logic and Synthesis], Irvine, CA, 2010 | | [http://www.sigda.org/iwls/iwls2010/ International Workshop on Logic and Synthesis], Irvine, CA, 2010 | ||
|} | |} | ||
| align=center width="70" | | | align="center" width="70" | | ||
<span class="plainlinks"> | <span class="plainlinks"> | ||
[http://www.cctbio.ece.umn.edu/wiki/images/4/4c/Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span> | [http://www.cctbio.ece.umn.edu/wiki/images/4/4c/Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span> | ||
<br>[[Media:Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.pdf | Paper]] | <br>[[Media:Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.pdf | Paper]] | ||
| align=center width="70" | | | align="center" width="70" | | ||
<span class="plainlinks">[http://cctbio.com/wiki/images/4/42/Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.ppt http://cctbio.ece.umn.edu/wiki/images/3/36/Ppt.jpg]</span> | <span class="plainlinks">[http://cctbio.com/wiki/images/4/42/Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.ppt http://cctbio.ece.umn.edu/wiki/images/3/36/Ppt.jpg]</span> | ||
<br> [http://cctbio.com/wiki/images/4/42/Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.ppt Poster] | <br> [http://cctbio.com/wiki/images/4/42/Qian_Riedel_Two_Level_Logic_Synthesis_for_Probabilistic_Computation.ppt Poster] | ||
Line 203: | Line 198: | ||
| [http://www.sigda.org/iwls/iwls2010/ International Workshop on Logic and Synthesis], Irvine, CA, 2010 | | [http://www.sigda.org/iwls/iwls2010/ International Workshop on Logic and Synthesis], Irvine, CA, 2010 | ||
|} | |} | ||
| align=center width="70" | | | align="center" width="70" | | ||
<span class="plainlinks"> | <span class="plainlinks"> | ||
[http://www.cctbio.ece.umn.edu/wiki/images/2/2f/Qian_Riedel_Synthesizing_a_Set_of_Cubes_to_Satisfy_a_Given_Intersection_Pattern.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span> | [http://www.cctbio.ece.umn.edu/wiki/images/2/2f/Qian_Riedel_Synthesizing_a_Set_of_Cubes_to_Satisfy_a_Given_Intersection_Pattern.pdf http://cctbio.ece.umn.edu/wiki/images/0/04/Pdf.jpg]</span> | ||
<br>[[Media:Qian_Riedel_Synthesizing_a_Set_of_Cubes_to_Satisfy_a_Given_Intersection_Pattern.pdf | Paper]] | <br>[[Media:Qian_Riedel_Synthesizing_a_Set_of_Cubes_to_Satisfy_a_Given_Intersection_Pattern.pdf | Paper]] | ||
| align=center width="70" | | | align="center" width="70" | | ||
<span class="plainlinks">[http://cctbio.com/wiki/images/5/5b/Qian_Riedel_Synthesizing_Cubes_to_Satisfy_a_Given_Intersection_Pattern.ppt http://cctbio.ece.umn.edu/wiki/images/3/36/Ppt.jpg]</span> | <span class="plainlinks">[http://cctbio.com/wiki/images/5/5b/Qian_Riedel_Synthesizing_Cubes_to_Satisfy_a_Given_Intersection_Pattern.ppt http://cctbio.ece.umn.edu/wiki/images/3/36/Ppt.jpg]</span> | ||
<br> [http://cctbio.com/wiki/images/5/5b/Qian_Riedel_Synthesizing_Cubes_to_Satisfy_a_Given_Intersection_Pattern.ppt Slides] | <br> [http://cctbio.com/wiki/images/5/5b/Qian_Riedel_Synthesizing_Cubes_to_Satisfy_a_Given_Intersection_Pattern.ppt Slides] | ||
|} | |} | ||
<!--== The Synthesis of Stochastic Circuits for Nanoscale Computation == | <!--== The Synthesis of Stochastic Circuits for Nanoscale Computation == | ||
Latest revision as of 09:03, 7 July 2023
(My research while at UMN.)
Most digital circuits are designed to map deterministic inputs of zero and one to deterministic outputs of zero and one. In my research, I consider an alternative paradigm: digital circuits that operate on random Boolean variables. A random Boolean variable with probability p (0 ≤ p ≤ 1) of being one represents a real-valued number p. Thus, circuits can be viewed as constructs that accept real-valued probabilities as inputs and compute real-valued probabilities as outputs.
I consider three topics pertaining to circuit synthesis in this probabilistic domain. The first is how to synthesize circuits that implement arbitrary arithmetic functions. The second is how to synthesize circuits that transform a set of source probabilities into target probabilities. The third is a special case of the second one, in which the source inputs are independent random Boolean variables with probability 0.5.
The Synthesis of Logical Computation on Random Boolean Variables
Logical computation on random Boolean variables implements a function mapping real values into real values. For example, given an input probability x, an inverter will have an output with probability 1-x. In this work, I consider a general synthesis problem: how can we implement an arbitrary arithmetic function y=f(x) by logical computation on random Boolean variables?
Selected Publications
|
|
|
|
The Synthesis of Combinational Logic to Generate Probabilities
In probabilistic computation that requires many different probability values, it is expensive to generate all of the probabilities directly from random sources. In this work, I demonstrate novel techniques for synthesizing combinational logic that transforms a set of source probabilities into different target probabilities.
Selected Publications
|
|
Two-Level Logic Synthesis for Probabilistic Computation
Assuming that we are given independent copies of probabilistic inputs with probability 0.5 of being one, how can we synthesize a two-level logic circuit that generates an arbitrary target output probability? This problem is equivalent to finding a Boolean function with m minterms and having a sum-of-product expression with the minimum number of products.
Selected Publications
|
|